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Abstract
Respiratory tract infections (RTIs) are one of the most common reasons for seeking healthcare, but are
amongst the most challenging diseases in terms of clinical decision-making. Proper and timely diagnosis is
critical in order to optimise management and prevent further emergence of antimicrobial resistance by
misuse or overuse of antibiotics. Diagnostic tools for RTIs include those involving syndromic and
aetiological diagnosis: from clinical and radiological features to laboratory methods targeting both
pathogen detection and host biomarkers, as well as their combinations in terms of clinical algorithms. They
also include tools for predicting severity and monitoring treatment response. Unprecedented milestones
have been achieved in the context of the COVID-19 pandemic, involving the most recent applications of
diagnostic technologies both at genotypic and phenotypic level, which have changed paradigms in
infectious respiratory diseases in terms of why, how and where diagnostics are performed. The aim of this
review is to discuss advances in diagnostic tools that impact clinical decision-making, surveillance and
follow-up of RTIs and tuberculosis. If properly harnessed, recent advances in diagnostic technologies,
including omics and digital transformation, emerge as an unprecedented opportunity to tackle ongoing and
future epidemics while handling antimicrobial resistance from a One Health perspective.

General introduction
Respiratory tract infections (RTI) are amongst the most common reasons for seeking healthcare. Despite
important advances in the last two decades, clinical management is challenging at several levels. Many
RTI are caused by viruses for which antibiotics are not effective and in many cases are self-limiting.
Misuse and mismanagement of antibiotics is particularly relevant in RTIs and contribute to the emergence
of antimicrobial resistance (AMR) while hindering treatment. The aim of the current review is to discuss
advances in diagnostic tools that have an impact on clinical decision-making and follow-up.

Pneumonia is the leading cause of death among children under 5 years old and the fifth cause of death
among adults over 69 [1]. By contrast, for decades, the leading cause of death from a single infectious
pathogen was tuberculosis (TB) [2]. In 2020, COVID-19 overtook TB as the infectious disease causing the
highest mortality; and although global TB control efforts were not on track, even before the advent of the
pandemic, TB control strategies have been further impacted by it [3]. According to the World Health
Organization (WHO) report in 2021 [4], reduced access to TB diagnosis and treatment in 2020 resulted in
the first year-on-year increase (of 5.6%) since 2005: estimated numbers account 1.3 million TB deaths
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among HIV-negative people and an additional 214 000 among HIV-positive people, with the combined
total back to the level of 2017.

Existing surveillance programmes regularly monitor respiratory syndromes with focus on influenza viruses
[5] and very efficient initiatives provide a coordinated and agile research response to infectious disease
outbreaks [6]. The usefulness of monitoring became evident with the reported clusters of patients with
pneumonia of unknown cause in late December 2019 that led to the description of the novel human
pathogen SARS-CoV-2 [7]. The initial predictions were that 60% of the global population could be
infected [8]. During 2020 and 2021, we witnessed a pandemic with devastating effects on health and
economies but simultaneously a historical game-changer. The SARS-CoV-2 is unquestionably a One
Health disease and has highlighted the concept of syndemics: a synergistic effect of the pandemic
overlapping with endemic diseases and contextual determinants of health such as cultural, socio-economic
factors, climate and environment [9]. The influence of noncommunicable diseases is well known and the
impact of smoking and air pollution is finally being highlighted [10]. New vulnerable populations are
resulting from population ageing [11] and the increased use of immunosuppressive therapies for a wide
range of medical conditions [12].

Why do we need diagnostics? The concept of diagnostic tools
The concept of diagnostics refers to: 1) interpreting the clinical profile to predict the presence of the illness
(syndromic diagnosis), 2) finding an explanation for the illness (aetiology) and 3) predicting the course of
disease and need for follow-up (prognosis) (figure 1). These three above-mentioned aspects have been
reflected in this review.

Diagnostic tools must be accurate and need to be properly assessed and monitored, as emphasised by the
introduction of the In Vitro Diagnostic Medical Devices Regulation (EU) 2017/746 (IVDR) [13]. Risks
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and benefits need to be quantified, based on scientific evidence and fit for use in the population for which
they are intended (age, comorbidities, immune status). Finally, they need to be used at the right time and
interpreted appropriately to affect care optimally.

