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Introduction: Excitability of the primary motor cortex measured with TMS has 

been associated with cognitive dysfunctions in patient populations. However, 

only a few studies have explored this relationship in healthy adults, and even 

fewer have considered the role of biological sex.

Methods: Ninety-seven healthy middle-aged adults (53 male) completed 

a TMS protocol and a neuropsychological assessment. Resting Motor 

Threshold (RMT) and Long-Interval Intracortical Inhibition (LICI) were 

assessed in the left motor cortex and related to attention, episodic memory, 

working memory, reasoning, and global cognition composite scores 

to evaluate the relationship between cortical excitability and cognitive 

functioning.

Results: In the whole sample, there was a significant association between 

LICI and cognition; specifically, higher motor inhibition was related to better 

working memory performance. When the sample was broken down by 

biological sex, LICI was only associated with working memory, reasoning, 

and global cognition in men. No associations were found between RMT and 

cognitive functions.

Conclusion: Greater intracortical inhibition, measured by LICI, could be  a 

possible marker of working memory in healthy middle-aged adults, and 

biological sex plays a critical role in this association.
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Introduction

The balance of cortical excitation and inhibition (E/I balance) 
is a core neurophysiologic metric of neuronal and brain network 
activity believed to determine optimal brain functioning (Sukenik 
et al., 2021). In patient populations, including autism spectrum 
disorders or schizophrenia, an E/I imbalance has been observed 
in different cortical areas and shown to be  associated with 
behavioral and cognitive symptoms (Sohal and Rubenstein, 2019; 
Bruining et  al., 2020; Calvin and Redish, 2021; Maestú et  al., 
2021). In Alzheimer’s disease, cortical motor hyperexcitability has 
been negatively related to cognitive performance (Zadey et al., 
2021), possibly due to enhanced intracortical excitatory circuits 
(Di Lazzaro et al., 2004; Meder et al., 2021) or/and an inhibitory 
deficit (Khedr et al., 2011; Pennisi et al., 2011; Joseph et al., 2021; 
Mimura et al., 2021).

Past research exploring cortical excitability and cognition has 
produced inconsistent results in healthy, cognitive-unimpaired 
adults. This variability may be due to differences depending on the 
cortical area or specific cognitive functions assessed. For example, 
while higher excitability after stimulation of the left prefrontal 
cortex has been related to better executive functions and working 
memory (Redondo-Camós et  al., 2022), other studies have 
observed that excessive excitability of the primary motor cortex 
was associated with impaired attention and global cognition 
(Bolden et al., 2017; Akilan et al., 2020). Other aspects that may 
modulate the association between cortical E/I balance and 
cognitive functioning may relate to age, given the different degrees 
of preservation of gamma-aminobutyric acid (GABA) circuits 
linked to physiological aging (McGinley et al., 2010; Opie and 
Semmler, 2014; Hermans et al., 2018). Indeed, age-related cortical 
excitability changes have been previously linked to differences in 
attention and inhibitory control in healthy adults (Cespón et al., 
2022). Also, biological sex could play a key role since differences 
in brain anatomy and connectivity between men and women, as 
well as hormonal influences associated with menstrual cycle 
variations in women, may lead to distinct neural processes 
involved in cognitive and motor control (Korzhyk et al., 2019; 
Rezzani et al., 2019). Gender-associated differences could be due 
to genetic determinants, lifestyle factors including physical 
activity, alcohol, or tobacco consumption (Rezzani et al., 2019; 
Travica et al., 2020), or steroid hormone levels, which are higher 
in women and have been related to GABA neurotransmission, 
mood and memory (Cosgrove et al., 2007; Rezzani et al., 2019).

