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Abstract: The use of mixed microbial cultures (MMC) and organic wastes and wastewaters as feed
sources is considered an appealing approach to reduce the current polyhydroxyalkanoates (PHAs)
production costs. However, this method entails an additional hurdle to the PHAs downstream
processing (recovery and purification). In the current work, the effect of a sodium hypochlorite
(NaClO) pre-treatment coupled with dimethyl carbonate (DMC) or chloroform (CF) as extraction
solvents on the PHAs recovery efficiency (RE) from MMC was evaluated. MMC were harvested
from a sequencing batch reactor (SBR) fed with a synthetic prefermented olive mill wastewaster. Two
different carbon-sources (acetic acid and acetic/propionic acids) were employed during the batch
accumulation of polyhydroxybutyrate (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBV) from MMC. Obtained PHAs were characterized by 1H and 13C nuclear magnetic resonance,
gel-permeation chromatography, differential scanning calorimetry, and thermal gravimetric analysis.
The results showed that when a NaClO pre-treatment is not added, the use of DMC allows to obtain
higher RE of both biopolymers (PHB and PHBV), in comparison with CF. In contrast, the use of CF as
extraction solvent required a pre-treatment step to improve the PHB and PHBV recovery. In all cases,
RE values were higher for PHBV than for PHB.

Keywords: polyhydroxyalkanoates; mixed microbial cultures; extraction; sodium hypochlorite;
dimethyl carbonate; chloroform

1. Introduction

There is a growing environmental concern as a result of the problems driven from the
overuse of petroleum-based plastics. This has caused enormous interest in the research of
new bio-based and biodegradable materials that can potentially replace them. According
to Kurian et al. [1], as of 2020, the estimated market size for bioplastics and biopolymers
in North America and Europe was around 10.5 billion USD, which is projected to rise to
25–30 billion USD by 2025.

Polyhydroxyalkanoates (PHAs) are one of the most promising bioplastics because they
are biodegradable and biocompatible and can be obtained from renewable resources. PHAs
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possess similar mechanical, thermal, and barrier properties to petroleum-based plastics
such as polyethylene and polypropylene [2,3]. PHAs have been used in several fields
including agriculture, medicine, packaging, and pharmacy [1,4,5].

One of the most important limitations for the commercial application of PHAs is
their high production costs compared with petroleum-based plastics [1]. The current price
of PHAs is between 2.2 and 5.0 €/Kg. This is around three times higher than the price
of petroleum-based plastics such as polystyrene (PS), polypropylene (PP), or polyvinyl
chloride (PVC) (<1.0 €/kg) [6]. The main factors affecting the final cost of PHAs are the use
of pure cultures (e.g., genetically modified bacterial strains), specific carbon sources and
operating conditions, and downstream processing [7].

Currently, a large part of the industrial scale production of PHAs is achieved us-
ing pure or genetically modified cultures, which necessitates sterile conditions and the
utilization of expensive substrates [8,9]. Therefore, ongoing efforts to lower the cost of
PHA manufacturing relies on using MMC. MMC do not require sterile conditions and are
flexible enough to adjust to variations in the carbon source, affording the use of a wide
variety of waste substrates, such as agricultural and industrial wastes [10,11]. In particular,
MMC from waste-activated sludge from wastewater treatment plants have demonstrated
a great PHA-accumulating potential under stressing conditions [10,11]. However, it has
been reported that different substrates and production methods lead to various types of
microbial biomass. Thus, an extraction method that is optimized for one particular MMC
may not be effective in all conditions [12]. In addition, the recovery of PHAs from MMC is
a more complex process because several microorganisms are coexisting and the different
cellular matrices that surround the PHAs’ granules hinders their extraction because the
cells present different resistance to lysis [13,14]. Therefore, it is often necessary to apply
pre-treatment methods that favor cell disruption, such as NaClO digestion [10,15].

Extraction using chlorinated solvents, such as chloroform (CF) and 1, 2-dichloroethane,
is one of the most widespread methods to recover PHAs from MCC [7]. In contrast, the use
of halogen-free solvents, such as dimethyl carbonate (DMC), in the extraction of PHAs from
MMC, has been largely unexplored [7]. DMC has the advantage of being considered a green
solvent because it is fully biodegradable, as well as being minimally toxic for the operators
and the environment [7]. Samorì et al. (2015) [13] studied the extraction of PHAs from
MMC using a NaClO pre-treatment coupled with DMC, finding that polymer recovery
increased from 50% to 80%. Recently, Elhami et al. (2022) [16] extracted PHBV from MMC
using DMC as an extraction solvent, and ethanol to precipitate the dissolved PHA. They
found that the highest PHBV recovery value was 94%. This occurred when biopolymer
precipitation was performed following complete evaporation of DMC.

