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Abstract: Planar microwave sensors have become increasing developed in recent decades, especially
in material characterization (solid/liquid) as they provide regions highly sensitive to the surrounding
medium. However, when it comes to deciphering the content of practical biological analytes or
chemical components inside a host medium, even higher sensitivities are required due to their minute
concentrations. This review article presents a comprehensive outlook on various methodologies to
enhance sensitivity (e.g., coupling resonators, channel embedding, analyte immobilization, resonator
pattern recognition, use of phase variation, using coupled line section, and intermodulation products),
resolution (active sensors, differential measurements), and robustness (using machine learning) of
arbitrary sensors of interest. Some of the most practical approaches are presented with prototype
examples, and the main applications of incorporating such procedures are reported. Sensors with
which the proposed techniques are implemented exhibit higher performance for high-end and
real-life use.

Keywords: microwave sensor; dielectric characterization; microfluidics; sensitivity; resolution; active
sensor; machine learning; resonators

1. Introduction

Electromagnetic (EM) wave propagation in a medium depends on its electric and
magnetic properties, which can be summarized as complex-valued permittivity and per-
meability [1]. The desired operation of a microwave device relies on the comprehensive
understanding of the constituent substrate properties. Due to the propagation nature of
these wavelengths, the surrounding medium also affects the optimal operation. Material
properties determine the key role of many applications such as medicine, quality con-
trol (e.g., water), agriculture [2,3], smart home [4], etc. The microwave measurement of
dielectric properties in a medium has been explored in recent decades as an alternative
to the most established optical methods. With huge investments in the development of
microwave sensing, alternative methodologies have been investigated to replace commonly
used and expensive sensing apparatus including fiber optics, wearable sensors, image
sensors, chemical and biosensors [5–8]. It is found that, compared to other methods, mi-
crowave devices bring about highly sensitive regions to the surrounding medium including
solid, liquid, and even gaseous compositions [9,10]. The interaction of EM waves with
material, even remotely, is intensified in the desired regions, which makes them useful for
applications that require distant sensing [11–13]—specifically in applications involving
noninvasive near-surface measurements such as soil moisture sensing using time-domain
reflectometry [14,15]. Contact sensors reduce their lifespan which adds to their regular
maintenance cost while being continuously used, or increases the supplement cost while
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carrying consumable and disposable parts [16,17]. Non-contact sensing as well as small
size, compactness, low-cost design, and robust sensing significantly increase microwave
sensor performance in complex permittivity measurements [18–23], while facilitating its
integration into monolithic microwave integrated circuits (MMIC) [24–26]. These sensors
take different topologies including split-ring resonator (SRR) [20] and complementary SRR
(CSRR) [27,28]. They are further improved to cope with common sources of noise/error
with differential sensing [29,30]. For some cases where the frequency of resonance shift
is negligible, either the amplitude of resonance is measured instead [31] or the resonance
profile sharpness is enhanced with compensating the power loss using electronics [32].

In this review paper, several techniques are discussed that can be applied to resonant-
based sensors for material (solid/liquid/gaseous) composition characterization. Even
though planar structures are more favorable in the practical prototypes presented here,
mainly because of their low profile and versatility compared with the bulky cavity counter-
parts, the proposed procedures are considered general methods that can be applied to a
broader range of sensors including non-planar and non-resonant ones. First, the sensitivity
of sensors is discussed, which is of the utmost importance in biosensors and high-end ap-
plications and practical methods are presented to improve a sensor’s sensitivity including
coupled resonators [33,34], the use of embedded channels inside substrates [35], analyte
immobilization [36], resonator pattern optimization [37], using phase variation [38,39],
coupled-line sections [40], and nonlinearity and intermodulation products [41]. Second,
for a sensor with given sensitivity, the performance can be improved with respect to the
output resolution while compensating the sensor loss by the active resonance method,
using the sensor in oscillatory mode, or employing differential measurements in cross-
mode [32,42–46]. Finally, the intrinsic feature of wave-propagation for planar designs
makes them susceptible to environmental variations. Therefore, machine learning is pro-
posed as a means to grasp the possible impacts and remove them from the sensor response
towards a robust design [47–50].

2. Sensitivity Enhancement
2.1. Planar Structures in Frequency-Variation Sensors

In this section, it is shown that sensitivity in frequency-variation microwave sensors
implemented in planar technology can be optimized by adequately choosing the resonant
element. Such a resonant element can be either a metallic resonator or a slot (also called
defect-ground-structure DGS) resonator (a review of different electrically small resonant
elements for sensing can be found in [51]). Planar frequency-variation sensors can be
implemented as transmission-mode or reflective-mode structures, but transmission-mode
frequency-variation sensors are more common [52]. Moreover, although transmission-
mode frequency-variation sensors can operate either as notch filters or as bandpass filters,
the former dominate the available literature. In this section, this study refers to sensors
operating as transmission-mode notch filters, the notch being caused by the coupling
(electric, magnetic or mixed) between the resonant element and the host transmission line.
The consideration of a metallic or a slot resonator for sensor implementation may depend on
several criteria. Nevertheless, slot resonators etched in the ground plane of a microstrip line
exhibit an inherent advantage, i.e., such resonators are etched in the substrate side opposite
to that of the line strip. Consequently, these sensors provide backside isolation, and the
presence of the MUT is in contact, or in close proximity, to the sensing resonators does not
alter the propagation along the line (except by the fact that the MUT modifies the resonance
frequency of the sensing element). Thus, let us consider sensor implementation by means of
slot-type resonators, such as the dumbbell defect-ground-structure (DB-DGS) resonator [53],
the complementary split-ring resonator (CSRR) [54], and the open complementary split-ring
resonator (OCSRR) [55], to name a few.

Let us consider that the sensors under study are devoted to permittivity measurements.
The canonical input and output variables are thus the dielectric constant of the material
under study (or material under test εMUT) and the resonance frequency, respectively. Never-
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theless, if the imaginary part of the complex dielectric constant (or the loss tangent) should
also be retrieved (second input variable), then an additional output variable is required.
Such a variable is typically the magnitude of the notch (or peak, in case of bandpass-type
sensing structures) [18,56–58]. The canonical sensitivity is thus defined as the derivative of
the resonance frequency of the sensing element, f0, with respect to the dielectric constant
of the material under test (MUT), εMUT, i.e.,

S =
d f0

dεMUT
(1)

It is obvious that the variation in the resonance frequency generated by a change in
the dielectric constant of the MUT should be larger in high-frequency sensors. Thus, for
a faithful comparison between the sensitivities of different frequency-variation sensors,
the relative frequency change is the one that should be considered. Therefore, the relative
sensitivity, defined as

S =
1
f0
· d f0

dεMUT
(2)

is the relevant parameter and figure of merit (useful for a realistic comparison) in these
frequency-variation sensors. Assuming that the MUT is in the region of influence of the
resonant element, a variation in the dielectric constant of the MUT alters the capacitance of
such resonant element, and this in turn produces a shift in the resonance frequency. Thus,
the relative sensitivity can be further developed and expressed as

S =
1
f0
· d f0

dC′
· dC′

dεMUT
(3)

where C′ is the capacitance of the resonant element loaded with the MUT. The first deriva-
tive in (3) depends on the specific configuration of the line and sensing resonator, i.e., it
depends on the analytical dependence of f0 with C′. The second derivative in the relative
sensitivity can be analytically obtained provided that several hypothesis and approxima-
tions are adopted [52]. The first assumption considers the analysis restricted to fully planar
resonant sensing elements etched in a single metallic layer and, therefore, exhibiting an
edge capacitance. Namely, resonant elements implemented by means of two metallic
layers, such as the broadside-coupled split-ring resonator (BC-SRR), or the microstrip
step-impedance shut stub (SISS) resonator, both exhibiting a broadside capacitance, are
excluded in the present analysis. It is also considered that the metal is an ideal (perfect)
conductor, with negligible resistivity and thickness (this approximation is very reasonable
in the usual metallization present in common microwave substrates, typically made of a
high-conductivity material, such as Cu, and with thicknesses of the order of few tens of
microns). The MUT is considered to be in contact with the resonant element, and occupying
the whole half-space. That is, it is semi-infinite in the vertical direction (i.e., the direction
orthogonal to the plane of the resonator), with transverse dimensions extending beyond
the region occupied by the resonator. Moreover, the MUT is made of a uniform material.
The substrate (also uniform) is sufficiently thick so that the effects of any potential metallic
pattern in the face opposite to the one where the resonator is etched (e.g., the line strip) can
be neglected (i.e., the resonance frequency is not altered by the presence of such patterns).

Let us consider a slot resonator etched in the ground plane of a microstrip line, and let
us neglect the effects of the line on the capacitance (and resonance) of the resonator. If the
substrate is thick enough to be considered semi-infinite in the vertical direction, it follows
that the plane of the resonant element is a magnetic wall, and the electric field distribution at
both half-spaces is a mirror image [59]. Under these conditions, the electric field in the plane
of the resonator is tangential, and the capacitance of the resonator can be separated in two
parts, i.e., the capacitances associated with the lower and upper half-spaces (representing
the contributions of the MUT and substrate, respectively), both connected in parallel. If we
designate by C the capacitance of the bare resonator, i.e., without MUT (or surrounded by
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air), the capacitance C′ of the resonator loaded with an arbitrary MUT can be expressed
as [18,52,57–59]

C′ = C
εr + εMUT

ε1 + 1
(4)

where εr is the dielectric constant of the substrate. According to (4), the second derivative
in (3) is found to be

dC′

dεMUT
=

C
εr + 1

(5)

Concerning the first derivative in (3), as indicated, it depends on the specific sensor
configuration and resonant element. Let us consider three different resonant elements, the
CSRR, the DB-DGS, and the OCSRR, loading a microstrip line, as depicted in Figure 1. The
circuit models of these structures are also depicted in Figure [18,39,53,60,61]. It is clear that,
for the OCSRR and DB-DGS resonators, the dependence of the resonance frequency on C′

is simply

f0 =
1

2π
√

LC′
(6)

whereas for the CSRR, the following result is obtained

f0 =
1

2π
√

L(Cline + C′)
(7)

where L is the inductance of the resonator, not affected by the MUT, and Cline is the
capacitance of the line section on top of the CSRR.

Figure 1. Typical topology and circuit model of a microstrip line loaded with a CSRR (a), DB-DGS
resonator (b), and OCSRR (c). Z0 and kl are the characteristic impedance and electrical length,
respectively, of the host lines at both sides of the resonator (k and l being the phase constant and
length, respectively). Reproduced with permission from [59].
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Using (7), it follows that

d f0

dC′
= −1

2
· f0

Cline + C′
(8)

and introducing (8) and (5) in (3), the relative sensitivity for the CSRR-loaded line is found
to be

S = −1
2
· C

Cline(εr + 1) + C(εr + εMUT)
(9)

It can be easily deduced that the relative sensitivity for the OCSRR- and the DB-DGS-
loaded microstrip lines can be inferred from (9) by simply forcing Cline = 0. From these
results, it can be concluded that the relative sensitivity is superior in OCSRR- and DB-DGS-
loaded microstrip lines, as compared to the CSRR-loaded lines. Moreover, from (9 with
Cline = 0), it follows that the relative sensitivity in sensors based on OCSRR and DB-DGS
resonators does not depend on the geometry of the resonant element. However, note that
the assumption of a semi-infinite MUT and substrate has been considered. Concerning
the MUT, it is possible to machine it in order to be thick enough so that the semi-infinite
approximation holds. In contrast, the substrate thickness is sometimes determined by
external factors that do not depend on the designer, and, therefore, the semi-infinite
substrate approximation cannot always be guaranteed. Despite that fact, even for relatively
thin substrates, the plane of the resonant element is a quasi-magnetic wall [59]. Under
these circumstances, the capacitance of the resonator can still be considered to be formed by
the parallel connection of the capacitance of the MUT and the capacitance of the substrate.
Such capacitance is given by an expression formally identical to (4), but replacing εr with
εr,eq, the latter being the equivalent dielectric constant of the substrate, defined as the
dielectric constant of a hypothetical semi-infinite substrate providing the same contribution
to the resonator’s capacitance [59,62]. This means that, for a finite substrate, the relative
sensitivity for the CSRR-loaded line should be rewritten as

S = −1
2
· C

Cline(εr,eq + 1) + C(εr,eq + εMUT)
(10)

The equivalent dielectric constant depends on the ratio between the width of the
capacitive slot and the thickness of the substrate [59]. Consequently, for finite substrates,
i.e., for substrates not satisfying the semi-infinite approximation, the relative sensitivity in
OCSRR- or DB-DGS-loaded microstrip lines, given by (10), does depend on the geometry.
However, the dependence is soft, especially for relatively thick substrates, as it has been
recently demonstrated [59] (also note that, as the substrate thickness increases, the equiva-
lent dielectric constant tends towards the nominal dielectric constant of the substrate, or
εr,eq → εr). Nevertheless, it can be concluded that regardless of the specific structure, for
sensitivity optimization, it is convenient to deal with low dielectric constant substrates. In
addition, it can be concluded from (9) and (10) that, as the dielectric constant of the MUT
increases, the relative sensitivity decreases. Indeed, for high dielectric constant MUTs, the
sensitivity scarcely depends on εr (or εr,eq), since εMUT obscures the substrate dielectric
constant (or equivalent dielectric constant). In [63], it was demonstrated that the relative
sensitivity in an OCSRR- and DB-DGS-based sensor was very similar, and superior to the
one obtained in a CSRR-based sensor (all implemented in the same substrate), in agreement
with the theory. In this review paper, let us reproduce the results concerning the relative
sensitivity achieved in various sensing structures based on a microstrip line loaded with a
DB-DGS resonator (Ws is the strip width, whereas the DB-DGS is characterized by the width
S and length l of the slot, and the width Wa and length la of the apertures, square-shaped
in all cases), as can be seen in Table 1. The responses for MUTs with different dielectric
constants (all semi-infinite in the vertical direction), inferred from electromagnetic simu-
lation, are depicted in Figure 2 [59], where the equivalent dielectric constant is indicated.
Figure 3a depicts the dependence of the resonance frequency with the dielectric constant of
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the MUT for the different sensors, whereas Figure 3b depicts the relative sensitivity. The
agreement between the relative sensitivity inferred from the derivative of the simulated
data points and the analytical expression (10) is excellent. Moreover, it can be appreciated
from Figure 2b that those sensors exhibiting the same (or roughly the same) equivalent
dielectric constant exhibit an indistinguishable relative sensitivity, further pointing out the
validity of the analysis.
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Figure 2. Responses of the sensors for different dielectric constants of the MUT (indicated). (a) Sensor A;
(b) sensor B; (c) sensor C; (d) sensor D; (e) sensor E; and (f) sensor F. Reproduced with permission
from [59].