Transcranial Magnetic Stimulation (TMS) combined with 
Electromyography (EMG) is a widely used technique to study 
inhibitory and excitatory mechanisms in the motor cortex 

(Kobayashi and Pascual-Leone, 2003; Ferreri and Rossini, 2013). 
Specifically, single-pulse TMS (spTMS) has been used to explore 
cortical excitability by measuring Resting Motor Threshold 
(RMT), which is the minimum intensity that elicits a Motor 
Evoked Potential (MEP) of more than 50 μV in 50% of trials 
(Rossini et  al., 2015). Long-Interval Intracortical Inhibition 
(LICI), where two suprathreshold stimuli separated by an 
interstimulus interval (ISI) between 50 and 200 ms are applied, has 
been used to study cortical inhibition (Valls-Solé et  al., 1992; 
Nakamura et  al., 1997) and reflects the activity of GABA-B 
receptors (McDonnell et al., 2006; Opie et al., 2017). While many 
studies have shown that RMT and LICI offer valuable biological 
markers in different neurological disorders (Fatih et  al., 2021; 
Guerra et al., 2021; Mimura et al., 2021; Versace et al., 2021), only 
a few have explored their association with brain health and 
cognitive performance in healthy, cognitive-unimpaired, middle-
aged adults, and how biological sex affects the results (Schicktanz 
et al., 2014; Akilan et al., 2020).

This study aimed to fill this knowledge gap by investigating 
the relationship between E/I balance in the primary motor cortex 
measured with RMT and LICI and cognition in healthy middle-
aged adults. Since the GABA-B receptor might be a target for 
improving cognitive dysfunction and memory/learning 
impairment (Vlachou, 2022), we  hypothesized that better 
cognitive performance would be associated with more intracortical 
inhibition, estimated with LICI, and reduced cortical excitability, 
measured with RMT. Also, differences between women and men 
were expected, at least for LICI, considering biological sex 
differences in GABA neurotransmitters highlighted above.

Materials and methods

Subjects and study design

Ninety-seven healthy and right-handed volunteers [53 male; 
laterality ≥75%, (Oldfield, 1971)], between 41 and 65 years 
(M = 54; SD = 7.14), participated in this study. They were part of 
the Barcelona Brain Health Initiative (BBHI), an ongoing, 
longitudinal cohort study (Cattaneo et al., 2018). They underwent 
a TMS session with EMG registration and neuropsychological 
testing. Exclusion criteria included any neurological or psychiatric 
diagnosis, currently taking medication that could affect the central 
nervous system, substance abuse or dependence (alcohol, caffeine, 
drugs), pregnancy (Rossini et al., 2015; Rossi et al., 2021), and any 
contraindication for TMS or magnetic resonance imaging (MRI). 
All participants gave written informed consent, and the local 
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ethics committee (Comité d’Ètica i Investigació Clínica de la Unió 
Catalana d’Hospitals) approved the study protocol, which followed 
the Declaration of Helsinki. A cohort diagram from the BBHI 
study and the specific selection of this study participants is shown 
in Figure 1.

TMS protocol

Participants were asked to sit as still as possible in a 
comfortable armchair, keep their eyes open, and look at a fixation 
cross at a distance of approximately 1.5 m. A figure of eight TMS 
coil was placed at a 45-degree angle (relative to the mid-sagittal 
plane) over the left primary motor cortex (left-M1), resulting in a 
posterior-to-anterior current flow. Consistency in the stimulation 
targeting was ensured using a frameless stereotactic 
neuronavigation system (Brainsight, Rogue Research Inc., 

Montreal, QC Canada) guided by each subject’s T1 weighted 
structural MRI (previously obtained from a 3 T Siemens 
Magnetom Prisma). MRI was completed for this purpose to 
increase safety during TMS sessions and exclude any brain lesion 
that could act as a confounder in interpreting the results.