In the current work, the application of an MMC pre-treatment using NaClO as an
alternative to increase the extraction of PHAs with DMC or CF was investigated. The
extracted biopolymers were characterized in terms of polymer structure, molecular weight,
and thermal properties.

2. Materials and Methods
2.1. Production of PHAs

MMC used in the present study were harvested from a sequencing batch reactor
(SBR) fed with a synthetic prefermented olive mill wastewaster (Montiel-Jarillo et al.,
submmited) [17]. The SBR was operated under fully aerobic conditions and under a
feast/famine regimen. The biomass was collected at the end of the feast phase. The
supernatant was removed by settling, and the biomass was resuspended in a mineral
medium devoid of a nitrogen source, as described in Montiel-Jarillo et al. [18]. Before
the accumulation experiments, the biomass was aerated overnight in the absence of any
substrate. Then, batch PHA-accumulation experiments were performed in 1 L glass stirred
reactors according to the protocol described in Mannina et al. (2019) [19]. Briefly, the change
of the dissolved oxygen (DO) concentration in the reactor was used as an indicator of the
substrate exhaustion. The experiment started with the addition of a pulse of the substrate
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(0.2 gCOD L−1). The addition of the substrate caused a noticeable drop in the DO. After a
certain time (typically, 5–10 min), the DO increased due to the substrate depletion. Then,
a new pulse of the substrate was added. Using this procedure, a total of 30 pulses of the
substrate were added to the reactor in 4–5 h of operation. Two different carbon sources
were used. In batch A, acetic acid (HAc) was used to obtain PHB, whereas in batch B a
mixture of HAc and propionic acid (HPr) in a proportion of 75:25 over the chemical oxygen
demand (COD) leads to the accumulation of the copolymer PHBV [18].

During PHA-accumulation experiments, mixed liquor samples were taken to deter-
mine the concentration of biomass as total and volatile suspended solids (TSS, VSS), acetate
and propionate as volatile fatty acids (VFA), and the specific content of PHA of the biomass.
TSS and VSS concentrations were measured according to the APHA methods 2540D and
2540E, respectively [18]. The samples for VFA were filtered through 0.45 µL pore size mem-
branes and transferred to 2 mL septum-capped vials. VFA concentration of the filtrate was
measured according to the procedure described by Montiel-Jarillo et al. [18]. To evaluate
the specific content of PHA in the biomass, 10 mL of the culture was mixed with 0.4 mL
of formaldehyde (37 wt% in H2O) to inhibit biological activity. Then, at the end of each
experiment, 6 mL of formaldehyde (37 wt% in H2O) was added to the reactor to inhibit
biological activity. In all cases, the biomass was harvested by centrifugation at 11× g for
45 min. The supernatant was discarded. The PHA-enriched biomass was stored overnight
at −80◦ and then lyophilized during 24 h.

The amount of PHA in the biomass was quantified by gas chromatography (GC) [18].
A known amount of the lyophilized biomass was mixed with benzoic acid as an internal
standard. Then, 1.5 mL of butanol and 0.5 mL of hydrochloric acid were added, and
the mixture was incubated at 100 ◦C for 8 h. After that, 2.5 mL of hexane and 4 mL of
Milli-Q were added. The tubes were vortexed and left to stand for 15 min to allow the
separation of the phases. The organic phase was transferred to clean tubes and 4 mL aliquot
of Milli-Q water was added. Then, the tubes were vortexed and centrifuged at 2× g for
10 min. The organic phase was filtered through 0.22 µm filters and transferred into GC
vials. One microliter of the sample was injected and analyzed in an Agilent Technologies
(7820 A) gas chromatograph equipped with an FID detector and an HP-InnoWax column
(30 m × 0.53 mm × 1 µm).

2.2. Evaluation PHAs Extraction

PHAs were extracted from the lyophilized biomass using dimethyl carbonate (DMC)
and chloroform (CF) as the extraction solvents, according to the method described by
Samorì et al. [20]. The PHAs extraction assays were carried-out at boiling temperature
of each solvent (DMC at 90 ◦C and CF at 60 ◦C) for 1 h, using a lyophilized biomass
concentration of 50 g dry-cell/L. These operational conditions were chosen from prelimi-
nary experiments in which different biomass concentrations (25 and 100 g dry-cell/L) and
extraction time (1 and 3 h) were evaluated (Supplementary Material Table S1).