In order to obtain the dielectric constant of an unknown material (MUT), isolating it
from (4) is the first step, which gives

εMUT = (εr,eq + 1)
C′

C
− εr,eq (11)
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Table 1. Geometry and substrate parameters for the considered DB-DGS-based sensors. Reprinted
with permission from Ref. [59].

Sensor
Type

f0,air
[GHz]

Ws
[mm] εr

h
[mm]

S
[mm]

l
[mm]

Wa
[mm]

la
[mm]

A 3.204 3.91 2.20 1.270 0.300 21 3.7 3.7
B 3.226 0.562 3.55 0.254 0.300 20 3.5 3.5
C 3.22 1.13 3.55 0.508 0.600 21.6 3.5 3.5
D 3.24 0.368 6.15 0.254 0.200 20 2.3 2.3
E 3.28 1.184 10.2 1.270 0.200 13.5 1.7 1.7
F 3.29 1.184 10.2 1.270 0.300 15 1.6 1.6

1 2 3 4 5 6 7 8 9 1 0- 1 . 8
- 1 . 6
- 1 . 4
- 1 . 2
- 1 . 0
- 0 . 8
- 0 . 6
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( a ) ( b )

Figure 3. Variation of the resonance frequency with the dielectric constant of the MUT (a) and
relative sensitivity (b) for sensors A, B, C, D, E and F. The theoretical relative sensitivity inferred from
expression (10) is also included in (b), in dashed line. Reproduced with permission from [59].

Note that, in (11), we replaced the dielectric constant of the substrate by the equivalent
dielectric constant in order to take into account the finite thickness of the substrate. If the
considered resonator is the DB-DGS (or the OCSRR), with the resonance frequency given
by (6), then (11) can be rewritten in terms of the resonance frequency of the bare resonator,
f0,air, and in terms of the resonance frequency of the resonator loaded with the MUY, f0,MUT,
i.e.,

εMUT = (εr,eq + 1)
f 2
0,air

f 2
0,MUT

− εr,eq (12)

For CSRR-based sensors, the ratio C′/C that appears in (11) can be evaluated by
isolating C and C′ from (7), however, the resulting expression is not as simple as (12). In
this case, it is found that C′/C is

C′

C
= 1− 1

2π2LC

{
1

f 2
0,air
− 1

f 2
0,MUT

}
(13)

and the dielectric constant of the MUT is inferred by introducing (13) in (11). Another
important aspect is the determination of the equivalent dielectric constant of the substrate.
For this purpose, the idea is to use (12), for DB-DGS (or OCSRR) based sensors, and
consider a MUT with well-known dielectric constant. By measuring, or simulating, the
response of the bare sensor, and the one of the sensor loaded with that MUT, εr,eq, can be
isolated from (12). If, in contrast, a CSRR is the sensing element, in this case, (13) and (11)
must be used. The experimental validation of frequency-variation permittivity sensors
based on different resonant elements, such as CSRRs, SRRs or DB-DGS resonators, has
been reported in the literature [18,58]. Table 2 depicts a comparison of various frequency-
variation sensors. In the table, f0,b is the frequency of the bare resonator. S̄av is the average
sensitivity, calculated as the ratio between the output dynamic range (or difference between
the resonance frequency of the bare resonator and the resonance frequency of the resonator
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loaded with the MUT exhibiting the maximum dielectric constant) and the input dynamic
range (difference between the maximum and minimum values of εMUT). Finally, S̄av is the
relative average sensitivity, calculated by simply dividing the average sensitivity by the
resonance frequency of the bare resonator, i.e., S̄av = Sav/ f0,air) (nevertheless, note that in
the table, S̄av is expressed as a percentage). The table includes also the considered input
dynamic range relative to the dielectric constant of the MUT.

Table 2. Comparison of various frequency-variation sensors in terms of sensitivity.

f0,b (GHz) |Sav| (MHz) |S̄av| (%) Dynamic Range Reference

3.75 38.21 1.019 1.0–78.2 [58]
1.9 1.53 0.081 9.0–80.0 [64]
2.0 4.76 0.238 9.0–79.5 [65]
3.5 9.16 0.261 6.5–80.0 [28]

0.87 0.79 0.091 27.8–80.8 [66]

According to the results of Table 2, the sensor reported in [58] exhibits by far the higher
relative average sensitivity. It should be mentioned that the substrate dielectric constant in
the sensors of [64,66] is εr = 10.2, and this explains, in part, the limited relative average
sensitivity in such sensors. However, in the sensors reported in [28,65], the dielectric
constant of the substrate is εr = 2.94 and εr = 2.33, i.e., smaller than the substrate dielectric
constant considered in the sensor of [58] (εr = 3.55). The reason that explains the superior
relative average sensitivity in the sensor of [58] is the considered resonator, a DB-DGS. With
such a sensing resonant element, the changes in the dielectric constant of the MUT directly
affect the unique capacitance that determines the resonance frequency, the output variable
(see expression (6)). In contrast, in the sensors presented in [28,65], where a complementary
split-ring resonator (CSRR) was used, the resonance frequency is also dependent on the
coupling capacitance between the line and the resonant element (Cline), as can be seen in
the expression (7). Since such capacitance does not vary with the dielectric constant of the
MUT, it is expected that such CSRR-based sensors exhibit poorer sensitivity, as compared
to those of DB-DGS-based sensors.

2.2. Exploiting the Coupling between Resonators

Recently, it was shown that the sensitivity of CSRR-based sensors can be considerably
enhanced by loading multiple CSRRs to a microstrip line (or antenna) and exploiting
the inter-resonator coupling between them [33,34,67]. In [33], it was theoretically and
experimentally demonstrated that when the resonators are placed such that their coupling
takes place in the plane transverse to the direction of propagation (along with the microstrip
line), the sensitivity of the sensor enhances. It was also shown that increasing the number
of resonators creates more sensitive modes (transmission zeros). In [34,67], highly sensitive
sensors based on coupled CSRRs were applied for sensing glucose levels in the blood and
aqueous solutions.

Let us first study how the mutual coupling between resonators can enhance the
sensitivity of a CSRR-based sensor [33]. Figure 4a shows a microstrip line loaded with a
single CSRR. The CSRR can be considered as a quasi-static resonator and modeled using
an RLC circuit as shown in Figure 4b. In this figure, C1 and L are the per unit-length
capacitance and inductance of the transmission line and Cr1 and Lr1 are the effective
capacitance and inductance of the resonator. The circuit shown in Figure 4b exhibits a
transmission of zero at its resonance frequency given by

fz0 =
1

2π
√

Lr1(Cr1 + C1)
(14)
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Figure 4. A microstrip line loaded with a CSRR: (a) footprint and (b) the equivalent lumped circuit
model. Reprinted with permission from Ref. [33].

Loading the CSRR with a dielectric material increases the resonator’s capacitance
(Cr1) due to the higher unity of the sample’s relative permittivity, which decreases the
resonance frequency. In Figure 5a, loading a microstrip line with two CSRRs is considered.
For stronger coupling between the line and CSRRs, the resonators are individually excited
using two branches of the transmission line in the form of a splitter–combiner microstrip
Section [68]. Figure 5b shows the lumped circuit model for the splitter–combiner microstrip
section loaded with two CSRRs [68]. In this figure, Cm1 is the mutual capacitance modeling
the inter-resonator coupling between two CSRRs. Notice that since the resonators are
electrically very close to each other, the inter-resonator coupling is appreciable. Considering
that the coupling between the two transmission line sections is very low, the resonance
frequency (in which a transmission zero occurs) can be approximated by [68],

fz =
fz0√

1− Cm1
Cr1+C1

(15)

where fz0 is the resonance frequency without the inter-resonator coupling between the
CSRRs given in (14). From (15), the inter-resonator coupling (Cm1) causes an increase in the
resonance frequency.

Figure 5. A splitter–combiner microstrip section loaded with two-coupled CSRRs (a) footprint
(a = b = g = 0.5 mm, L = 7.5 mm, and K = 7.634 mm) and (b) equivalent lumped circuit model.
Reprinted with permission from Ref. [33].

To analyze the sensitivity of the 1CSRR sensor compared to that of the 2CSRR sensor,
the assumption of a small change in the resonance frequency due to the perturbation caused
by the MUT was made. Since the MUT mostly affects the resonator capacitance (Cr1), the
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derivative of the resonance frequency with respect to Cr1 can be considered as a measure of
the sensitivity. For the 1CSRR sensor, in (14), we have

d fz0

dCr1
= − Lr1

4π(Lr1(Cr1 + C1))
3
2
= − fz0

2(Cr1 + C1)
(16)

whereas for the 2CSRR sensor, in (14), we have

d fz

dCr1
= − Lr1

4π(Lr1(Cr1 + C1))
3
2
(

1− Cm1
Cr1+C1

) 3
2

= − fz

2(Cr1 + C1)
(

1− Cm1
Cr1+C1

) .

(17)

It can be seen that compared to the changes in the resonance frequency of the 1CSRR
sensor (i.e., (16)), the inter-resonator coupling capacitance (Cm1) in (17) makes the resonance
frequency of the 2CSRR sensor more sensitive to the change in the resonator capacitance
(Cr1); hence, a higher sensitivity to the change in the MUT can be achieved.

To further increase the sensitivity, four resonators can be coupled to two transmission
lines as shown in Figure 6a. Figure 6b shows the lumped circuit model in the case of the
four resonators. Since the two feeding transmission lines are not in the center islands of
the two additional resonators, it is expected that their coupling capacitance (C2) becomes
weaker. The new mutual coupling can be represented as an inter-resonator capacitance
(Cm2). In addition, since we have two sets of coupling capacitances (C1 and C2) as well as
two inter-resonator mutual coupling capacitances (Cm1 and Cm2), it is expected that the
sensor exhibits a dual-band rejection (i.e., two transmission zeros).

Figure 6. A splitter–combiner microstrip section loaded with a four-coupled CSRRs (a) footprint and
(b) equivalent lumped circuit model. Reprinted with permission from Ref. [33].

As a proof of concept, the authors of [33] designed a 50 Ω microstrip line loaded
with a CSRR on a Rogers RO4350 laminate with a thickness of 0.75 mm such that the
resonance frequency (transmission zero) occurs at approximately 3.4 GHz. They also
designed the 2CSRR and 4CSRR sensors so that each CSRR’s dimensions are the same as
that in the 1CSRR sensor. The sensors were fabricated as shown in Figure 7. The measured
transmission coefficient (|S21|) parameters of the sensors when unloaded as well as when
loaded with Rogers RT/duroid 5870 and TMM10 laminates having dielectric constants of
2.3 and 9.2 are shown in Figure 8. As seen in this figure, the resonance frequency of the
unloaded 2CSRR sensor is approximately 3.9 GHz, i.e., approximately 500 MHz higher
than the resonance frequency of the 1CSRR sensor, which agrees with the analysis of the
equivalent circuit models. The 4CSRR sensor, as expected from its equivalent circuit model,
also shows two transmission zeros (resonances) at approximately 4.3 GHz (first mode) and
3.4 GHz (second mode). Compared to the reference case (unloaded sensors), the shifts in
the resonance frequency when loaded with RT/duroid 5870 and TMM10 laminates are
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313 MHz and 1243 MHz for the 1CSRR sensor, 420 MHz and 1420 MHz for the 2CSRR
sensor, and 515 MHz and 1742 GHz for the first mode of the 4CSRR sensor. Moreover, for a
better comparison between the sensitivity of three sensors, in the full-wave simulations,
the dielectric constant of an MUT (filling the CSRRs’ area) was varied from 1 to 30. Figure 9
shows the shifts in the resonance frequencies of the 1CSRR, the 2CSRR and the 4CSRR
sensors. Figures 8 and 9 demonstrate that, as expected from the analysis of the equivalent
lumped circuits, the 2CSRR sensor shows appreciably higher sensitivity than the 1CSRR
sensor. In addition, in the case of the 4CSRR sensor, mode 1 shows much higher sensitivity
to changes in the dielectric constant of the MUT. This validates the concept of exploiting
the coupling between resonators to enhance sensitivity.

Figure 7. The top and bottom views of the fabricated 1CSRR (a), 2CSRR (b) and 4CSRR (c) sensors.
Reprinted with permission from Ref. [33].

In [34], as shown in Figure 10a,b, four hexagonal-shaped CSRRs, arranged in a honey-
cell configuration and coupled to a microstrip line, were applied for monitoring the blood
glucose level. Due to the resonant feature of the CSRRs, transmission zeros appear at the
S21 of the line. Figure 10c indicates a comparison between the electric field distributions
(at a 3 GHz resonant frequency) on the ground plane when a honey-cell (including four
coupled hexagonal CSRRs) and a single hexagonal-shaped CSRR are etched on the ground
plane. It can be seen that the honey-cell design exhibits higher electric field localization
with an intensity up to 105 V/m over the CSRR area compared to that of a single hexagonal
cell. Due to the high intensity of the electric field coupled to the honey-cell area (around the
dielectric slits and the routes in-between), this area is identified as the sensing region for
the glucose samples to acquire strong interaction with the coupled near-field and therefore
induce notable variations in the intrinsic characteristics of the sensor in response to subtle
variations in the EM properties of different glucose concentrations.
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Figure 8. Experimentally measured transmission coefficient (|S21|) of the fabricated 1CSRR (a), 2CSRR
(b) and 4CSRR (c) sensors. Reprinted with permission from Ref. [33].

Figure 9. Resonance frequency shifts versus the dielectric constant of the slab that is varied from 1 to
30 with a step size of 0.2. Reprinted with permission from Ref. [33].

Two preliminary honey-cell prototypes (compact and dispersed) were numerically
modelled, fabricated and experimented with for monitoring the glucose level. Figure 11
shows the experimental setup using a vector network analyzer (VNA). For the sake of
simplicity, aquatic glucose solutions were used in these experiments to imitate the blood
behaviour at different glucose concentrations (70–120 mg/dL) clinically relevant to type-2
diabetes. This approximation is valid since water contributes approximately 50% of the
entire human blood that contains other vital components at varying proportions. These
minerals are present at lower concentrations compared to the dominant glucose, whereby
the blood dielectric properties are dominantly affected. A cylindrical glass container was
fabricated to hold the samples on top of the CSRR surface (see Figure 11). The empty
cylindrical container was placed on the honey-cell CSRR structure, as shown in Figure 4b.
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This will introduce a few MHz shifts from the reference resonance in S21 of the unloaded
state. In each measurement trial, a micropipette device was used to measure a precise
volume of V = 600 µL from each concentration, load it inside the container, and the change
in the transmission resonance frequency response was recorded.