The TMS procedure lasted approximately 1 h. First, RMT was 
determined as the minimum TMS intensity that elicited MEPs of 
more than 50 μV in five out of 10 trials in the relaxed, contralateral 
first dorsal interosseus muscle (FDI; Rossini et al., 2015). MEP 
amplitude was defined as the peak-to-peak difference in EMG 
activity from the evoked response in this muscle. Next, 120 paired-
pulse TMS stimuli were delivered to the left-M1 at random 
intervals between 3 and 6 s. The intensities of both pulses were 
applied at 120% of RMT, and the ISI was 100 ms, selecting this 
interval because it was reportedly optimal (Sanger et al., 2001), 
and previous research has suggested age-related changes at it 
(McGinley et  al., 2010; Opie et  al., 2015, 2018). From this 

FIGURE 1

Flowchart of the participant selection for the current analysis. BBHI methodology was used to select volunteers (see Cattaneo et al., 2018, 2020). 
BBHI, Barcelona Brain Health Initiative; NP, Neuropsychological assessment; MRI, Magnetic resonance imaging; RMT, Resting Motor Threshold.

https://doi.org/10.3389/fpsyg.2022.998062
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Redondo-Camós et al. 10.3389/fpsyg.2022.998062

Frontiers in Psychology 04 frontiersin.org

stimulation, LICI was calculated using the following formula 
(Guerra et al., 2021):

 
LICI = MEP amplitude conditioned stimulus

MEP amplitude uncondittioned stimulus

æ

è
ç

ö

ø
÷*100

Consequently, a greater LICI value indicates lower cortical 
inhibition, while a smaller LICI indicates greater inhibition.

The protocol was completed using a figure-of-eight 
Cool-B65 coil connected to a Medtronic MagPro X100 
stimulator (MagVenture A/S, Denmark). For the 
electromyography, a Biopac EMG100C amplifier (BIOPAC 
Systems INC., California, United States) was used with surface 
electrodes placed in a belly-tendon montage and the ground 
electrode on the ulnar styloid.

Neuropsychological assessment

A licensed neuropsychologist performed a battery of 
neurocognitive paper and pencil evaluations. The battery included 
the following tests: Trail Making Test A and B (TMT) (Reitan and 
Wolfson, 1985; Peña-Casanova et al., 2012), Digit-Span Forward 
and Backward, Corsi block tapping test, Letter-Number 
Sequencing test (Peña-Casanova et al., 2012), Matrix Reasoning 
and Block design, the Digit symbol task, the Cancelation test 
(Wechsler, 2012), the Rey Auditory Verbal Learning Test (RAVLT; 
Schmidt, 1996; Alviarez-Schulze et al., 2022b), and the Spanish 
Version of the Face Name Associative Memory Exam (S-FNAME; 
Alegret et al., 2015; Alviarez-Schulze et al., 2022a).

Statistical analysis

All statistical analyses were performed in SPSS version 22.0 
(Statistical Package for Social Sciences, Chicago, IL, United States).

First, raw scores of each cognitive test were z-score 
normalized, and principal component analysis (PCA) was run to 
group them into cognitive domains, in line with our and other 
research group’s previous studies (España-Irla et  al., 2021; 
Cattaneo et al., 2022; Hinchman et al., 2022; Redondo-Camós 
et al., 2022). Loading values were above 0.3. Kaiser–Meyer–Olkin 
(KMO = 0.689) and Bartlett’s test of sphericity (χ2 = 1074.67, 
df = 105; p < 0.001) were satisfactory. PCA revealed four 
components of cognitive domains. The first factor contained TMT 
B (−0.927), TMT B-A (−0.884), TMT A (−0.615), Digit symbol 
task (0.554), and cancelation test (0.423), reflecting what can 
be  considered an attentional domain. The second factor 
characterized memory and involved face name (0.609) and 
RAVLT measures such as immediate recall (0.885), delayed recall 
(0.872), and recognition (0.830). The third factor reflected a 
working memory domain and included the digit forward (0.780), 
digit backward (0.777), and letter-number sequencing (0.504). The 

fourth factor contained Block design (0.758), Corsi blocks (0.678), 
and matrix reasoning (0.620), representing a reasoning 
component. Ultimately, a global cognition score was created as the 
sum of the individual z-scores on each neuropsychological test.