Figure 1 shows the schematic representation of the proposed PHAs extraction pro-
cess using DMC and CF. Fifty milligrams of the lyophilized biomass were transferred to
Eppendorf vials. Then, the samples were resuspended in 1 mL of Milli-Q and mixed with
2 mL of the tested extraction solvent. The vials were periodically stirred using a vortex.
Then, vials were centrifuged at 6.5× g for 15 min at room temperature. Three phases
were obtained: (1) a supernatant phase composed by water and water-soluble compounds,
(2) an intermediate phase that corresponds to the organic fraction containing the solubilized
PHAs, and (3) a precipitate composed by biomass and cell debris. The organic fraction (2)
was recovered and filtered through 0.45 µm pore size cellulosic membranes (Millipore®,
Burlington, MA, USA) to remove any cell debris. Finally, the solvent was removed by
evaporation to obtain a dried PHA sample.
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Figure 1. Schematic representation of the proposed PHAs extraction process using DMC and CF.

A second set of experiments to enhance the recovery of PHA from the lyophilized
biomass were performed employing a chemical digestion using sodium hypochlorite
(NaClO) [13]. In this case, 50 mg of lyophilized biomass was resuspended in 5 mL of
NaClO 5% (w/v) and incubated at 100 ◦C for 1 h. The digested samples were centrifuged
at 3× g for 10 min at room temperature. The pellets were washed three times with Milli-Q
water and resuspended in 1 mL of Milli-Q water. Then, PHAs were extracted using DMC
and CF according to the procedure previously described in this section.

Calculations

To compare the different tested extraction protocols, the overall recovery efficiency
(RE, %) was calculated as follows:

RE = 100
YEPE

PHAcontent
(1)

where YE (g extract/g dry-cell) is the extraction yield, PHAcontent (g PHA/g dry-cell) is
the amount of PHA (measured by GC) within the cells, and PE (g PHA/g extract) is the
amount of PHA (measured by GC) per gram of extract. Measured purities were 0.79 g
PHA g extract−1 for extracts from batch A, and 0.85 g PHA g extract−1 for the copolymer
obtained from samples of batch B.

2.3. Characterization of the Obtained Biopolymers

To obtain enough amounts of PHAs for their further characterization, PHAs were
extracted from the lyophilized biomass using a Soxhlet device (Buchi, E-816 SOX). In
these cases, 2 g of the lyophilized biomass obtained at the end of each PHA-accumulation
experiment was mixed with 220 mL of NaClO 5% (w/v) at 100 ◦C for 1 h. The digested
sample was centrifuged at 3× g for 20 min. The obtained pellet was centrifuged and
washed three times with milli-Q water and introduced into the Soxhlet cartridge. PHA was
extracted using 90 mL of chloroform (CF) for 1 h. Finally, CF was removed by evaporation.

The chemical structure of the obtained PHAs was determined by quantitative 1H and
13C nuclear magnetic resonance (NMR) spectra using a BRUKER DRX-500 spectrometer.
Known amounts (30–40 mg) of the obtained PHA were dissolved in deuterated chloroform
(CDCl3). The software Bruker TopSpin3.5pl7 was used to analyze the obtained NMR
spectra. Also, gradient-selected 1H/13C heteronuclear single quantum coherence (HSQC)
spectra were acquired.



Polymers 2022, 14, 3938 5 of 17

Mass-average (Mw) and number-average (Mn) molecular weights of the biopolymers
were measured by Gel Permeation Chromatography (GPC) on a Waters equipment pro-
vided with RI and UV detectors. Biopolymer samples were diluted (0.1% w/v) and filtered.
Then, 100 µL of this solution were injected and operated using 1,1,1,3,3.3-hexafluoro-
2-propanol as a mobile phase with a flow of 0.5 mL min−1. HHR5E and HR2 Waters
linear Styragel columns (7.8 mm × 300 mm, pore size 103–104 Å) packed with crosslinked
polystyrene and protected with a pre-column were used. Molecular weight was calibrated
using poly(methyl methacrylate) as the reference compound.

To evaluate the degradation temperature (Td), melting temperature (Tm), and en-
thalpy of fusion (∆Hm) of the obtained biopolymers, a simultaneous Thermogravimetry
(TGA)–Differential Scanning Calorimetry (DSC) analysis (Netzsch STA 449F1 Jupiter®,
Gaithersburg, MD, USA) under a nitrogen atmosphere was performed [21]. The crys-
tallinity degree (X, %) of the biopolymer was calculated as follows Dai et al. [22].

X (%) = 100
∆H

∆Ho
PHB

(2)

where ∆H (J/g) is the melting enthalpy of the analyzed PHA, and ∆Ho
PHB = 146 J/g is the

melting enthalpy of a fully crystalline PHB [23].