Figure 10. Honey-cell CSRR sensor consisting of four coupled hexagonal-shaped CSRRs (a) coupled
to a microstrip line (b). Electric field distribution on the CSRR surface at a 3.0 GHz resonant frequency
when a honey-cell and a single hexagonal-shaped CSRR are used. (c) Electric field concentration
at the frequency of resonance for both single (top) and coupled CSRRs (bottom). Reprinted with
permission from Ref. [34].

Figure 11. Glucose-sensing experiments: VNA experimental setup, sensor loaded with an empty
container and the micropipette and glucose aqueous solutions used in the experiments. Reprinted
with permission from Ref. [34].

Figure 12a,b, respectively, show the transmission responses of the compact and dis-
persed sensors when the concentration of glucose is changing in 70, 90 and 110 mg/dL. In
the compact prototype, as shown in the inset of Figure 12a, the CSRRs are located close
together; hence, there is a strong mutual coupling between them. Whereas in the dispersed
prototype indicated in the inset of Figure 12b, the CSRRs are spaced apart, and the mutual
coupling is weak. In these figures, three and four transmission zeros are observed in the
response of the compact and dispersed sensors, respectively. In both sensors’ responses,
it is observed that the resonant frequencies at which the transmission is minimized are
shifted towards lower frequencies as the glucose concentration in the sample increases.
Linear correlation models for the resultant resonant frequencies of compact and dispersed
sensors at different glucose concentrations were derived, which are shown in Figure 13a,b,
respectively (conversely, the inverse models could be used to estimate the unknown glucose
level of a tested sample). It is observed that the respective resonant frequencies decrease
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with increasing levels of glucose concentrations. However, the frequency resolutions for
glucose level changes at the respective resonances are not identical. The sensitivity of
the compact sensor is estimated as −1.25/(mg/dL), representing the gradient of f1 and
f2 linear models. However, the best sensitivity slope for the dispersed topology (where
the mutual coupling between the resonators is weak) is recorded as −0.95/(mg/dL) at f2,
which is lower than the compact counterpart having a strong coupling between its CSRRs.
This demonstrates the positive impact of mutual coupling on sensitivity.

Figure 12. Measured transmission response S21 as function of frequency for the tested glucose sam-
ples of various concentrations for (a) compact and (b) dispersed sensors. Reprinted with permission
from Ref. [34].

Figure 13. Linear correlation models for the resulting resonant frequencies of (a) compact sensor
at three frequencies of f1 (in blue), f2 (in red), and f3 (in orange), and (b) dispersed sensors at
four frequencies of f1 (in blue), f2 (in red), f3 (in orange), and f4 (in green) at different glucose
concentrations. Reprinted with permission from Ref. [34].

In another similar recent work [67], a planar sensor antenna consisting of coupled
CSRRs excited by a binomial slot antenna was introduced for glucose sensing. A schematic
of the proposed sensor antenna is shown in Figure 14a. A wide-band CPW-fed printed slot
antenna with a binomial curve, as shown on the left side of the figure, is designed on the
top of a dielectric substrate to have a good matching within 2.6–3.6 GHz bandwidth. On
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the bottom of the substrate, as shown on the right side of Figure 14a, four identical CSRRs
are etched.

Figure 14. Structure of the fabricated sensor antenna. (a) Schematic of sensor antenna, l = w = 45,
N = 8, τ = 0.7, d = 1, w f = 2, W = L = 60, lr = 7.8, sr = 1, g = gr = wr = 0.5 (all lengths
are in (mm)); (b) comparison between simulated and measured |S11| with inset simulated surface
current density at 2.78 GHz; (c) measurement setup; and (d) the phase response for various glucose
concentrations. Reprinted with permission from Ref. [67].

The measured and simulated responses (|S11|) of the sensor antenna are shown in
Figure 14b indicating a good agreement between them. A deep resonance is observed at
2.78 GHz which is not produced by only one CSRR but is uniquely formed by the mutual
interaction of four of them as can be verified by the surface current density given in the
inset over all resonators. In fact, the objective of this work was to enhance the sensitivity by
exploiting the mutual coupling between the four resonators. The phase-response of the
sensor at the lowest resonance frequency (i.e., 2.78 GHz) was used to sense the glucose
level in aqueous solutions due to its high sensitivity. Notably, the dielectric constant of the
aqueous solution decreases at a higher glucose content, thereby increasing the resonance
frequency. This upshift leads to a drop in the phase when monitored at a single frequency.
As a proof of concept, four samples of aqueous solution with 125 mg/dL increments were
prepared. As shown in Figure 14c, the samples were held 5 mm above the sensor (using
foam) within a plastic container to emulate the thickness of skin, fat and muscle layers. The
phase response of the sensor was measured, as shown in Figure 14d. This figure shows
that the phase at 2.78 GHz changes from 25.4 to 17.2 degrees for a glucose level change of
0–500 mg/dL, with a sensitivity beyond 0.5 degrees corresponding to 30 mg/dL.

2.3. Embedded Channels in the Substrate

In this section, the substrate of a microwave sensor is shown that can be exploited as
the analyte carrier to boost the sensor sensitivity. Microwave sensors are typically designed
on low-permittivity substrates as the base of the sensor. This low-permittivity is essentially
because of the overall interaction of a substrate with the sensitivity. To elaborate on this, let
us consider a planar half-wavelength (λ/2) resonator (open to free space) that is supported



Sensors 2022, 22, 6946 16 of 57

by a dielectric substrate backed by a ground plane as shown in Figure 15. The sensor’s
resonance frequency is governed by:

f0 =
1

2π
√

LeqCeq
(18)

where Leq and Ceq denotes the effective inductance and capacitance seen by the resonator
including the substrate and background materials in the proximity of the resonator (εr > 1).
Then, any change in a dielectric material under test results in capacitance variation is
as follows:

Ceq = C0 + CMUT = C0

(
1 +

CMUT

C0

)
(19)

where C0 is the capacitance of a bare resonator without the presence of any external
interfering material, and CMUT represents the whole impact of an external analyte. This
expression suggests that the resonance frequency shifts according to a percentage change
in the overall capacitance of a resonator. Therefore, a high sensitivity can be achieved by
increasing the ratio of CMUT/C0. As a result, the substrate that is a contributing factor for
C0 needs to be chosen to be low as not to obscure the material’s impact. In this regard, since
typically C0 � CMUT, one can exploit the very main contributing factor rising from the
substrate. In such a case as that shown in detail in [36], the substrate can be used as the
carrier of the material as opposed to a case where the MUT is separate from the substrate
with a minimal impact on modifying the total capacitance Ceq. By properly embedding the
material inside the substrate, C0 changes significantly since the majority of electric fields
between the resonator and the ground plane become disturbed. According to the diagram
shown in Figure 15a, conventional placement of the channel is outside the resonator flushed
with the sensor surface when exposing the material to the sensor with shortest possible
distance. The electric fields interacting with the MUT are emanating fields fringing from the
transmission line into air and terminating at the resonator. In contrast, the method studied
in [36] is represented in Figure 15b in detail where the microfluidic channel is embedded
within the substrate. This configuration allows for higher interaction between MUT and
the resonator-to-ground electromagnetic fields, which leads to higher sensitivity.

Two sensors with 1.2 mm-thick SRRs with ≈22 mm length and a 3 mm gap that is
separated from the adjacent transmission line by 0.4 mm are simulated in a full-wave high-
frequency simulator (HFSS) [36]. In this simulation, a cylindrical hole inside the substrate
is filled with various lossless dielectric materials with εr = 2, 2.1, 2.2, 2.3. The bare sensor
resonates around 5 GHz when the substrate is chosen to be 0.79 mm-thick Rogers RO5880
with dielectric properties of εr = 2.2 and tan(δ) = 0.0009. The transmission response of the
sensors (S21) is recorded with respect to the variations in the material property, as shown in
Figure 15c,d. In the case of external tubing, the tube is flushed on the resonator as shown
in Figure 15a (top) and in the embedded channel, a hollow cylinder is emptied out of the
substrate and replaced with the tube as shown in Figure 15b (top). The orientation of the
tube is under the edge of the SRR as well as the feeding transmission line to improve the
sensitivity. Simulation results reveal that the frequency shift in the transmission profile
of the sensor with the external channel negligibly changes when the filling material per-
mittivity varies. However, this resonance frequency shift is largely increased in the case
of an embedded channel. It can be observed that the resonance frequency shift of the
sensor with the external channel is ≈170 MHz/∆εr while the embedded channel leads to
the much higher sensitivity of ≈440 MHz/∆εr for permittivity variations between 2 and
2.3, leading to an improvement of 250%. The experimental verification of such sensors is
also elaborated by measuring common chemicals including IPA (ε′r = 17.9, εr

′′ = 17.5),
ethanol (ε′r = 24, εr

′′ = 12), methanol (ε′r = 30, εr
′′ = 8) and acetone (ε′r = 20.7, εr

′′ = 3.54).
The polytetrafluoroethylene (PTFE) microfluidic tube used in this experiment is with in-
ner/outer diameter of 0.8/1.6 mm, respectively, and 0.4 mm wall thickness. The measured
transmission profiles with liquid analytes are shown in Figure 16a,b. Since the comparison
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is between sensors with the similar bare resonance frequencies, the sensitivity S in this case
is defined as S = ( fres − f0)/(εr − 1) as computed in detail in Table 3. Frequency shifts in
material characterization are engineered to exhibit improvements up to 259% (e.g., IPA)
with a change in the sensing configuration, while the sensor architecture as well as the
initial operating frequency remain unchanged.

Figure 15. Microwave sensor with a tube (a) above and (b) below the sensor. (c) Simulation results
with the sensor being loaded by a dielectric material with different permittivity values inside (c) an
external channel and (d) an internal channel. Reprinted with permission from Ref. [36].

Table 3. Sensor response analysis between external and embedded channels, Reprinted with permis-
sion from Ref. [36].

MUT
External Embedded Improvement

fres (GHz) S (MHz) fres (GHz) S (MHz) in S (%)

Bare Sensor 5.2854 - 5.2096 - -
IPA 5.2798 0.33 5.1895 1.19 259

Ethanol 5.2725 0.56 5.1861 1.02 82
Methanol 5.2644 0.72 5.1848 0.85 18
Acetone 5.2626 1.2 5.1786 1.63 36
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Figure 16. Measured transmission response for both sensors using (a) external channel and (b)
embedded channel filled with IPA, ethanol, methanol and acetone. Reprinted with permission from
Ref. [36].

2.4. Immobilization of Analytes

State-of-the-art applications require ultra-high sensitivity for a given MUT. In other
words, the sensor response including amplitude, frequency or phase needs to change
largely for a tiny variation in the input of the system. This high sensitivity allows for
measuring smaller quantities and monitoring the variations with smaller steps. In material
characterization applications, enhanced sensitivity enables sensing an infinitesimal change
in the dielectric constant such as the ppm levels of a gas in an environment. For one,
humidity sensors essentially require ultra-high sensitivities as the effective permittivity in
the air changes by 0.012% at the frequency of 5 GHz as a result of the relative humidity
(RH) increase from 25% to 75% [69]. This minute change in the RH is difficult to reliably
discern with regular microwave sensors due to the low sensitivity of a planar resonator
to the permittivity changes of this low value. At the same time, humidity monitoring is
pivotal in food processing, semiconductor fabrication, drug manufacturing, etc. [70]. A
viable solution for monitoring humidity in these applications is to use an intermediate
medium that captures the gaseous medium. Polymer resistance varies with respect to
the level of absorbed water content [71]. In addition, large-scale production, synthesis at
room temperature, and integration with planar sensors are among the benefits of using
intrinsically conducting polymers (ICPs). Once doped by oxidation, ICPs become highly
conductive through mobile conjugated p-orbital electrons. Polyaniline (PANI) is an ICP
that reacts to the low oxidative potential of water, which also makes it suitable for sensitive
humidity as extensively elaborated in [72]. The authors also have used polyvinyl alcohol
(PVA) as an adhesive layer between PANI and another substrate while helping water being
retained for a longer time. The authors in [72] used PVA/PANI to increase the sensitivity
of the sensor for humidity as an immobilizing element which captures the MUT and helps
sensitivity enhancement with an increase in the exposure of the resonator to the MUT.
A DSRR is used as the sensing element as the tank of a feedback oscillator. The planar
resonator is designed at the high frequency of 5 GHz to exploit the low self-capacitance of
the resonator to achieve high sensitivity. The oscillation condition is met mainly by high
gain and phase compensation. A high gain is generated by the amplifier to compensate the
resonator loss. Furthermore, proper phasing is required for the positive feedback operation
and constructive interference involved in the feedback design. This phase manipulation is
implemented using a varactor diode SMV1281 with the capacitance range of 0.1 pF–0.3 pF,
which affects both the amplitude and phase of transmission profile. The fabricated sensor
is located inside a sealed box that receives humid air through a bubbler. The level of
humidity is controlled by a mass flow controller (MFC) that makes the air flow inside the
bubbler. To illustrate several cycles of humidity variation, another MFC is used to purge
out the existing humid air. The sensor response is continuously recorded by LabView and
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a commercial logger is utilized to monitor the relative humidity as shown in Figure 17a.
A PVA/PANI absorber is placed on the sensor to completely cover the DSRR as shown
in Figure 17b. This placement shifts the oscillation frequency down by 4 MHz. Then, the
sensor performance is examined by increasing the RH of the sealed box from 5%→ 65% as
recorded by the commercial RH logger given in Figure 17c. Corresponding variations in the
oscillation frequency are also shown for comparison, that is in great congruence with the
environmental variations with minimal delay, and explains that the sensor is in real-time
operation and without significant delay. A similar sensor response on the three consecutive
cycles reveals that the resonator is repeatable and instantly follows the liquid water removal
from the PANI/PVA. This correlation is found to be linear, as given in Figure 17d, where
the oscillation frequency is plotted vs. RH and fitted with a linear curve as follows:

fosc [GHz] = 5.096 + 8.97× 10−4RH (%) (20)

This expression translates the RH to the change in the oscillation frequency fosc with a
staggering sensitivity of 897 kHz/∆RH% on the average change of RH : 5%→ 65%. This
work represents how an intermediate medium helps aggregate diminutive quantities of
MUT to enable sensing them with microwave sensing techniques.