Cognitive composite scores were used as dependent variables 
(attention, working memory, episodic memory, reasoning, and 
global cognition) and RMT, LICI, MEP amplitude, age, biological 
sex, and years of education as predictors. We  ran multiple 
multivariate regressions to identify possible associations between 
motor cortical excitability (measured by RMT), inhibition (LICI), 
and cognition. Then, for significant results, we ran multiple linear 
regressions to assess the direction of the prediction. Assumptions 
of linearity, independence of residuals, homoscedasticity, 
multicollinearity, and normality were met in all models. 
Furthermore, to study how biological sex could affect the 
predictions, we  did all the previous analysis segmenting by 
biological sex. Lastly, to explore possible differences between 
means of women and men on each variable, a t-test analysis 
was performed.

Results

Sample descriptive statistics of RMT, LICI, MEP Amplitude, 
age, biological sex, and educational level are presented in Table 1, 
while cognitive scores are in Table 2.

Associations between RMT, LICI, and 
cognitive functions

Multivariate regression analysis for all the subjects revealed 
statistically significant associations between LICI and working 
memory [F(1, 89) = 7.59, p = 0.007; partial η2 = 0.079], and 
biological sex and episodic memory [F(1, 89) = 9.50, p = 0.003; 
partial η2 = 0.0996] and reasoning [F(1, 89) = 4.26, p = 0.042; 
partial η2 = 0.046]. Finally, age was significantly associated to all 

TABLE 1 Demographic Variables, RMT and LICI (n = 97).

All (n = 97) Male (n = 53) Female 
(n = 44)

Mean SD Mean SD Mean SD p

Age 53.69 7.13 53.49 7.40 53.93 6.87 0.762

Years of 

education

17.85 3.81 17.66 4.17 18.07 3.35 0.595

RMT (%) 62.28 9.60 61.64 10.54 63.05 8.4 0.467

LICI (%) 14.68 18.81 17.35 20.33 11.46 16.45 0.118

MEP 

amplitude 

(mV)

0.305 0.201 0.309 0.173 0.323 0.232 0.747

RMT, resting motor threshold; LICI, long-interval intracortical inhibition; MEP, motor 
evoked potential.
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cognitive functions (attention [F (1, 89) = 17.38, p < 0.001; partial 
η2 = 0.163], episodic memory [F(1, 89) = 10.01, p = 0.002; partial 
η2 = 0.101], working memory [F(1, 89) = 5.45, p = 0.022; partial 
η2 = 0.058], reasoning [F(1, 89) = 6.66, p = 0.011; partial η2 = 0.070], 
and global cognition [F(1, 89) = 14.50, p < 0.001; partial 
η2 = 0.140]).

After running this model, we  ran a multiple regression to 
assess the direction of the prediction using the working memory 
domain as a dependent variable and LICI, RMT, MEP amplitude, 
age, biological sex, and education as regressors. The model 
significantly explained working memory performance, 

[F(6, 89) = 2.630, p = 0.021, adj. R2 = 0.093], and LICI resulted 
negatively associated with it (Standardized β = −0.282, t = −2.754, 
p = 0.007), being greater motor cortical inhibition related to better 
working memory (Figure 2).

Effect of biological sex

To investigate possible differences in the association between 
cognitive performance and cortical E/I, we  split the sample 
according to biological sex and repeated regressions for 
both groups.

Men
Multivariate regressions were done to test the direct effects of 

RMT, LICI, MEP amplitude, and covariates on each cognitive 
domain. They revealed an association between LICI and working 
memory [F(1, 47) = 6.60, p = 0.013, partial η2 = 0.123], reasoning 
[F(1, 47) = 5.82, p = 0.020, partial η2 = 0.110], and global cognition 
[F(1, 47) = 9.22, p = 0.004, partial η2 = 0.164]. Also, education was 
related to reasoning [F(1, 47) = 6.02, p = 0.018, partial η2 = 0.114] 
and episodic memory [F(1, 47) = 4.15, p = 0.047, partial η2 = 0.081], 
and age to all cognitive domains (attention [F(1, 47) = 4.18, 
p = 0.047; partial η2 = 0.082], episodic memory [F(1, 47) = 8.37, 
p = 0.006; partial η2 = 0.151], working memory [F(1, 47) = 4.64, 
p = 0.03; partial η2 = 0.090], reasoning [F(1, 47) = 9.01, p = 0.004; 
partial η2 = 0.161], and global cognition [F(1, 47) = 7.40, p = 0.009; 
partial η2 = 0.136]).