Never before have we witnessed such social awareness of infectious disease; the importance of
nonpharmacological measures, of a test result and of understanding the immunity behind it. COVID-19
provided an unprecedented response from industry during the massive testing and vaccination campaigns
that ensued, with more than 1000 new tests, new diagnostic approaches and modification of existing
techniques or the development of new ones [14]. While we must continue to monitor the virus closely, it is
time to change the dynamics regarding the value of diagnostics of RTI globally. If this is properly
addressed, an unprecedented opportunity emerges to face current and future epidemics.

Advances in syndromic diagnosis
One of the first challenges in RTIs is correcting frequently inconsistent case definitions. Clinical signs and
symptoms are similar for many lower respiratory tract infections (LRTIs) and several other diseases (e.g.
pulmonary embolism, acute heart failure, asthma). Global burden estimations require valid, reliable and
timely data [1], so appropriate definitions are essential and important progress has recently been made
[15]. Those aspects that have shown advances are highlighted below.

Pneumonia
Pneumonia is defined as an acute illness affecting the lungs, usually presenting with cough, sputum
production, and rapid and difficult breathing with a new or worsening pulmonary infiltrate on a chest
radiograph. The diagnostic processes range from simple to relatively complex procedures combining
clinical, radiological and laboratory features. Specific investigations should be considered in some endemic
settings (e.g. TB, mycoses) [16] and also in cases of pneumonia associated with air pollution [17].
Depending on the clinical setting and accessibility, the plain chest radiograph is not always required for
diagnosis, nevertheless it still remains a relevant tool. Lung ultrasound has shown better accuracy than
chest X-ray for bacterial pneumonia in emergency departments [18] and an advance during the pandemic
has been its increased use for both diagnosis and follow-up [19]. The additional value of computed
tomography has been widely recognised for COVID-19 pneumonia [20].

Tuberculosis
One of the main advances in definitions is the change from addressing two disease states (latent TB
infection or active TB disease) to evaluating a continuous spectrum of metabolic bacterial activity and
antagonistic immunological responses by adding two additional clinical states: incipient (asymptomatic
phase of early disease, between latent infection and subclinical TB) and subclinical TB (described as
having viable and detectable bacteria, but without TB-related symptoms) [21, 22]. Recent WHO guidelines
endorse automated nucleic acid amplification tests for detection of TB and resistance to rifampicin and
isoniazid, providing more options for early diagnosis of TB [23].

Bronchiolitis
Bronchiolitis is a disorder commonly caused by viral infections in infants, typically beginning with rhinitis
and cough, which may progress to tachypnoea, wheezing, rales, use of accessory muscles and/or nasal
flaring [24]. Many respiratory viruses cause a similar constellation of signs and symptoms. The most
common aetiology is respiratory syncytial virus (RSV), which infects 90% of children in the first 2 years
of life, with up to 40% experiencing LRTIs during the initial infection [25]. Recent advances include the
definition of different endotypes and the identification of relevant risk factors for recurrent wheezing and
asthma development [26].

Bronchiectasis
Bronchiectasis is characterised by a permanent and progressive dilation of the airways because of a vicious
cycle of inflammation, infection and repair of the bronchial mucosa, which leads to malfunctioning of the
mucociliary system and destruction of the bronchial wall [27]. Awareness of bronchiectasis has increased
considerably in recent years [28, 29] and advances include a clearer definition of the disease [30] as well
as its exacerbation. Now acute deterioration in three or more of the following symptoms for at least 48 h:
cough, sputum volume and/or consistency, sputum purulence, dyspnoea and/or exercise tolerance, fatigue
and/or malaise, or haemoptysis, lead clinicians to make changes in bronchiectasis treatment [31].

COPD exacerbation
The definition of COPD exacerbation has also improved by highlighting a spectrum of different
exacerbation types that can require different interventions. Identifying exacerbation triggers is of the utmost
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importance for proper treatment. Best known are viral and bacterial RTIs with a significant proportion of
co-infections. However, in one-third of cases, they remain unidentified [32].

Treatable traits
Recently, a novel treatment approach based on “treatable traits” recognises that airway infection is only one
of many treatable traits in a given patient that benefit from specific management, such as airway clearance
techniques, prompt treatment of exacerbations or oral or inhaled antibiotics. This approach makes it
possible to differentiate those individuals in whom symptoms or exacerbations are driven by a different
treatable trait that will not benefit from antibiotic treatment [33–35].