Figure 17. Relative humidity sensor with an immobilizing analyte and sensor response. (a) Sensing
setup for measuring relative humidity using an oscillator. (b) Spectrum output showing the effect of
PVA/PANI. (c) Cyclic relative humidity measurement and its coherence with the sensor response.
(d) Calibration curve: oscillation frequency correlation vs. the relative humidity. Reprinted with
permission from Ref. [72].
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2.5. Resonator Pattern Optimization

Nowadays, using computer-aided design (CAD), microwave designers are capable of
delivering designs that meet the predefined requirements as long as these requirements are
not extreme. For this purpose, they first draw a topology of the design according to the
classical methods, and then using optimization techniques, which are embedded in almost
all CAD packages, they optimize the sizes, dimensions and other parameters to achieve
the required goals. The question which may arise is that of where “it is the best design one
can achieve”. Since the optimization is about changing the dimension of the model, not its
shape and topology, the performance of the final optimized design highly depends on the
initial design topology and so it may not be the best solution. What if there is a way to find
the optimum design without having an initial model? If that were the case, the design can
be performed in a fully automated, complete-cycle procedure.

Robust methods have been introduced to fully automate and optimize the design of
microwave planar devices (fabricated with printed circuit board technology), such as radar
cross-section reducer surfaces [73–75], high impedance surfaces [76,77], electromagnetic
energy harvesting surfaces [78], absorbers [79], decoupling elements between microstrip
antennas [80], polarization converters [81,82], and frequency-selective surfaces [83]. In
this method, the shape of the artworks (the pattern to be etched into each copper layer
of a PCB) is optimized to achieve the best possible performance. This optimization is
not about changing the dimensions of a model but rather about its shape. The required
optimization procedure is essentially making a decision as to which parts of the pattering
area are covered with metal and which parts are not (etched). In particular, this versatile
design approach was also applied to the design of high-sensitivity planar sensors [37,84,85].
In microwave sensors based on electrically small planar resonators (ESPRs), the shape of
the resonator plays an essential role in the sensitivity. Due to the high-field localization
on the ESPR area, in such sensors, the MUT is placed on the resonator area, where there
is a strong interaction between the highly localized field with the MUT, which leads to a
change in the sensor’s response. The resonator’s shape can affect the field distribution
and localization in the sensitive area, and thus the sensitivity. Therefore, the shape of the
resonator can be optimized to achieve the highest possible sensitivity.

In [37], a highly sensitive CSRR-based sensor was developed in a complete-cycle
topology optimization procedure for the highly accurate characterization of dielectric
materials. In this design approach, the sensing area (the CSRR area) was first pixelated.
Then, by maximizing the sensitivity as a goal, a binary optimization algorithm was applied
to determine whether each pixel was metalized. The outcome of the optimization is a
pixelated pattern of the resonator yielding the maximum possible sensitivity. Some details
of [37] are provided in the following.

By assuming a microstrip line, a square of size 10.2 mm × 10.2 mm in the middle
of the ground plane was considered as the sensing area (where the ESPR is etched) and
was pixelated into 17× 17 pixels, as shown in Figure 18. Then, a binary value of 1 or 0
was assigned to each pixel so that each pixel was represented as a bit whereas having
the value of 1 or 0 indicates the presence or absence of metal on the area of the pixel. In
such a way, a string of bits represents the shape of the ESPR. Then, the binary version of
the particle swarm optimization (PSO), namely BPSO [86,87], was applied to this string
(such that each bit is an optimization parameter) to optimize the shape of the resonator for
maximum sensitivity.

To reduce the number of independent bits (i.e., the number of optimization param-
eters) and thus achieve the faster convergence of the optimization algorithm, the design
was constrained by enforcing a mirror symmetry with respect to an axis perpendicular to
the feed microstrip line. Since setting initial value of the optimization parameters strongly
impacts the convergence of every optimization method, to further accelerate the conver-
gence, the initial values of the bits were set such that the initial shape of the resonator was
a scaled version of the one used in [88].
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Figure 18. Pixelization of the sensing area. Reprinted with permission from Ref. [37].

To maximize the sensitivity of the sensor to changes in the dielectric constant of
the MUT, and since the change in the dielectric constant is sensed by the change in the
resonance frequency (when loaded with MUT), the optimization cost function was defined
as the inverse of the normalized resonance frequency shift (∆ f n

r (εr = 10)) due to a material
having εr = 10. This choice was because of the characterization of the materials with a
dielectric constant ranging between 1 and 10.

The process of optimizing the shape of the sensor was performed by writing a code in
MATLAB and linking it to the CST as an electromagnetic full-wave simulator. The diagram
of this process, including the flowchart of the BPSO algorithm and the relationship between
MATLAB and CST, is shown in Figure 19a.

In this process, after setting the initial parameters and generating binary strings, each
string is converted to a pattern which can be simulated in CST. In CST, each model (sensor)
is simulated when it is unloaded and when loaded with a sample having εr = 10. Then,
the results of the full-wave EM simulations are fed back to MATLAB. Using the received
transmission coefficients, the normalized resonance frequency shift of the loaded sensor
(with respect to the unloaded state) is determined and the cost function is calculated.
Figure 19b shows the values of the cost function during the iterations of the algorithm
indicating the decrease in the cost function from 2.78 (for the initial shape of the sensor) to
2.17 (for the final shape), or equivalently ∆ f n

r (εr
′′ = 10) was increased from 0.36 to 0.46.

The pattern of the optimized sensor is shown in the inset of Figure 19b.
By gradually increasing the relative permittivity of the MUT from 1 to 10 in the

simulations, in Figure 20a, the normalized resonant frequency shift of the optimized sensor
was compared with that of a simple CSRR sensor, the modified CSRR sensor which was
considered as the initial state of the optimization, and those introduced in three other works
(notice that the reference numbers in Figure 20 shows the references of [37]). It is evident
that for every dielectric constant of MUT, the optimized sensor using pixelization and
shape optimization exhibits the highest normalized resonant frequency shift. In particular,
for dielectric constants of 2 and 10, this sensor shows normalized resonant frequency shifts
of 10% and 46%. To understand the underlying mechanism behind this improvement,
Figure 20b–d show a comparison between the field intensity distributions on the simple
CSRR, the resonator which was considered as the initial state of the optimization and the
proposed shape-optimized resonator. From this comparison, it can be concluded that the
sensitivity improvement in the pixelated sensor is due to (1) a stronger field on the sensing
area such that the maximum intensity of the electric field is three times higher than that
in Figure 20c, and (2) a larger effective sensing area wherein the electric field has a strong
intensity. These two features provide broader and more effective coupling (interaction)
between the sensor and the MUT.
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Figure 19. Sensor shape optimization in Matlab coupled with CST: (a) flowchart of the design
procedure; (b) the value of the cost function during the iterations of the optimization algorithm; the
left and right insets show the initial and final shapes of the resonator at the beginning and end of the
optimization procedure, respectively. Reprinted with permission from Ref. [37].

Experimental validation was also presented in [37]. The optimized sensor was fabri-
cated by etching the ground plane of a 50 Ω microstrip line as shown in Figure 21. A copper
plate with a hole in the middle was placed on the ground plane of the board. The hole is
slightly larger than the sensing area, thus effectively creating a small container that includes
the sensor’s area in the bottom and an open top for inputting or pouring in the MUT. Two
different tests were performed. In the first, the transmission coefficient (|S21|) of the sensor
when it was unloaded and was loaded with cyclohexane (C6H12) and chloroform (CHCl3)
having a known relative permittivity of 2.02 and 4.81 was measured. The measured and
simulated transmission coefficients are seen in Figure 22a–c, showing strong agreement
between the simulations and experiments.
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Figure 20. Optimized sensor response with field intensity. (a) Comparison between the sensitivity
of the proposed shape-optimized sensor with that of the earlier works of Ansari (2015) [89], Shafi
(2017) [90], and Govind (2018) [91]. (b–d): the electric field intensity distribution on a simple CSRR
resonator, the resonator which was considered as the initial state of the optimization and the shape-
optimized resonator, respectively. Reprinted with permission from Ref. [37].

Figure 21. Measurement of a dielectric liquid material using the fabricated sensor and a VNA; the
inset shows a zoomed-in view of the pixelated pattern of the resonator which was etched on the
ground plane of the microstrip line.

In the second set of experiments, the fabricated sensor was used to extract the dielectric
constant of mixtures of chloroform and cyclohexane with different volume ratios. Each
sample was tested with the optimized sensor and the transmission coefficient was measured
and the normalized resonance frequency shift was obtained. Using the relation between the
normalized frequency shift and the dielectric constant of the MUT (shown in Figure 20), the
relative permittivity of each mixture was obtained and compared with those approximated
by the classic binary mixture and the Maxwell–Garnett formulas, as shown in Figure 22d.
Good agreement between the results is observed.

In a similar work [84], the same approach, i.e., the pixelization of the sensing area
(resonator area) and applying a binary optimization algorithm was used to design CSRR
and interdigitated capacitor (IDC)-based sensors. While in the CSRR sensor, a resonator is
etched on the ground plane of a microstrip line, in the IDC sensor, the resonator (which
consists of inductive inter-digitated fingers with capacitive gaps between them) is placed
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between two sections of a microstrip line. Figure 23a,b show the fabricated CSRR and IDC
sensors before (the design which was given to the BPSO algorithm as an initial design) and
after resonator shape optimization.

Figure 22. Comparisons between the simulated and measured |S21| of the sensor when it is unloaded
(a) and is loaded with cyclohexane (b) and chloroform (c); (d) the dielectric constant of the mixture
of chloroform and cyclohexane as a function of the volume fraction of chloroform. Reprinted with
permission from Ref. [37].

The sensors in this work were designed for bio-sensing applications, where most of
the samples are dissolved in respective solvents. Hence, the normalized frequency shift was
calculated with respect to a solvent which was a solution of 34 g of phosphate buffer (PB)
in one liter of deionized water. This PB solution was used as the solvent of other samples:
L-Lysine, glucose and sucrose. Figure 23 shows the measured responses of the CSRR (a) and
IDC (b) sensors before and after optimization (transmission and reflection coefficients in the
cases of CSRR and IDC sensors, respectively). It is seen that the normalized frequency shifts
after the shape optimization of the resonator increased in both cases, which is identical to
sensitivity improvement.

In the two aforementioned works [37,84], the optimum shape of the resonator was
obtained by applying a binary swarm optimization. Although the swarm intelligence
algorithms are easy to implement, for large-scale and fine-grained optimization problems,
the demands of the number of dimensions and the population of the solution are high,
resulting in a slow modeling speed and high iteration number. To address this problem,
in [85], deep reinforcement learning was applied to optimize the shape of the resonator
etched on the ground plane of a microstrip line in a microwave microfluidic sensor.
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Figure 23. The initial and optimized (a) CSRR and (b) IDC sensors. The response of the initial and
optimized CSRR (c) and IDC (d) sensors. Reprinted with permission from Ref. [84].

A deep deterministic policy gradient (DDPG) [92] framework, as shown in Figure 24,
including actor and critic networks (both are neural networks) and a full-wave electromag-
netic simulator (HFSS), was employed as an agent for learning an optimization strategy. In
this strategy, as shown in Figure 25, by considering one-axis symmetry for the resonator,
half of the resonator area was pixelated, and a bit of 0 or 1 corresponding etched or un-
etched was assigned to each pixel. Therefore, a string of bits shows the state space. The
agent would determine a series of structural adjustment actions according to the current
state and the learned knowledge. The agent would receive a reward according to the
state and action. As the goal of the optimization was to find out the resonator structure
with the largest relative resonant frequency shift (i.e., the optimal sensitivity) when loaded
with the samples through a series of action adjustments, the main reward factor is the
relative resonant frequency shift of the loaded sensor. Meanwhile, the normalization of
the microfluidic channel was also considered as the channel which is bonded onto the
resonator structure. The incorrect actions that make the microfluidic channel difficult to
fabricate or affect the liquid flow were defined, and a penalty was considered for them in
the reward function.

The optimization procedure of the DDPG agent can be described as follows. The agents
would gradually learn in the process of continuous interaction with the simulation environ-
ment. As such, the agent chooses the actions to adjust the resonator structure, the model script
generated by the program is constructed in the electromagnetic simulation software and the
simulated results are used as the output to evaluate the performance of the resonator structure.
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Then, the program provides the reward value and goes to the next episode until the actor and
critic networks eventually converge. The optimal solution could be obtained and output as
the optimal resonator structure of the microwave microfluidic sensor.

Figure 24. Framework of the DDPG. Reprinted/adapted with permission from Ref. in [85].

Figure 25. Design flow of the CSRR pixelation: (a) initial design of the microfluidic sensor based
on a classical CSRR (all the dimensions are in mm); (b) pixelated CSRR structure. Reprinted with
permission from Ref. [85].

A classical complementary split-ring resonator structure (shown in Figure 25) was
used as an initial structure and optimized in two ways, i.e., with and without a fixed liquid
volume consumption. In the former optimization, the goal was to maximize the relative
resonant frequency shift when the volume of the fluid sample under test was fixed to
2.4 µL. However, in the latter, the goal was to maximize the resonance frequency shift and
minimize the sample volume at the same time. As a result, a liquid volume of 0.8 µL was
needed for the optimized sensor in the second way.

As shown in Figure 26, the optimized sensors were fabricated and tested with water–
ethanol solutions in different ratios as the samples under test. The transmission responses
of the sensors in their unloaded and loaded states are given in Figure 27a,b.

By defining the sensitivity as

S =
funloaded − fεr

funloaded
· 1

εr − 1
(21)

Figure 27c compares the sensitivity of the sensors proposed in [85] with that of some
other CSRR-based sensors (the reference numbers are for [85]). Considerable improvement
of the sensitivity is observed.



Sensors 2022, 22, 6946 27 of 57

Figure 26. Photographs of the experimental setup and the optimized sensors. The right, middle is the
sensor optimized to minimize the volume of the liquid sample and the right, bottom is that optimized
with a fixed volume of sample under test. Reprinted with permission from Ref. [85].