Furthermore, multiple regression models including covariates 
showed that working memory was associated with LICI 
(Standardized β = −0.347, t = −2.569, p = 0.013) and age 
(Standardized β = 0.284, t = 2.155, p = 0.036). Also, reasoning was 
related to LICI (Standardized β = −0.302, t = −2.411, p = 0.020), age 
(Standardized β = −0.367, t = −3.022, p = 0.004) and education 
level (Standardized β = 0.307, t = 2.454, p = 0.018). Finally, global 
cognition was also associated with LICI (Standardized β = −0.380, 
t = −3.036, p = 0.004) and age (Standardized β = −0.332, t = −2.721, 
p = 0.009). In all three models, LICI was negatively associated with 
working memory, reasoning, and global cognition in men 
(Figure 3).

Women
Only were significant associations between age and attention 

[F(1, 37) = 11.65, p = 0.002; partial η2 = 0.240]. No significant 
results were seen between women’s cognition and cortical 
excitability or inhibition.

Discussion

The current study explored the relationship between cortical 
measures of E/I balance in the primary motor cortex, using TMS 
measures of RMT and LICI, and cognitive performance in healthy, 
cognitively-unimpaired middle-aged adults. Moreover, we studied 

TABLE 2 Cognitive scores (n = 97).

All (n = 97) Male (n = 53) Female 
(n = 44)

Cognitive 
task

Mean SD Mean SD Mean SD p

S-FNAME 41.62 14.65 39.00 14.12 44.77 14.81 0.054

RAVLT 

immediate 

recall

52.19 9.65 50.60 9.93 54.10 9.06 0.074

RAVLT 

delayed recall

11.46 2.79 11.04 2.78 11.98 2.74 0.098

RAVLT 

recognition

14.28 1.25 14.17 1.27 14.41 1.23 0.348

Digit-span 

forward

10.63 2.86 11.02 2.87 10.16 2.79 0.140

Digit-span 

backward

11.38 2.60 11.68 2.66 11.02 2.50 0.214

Corsi block 

tapping

14.35 2.41 14.38 2.51 14.32 2.31 0.904

Letter-number 

sequencing

5.72 1.08 5.66 1.14 5.80 1.00 0.542

Matrix 

reasoning 

WAIS-IV

13.91 2.58 14.32 2.38 13.41 2.75 0.087

Block design 

WAIS-IV

12.00 3.14 12.74 3.01 11.11 3.10 0.011*

TMT A 11.26 2.51 11.28 2.76 11.23 2.22 0.912

TMT B 8.65 2.18 8.91 2.14 8.34 2.22 0.208

Cancelation 

test

42.09 8.17 42.04 8.67 42.16 7.63 0.942

Digit symbol 

task

13.84 2.56 13.51 2.49 14.23 2.60 0.171

S-FNAME, Spanish Version of the Face Name Associative Memory Exam; RAVLT 
immediate recall, Recall a list of words immediately after hearing it of Rey Auditory 
Verbal Learning Test; RAVLT delayed recall, RAVLT recall after 30 min; RAVLT 
recognition, Recognition of words from a word list of RAVLT; Digit-Span 
Forward, Immediate recall a series of numbers in the same order; Letter-Number 
Sequencing, Sequence a random order of numbers and letter; Matrix Reasoning WAIS-
IV, Logical sequences and series of Wechsler Adult Intelligence Scale-IV; Block Design 
WAIS-IV, Block Design of Wechsler Adult Intelligence Scale-IV; TMT B, Trail Making 
Test part B; TMT A, Trail Making Test part A; Digit symbol task, Digit symbol 
association; Cancelation test, cancelation task of WAIS-IV. All punctuations presented in 
this table are normalized scores except RAVLT tests that are raw scores. 
*p < 0.05.
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the impact of biological sex on this association. Our results reveal 
that lower LICI in the motor cortex is associated with better 
working memory performance in the whole sample. The effect 
appears primarily accounted for by men, in whom LICI was found 
to be related to increased working memory, reasoning, and global 
cognition. RMT was not associated with cognitive functions in 
men or women.