Chronic bronchial infection
When potentially pathogenic microorganisms are present over time, a chronic bronchial infection occurs.
Chronic bacterial infection can be clinically defined as evidence of positive respiratory tract cultures of the
same microorganism by standard microbiology, on two or more occasions, at least 3 months apart over
1 year, while in a stable state [30]. Several novel techniques, such as automated molecular diagnostic
systems, might be incorporated into the diagnostic scheme for exacerbations following careful
interpretation. Both acute and chronic respiratory infection cause a progression of the disease and a
worsening quality of life [29]. This is a very common situation in diseases such as COPD and
bronchiectasis, and less frequently it also occurs in asthma. Chronic airway infection has been associated
with altered pulmonary immune response and worse clinical outcomes [36, 37].

Spectrum of disease
A major challenge in each of these clinical conditions is correlating syndromic and aetiological diagnosis
leading to the concept of spectrum of disease. Diagnosis is straightforward if a primary pathogen such as
Mycobacterium tuberculosis, Legionella pneumophila or Pneumocystis jirovecii is identified. In other
situations, more careful interpretation is needed such as when identifying viruses (infection or
asymptomatic shedding), environmental fungus or environmental mycobacteria (infection, colonisation or
contamination). The most frequently isolated bacteria such as Streptococcus pneumoniae, Haemophilus
influenzae or Moraxella catarrhalis are potentially commensal. This is also the case for Staphylococcus
aureus and Pseudomonas aeruginosa and other nonfermenting bacilli (e.g. Achromobacter xylosoxidans,
Stenotrophomonas maltophilia) when underlying disease is present. Nonprimary pathogens might gain
access and trigger symptoms or disease (e.g. by activating virulence factors) or remain quiescent (biofilm,
intracellular survival), so better understanding of host–pathogen interaction is crucial [38]. Improving
microbiological methods and the increased number of vulnerable patients has added Nocardia spp., fungi
and environmental mycobacteria to the spectrum of potential pathogens. Recent advances include
guidelines to assess definitions of disease stages for environmental mycobacteria [39–41] and also for
pulmonary aspergillosis, depending on the interaction between Aspergillus and the host [27].

Advances in diagnostic tools identifying the aetiological agent
Microbiological diagnostics are critical at three levels: 1) identifying the aetiological agent and guiding
appropriate therapy, so adjusting spectrum and duration and decreasing misuse and overuse of antibiotics
to prevent the emergence of AMR; 2) surveillance of local resistance patterns and screening to identify
patients colonised with resistant pathogens and adoption of infection prevention and control measures to
prevent spread; and 3) detecting emerging pathogens. An important concept is that detection might refer to
screening (e.g. detecting carriers of the resistant pathogen) or to aetiological diagnosis. Independent of the
sophistication of the methods, it is crucial to generate timely, understandable results that can inform
clinical decisions.

A diagnostic test can be used to demonstrate the presence or absence of infection or to detect evidence of a
previous one. Generally speaking, it can be categorised into direct diagnosis, including microscopic
examination, culture, antigen detection and molecular detection; and indirect diagnosis, covering
immunological tests. The pandemic has brought advances in every single technique [42].

Appropriate samples and methodology
Accurate microbiological diagnosis of RTIs requires good-quality specimens. Samples must be collected
taking medical conditions into account, either from the upper (nasal/throat specimens) or lower respiratory
tract (bronchoalveolar lavage fluid, tracheal aspirate). Additionally, improved detection methods are
making the use of new types of specimens possible and even saliva and oral mucosa may have a role to
play in some situations [43–46]. But this is not true for all microorganisms; it depends on the pathogenesis
and whether they are primary pathogens or potentially commensal. Particularly for COVID-19 diagnosis,
pre-analytical factors have been particularly relevant, such as the swabbing methods and the use of
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different matrices and viral transport media [47, 48]. Lastly, reliable transportation in optimal conditions
(temperature, time) to the laboratory are key to ensuring valid results.