Figure 27. The transmission response of the optimized sensors: (a) the one optimized to minimize
the volume of the liquid sample and (b) the one optimized with a fixed volume of sample under test.
(c) Comparison between the sensitivity of the sensors fabricated in [85] and some other CSRR-based
sensors as follows: Ebrahimi (2013) [65], Fan (2020) [93], Gan (2020) [94], Ebrahimi (2019) [21], Zhao
(2021) [95]. Reprinted with permission from Ref. [85].
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2.6. Incorporating Phase Variation

In this subsection, a strategy to significantly enhance the sensitivity in phase-variation
microwave sensors is reviewed. Such a technique is applied to one-port reflective-mode
sensors, where the sensing element is a resonant element, either distributed or semi-lumped,
and it consists of cascading to a sensing element such as a set of quarter-wavelength trans-
mission line sections with alternating high and low impedance [96–99]. The considered
phase-variation sensors operate at a single frequency, and their canonical output variable is
the phase of the reflection coefficient, whereas the natural input variable is the dielectric
constant of the material under test (MUT), which should be in contact with the sensing
element. The simplest implementations of phase-variation sensors consist in a one-port
(reflective-mode) [39,96,100–103] or a two-port (transmission-mode) [38,104–106] transmis-
sion line, the sensing element. When a material is in contact with the line, the effective
dielectric constant of such a line is modified, and consequently, the phase velocity and the
characteristic impedance are also altered. The result is a variation of the electrical length
of the line and, ultimately, a variation in the phase of the reflection (reflective-mode) or
transmission (transmission-mode) coefficient of the line is also generated. The electrical
length of the line is given by

φ = βl =
ω0

vp
l (22)

where β is the phase constant of the line and l its length, ω0 and vp being the angular
frequency and the phase velocity, respectively. Although φ is not the typical output variable
(it only coincides with the phase of the transmission coefficient of the line in matched lines),
from (22), it can be easily deduced that the variation of the phase (electrical length) of the line
with the dielectric constant of the MUT, the input variable, will increase by increasing either
the frequency or the length of the line, or both. Thus, it can be concluded that the sensitivity
(or derivative of the output variable, the phase of the reflection or transmission coefficient,
with the dielectric constant of the MUT) increases with the operating frequency or with the
line length. Indeed, highly sensitive sensors based on long (typically meandered) sensing
lines have been reported [105,106]. However, this obvious strategy has the penalty of large
sensing regions, provided that a high sensitivity is required. Increasing the operating
frequency, the other canonical sensitivity enhancement strategy in phase-variation sensors,
is not always applicable (sometimes, the operating frequency is dictated by external factors),
or, if applicable, it may represent an increase in the cost of the associated electronics for
signal generation and processing in a real scenario. To enhance the sensitivity in one-port
phase-variation sensors, a novel strategy was pointed out in [96]. In the simplest form, the
sensor consists of an open-ended line with impedance Zs and electrical length φs (at the
operating frequency) when the line is loaded with the reference material (e.g., air), as can
be seen in Figure 28.

Figure 28. Sketch, in perspective view, of an open-ended sensing line.
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The output variable is the phase of the reflection coefficient, φs, which varies when a
material under test (MUT) is in contact with the line. To obtain the dependence of such an
output variable with the parameters of the line, it is first necessary to infer the impedance
seen from the input port, given by [52,96]

Zin = −jZscotφs (23)

The reflection coefficient is thus

ρ =
Zin − Z0

Zin + Z0
=

+Z0 + jZscotφs

−Z0 + jZscotφs
(24)

and the phase of the reflection coefficient is therefore

φρ = 2arctan(
Zscotφs

Z0
) + π = 2arctan(

Zstanφs

Zs
) (25)

The sensitivity can be expressed as:

S =
dφs

dεMUT
=

dφρ

dφs
· dφs

dεMUT
+

dφρ

dZs
· dZs

dεMUT
(26)

where the different derivatives appearing in (26) are given by

dφρ

dφs
= − 2

Z0
Zs

sin2φs +
Zs
Z0

cos2φs
, (27)

dφρ

dZs
=

2
1 + ( Zs

Z0
)2cotφs

· cot2φs

Z0
(28)

dφs

dεMUT
=

φs

4εe f f
(1− F) (29)

dZs

dεMUT
=

Zs

4εe f f
(1− F) (30)

The derivatives (29,30) correspond to a microstrip sensing line, εe f f and F being the
effective dielectric constant and the form factor as defined in [52,107], respectively, (for
CPWs, the same expressions apply, but forcing the geometry factor to be null, F = 0).
Introducing (27) in (26), the sensitivity can be expressed as

S = −Zs(1− F)
2Z0εe f f

· φssin−2φs + cotφs

1 + ( Zs
Z0
)2cot2φs

(31)

As demonstrated in [52,96], the sensitivity in the limit of small perturbations is op-
timized by choosing φs = (2n + 1) · π/2 and Zs as high as possible (as compared to Z0),
or alternatively, by forcing φs = n · π and Zs as low as possible. In the former case, the
sensitivity is given by

S = −Zs(1− F)
2Z0εe f f

φs (32)

In the second case (φs = n · π and Zs low), the sensitivity is calculated as

S = −Z0(1− F)
2Zsεe f f

φs (33)
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According to (32) and (33), it is clear that the sensitivity is enhanced by considering the
sensing lines with a high index n, that is, many (odd) multiples of a quarter-wavelength, or
many multiples of a half-wavelength, depending on the ratio between Zs and Z0. How-
ever, with this strategy, the length of the sensing line may be excessive. In [96], it was
demonstrated that by simply alternating between cascading high- and low-impedance
quarter-wavelength transmission line sections, the sensitivity can be substantially enhanced
(see Figure 29).

Figure 29. Schematic of the phase-variation sensor based on a sensing line and a step-impedance
transmission line (with quarter-wavelength line sections). Reprinted with permission from Ref. [96].

For φs = (2n+ 1) ·π/2 and high-impedance sensing lines, the 90◦ line section adjacent
to the sensing line must exhibit a low characteristic impedance, whereas for φs = n · π
and low impedance sensing lines, the characteristic impedance of the quarter-wavelength
line section cascaded to it must be high. If the impedances of such high/low 90◦ lines are
designated with the variable Zi, where i indicates the position of the line section (with i = 1
corresponding to the line adjacent to the sensing line), the sensitivity can be expressed
according to four cases, depending on whether the total number of quarter-wavelength
high/low-impedance line sections, N, is odd or even, that is [52,96]:

Case A′ : φs = (2n + 1) · π/2 and N odd.

S = − ZsZ0

∏N
i=1 Z2.(−1)i+N

i

· φs

2εe f f
(1− F) (34)

Case B′ : φs = n · π and N odd.

S = −∏N
i=1 Z2.(−1)i+N

i
ZsZ0

· φs

2εe f f
(1− F) (35)

Case C′ : φs = (2n + 1) · π/2 and N even.

S = −∏N
i=1 Z2.(−1)i+N

i
Z0

· φs

2εe f f
(1− F) (36)

Case D′ := φs = n · π and N even.

S = − Z0

∏N
i=1 Z2.(−1)i+N

i

· φs

2εe f f
(1− F) (37)

To illustrate the potential of this approach, based on a 90◦ or a 180◦ sensing line and
a step impedance configuration, Figure 30 shows the photograph of different sensors,
whereas Figure 4 depicts the phase variation of the reflection coefficient with the dielectric
constant of the MUT and the sensitivity [96]. Note that the considered reference MUT is air,
which means that the electrical length of the sensing lines (either φs = 90◦ or φs = 180◦,
depending on the case) is for the bare sensing line at the considered operating frequency
(2 GHz). The impedance Zs of this line is also for the bare sensing line. The sensitivities
in the limit of small perturbations are indicated in Figure 31 for each sensor, and it can be
seen that they coincide to a good approximation with the theoretical sensitivities (Sth in
the figure), as inferred from expressions (34)–(37). For sensors (a) and (b), the sensitivities
in the limit of small perturbations are very high, but it should be mentioned that such
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high sensitivities are achieved at the expense of degradation in the sensor linearity. Thus,
these highly sensitive phase-variation sensors are of special interest in applications where
the measurement of small perturbations in the input variable with regard to the reference
one should be measured. Although these sensors are canonically permittivity sensors, the
input variable can be any other variable related to the permittivity, for example, the level of
concentration of solute in diluted solutions, or even other variables such as temperature
or humidity, which can modify the dielectric constant of certain materials [52]. Let us
also mention that, with these high sensitivities, these sensors are very interesting for the
detection of tiny defects in samples, which typically manifest as variations in the effective
dielectric constant of the sample.

Figure 30. Schematic of the phase-variation sensor based on a sensing line and a step-impedance
transmission line (with quarter-wavelength line sections). (a) Sensor with step-impedance discontinu-
ity where Z < Z0 < Zs. (b) Sensor with step-impedance discontinuity where Z > Z0 > Zs. (c) Sensor
with uniform mismatched sensing line where Zs > Z0. (d) Sensor with uniform mismatched sensing
line where Zs < Z0. (e) Sensor based on a 90◦ uniform 50-Ω sensing line. (f) Sensor based on a 180◦

uniform 50-Ω sensing line. Reprinted with permission from Ref. [96].

In the reported implementations of Figure 30, the sensing elements are 90◦ or 180◦

open-ended lines, i.e., distributed resonators. However, such distributed resonators can be
replaced with electrically small semi-lumped resonators, as demonstrated in [39], where
a reflective-mode phase-variation sensor based on an open complementary split-ring
resonator (OCSRR) terminating a step impedance CPW structure was reported. It has also
been demonstrated that this type of phase-variation sensor is useful for the measurement of
short-range displacements [108] and can be also useful for the measurement of liquid levels.
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Figure 31. Measured and simulated phase of the reflection coefficient for the sensors of Figure 30, and
simulated sensitivity: (a) sensor with step-impedance discontinuity and Z1 < Z0 < Zs; (b) sensor
with step-impedance discontinuity and Z1 > Z0 > Zs; (c) sensor with uniform mismatched sensing
line and Zs > Z0; (d) sensor with uniform mismatched sensing line and Zs < Z0; (e) sensor based
on a 90◦ uniform 50-Ω sensing line; and (f), sensor based on a 180◦ uniform 50-Ω sensing line.
The measured dielectric loads are 3 mm slabs of uncoated PLA (εMUT = 3), Rogers RO4003C
(εMUT = 3.55), FR4 (εMUT = 4.4) and Rogers RO3010 (εMUT = 0.2) substrates. The sensitivities in the
limit of small perturbations are given in absolute values. Reprinted with permission from Ref. [96].

2.7. Exploiting the Coupled-Line Sections

It has been shown that coupled line sections are applicable for high-sensitivity dielec-
tric sample detection. The idea of using a coupled-line section as a dielectric constant sensor
was first proposed by Piekarz et al. in 2015 [40] and then developed in their subsequent
works [109,110]. The main thought behind their studies was to exploit the odd-mode
characteristic impedance of a coupled line section. This is because putting a dielectric
sample on the top of a coupled-line section significantly influences its odd-mode char-
acteristic impedance, which is related to the mutual capacitance between coupled strips,
not merely the capacitance between the strips and the ground plane as in a single section
microstrip line. Figure 32a shows a microstrip coupled-line section covered with a dielectric
sample. Figure 32b,c depict the electric voltage (colors) and field (vectors) distribution in
the cross-section for the even and odd modes excitation, respectively, (i.e., when the two
lines are excited in phase and out of phase with the same amplitude). It is clear that the
field is within the substrate for the even mode excitation, while in the case of odd mode
excitation, the field is partially within the dielectric sample above the line. Therefore, the
coupled lines’ odd-mode impedance exhibits a much higher sensitivity on the dielectric
cover than the even-mode impedance, as observed in Figure 32d different thicknesses and
the permittivities of the covering material. Moreover, the sample can be as narrow as the
distance between the coupled lines due to the field distribution, shown in Figure 32c.

In their first work [40], as shown in Figure 33, Piekarz et al. used a Marchand balun
to excite an open-ended coupled-line sensor out of phase in a wide-band. The Marchand
balun was designed based on broadside-coupled stripline, as can be seen in Figure 33b.
The measurement setup, including the Marchand balun and the open-ended coupled-
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line section (sensor), is shown in Figure 33c. The material under test is placed on the
sensor and the characterization mechanism is as follows. First, the reflection coefficient
at port 1 (see Figure 33a) is measured, and its input impedance is obtained. Then, using
analytic relations, the input impedance of the sensor section (open-ended coupled-line
section), namely the load impedance, is calculated. Notice that since the balun on the
differential ports excites the coupled-line section in its odd mode, the load impedance
only depends on the odd mode characteristic impedance and the electrical length of this
section. Subsequently, after some mathematical manipulations, the odd-mode effective
dielectric constant can be calculated using the obtained load impedance and the odd-mode
per-unit-length capacitance of the unloaded coupled-line sensor determined during the
calibration process. It should be noted that this procedure does not give the dielectric
constant of the MUT but the odd-mode effective dielectric constant of the coupled line
section, which is between the dielectric constants of the MUT and substrate.

Figure 32. Microstrip line with even/odd mode fields and characteristic impedance: (a) a coupled
line microstrip section loaded by a dielectric sample. The electric voltage (colors) and field (vectors)
distribution for the even (b) and odd (c) modes. (d) Change of the even and odd mode characteristic
impedances. Reprinted with permission from Ref. [40].

In their second work, the same authors removed the need for Marchand balun and
performed two-port single-ended S-parameter measurements of the coupled line section.
The differential input impedance of the sensor (i.e., the input impedance of the section
for the odd mode excitation) was calculated from the two-port S-parameters, then, fol-
lowing a procedure similar to their first work, the odd-mode effective permittivity was
obtained. As an advancement over their first work, the odd-mode effective permittivity of
the coupled line section was finally converted to the complex permittivity of MUT using an
electromagnetic (EM) simulation tool in an iterative procedure. In addition, in the newer
work, not only an open-ended coupled line section but also short-ended sections where
the two coupled lines were connected with a small metallic segment or a large grounded
pad were theoretically and experimentally investigated. The three fabricated sensors are
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depicted in Figure 34. It has been shown that the short-ended sensors have better accuracy
for high frequencies (still in the low gigahertz regime), while the open-ended section is
suitable for characterizing samples, which feature relatively significant permittivity change
for the lower frequencies. Moreover, the calibration process is easier for the sensor shown
in Figure 34c, i.e., when the two coupled lines are connected using a grounded pad.

Figure 33. The measurement setup composed of a Marchand balun and an open-ended coupled-line
sensor: (a) schematic and (b) layout and (c) cross-sectional views and (d) fabricated setup. Reprinted
with permission from Ref. [40].

Figure 34. The fabricated coupled line sensors: (a) open-ended; (b) short ended with small connecting
segment; and (c) short-ended with grounded connecting pad. Reprinted with permission from
Ref. [109].