Our results are in line with previous research investigating 
physiological mechanisms of neurological disorders, showing that 
motor hyperexcitability is related to global cognitive dysfunction 
(Takahashi et al., 2013; Higashihara et al., 2021; Zadey et al., 2021) 
due to increased excitatory activity or/and an inhibitory deficit 
(Joseph et  al., 2021; Meder et  al., 2021; Mimura et  al., 2021). 
Similarly, in healthy subjects, it has been found that 
hyperexcitability of the motor cortex is associated with impaired 
attention (Bolden et al., 2017; Akilan et al., 2020), suggesting that 
cortical excitatory and inhibitory balance is necessary for optimal 
brain and cognitive functioning (Páscoa dos Santos and 
Verschure, 2022).

The relationship between cognition and motor cortex activity 
could result from the functional connectivity between brain 
regions involved in cognitive processing (Bates and Goldman-
Rakic, 1993; Hasan et al., 2013). For example, the prefrontal cortex 
is essential for the performance of higher cognitive functions, and 
the perturbation of its structure or functionality, such as occurs in 
aging or Alzheimer’s disease (Salat et al., 2001; Peters, 2006), could 
alter the cortical excitability of it (Noda et al., 2017) and highly 
connected areas such as motor cortex (Freeman et al., 2016). These 
areas could share evolutive roots, and their interaction is needed 
to govern the executive function and the intentionality of 
movements (Mendoza and Merchant, 2014; Leisman et al., 2016). 
Working memory (Carruthers, 2013; Liao et al., 2014; Leisman 
et al., 2016), attention, and learning (Bhattacharjee et al., 2021) are 

some of the cognitive functions that have been related to 
motor processes.

Interestingly, only intracortical motor inhibition was 
positively associated with cognitive performance, particularly 
working memory, necessary to serve other cognitive functions 
(Mansouri et al., 2015), and defined as a limited capacity system 
allowing the temporary storage and manipulation of information 
required for such complex processes (Baddeley, 2000). Indeed, 
we  found that LICI was also related to reasoning and global 

FIGURE 2

Multiple regression scatterplots between LICI and working 
memory after controlling age, biological sex, and years of 
education. Z-scores were used on the Y-axis and unstandardized 
Predicted Values on the X-axis (%). A lower LICI value, indicative 
of more intracortical motor inhibition, was related to better 
working memory performance.

A

B

C

FIGURE 3

Multiple regression scatterplots between LICI and working 
memory (A), reasoning (B), and global cognition (C) after 
controlling age and years of education in men. Z-scores were 
used on the Y-axis and unstandardized Predicted Values on the 
X-axis (%).
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cognition in men, possibly because working memory could play a 
role in these cognitive functions (Hambrick and Engle, 2003; 
Wiley and Jarosz, 2012). Given that in our study, intracortical 
motor inhibition was measured using the LICI paradigm that 
reflects GABA-B inhibitory neurotransmission (Valls-Solé et al., 
1992), we believe that its alteration was associated with cognitive 
changes. GABA-B receptor indeed has been previously linked to 
memory formation (Terunuma et al., 2014; Almasi et al., 2018) 
and working memory (Bañuelos et  al., 2014; Schmidt-Wilcke 
et al., 2018). Furthermore, Freeman et al. (2016) found increased 
intracortical inhibition in the motor cortex under high working 
memory load tasks, indicating an association between it and the 
balance of excitatory/inhibitory activity. These results demonstrate 
that working memory, even if it strongly involves prefrontal cortex 
activity, depending on the task’s difficulty, requires motor 
inhibition to work efficiently (Freeman et al., 2016). It was also 
supported by the results of Liao et al. (2014), which demonstrated 
the specific involvement of the primary motor cortex and the 
motor network in working memory processing (Liao et al., 2014).