Pathogen identification
For culture-based methods, the arrival of matrix-assisted laser desorption/ionisation-time of flight
(MALDI-TOF) mass spectrometry in clinical labs has been a major development in rapid identification,
with the additional potential for detection of AMR and even typing, among other possible/putative/future
uses. In culture-independent detection, recently antigen detection has increased its identifiable targets.
Additionally, and of particular note, molecular methods have increased the diagnostic yield for virus and
atypical bacteria, showing unprecedented development during the COVID-19 pandemic. Molecular
techniques are also becoming available at point-of-care (POC) or near-POC as different portable molecular
diagnostic instruments are being developed [49]. These syndromic multiplex panels can be used to detect
the pathogen DNA or RNA most commonly associated with RTIs, including viruses and bacterial atypical
pathogens [50–54]. Advantages include decreased time to detection, the possibility of quantification and
detection of resistance and virulence genes. Serological diagnosis of atypical pneumonia has been replaced
by molecular tests and is now only used in cases such as Q fever. Antibody detection has seen a
comeback, mostly for immunoprevalence and vaccine response studies of COVID-19 (enzyme-linked
immunosorbent/chemiluminescence/fluorescence microparticle and lateral flow immunoassays). The
pandemic has also enabled the development of advanced sensing technologies based on microfluidics,
nanotechnology and material science [55] as well as on targeting structures such as serum extracellular
vesicles [56]. The main benefits of these assays are that they are portable, miniaturised, low cost and
highly integrated POC devices [57]. In the move to a new paradigm of personalised medicine, POC
diagnostic testing has been proposed to improve the quality of antibiotic prescription [58] but accuracy is
variable and settings need careful adjustment [18].

Susceptibility testing
Advances involving the use of selective chromogenic media shorten the detection time for resistant
bacteria. The gold standard is phenotypic testing because it shows the overall phenotype, although multiple
resistance mechanisms can lead to difficult phenotype interpretations. The long time to result has been
improved by selective culture media and analytical methods starting from a bacterial pellet, which is
particularly useful in systemic infections [59] and also applicable to mass spectrometry or nanosensors
[60]. Genotypic tests detect resistant genes in a fast and sensitive way, but genes may be present but not
expressed, and the tests only detect known resistance genes. As a pragmatic summary, phenotypic testing
can tell what antibiotics to prescribe, while genotypic testing can tell what not to prescribe.

Molecular epidemiology
Available typing methods for respiratory pathogens are laborious and time-consuming, but in recent years
whole genome sequencing (WGS) has emerged as the gold standard method for detecting outbreaks and
preventing clonal dissemination in medical settings. However, this is not so easily implemented in
real-time practice. In this sense, the current COVID-19 pandemic has seen unprecedented generation and
global sharing of large numbers of SARS-CoV-2 sequences in a record time, with global sharing of
variants of concern in common databases, powering influenza surveillance programmes into COVID-19
efforts [61]. The next step involves real-time molecular epidemiology [62]. Genomics have expanded
rapidly, bringing the opportunity to move these approaches from academic to public health decisions and
surveillance, as well as strengthening global cooperation with other disease control programmes [63].
Phenotypical typing methods are also improving, such as Fourier transform infrared spectroscopy [64].

Extended culture techniques, automated molecular diagnostic systems and DNA sequencing technologies
have revealed unknown airway microbiota, including an abundance of species that are refractory to
common diagnostic tools. The interactions that occur between these microbial species can profoundly
affect the expression of pathogenicity and virulence [27]. Large numbers of microorganisms, including
bacteria, fungi and viruses, collectively known as the microbiome, coexist in the lungs of healthy subjects
and patients with respiratory diseases [65].

The microbiome
The microbiome is defined as the set of the genes and gene products (RNA, proteins, metabolites)
produced by resident microbial communities. Research into the chronic lung disease microbiome began in
the early 2000s, when ecological techniques of microbial DNA analysis were applied to sputum samples
[66, 67]. Since then, the number of studies of the respiratory microbiome has grown exponentially. Whilst
traditionally bacterial infection in the airways has been characterised using culture-based methods, 16S
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ribosomal RNA and other metagenomic approaches provide a powerful method of determining microbial
identities and relative abundances [68].

The impact of omics technologies on precision approaches
General concepts of omics
There is growing clinical interest in understanding biological mechanisms beyond the molecular level to
include biological functionality. In this sense, systems biology aims to explore how the interactions
between biological components (genes, proteins, metabolites, etc.) contained in a biological tissue, cell,
fluid or a whole organism affect its functionality (biological processes) as a whole, thus making it possible
to characterise a biological system in a complete and integrated way [69]. Omics cover the set of
high-throughput technologies that provide a global vision of a dynamic biological process through the
analysis of genes (genomic), ribonucleic acid (RNA) (transcriptomic), proteins (proteomic) or metabolites
(metabolomic).