In the most recent work of the same group [110], as shown in Figure 35a, a four-
port broadside-coupled line section based on a stripline was utilized to determine the
dielectric constant of liquid samples. A microfluidic channel was realized using 3D printing
technology in between the two aligned coupled strips. Figure 35b shows the electric
field distribution within the cross-section of the broadside-coupled-line section under a
differential excitation. As can be seen, unlike the field distribution in an edge-coupled line
sensor (shown in Figure 35c) in the broadside-coupled-line sensor, the field is confined
within the sample volume (between the two strips); hence, a higher sensitivity. Moreover,
in the broadside-coupled-line sensor, the odd-mode effective permittivity is identical
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to the permittivity of the MUT. Therefore, the need for a computer simulation-based
procedure to convert the effective permittivity to the permittivity of the MUT was removed.
Experimental validation was presented by fabricating the sensor and performing four-
port measurements for various liquid samples in the low-gigahertz regime, as shown in
Figure 35c,d.

Another recent work proposed utilizing a high-directivity microstrip coupled-line
directional coupler (with the through port terminated to a match load) for dielectric con-
stant measurements in the low gigahertz regime. The MUT was placed on the coupled-line
section of the coupler, and either the coupler’s coupling (|S31|) or its isolation level (|S41|)
was considered as the sensor’s response. The idea behind this work is that putting different
MUTs on the coupled line section leads to a change in the coupling coefficient and the isola-
tion level of the coupler. It is noticeable that while, in the works of Piekarz et al. [40,109,110],
VNA measurements were required for the odd-mode impedance extraction, and [111] only
needs the amplitude of one transmission coefficient; hence, there is no need for a VNA, but
instead, either a scalar network analyzer or a frequency synthesizer and a power detector,
which make the measurements simpler and lower cost.

Figure 35. Broadside-coupled line sensor: (a) cross-sectional view; (b) electric field distribution
within the cross section under a differential excitation; (c) the microwave microfluidic setup; and
(d) photographs of the sensor’s components and assembly. Reprinted with permission from Ref. [110].

Figure 36a shows the simulated |S31| for a simple microstrip directional coupler loaded
with different MUTs. In this figure, the zero-coupling frequency of the coupler ( f0 at which
|S31| is minimum) is 2.76 GHz in the unloaded state (where εMUT

r = 1). According to the
transmission line theory, zero coupling occurs at the frequency where the effective electrical
length of the coupled line section equals an integer number of π. By increasing εMUT

r from 1
to 10, εeff

r and consequently the effective electric length of the coupled line section increased,
and as a result, f0 decreased from 2.76 GHz to 2 GHz, as can be seen in Figure 36a. From this
figure, it was concluded that εMUT

r can be uniquely retrieved using f0. Figure 36b shows the
isolation level (|S41|) of the coupler for different values of εMUT

r . However, ref. [111] aimed
to use |S41| to detect εMUT

r by increasing εMUT
r , and the trend of |S41| did not monotonically

increase or decrease, making the unique extraction of εMUT
r impossible. To resolve this

problem, by adding two stubs at the ends of the coupled-line section, as shown in Figure 37a,
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the design of the coupler was modified so that S41 ≈ 0 occurs for εMUT
r = 1. The modified

coupler was fabricated and measured with different MUTs. The measured (and simulated)
|S31| and |S41| are shown in Figure 37b,c. In Figure 37c, |S41| increases monotonically by
increasing εMUT

r , making the unique retrieval of εMUT
r possible. The measurement results

of f0 and |S41| at 2 GHz, for different MUTs, are plotted in Figure 37d,e. It is seen that by
increasing εMUT

r from 1 (unloaded) to 10.2 (AD1000), f0 and |S41| decrease and increase by
approximately 42% and 30 dB, respectively. Therefore, each of these two parameters can be
used to retrieve εMUT

r with a high sensitivity. The sensitivity when zero coupling frequency
and isolation were used was compared to earlier works based on microstrip resonators and
other amplitude-only transmission methods showing a superior sensitivity of the proposed
methods. It should be noted that, before using this sensor to retrieve the dielectric constant
of unknown MUTs, it needs to be calibrated with some known samples.

Figure 36. Simulated |S31| (a) and |S41| (b) of a classical microstrip coupled-line coupler when loaded
with different MUTs. Reprinted with permission from Ref. [111].

2.8. Multiplied Sensitivity Aided with Intermodulation Products

An arbitrary sensitivity enhancement is explained in this section with the help of an
active circuitry and the nonlinear characteristics of amplifiers. The main idea is based on
the mixing product between two resonators. The concept is applicable to a wide range
of currently developed resonators when being used as a core of an oscillator. Conven-
tional resonators benefit from variations in the resonance shifts of only one resonance
frequency. Conversely, the authors in [41] proposed a cutting-edge scheme wherein the
mixing by-products between two resonators were used to create arbitrarily high sensi-
tivities. Assuming that two original sensors produce sinusoidal signals I1 = A1cos(ω1t)
and I2 = A2cos(ω2t) with frequencies f1,2 = ω1,2/(2π), f2 > f1. Once these signals are
summed up and fed into a nonlinear function, e.g., exponential, as follows:

I = I0ek(I1+I2) = I0ek[A1cos(ω1t)+A2cos(ω2t)] (38)

The resultant components are derived using the Taylor series expansion as follows:

I0eK(I1+I2) = I0

∞

∑
n=0

Kn

n!
(i1 + i2)n

= I0

∞

∑
n=0

Kn

n!

n

∑
k=0

(
n
k

)
[A1cos(ω1t)]k[A2cos(ω2t)]n−k

(39)

which implies that higher-order components of ±mω1 ± nω2, m, n ∈ Z, are generated.
Among these, nearby components known as intermodulation products (IMPs) are lo-
cated at:
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3rd IMP → 2 f1 − f2 = f1 − ∆ f0

5th IMP → 3 f1 − 2 f2 = f1 − 2∆ f0

7th IMP → 4 f1 − 3 f2 = f1 − 3∆ f0

(40)

...
...

(2k + 1)th IMP → (k + 1) f1 − k f2 = f1 − k∆ f0 (41)

where the initial frequency separation is defined as ∆ f0 = f2 − f1. This clearly suggests
that variations in the original frequencies ( f1, f2) can be multiplied by integer values when
IMPs are monitored. A supremely elaborated description is given in [41], where two similar
microwave planar resonators operating at f2 = 5 GHz and f1 = 4.75 GHz are used as
the core sensing elements. The resonators are comprised of two concentric SRRs, also
known as double split-ring resonators (DSRRs), which are highly coupled to create an
ultra-high-sensitivity region. In order to generate a signal with the frequencies f1 and f2,
the resonators are employed as the tank of oscillators. Each resonator is utilized in the
feedback path of a regenerative amplifier, and its operation is transformed into a feedback
oscillator once the resonator loss is fully compensated. In order to couple these two signals
in a nonlinear component, the authors in [41] devised a mixing technique to couple the two
individual signals as shown in Figure 38a.

In this design, the second sensing oscillator is used as both generator of f2 and the
mixing element for the signal f1 being injected from the first stage. The second stage needs
to operate at a nonlinear region for the bandwidth of interest to allow for mixing products
being produced with reasonable gain at the output. This mixer design is followed by a pair
of wide-band high-gain linear antennas for transmission purposes. The use of an antenna
illustrates that the proposed sensing technique can be integrated with peripheral electronic
receivers to enable radio frequency identification (RFID).

The experimental verification of the mixer sensor is conducted using a PTFE tubing
(OD = 1/8′′) as a carrier, and is configured on the first stage with a lower oscillation
frequency f1 to freely shift without interfering with f2. The mixer sensor is fabricated on
Rogers RO5880 substrate (see Figure 38b) and is connected to a pair of wide-band slot
bow-tie antennas. Once the antennas are separated by 30 cm, the received power at the
receiving antenna is measured using a power meter. The sensor is examined with water
as the external analyte to exhibit its fundamental functionality. Since the tube is directly
affecting the first stage, the oscillation frequency f1 is downshifted. However, the second
stage with f2 is located at a distance with respect to the first resonator, and then is left
unaffected. IMPs with orders of 3, 5 and 7 have frequency differences of ∆ f0, 2∆ f0 and
3∆ f0 from f1, as well as reveal correspondingly increased downshifts. This represents that
the proposed sensor allows for up to 3-fold sensitivity enhancement at a lower frequency,
which simplifies the post-processing in commercial applications.

In another experiment, the sensitivity enhancement is compared between C7, toluene,
IPA, ethanol, methanol, acetone, and water, as shown in Figure 39b. Assuming that f1
undergoes a certain change in the frequency, the higher-order IMPs represent multiplied
shifts that are consistent for a wide range of permittivity ranging from single-digit εr for C7
and toluene to a larger value for water.

A reasonable concern for such sensors is the possible accumulation of f1, f2 phase
noise and its appearance in the IMP with the same enhancement factor. In this regard,
the authors in [41] have well studied this issue and reported a possible and feasible case
considering which such a disturbing factor is avoided in the sensor response. It has been
shown that the phase lag between two incoming signals (currents) need to be infinitesimal,
which is realized by shortening the distance between the output of the first stage and the
input of the second stage.
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Figure 37. Simulation and measurement result comparison of the fabricated sensor. (a) Fabricated
high-directivity microstrip coupled-line coupler. Simulated and measured (b) |S31| and (c) |S41|.
Dielectric constant of the MUT as a function of the (d) zero-coupling frequency ( f0) and (e) |S41| at
2 GHz. Reprinted with permission from Ref. [111].
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Figure 38. The schematic of t0he intermodulation-based microwave sensor. (a) Schematic of the
intermodulation-based sensor and wireless communication. (b) Fabricated sensor. Reprinted with
permission from Ref. [41].
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Figure 39. Intermodulation-based sensor response. (a) IMPs in the spectrum analyzer for f2 = 5 GHz
and f1 = 4.75 GHz. (b) Material characterization and sensitivity comparison using 3rd, 5th, and 7th
IMPs. Reprinted with permission from Ref. [41].

3. Resolution Enhancement

Microwave sensors can be in either transmission type or reflection type depending on
the application and the number of ports required. Each resonator can be represented with a
series or parallel resonator and shown with lumped circuit components [112]. In this regard,
the loss of MUT plays an important role in the sharpness of the sensor profile (S21 or S11).
It is evident that sharper profiles are easier to distinguish and therefore favorable to be used
in high-end applications. However, material loss degrades the sensor performance with
lowering the quality factor of the transmission-based sensors and matching of reflection-
based ones. In this regard, the sensor resolution denotes how separate sensor responses
become as a result of a given change in the MUT. In other words, once the S21 profile
of a sensor shifts due to a change in the environment, high-resolution sensor results in
low-to-no overlap between the original and shifted S21 profiles. This section discusses
various methodologies that can be applied to a given resonator to improve its resolution
(profile sharpness).

3.1. Active Transmission-Based Sensors

A wide range of microwave sensors are employed in two-port configuration, which
makes them suitable for being used as part of an amplifier or oscillator. Therefore, this



Sensors 2022, 22, 6946 40 of 57

section only discusses the high-resolution sensors with transmission response. The sensor
loss rises from different sources including MUT loss, the proximity of external objects,
dielectric/conductor loss, and electromagnetic propagation. Regardless of the loss source,
the transmission profile undergoes a degradation in the sharpness. Having said that,
our focus in this part is on material loss. One approach to still elicit information from a
lossy MUT is to compensate the loss of the sensor. This has been meticulously elaborated
in [46] followed by several other similar works in this regard [42,43,113,114]. The authors
proposed an active sensor as a viable solution to cope with the losses in the system. In
an active sensor, electronics are involved to compensate the resonator loss. Figure 40a
represents a simplified version of the proposed system where the resonator is coupled to an
amplifier in the feedback path to generate a regenerative amplifier. The transfer function of
a feedback system with amplifier gain A and resonator transfer function β is as follows:

H =
Y
X

=
β

1 + Aβ
(42)

which not only relies on the forward path β, but is also modified by the amplification
coefficient (1 + Aβ). The optimum conditions for the sensor response include:

• Gain A to compensate the resonator loss β; i.e., |A| ≈ |β|
• The wrapped phase of resonator β to equal the amplifier phase; i.e., ]A = ]β

As such, the resonator loss is controllable and the system loss issue, mainly derived by
MUT loss, can be arbitrarily fixed. In this regard, partial compensation is enough, beyond
which the sensor enters oscillation and the operation mode changes. An edge-folded SRR
was designed in [46] on a Rogers RO5880 substrate with the dimensions given in Figure 40b.
The resonator at the forward path of a regenerative amplifier is loss-compensated with a
bipolar transistor (i.e., NE68033) and the phase modification is implemented with the help
of transmission lines. The sensor resonates at 1 GHz with QPassive = 190. In order to verify
the active sensor, a PTFE tube (ID = 1/16′′) is used that covers the resonator gap as well
as the SRR to improve the sensitivity. The active circuit is triggered with a bias voltage
that essentially controls the transistor’s operation. Increasing the bias voltage allows for
higher transistor current that results in an increased S21 peak as shown in Figure 40d. It
is evident that the sensor resolution is substantially improved with more than 20-fold
Q-factor enhancement (i.e., QActive ≈ 3850). The high Q-factor ensures that variations in
the measured resonance frequency because of a change in the effective dielectric constant,
here due to glucose, that can be discerned with smaller steps. The incertitude in the
measured resonance frequency is demonstrated by an error bar in Figure 40e at different
bias voltages. It is noteworthy that the central frequency relocates slightly along with the
bias voltage because the active circuit load on the resonator depends on the operational
mode of the transistor. Moreover, the error bars depict the fluctuations in the frequency
of resonance decreasing as the loss-compensation improves at higher bias voltages. As a
result, a more precise sensor performance with low uncertainty with active sensor design. A
more practical study is conducted on the sensor robustness at different loss-compensation
states with sensing glucose concentrations in an aqueous solution. The proposed active
sensor is used as a glucose-sensing device for noninvasive monitoring. To this aim, an
ultra-high sensitivity is required to distinguish 6 200 ppm glucose concentration change
(i.e., 1 mMol·L−1 ≈ 18 mg·dL−1) in an aqueous solution. Two syringe pumps with variable
flow rates are utilized to combine DI water with a highly concentrated glucose solution
(i.e., 1000 mMol·L−1) to achieve intermediate concentrations, as shown in Figure 40c.
Glucose concentration is varied from 100 mMol·L−1 to 1000 mMol·L−1 and monitored with
the sensor resonance frequency continuously within 75 s. Passive mode of the resonator,
shown with Vbias = 0 V, yields highly scattered measured resonance frequencies due
to a large 3 dB bandwidth, which allows for frequency span to undergo white noise as
shown in Figure 40d. At higher bias voltages (e.g., Vbias = 22 V), in contrast, the sensor
loss compensation diminishes the white noise impact on the transmission profile, and
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subsequently, on the resonance frequency detection. It is clearly shown that the uncertainty
in the frequency detection reduces from 312 kHz down to 3 kHz. This low frequency
fluctuation reflects the high resolution of the sensor that helps discriminate smaller glucose
concentration variations. Subsequently in this work [46], it is shown how this very sensor
can be used to distinguish much smaller glucose levels in the range suitable for the human
body (3–6.5 mMol·L−1 ≈ 50–130 mg·dL−1).
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Figure 40. Active sensor design, schematic and preliminary results: (a) feedback schematic of
an active resonator; (b) schematic of the active resonator with dimensions; (c) Sensing setup for
glucose monitoring with two syringe pumps; (d) bias voltage impact on the transmission response;
(e) bias voltage impact on the sensor response uncertainty; (f) monitoring glucose concentrations
(100 → 1000 mg · dL−1) with different states of the active sensor (Vbias = 0, 18, 22 V) with two
separate measurements (black and red lines). Reprinted with permission from Ref. [46].