Specifically, the psychometric measures included in the 
working memory domain are exclusively auditory-verbal tests. 
Within the multicomponent working memory model (Baddeley, 
2000), one of the most cited in the literature (Chai et al., 2018), our 
study data reflect the phonological loop subcomponent, 
responsible for holding verbal information using a temporary 
store and an articulatory rehearsal system, and the central 
executive subcomponent responsible for the active manipulation 
(serial ordering) of the information. Previous findings have shown 
a double anatomical dissociation in which the subprocess of 
temporal retention of verbal information depends predominantly 
on the superior temporal gyrus. However, the subprocess of 
information manipulation in backward items with higher 
cognitive load involves, in addition to, the prefrontal area, motor, 
and somatosensory cortex (Ghaleh et al., 2020).

Furthermore, when we  split the sample for biological sex, 
we observed that women presented subtly higher inhibition than 
men, which was not statistically significant. This result is in line 
with previous studies showing that inhibition, usually superior in 
women, could be  influenced by different functional brain 
maturation of the inhibitory system (Rubia et al., 2013), variations 
of the brain areas activated (Bell et  al., 2006; Li et  al., 2006; 
Korzhyk et al., 2019), and ovarian hormones (Hosseini-Kamkar 
and Bruce Morton, 2014; Shibuya et al., 2016).

Crucially, we found a positive association between cognition 
(working memory and reasoning) and intracortical inhibition 
only in men. Very little is present in the literature on this issue, 
and the few existing pieces of evidence appear somehow 
contradictory. Schicktanz et al. (2014) observed that lower motor 
cortical excitability was related to better working memory in men 
(Schicktanz et al., 2014), while Akilan et al. (2020) observed that 
an increase in cortical excitability was related to global cognition 
in women (Akilan et  al., 2020). However, beyond these 
inconsistencies, which need and deserve deeper study, previous 
and our results confirm the existence of biological sex differences 

(Schicktanz et al., 2014; Akilan et al., 2020) in the relation between 
cortical excitability/inhibition and cognition.

This research increases our knowledge of this association and 
suggests that greater intracortical inhibition, measured by LICI, is 
a possible marker of interindividual differences in working 
memory performance among healthy middle-aged adults, 
extending previous suggestions as a biomarker of neuropsychiatric 
disorders (Fatih et al., 2021).

Finally, the findings in this report are subject to some 
limitations. First, this is a cross-sectional study, and we cannot 
determine a cause-effect relationship between cortical excitability 
measures and cognitive performance. It is necessary to deepen in 
future research the relationship described in our study, including 
visuospatial working memory tests and other tasks with different 
levels of cognitive load and, within the manipulation process, not 
only serial ordering but updating processing, such as n-back 
paradigm. Defining which specific working components are 
related to the TMS measure studied is essential. Also, these 
processes differ in their sensitivity to advancing age (Jablonska 
et al., 2020); hence, future investigations should be conducted in 
other age groups, including middle and older age samples. 
Furthermore, we explored two TMS measures (RMT and LICI), 
but it would be  interesting to consider other LICI ISI (50 ms, 
150 ms, and 200 ms) and paradigms such as short-interval 
intracortical inhibition or intracortical facilitation. Ultimately, 
emotional state, sleep quality, and menstrual cycle variations (in 
particular when considering younger women populations) should 
be considered in future analysis, being this latter one relevant due 
to its impact on the female brain and needing specific 
investigations on this gender group (Hidalgo-Lopez et al., 2020; 
Meeker et al., 2020).
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