Metagenomics
The first sequencing technique used in respiratory microbiome research was 16S rRNA gene sequencing. It
is based on PCR amplification using primers that target the 16S ribosomal gene in variable regions of
bacterial genomes, which can be used for taxonomic classification [70]. It is fast, reasonably low cost, and
by converging on a specific region of the bacterial genome requires only a limited sequencing depth and
allows the study of microbial communities [71]. However, it targets relatively short gene sequences, which
are often shared by different closely related species, making distinguishing them a challenge [72]. Another
shortcoming is that 16S sequencing analyses are restricted to the detection of bacteria and Archaea because
viruses or fungi do not carry 16S rRNA genes. In this sense, shotgun metagenomic sequencing is an
approach that allows microbiome characterisation with a much greater resolution than 16S sequencing. The
term “shotgun” refers to the untargeted sequencing of all DNA present, in contrast to the targeted
amplicon-based approaches. By not limiting sequencing to a single region of DNA, metagenomic
sequencing can also provide information on the functional characteristics of the taxa present, including
their metabolic traits, and their carriage of antibiotic resistance and pathogenicity features [73].
Furthermore, the inclusive nature of metagenomic sequencing provides information not only on the
bacteria present, but also the fungi and DNA viruses, achieving identification to a subspecies or strain
level. The principal limitation of shotgun metagenomic approaches is related to costs, but also to host
DNA contamination. Finally, current methods cannot differentiate between live and dead microbes, which
may be relevant for several reasons, such as assessing the impact of antibiotic therapy in clinical samples
[74]. Novel methodologies to integrate bacterial, viral and fungal communities to allow assessment of the
“interactome” have been recently developed. Rather than focusing on individual taxa, this approach
proposes a role for microbial networks in altering clinical outcomes or treatment responses [75].

Transcriptomics
Transcriptomics involves the analysis of RNA produced by a given genome at a given time and condition,
and thus during LRTIs it can provide information regarding pathogen and host dynamics. It can refer to
the exploratory analysis of an entire transcriptome, primarily using RNA sequencing, or to a targeted
analysis of known RNAs using techniques such as gene expression panels.

Metabolomics
Metabolomics is one of the most powerful bioanalytical strategies to obtain a picture of the metabolites in
the course of a biological process and is a phenotyping tool [76]. Metabolomics allows the comparison of
a chemical fingerprint present in a cellular system or a biofluid under normal conditions with that of
altered states produced by disease, pharmacological treatment, dietary intervention or environmental
modulation [77].

Clinical impact of omics
There is enormous interest in the potential of the microbiome to improve the understanding and
stratification of respiratory diseases and to serve as a biomarker for clinical management. Host–microbiome
interactions probably contribute substantially to differences in clinical phenotypes and disease outcomes
[68, 78, 79]. Recent studies conclude that the microbiome could identify subgroups of patients at higher
risk of poor outcome, who could benefit from precision treatment strategies [79]. Important questions still
need to be examined, including the role of fungi, viruses and mycobacteria, the interactions with the host,
and the usefulness of microbiome profiles for selecting antibiotics and to evaluate therapeutic responses
[80]. The gut–lung axis affects disease and treatment. The intestinal microbiome influences the pulmonary
microbiome and also lung immune responses by directly seeding the airways with bacteria and distributing
bacterial metabolites that act as immune modulators [81].
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Regarding tuberculosis, advances in systems biology and omics strategies have identified sets of
biomarkers with the potential to optimise TB prevention, diagnosis and treatment. Only a few have been
evaluated in clinical trials, so applicability in TB management is still limited [82, 83]. Metabolomics has
provided insight into the pathogenesis of TB related to detection of infection and disease progression [76,
84–87]. Urinary metabolomic response has also been characterised during community-acquired
pneumonia, and different profiles have been identified according to the causative microorganism: atypical
bacteria versus pneumococcal or viral [88]; ARDS versus influenza; pneumococcal versus other aetiologies
[89]; and pneumococcal versus staphylococcal [90].