3.2. Active Reflection-Based Sensors

In addition to transmission-based sensors, single-port resonators were also loss-
compensated to be used as reflection sensors based on reflection scattering parameter
(S11) as introduced in [115]. This type of sensor is suitable for applications that require a
single port and hence low computational effort in post processing. A conventional CSRR is
etched from the ground plane as a highly sensitive region for dielectric material characteri-
zation, and is excited by a transmission line on the other side of the substrate as shown in
Figure 41a. The sensor S11 is designed to have low reflection at the frequency of ∼6 GHz; a
fairly high frequency is chosen for a decent sensitivity. This resonance becomes impacted
by the loss of MUT and the depth of S11 degrades in sharpness. Hence, the resonator loss is
retrieved by an active circuit. In this case, because of the single-port characteristic of the
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resonator, a reflection-based negative resistance is generated with the help of ATF34143
FET. The DC biasing is implemented by a feedback from drain to gate through a voltage
division (R1/R2) and the resistive source (R6 = R7) results in a negative Vgs. As such, the
biasing is possible with a single bias voltage VIN . The negative resistance of the circuit
depends on the Barkhausen criterion, where oscillations are triggered at the gate node
when the reflection parameter seen from the input of the circuit (Γin) and the output of the
CSRR (Γout) meets the following condition:

|Γin| × |Γout| > 1 (43)

Figure 41. Reflection sensor loss-compensated design with preliminary results: (a) schematic of the
active reflection-based sensor; (b) fabricated sensor prototype; (c) Measured amplitude and phase of
reflection parameter S11 with different loss compensation states from blue (no compensation) to black
(high compensation); and (d) measured S11 for different Materials including IPA, ethanol, methanol
and water. Reprinted with permission from Ref. [115].

However, partially compensating the sensor loss is used to use utilize the sensor in
the resonance mode without entering the oscillation regime. A fabricated sensor is shown
in Figure 41b with the CSRR on the ground side represented as the inset. Retrieving the
resonator loss translates to recovering the stored power in the resonator by changing the
input impedance of the active circuit to complex-conjugately match with the resonator.
Therefore, the reflections from the sensor minimizes, which is elaborated with the increased
depth of S11in Figure 41c. With higher bias voltages, the amplitude of reflection decreases
and the corresponding phase response becomes sharper at the frequency of resonance.
A performance examining test is conducted with the sensor being loaded by various
common liquids including IPA, ethanol, methanol, and water flown into a PTFE tubing.
A typical sensor reflection response is given in Figure 41d with solid lines. Once the
active circuit is triggered, the loss-compensated profiles with much higher resolution and
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sharpness are generated as shown with dashed lines. This implementation confirms that
the sensor response with a single port of excitation can be configured in a negative feedback
structure to restore the lost power. This structure can then be used for sensing much smaller
variations in an MUT.

3.3. Oscillator-Based Sensors

Another important type of loss-compensation is full compensation, which allows
for not only the sensor response retrieval but also the sensor to be used for single-port
applications without excitation. Once the lost power of a resonator at the frequency of
resonance ( fres) is fully retrieved, the resonance behavior turns into oscillation. With this
method, one can benefit from the signal generated at fres, which is still tightly linked with
the resonator parameters (e.g., resistance, capacitance and inductance). The prototype of a
planar oscillator sensor is debuted in [43], wherein an SRR at fres = 2.4 GHz is connected
to a negative resistance unit R1, as shown in Figure 42a. A source degenerated ATF-
34143 metal–oxide–semiconductor field effect transistor (MOSFET) provides the negative
resistance to remove the SRR loss. This method enables a high-resolution sensing paradigm
since the whole-transmission/reflection from a resonator is reduced to a single frequency.

Figure 42. Active sensor with active tank: design, schematic and sensing results: (a) schematic of
the oscillator with active tank; (b) fabricated oscillator with active tank; (c) spectrum power with
oscillator tank in passive/active modes; (d) measured oscillation frequencies with concentrated water
in ethanol with passive tank; (e) measured oscillation frequencies with concentrated water in ethanol
using active tank; and (f) comparing the oscillation frequency stability in both a passive and active
tank for a given MUT. Reprinted with permission from Ref. [43].

In the study of an oscillator, the operational frequency is prone to fluctuations in the
transistor current that can be originated from white noise, flicker noise, etc. When there is
no apparent variation in the MUT, these fluctuations determine the sensor’s bit resolution
(i.e., limit of detection, lower than which the sensor data are noisy). Quantifying the
magnitude of such variations depends on the impedance analysis of a parallel combination
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between the resonator circuit model that is supposed to be a parallel RLC (R: resistor; L:
inductor; C: capacitor), the load impedance RLoad, and the negative resistance −RN . The
admittance seen from the input of the sensor is given below:

Yin =
1

R + RLoad

(
1± 2jQ

∆ f
f0

)
− 1

RN
(44)

where Q is the quality factor and ∆ f denotes the frequency offset from the center frequency
f0. In oscillation, impedance matching leads to impedance removal, which reduces (44) to:

Yin =
±2jQ

R + RLoad
· ∆ f

f0
(45)

The uncertainty in the frequency of oscillation is elaborated by the phase noise (PN) of
a system, which is computed after manipulating (45) in 1 Hz bandwidth as follows:

L( f ) =
kT

2Q2P
(

f0
f

)2 (46)

where k = 1.38× 10−23 J/K is the Boltzmann’s constant, T [K] is the temperature and
P[W] is the output power. Equation (46) suggests that the sensor PN can be improved
with higher output power P and improved quality factor Q. As a result, one of the main
tools to increase the sensor stability is to employ high-Q resonators. In this regard, the
authors in [43] have elaborated in detail that the resonator loss can be compensated to
be used in the tank of an oscillator. This loss-compensation leads to an active SRR with
improved quality factor that is implemented with a regenerative amplifier design in blue
(see Figure 42a). This compensation can also be modelled with a negative resistance as
described in Section 3.1.

A fabricated sensor with both a negative resistance circuit (−R1) as well as the regen-
erative amplifier (−R2), both coupled on the main SRR, is shown in Figure 42b. The SRR
is chosen to be narrow in width to be highly impacted by the microfluidic tube above it.
The measurement of the single-port oscillator sensor with a vector spectrum analyzer is
depicted in Figure 42c, in both cases, where the oscillator uses the tank in the passive mode,
as well as the sensor with the active tank. It is clear that the spectrum of the sensor becomes
narrower, which implies that less noise is aggregated on the surrounding offset frequencies
of the oscillator. In addition, the output power at the oscillation frequency improves from
−27.5 dB to−16.17 dB due to the active tank. Furthermore, the spectrum is less noisy when
identical offset frequencies are compared. This improvement in the spectrum translates
to the sensor’s stability in the generated frequency of operation, which then dictates the
fluctuations in the sensor operation. A higher stability in the frequency response results in
the higher resolution of the sensor.

The verification of the proposed design with liquid characterization is performed next.
In this experiment, water in ethanol solutions are injected inside the microfluidic tube on
the SRR, whose concentrations are determined by two syringe pumps controlling DI water
and ethanol, respectively. Injections start with ethanol (as a starting point on the curve)
and followed by water to obtain the desired concentrations ranging from 50% → 3%. It
is evident that the passive tank with a relatively low quality factor results in scrambled
frequencies. The oscillation frequency difference between ethanol and the concentrated
solution (∆ fosc) is shown in Figure 42d. In order to evaluate the bit resolution of the sensor,
concentration increments smaller than 3% are difficult to discriminate. However, the same
experiment with the active tank is represented in Figure 42e, where measured oscillation
frequencies are highly stable. This robustness allows characterizing even smaller quantities
of water in ethanol down to the 0.25% level, which clearly demonstrates that the oscillator
with an active tank results in high-resolution sensing. A summary of this measurement is
demonstrated in Figure 42f, which showcases the oscillation frequency shift with respect to
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the water content for both oscillator modes. The sensor response with the tank in the passive
mode is associated with a high incertitude of ±20 kHz. This uncertainty is significantly
improved towards a much smaller frequency deviation ± 1.5 kHz with the tank being in
active mode. This very feature also reduces the lowest detectable concentration of water
in ethanol in a given sensing configuration by a factor of ∼12 ( from 3% → 0.25%). The
proposed active tank structure can be implemented to different resonator designs, including
but not limited to, planar and substrate integrated waveguide-based sensors.

3.4. Differential Measurements with Cross-Mode Transmission Coefficient

An approach that provides very good resolution such as differential sensing functions
by means of resonator-loaded lines, as shown in Figure 43a,b. In such sensors, a pair
of transmission lines is loaded with the sensitive elements, planar resonators. The lines
and resonators are identical, and therefore, any differential output variable should be null
provided symmetry is not perturbed. However, by loading one of the resonators with the
so-called reference (REF) material, and the other one with the material under test (MUT),
symmetry is disrupted (as far as the REF and MUT are different), and a differential output
variable should be generated. It has been found that the cross-mode transmission coefficient
is a very useful output variable in this kind of sensors [52,116–119]. Indeed, if the two
resonator-loaded sensing lines are uncoupled, the cross-mode transmission coefficient is
given by [120]

SDC
21 =

1
2
(S21,MUT − S21,REF) (47)

and it is therefore a canonical differential variable, as far as it is proportional to the difference
between the transmission coefficients of the individual lines. Ideally, under perfect balance,
the cross-mode transmission coefficient should be null, however, in practice, perfect balance
is impossible to achieve, and the transmission coefficient is finite. Indeed, an indication
of the level of quality of this type of sensors is given by the magnitude of the cross-mode
transmission coefficient under perfect balance. To illustrate the potential of the approach,
we report an example of a differential-mode sensor devoted to the measurement of the
concentration of electrolytes in aqueous solutions. The sensor, depicted in Figure 43a, is
equipped with fluidic channels for liquid injection (the details can be found in [117]). Such
channels are placed on top of SRRs, the sensing resonators. The sensor acts as a comparator
able to detect differences between the REF liquid (pure DI water) and the MUT (or liquid
under test—LUT), a solution of electrolytes in DI water. The resolution of the sensor is
given by the minimum concentration of electrolytes that can be resolved.

Figure 43c depicts the cross-mode transmission coefficient for different values of the
concentration of electrolytes (particularly NaCl), as well as the value of the maximum
magnitude as a function of the concentration of electrolytes. The sensitivity (see Figure 43d)
is very high in the limit of small perturbations, and it progressively decreases (the maximum
value is found to be 0.033 (g/L)−1). However, it is relevant that the sensor is able to detect
concentrations of NaCl as small as 0.25 g/L (note that the corresponding curve in Figure 43c
perfectly differentiates from the one corresponding to the sensor loaded with DI water in
both channels). Thus, sensor resolution is 0.25 g/L, which can be considered to be a very
good value.
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Figure 43. Topology of the differential sensor with the effects of NaCl concentration on the cross-mode
transmission coefficient: (a) topology of the microwave structure of the SRR-based differential sensor;
(b) photograph including the microwave structure, the fluidic channels (plus mechanical accessories)
and connectors. Dimensions (in [mm]) are: LLT = 76.5, WLT = 2.79, l = 24, c = 1, w = 8.17, g = 0.2.
The ground plane is depicted in grey. The sensor was implemented in the FR4 substrate with the
dielectric constant εr = 4.4 and thickness h = 1.6 mm; (c) dependence of the cross-mode transmission
coefficient on frequency; (d) relation between sodium concentration and

∣∣SDC
21

∣∣
max in linear form. In

(d), two measurement campaigns have been carried out in order to ensure repeatability. Reprinted
with permission from Ref. [117].

4. Robustness Enhancement

Conventional microwave sensors are suffering from a low-to-moderate quality factor.
This issue reduces their range of application when they are employed in cutting-edge
sensing mode. In order to overcome the issue of the low-quality factor, active resonators,
oscillators and mixers are proposed and decently elaborated as in [41–43,46,113,114] to com-
pensate the sensor loss and improve the response. This very feature of loss-compensation
increases the sensor’s sensitivity to the surrounding medium so that permittivity variations
in further distances can also be detectable. As a result of MUT detection and characterization
at broader physical distances, the sensor becomes susceptible to the sensing environment,
which concedes impacts from undesired materials or minor temperature/humidity varia-
tion. This is the main motive to improve the robustness of microwave sensors empowered
by an active circuitry to still benefit from their high resolution. In this section, different
novel approaches are introduced to help minimize unwanted impacts on sensitive sensors.

4.1. Robustness to Distance Using Fuzzy Neural Network

One of the main characteristics associated with planar sensors is their sensitivity to
effective permittivity variation, which is affected by the distance of MUT with respect to
the sensor surface. It is clear that the sensing element of microwave planar sensor pursues
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MUT once it is in the range of fringing fields emanated from the resonator. It has been
shown in active sensors that the fringing fields are extendable in range with the help of
loss compensation [46,113,114]. This range extension is employed to help sensing MUTs
located at a distance away from the sensor surface [32]. A meandered type half-wavelength
resonator is used to achieve a compact sensor size operating at∼1.3 GHz. Various chemicals
including 2-Isopropanol (IPA), ethanol, acetone and water were introduced to the sensor
inside a plastic cylindrical container. To examine the sensor response with respect to
the physical distance between the MUT and the sensor (∆d), the container dislocates
manually around a central point that is one wavelength (∆d = λ ≈ 25 mm) away from
the sensor. It is noteworthy that such a high distance in sensing is only feasible because
of the loss compensation in the resonator. The transmission response of the sensor is
summarized with three orthogonal (principal) components of amplitude, quality factor,
and resonance frequency. The comparison between these parameters measured by 15 times
for all liquids is given in Figure 44a–c. Scrambled symbols denote the spread of the
corresponding quantity for a given MUT as a result of slight dislocation. The projection of
the obtained transmission characteristics on amplitude vs. Q-factor, Q-factor vs. frequency
and amplitude vs. frequency vectors show an intermingled relationship any dual sensor
output. Therefore, MUT characterization becomes highly challenging. The authors in [32]
debuted and developed the application of machine learning algorithms in sensing towards
improving the sensor performance. As of the algorithm, the fuzzy neural network (FNN)
is used as a reliable means of mapping several inputs to a target output(s). The input
parameters of an FNN are linked through arithmetic particulates of AND and OR based on
general rules with the following format:

x = Ai ⇒ y = fi(x, ai) = a0 + aT
i x(∗), i = 1, 2, . . . , c. (48)

where Ai is the fuzzy set designed in the multivariate input space and fi in the local
linear model. Logic models denoted by (∗) are able to nonlinearly map between the input
and output. Furthermore, the parameters of condition (i.e., fuzzy set Ai) and conclusion
(i.e., a0, ai) can be optimized (learned).