Advances in diagnostic tools characterising the host response
The identification of novel biomarkers based on host–pathogen interactions related to the shift from
carriage to infection may improve RTI management. There is a need to understand how the pathogens
interact with their host to achieve a successful invasion (figure 2). Inflammatory biomarkers and severity
scores can contribute to some levels of stratification [38, 66].

Systemic biomarkers, such as the C-reactive protein (CRP) and procalcitonin (PCT), have been widely
analysed in patients with LRTIs, although other biomarkers are also being investigated [91, 92]. They are
also being implemented at POC. The capacity of biomarkers to distinguish acute bacterial from viral RTIs
has enabled their use as tools for guiding antimicrobial therapy [93], but in the outpatient setting they
might have a limited capacity [94]. Regardless of whether they are used for diagnostic or monitoring
purposes, biomarker analysis should be included as an additional criterion to be integrated into
decision-making algorithms.

During the COVID-19 pandemic, besides the identification of the causative agent, the detection and
monitoring of the host response has provided insights into the pathogenesis of the disease [95, 96]. In fact,
immune tools measuring T-cell responses and detecting IFN-γ in vitro (IGRAs) have been used for some
years to diagnose TB and nowadays they are under investigation for SARS-CoV-2. Furthermore,
second-generation IGRAs that detect other cytokines, such as IP-10, have proved comparable to IFN-γ.
Furthermore, IP-10 cytokine has been shown to be very stable when dried on filter paper, which facilitates
sample shipment to reference laboratories [97–100].

Because disease outcome depends on dynamic host–pathogen interactions, specific host genetic signatures,
together with pathogen genomics, can be combined in order to identify those individuals with a higher risk of
severe disease [101, 102]. Specific host transcriptomic signatures have also been identified for this purpose
[103–106]. An interesting additional area of host genomics research is its use during pre-symptomatic stages,
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RTIs.
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which can be important in influenza [107, 108] or TB [109] for predicting disease progression or detecting
early forms of the illness. Host determinants for outcome are also related to acquired risk factors. Biological
therapies targeting cytokines and/or cell subsets have become essential for the treatment of several
immune-mediated diseases and have an impact on RTIs, as reviewed elsewhere [12].

Advances in understanding host immunity have been unprecedented during the pandemic, providing better
knowledge of the immune response for other endemic respiratory viruses. Multiple mechanisms might lead to
humoral and cellular responses involved in combatting RTIs. While an enormous effort has been put into
vaccine development and immunogen design, there are still some knowledge gaps in understanding
long-term memory and protective immunity. Advances in methods to assess immunogenicity have been very
relevant. Vaccines have been traditionally dependent on humoral response activation by means of B-cells
producing neutralising antibodies. However, over the years it has been accepted that cellular immunity
mediated by CD4+ and CD8+ T-cells is also critical, evidencing that even a strong antibody response is not
sufficient for protection. Recently it has been recognised that local immunity to bacterial or viral RTIs can be
mediated by specific cells with a memory phenotype, called tissue-resident memory T-cells (TRMs). These
cells are noncirculating, present at the site of infection, and retained in tissues for mediating a protective
response in case of reinfection. Studies in mouse models and humans have evidenced that TRMs have a
potential role against several respiratory pathogens such as influenza, RSV, M. tuberculosis or SARS-CoV-2
virus [110–115]. It is therefore important to develop new approaches and perform immunological studies to
characterise TRMs as a diagnostic tool to monitor new vaccines that enhance these cell populations. Finally,
the pandemic accelerated novel vaccine formulations including new viral vectored or nucleic acid-based
vaccines, as well as the re-emergence of the concept of trained immunity. Live vaccines such as BCG can
confer nonspecific protection against upper and lower RTIs not associated with M. tuberculosis through
epigenetic reprogramming during haematopoiesis of innate cells [116–121].

Finally, better understanding of host–pathogen interactions has allowed the identification of potential host
targets and therefore the development of host-directed therapies. These methodologies consist of inhibiting
host factors indispensable for microorganism replication, intensifying a pathway of the host immune
response or decreasing the inflammatory status [122–125]. Metabolic, autophagy and immune response
pathways are currently being investigated. Implementation is still a challenge, with a need for accurate
patient stratification for tailored interventions that prevent major side effects. Several randomised clinical
trials are ongoing, focusing on TB and COVID-19 (https://ClinicalTrials.gov).

Advances in diagnostic tools to predict severity
Clinical assessment of severity, related to involvement of lung parenchyma in the acute phase and
prediction of functional sequelae, is relevant for clinical decisions. In radiology, current practices include
tedious conventional processes, which rely on specialist technical expertise and are prone to human error.
Great progress has been made in deep learning that supports medical radiologists [126–128]. Novel
approaches such as radiomics, a high-throughput method extracting a tremendous amount of quantitative
imaging data using data-characterisation algorithms, have shown great potential in characterising imaging
biomarkers [129]. Also, radiomics-based machine learning signatures have shown the potential to
accurately differentiate ground-glass opacities due to COVID-19 pneumonia from those due to other acute
lung diseases [130] or distinction between lung adenocarcinoma and tuberculosis granuloma [131].
Another example would be the computer-aided design (CAD) procedure for automatic diagnosis of
COVID-19 from chest X-ray images [132].

Several bronchoscopic technologies have emerged over recent years, including thin/ultrathin
bronchoscopes, radial probe endobronchial ultrasound (RP-EBUS), virtual navigation bronchoscopy
(VBN), electromagnetic navigation bronchoscopy (ENB) and robotic bronchoscopy [133]. Bronchoscopic
transparenchymal nodule access (BTPNA) and transbronchial access tool (TBAT) are novel techniques
that, combined with navigational bronchoscopic technologies, improve access to lung lesions. The
introduction of cryobiopsy has improved tissue sampling. These innovative techniques allow higher
diagnostic yield, also in the context of RTIs and TB and other mycobacterial infections during the study of
lung nodules and staging of lung cancer [134].

Oxygen saturation monitoring has traditionally been carried out using transmittance pulse oximeters due to
their dependability, but they are limited to peripheral regions. Recently, new options being studied include
reflectance pulse oximeters that can be used at different body sites (finger, wrist, chest and forehead) and
can be scaled down to affordable patches [135].
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Regarding prognostic tools, diaphragm ultrasound can be used to diagnose diaphragm dysfunction, assess
severity, and monitor disease progression, and could be beneficial both in pneumonia and COVID-19 [16,
136]. Advances have also been made regarding better diagnosis of long-term structural–functional
complications and a better follow-up of sequelae by standardising prognostic measures such as quality of
life and social impact [137–139].

Final remarks: lessons learned
The pandemic has brought the need for an integrated approach for handling infectious diseases back to the
forefront, along with the need for a coordinated effort across multiple disciplines including human, animal
and environmental [140]. Unprecedented milestones have been achieved by improving and applying the latest
technologies in key areas such as epidemiology, contact tracing, diagnostics and vaccine development.

However, global health inequities in low-income countries related to vaccines and treatments, and also
diagnostics, still need to be addressed. The pandemic has additional costs related to the previously
identified global crisis in AMR and TB [141] and several aspects have been highlighted as opportunities at
different levels [142, 143].

POC technologies have allowed community-based testing to be scaled up and used as a public health tool,
but they need to be linked to careful evaluation [144] and to demonstrate their diagnostic accuracy in
clinical practice [18]. Timely results also involve careful interpretation and this is facilitated by effective
interdisciplinary communication, starting with understandable reporting of results.

While providing emergency healthcare, clinicians and scientists have carried out clinical research and
lessons learned underline the importance of pre-established structures and procedures and the need for
improved regulatory consensus and globally connected networks [145]. Cost-effectiveness analyses can be
used to assess the value of diagnostics in clinical practice, but they need proper design and reporting [146]
in the context of pragmatic clinical trials. Digital transformation of health is ongoing through the
incorporation of artificial intelligence to support clinical decision processes [147].

After years of reporting clinical diagnosis and microbiologically confirmed diagnosis in different
databases, priorities have been set up in data connectivity by maximising efforts in FAIR (Findable,
Accessible, Interoperable, Reusable) approaches [148, 149]. Real-world data and real-world evidence are
rapidly gaining importance and being formalised in policy frameworks [150].

Summary
Advances in diagnostic tools have been largely accelerated by the pandemic and affect both the design of
personalised therapies and public health measures. Transdisciplinary communication is crucial for proper
development and implementation of current techniques. Impact of the use of diagnostic tools depends on
several contextual factors involving clinical setting, geographical location, connectivity and clinical
research resources. It is mandatory to maintain monitoring of pathogenesis of individual RTIs for a timely
diagnosis and proper interpretation.
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