The FNN input consists of 3 values per sample measured 15 times, totaling 60 inputs
considering 4 MUTs that are supposed to be clustered into 4 categories. In this analysis, a
linear model is used as follows:

ŷ = ∑ Ai(x) · (a0 + aT
i x) (49)

where Ai as the membership function (Gauss2m f ) is composed of two Gaussian dis-
tributions, typically constructed by clustering techniques [121,122], with the following
generic forms:

f1i(x) =

e
−(x−c1i)

2

2σ2
1i if x 6 c1i

1 0 otherwise
(50)

f2i(x) =

e
−(x−c2i)

2

2σ2
2i if x 6 c2i

1 otherwise
(51)

where σ1i, σ2i and c1i, c2i are the spread and prototype of the ith fuzzy set, respectively. Then,
Gauss2m f is given by Ai(x) = f1i(x)· f2i(x), which is graphically shown in Figure 44d
as an example. Essentially all measured values for the three main contributing factors
of A, fres, and Q are separated into different classes with respect to the corresponding
membership function. The parameters of the linear model in a collection of input–output
as (Xin, Tk), k = 1, 2, . . . , N are estimated by minimizing the mean squared error (MSE)
as follows:

MSE =
1
N

N

∑
k=1

(ŷk − Tk)
2 (52)
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Training, validation and test sets take 70%, 15%, and 15% of the input set, respectively.
Reliable training is conducted through averaging 15 individual training through single-
point out method because of the limited number of data points. The output target is chosen
to be arbitrarily chosen discrete values of 0, 0.01, 0.015, 0.02 as shown in Figure 44e. The
blue box plots represents predicted outputs, which are supposed to be within dashed lines
as boundaries of the adjacent classes. Whiskers demonstrate the minimum and maximum
of the mapped output. This classification is further improved by optimizing the parameters
based on combined methods of back-propagation gradient-decent and least square error
that is shown with red box plot. It is evident that the data points residing outside of
the corresponding boundary are pulled inside after optimization, thereby improving the
classification accuracy. A comparative analysis is given in Figure 44f, which showcases the
result of FNN with a single parameter input, here frequency fres, compared with an FNN
using all three parameters of ( fres, A, Q). It is clear that the prediction accuracy, which is the
division of correct classification over total number of inputs, is significantly improved for
IPA and Acetone when using all three orthogonal parameters rather than only frequency.
This improvement results in an average of 81.5% prediction accuracy for the latter compared
with only 49.5% whilst using the former input set. In general, the proposed FNN is used to
enable the correct prediction of common liquids with considerably high accuracy (100%
for water) even though the sample location is noisy, which depicts the robustness of the
machine-learning-assisted sensor in dealing with an unstable environment.
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Figure 44. Sensor response for various MUT location and classification results. Sensor response
comparison exposed to IPA, ethanol, acetone, and water between (a) Amplitude and Q-factor, (b) Q-
factor and frequency, (c) Amplitude and frequency. (d) Gaussian membership function in Fuzzy
neural network example, (e) Sample classification results without (blue) and with (red) optimization,
(f) Comparing common MUT recognition accuracy when only fres is used as apposed to incorporating
all fres, A, and Q. Reprinted with permission from Ref. [32].
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4.2. Neutralizing Environmental Impacts with Machine Learning

An example of environmental interference (noise) is the presence of undesired materi-
als within the sensing range. While practical situations involve a complex matrix, a sensor
needs to be selective to the desired MUT. Machine learning has been found to be lucrative in
enabling selectivity in microwave sensors, as shown in [123], where a convolutional neural
network is used to process the sensor response with respect to its pre-trained repository.
Another aspect of environmental noise on the microwave sensor response is explained in
this section as the temperature effect. Temperature, similarly to other ambient factors in-
cluding humidity, pressure, proximity, force, etc., changes the effective presence of an MUT
in material characterization. This is mainly due to the noninvasive characteristic of planar
sensors that allow for materials to be influenced by the ambient [124]. The authors in [49]
demonstrated an SRR operating at ∼1.2 GHz, which is used for material characterization
using a PTFE tubing. The sensor is employed in a sealed box that is connected to a heat
source and the box temperature is monitored with a commercial thermometer as shown in
Figure 45a.
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Figure 45. Temperature modulation of the active sensor loaded with MUT. (a) sensing setup with
sealed box to control the humidity; (b) schematic of the proposed architecture using machine learning
for classification. Measured sensor response overlap for various concentrations of water in (c)
methanol and (d) acetone undergoing temperature cycle (25 → 55◦). Reprinted with permission
from Ref. [49].

A temperature cycle is applied to the box, which impacts both the sensor and the MUT.
It is well known that the temperature contributes to the effective permittivity of materials
as follows [125]:

(εr − 1)(2εr + 1)
9εr

=
4πρNA

3M
·
(

α +
µ2g

3kBT

)
(53)
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where M is the molecular weight, ρ is the density, α is the molecular polarizability, NA is
Avogadro’s number, µ is the dipole moment of the molecule, k is the Boltzmann’s constant
and g is a factor to characterize the orientation of neighboring molecules. Expression (53)
elaborates that the permittivity reduces with elevated molecule interaction and lowered
density at higher temperatures. This leads to an increase in the measured resonance
frequency when the material warms up. The challenge is that when several materials
are characterized, their fres variations are intertwined such that inferring the presence of
an MUT is not practically possible with respect to only monitoring fres. This behavior
is the result of the significant impact of the environment on the sensing platform in an
uncontrolled medium. The authors in [49] showed that the use of an artificial neural
network in managing the situation with proper allocation of sensor responses to each MUT.
In this regard, they proposed a method that involves correlating measured sensor data as
the input set to a desired MUT as the target class. In each class, varied transmission profiles
(S21) with 5001 points each are measured. Inspired by [32], the authors in [49] exploited
deeper levels of the measured S21. In this work, the whole magnitude of transmission
response |S21| over 5001 frequency points are considered as shown in Figure 45b. The sensor
is exposed to a wide range of permittivity values mixing methanol and water to arrive at a
20% increment in concentrations from 0→ 100%. Each sample is tested individually and
the overall sensor resonance frequency variation over time is shown in Figure 45c. The
temperature of the box increases from a room temperature of 25 ◦C up to 50 ◦C, which
increases the PTFE tubing, MUT, and the sensor temperature, correspondingly. Then,
the box lid is taken off to release the condensed heat. This temperature cycle results in
∼300 measurements per MUT, and the measured fres distributions are shown in the right
axis of Figure 45c. The whole scenario is repeated with similarly concentrated samples
of acetone in water, as shown in Figure 45d. Therefore, 5 concentrations of each material
constitute 10 different classes when the methanol-in-water and acetone-in-water datasets
are combined as the input. The choice of the classifier depends on the data dimension
as well as prior information. In this complex multiclass classification problem, however,
several algorithms are empirically compared to choose the best-performing model. The
proposed artificial neural network employs several different classifiers including multilayer
perceptron (MLP), decision tree (DT), K-nearest neighbors (KNN), support vector machine
(SVM), random forest and linear discriminant analysis (LDA) to map the received input
(5001 measured |S21| values) into a single class (0, 1, 2, . . . , 9). It is shown in Figure 46a that
a high-decision accuracy can be obtained with a wide range of models, which depicts the
feasibility of the proposed method in deciphering an adversely affected sensor response.
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Figure 46. Sensor response classification results with respect to temperature: (a) comparison between
different classifiers for both high and low concentrations; (b) confusion matrix for classification
results of methanol in water (0→ 4) and acetone in water (5→ 9). Reprinted with permission from
Ref. [49].
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The confusion matrix involving the whole dataset classification with classes 0 → 4
for methanol-in-water and 5→ 9 for acetone is shown in Figure 46b with the number of
predictions per label given in each cell. In another attempt, the concentration of mixture
is reduced to evaluate the model performance at smaller deviations in the fres. This time,
low concentrations ranging from 0% → 5% with 1% increment are prepared for both
methanol and acetone in water. Similar classification is conducted and the results from
each model are compared with red color in Figure 46a. This experiment demonstrates that
some algorithms still preserve their high performance level such as MLP and SVM even
though the variations in the materials are more intermingled. This work demonstrates
that machine learning-based algorithms are potent in helping microwave planar devices
remove their imperfections due to their planar design.

5. Comparative Analysis

In this section, a brief overview of all proposed methodologies and techniques are
given that can be used to enhance the performance of microwave sensors. In most
cases, these techniques can be easily applied to non-planar sensors with cavity designs
as well [36,41,49,115]. Three categories are discussed including sensitivity, resolution and
robustness—all of which contribute to the key performance aspects of the sensor. The sug-
gested approach differs depending on the sensor port topology (1-port/2-port), planar/non-
planar, the principle of operation and sensing mechanism (frequency/phase/amplitude
measurement). Table 4 elaborates on all possibilities to improve the sensor performance
with a detailed application and sensing technique.

Table 4. Comparative analysis between various enhancing techniques for microwave planar sensors.

Feature Proposed Method Comment Application References

Sensitivity
Enhancement

Coupled Resonator
• Coupling between resonators is used
• Resonance is only due to coupling Biomedical [33,34,67]

Substrate Embedding
• Fluids between resonator and ground
• MUT disturbs the resonator capacitance MUT characterization [36]

Analyte Immobilization
• Intermediate layer to hold MUT
• Mostly For gases/minuscule analytes

• Biomedical
• Temperature
• Humidity

[72]

Sensor Topology Optimization
• Sensor hot spot is optimized

• High concentration of E-fields are
generated with optimized geometries

Biomedical [37]

Phase Variation
• For reflection-based (1-port) sensors
• Alternating high-low impedance TLs MUT characterization [96]

Coupled-Line Coupler
• Enables wide-band spectroscopy
• Affecting coupling/isolation of coupler MUT characterization [110,111]

Intermodulation Product
• Enables arbitrarily enhanced sensitivity
• Requires active circuit design
• Sensitivity enhanced, noise maintained

• Oil-sand
• Biomedical [41]

Resolution
Enhancement

Active Transmission Sensor
• For planar/non-planar designs
• Loss-compensation for high resolution
• Generating ultra-high Q-factors

• Biomedical
• Oil–sand [46,113,114]

Active Reflective Sensor
• Applicable for single-port devices
• Leads to ultra-sharp resonance • Ultra lossy MUT [115]

Active Tank-Based Oscillator
• Improves the Q-factor of oscillators
• Enhances the sensor jitter

Lossy MUT
Characterization [43]

Cross-Mode Transmission
• Differentiation of S21 of two sensors

• For highly lossy MUT with negligible
frequency variation

Biomedical [117]

Robustness
Enhancement

Fuzzy Neural Network
• Sensor response stabilized with respect

to the MUT-location variation

• The sensor is trained to be sensitive
to MUT, rather than location

• Industrial application
• MUT characterization [36]

Artificial Neural Network
• Material properties vary by temperature

• Temperature compensation is achieved
by ANN on sensor response

• Industrial application
• Biomedical
• Agriculture

[49]
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6. Conclusions

In conclusion, several unique and recent approaches have been reviewed that sig-
nificantly contribute to the functionality and performance of conventional microwave
planar sensors. Many of the proposed techniques can also be applied to non-planar sensors
working in a microwave regime. The main purpose of the proposed work is discussing
specific strategies in three categories including the sensitivity, resolution and robustness
enhancement of the sensors. The prototype examples of each method were developed. In
particular, increasing the sensitivity of the sensor was elaborated with various methods
such as a sensor exploiting coupled resonators that are mostly used for planar two-port
sensing. Embedding channels inside the substrate can be used for both planar/non-planar
systems to exploit the main capacitive region of the sensor, while being more immune
to environmental impacts. In cases where the MUT is infinitesimal, e.g., proteins, gases,
etc., analytes are immobilized and physically adsorbed to increase the cumulative impact
on the sensor. The resonator pattern, in addition to canonical demonstrations, can be
optimized for the highest field concentration and sensitivity. While frequency/amplitude
measurements are prone to noise/error, using the phase variation is another method to
achieve a highly sensitive sensor. The incorporation of coupled line sections can be used for
wide-band spectroscopy. Each method introduces a unique example to enhance the sensi-
tivity of a conventional sensor up to a limited level using either passive or active methods.
In contrast to the passive methods, in a nonlinear sensor using intermodulation products,
one can arbitrarily increase the sensor sensitivity at the cost of power consumption. In this
work, an example with 4-fold sensitivity enhancement was shown to operate as stable as
the fundamental frequencies. This aspect of integrating electronics within passive sensors
is demonstrated in the next section that explains the performance enhancement with re-
spect to the resolution of sensor response. This section mainly discusses the use of active
electronics in order to retrieve the lost power in the resonator. This way, a typical resonator
quality factor can increase 20-fold with the use of a proper compensation technique for both
transmissive and reflective schemes, using which the sensor resolution increases propor-
tionally. Moreover, oscillators as sensors are also covered, and their time-based stability is
boosted with an additional loss-compensating circuit for resonator Q-factor enhancement.
The cross-mode operation in two identical transmissive sensor yields high resolution in the
readout. Lastly, the recent surge in machine learning has been found to be advantageous in
boosting the performance of microwave sensing in terms of leveraging pre-trained patterns
towards removing environmental impacts from sensor response, thereby resulting in a
robust sensor. Two main techniques including the fuzzy neural network and artificial
neural network are discussed that both help resolve environmental impacts such as minor
MUT displacement or temperature. With all these characteristics, the reviewed sensor
techniques can be applied to various scenarios including medical diagnosis, industrial
processing and monitoring, among others.
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