3. Results and Discussion
3.1. Production of PHA Using Mixed Microbial Cultures (MMC)

Figure 2 shows a typical result corresponding to batch A. When a pulse of HAc was
added, pH immediately dropped from a value above 8 to about 6. Also, a quite noticeable
decrease of the DO concentration was obtained. While a gradual increase in pH was
observed, DO remained below 1 mg L−1 for about 6–8 min. Then, a sudden increase
in DO indicated the substrate depletion. At this point, the measured soluble COD was
negligible, confirming the absence of a substrate. Therefore, a new pulse of HAc was added.
Figure 2 also shows that the specific content of PHA in the cells increased as a function of
the added pulse.

Figure 2. Performance of batch A as a function of time using HAc as the sole carbon source. The black
line represents the DO profile, while the black dotted line corresponds to pH. The lines connecting the
experimental points were included as a visual aid. Bars indicate the standard deviation of triplicates
of PHAs content.

When HAc was tested as the sole carbon source, the specific PHA production rate
(qPHA), and the specific substrate consumption rate (qS) were 0.37 C-mol PHA (C-mol



Polymers 2022, 14, 3938 6 of 17

biomass)−1 h−1 and 0.52 C-mol VFA (C-mol biomass)−1 h−1, respectively. Accordingly,
the PHA yield (YPHA) was 0.71 C-mol PHA (C-mol VFA)−1. In other words, about 70% of
the carbon in form of HAc yielded PHA, while the other 30% was used for biomass synthesis
and energy production (e.g., respiration). At the end of the experiment, the specific PHA
content of the biomass was about 0.57 gPHA g(dry-cell)−1. CG analysis showed that
more than 95% (w/w) of the PHA corresponded to HB units, suggesting that the obtained
polymer was mainly PHB.

Figure 3 shows a PHA accumulation assay using a mixture of HAc:HPr as the carbon
source (batch B). A similar trend with respect to pH, and DO in comparison with batch
A was obtained (Figure 2), however, the PHV increased by up to 35% w/w. In this case,
qPHA and qS values were 0.47 C-mol PHA (C-mol biomass)−1 h−1 and 0.55 C-mol VFA
(C-mol biomass)−1 h−1, respectively. According to these values, YPHA corresponding to
these experiments was 0.85 C-mol PHA (C-mol VFA)−1. Thus, the performance of the
mixture of HAc:HP, with reference to the production of PHA, was slightly better than that
of HAc as the sole carbon source. CG analysis showed that the polymer composition was
quite constant during the whole experiment. The average polymer composition of the
obtained PHA was 52% (w/w) of HB and 48% (w/w) of HV. At the end of the experiment,
the PHA content of the biomass reached 0.72 gPHA g dry-cell−1.

Figure 3. Performance of batch B as a function of time using a mixture of HAc and HPr. The black
line represents the DO profile, while the black dotted line corresponds to pH. The lines connecting the
experimental points were included as a visual aid. Bars indicate the standard deviation of triplicates
of PHAs content.

Kinetic (qPHA, qS) and stoichiometric (YPHA) coefficients obtained for both tested carbon
sources were within the range reported for the production of PHA using MMC grown
on different synthetic substrates such as acetate, propionic, or mixtures of them [24–26];
fermented sugar cane molasses; cheese whey; and waste-activated sludge [27,28].

3.2. Evaluation of PHAs Extraction

Table 1 shows the obtained PHA recovery efficiencies (RE) with DMC or CF as extrac-
tion solvent using a biomass concentration of 50 g/L and extraction time of 1 h. In all cases,
it was observed that PHBV had higher recovery than PHB, suggesting that PHBV was
longer soluble in both solvents. In addition, it was found that when a MMC pre-treatment
was not carried out, the use of DMC solvent afforded higher PHB and PHBV recovery than
CF. This behaviour was probably because the use of a solvent with a high boiling point
promoted cell lysis, leading to better contact of the solvent with the intracellular granules of
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PHAs. On the other hand, it was observed that the pre-digestion step successfully enhanced
the PHB and PHBV recovery using both solvents. It has been stated that NaClO weakens
cell membranes, thus facilitating the subsequent extraction of PHA by solvents [7,8].

Table 1. PHA recovery efficiencies (RE) using dimethyl carbonate (DMC) or chloroform (CF).

Sample Pre-Treatment with NaClO
RE (%)

DMC (at 90 ◦C) CF (at 60 ◦C)

Biomass enriched in PHB
No 4 ± 3 2 ± 1
Yes 8 ± 3 17 ± 1

Biomass enriched in PHBV
No 17 ± 1 5 ± 2
Yes 25 ± 4 23 ± 2

Depicted values correspond to the average ± one standard deviation of three measurements.

In complementary experiments, the effect of different biomass amounts (25, 50, and
100 g dry-cell/L) and incubation times (1 and 3 h) on PHB and PHBV recovery from MMC
was evaluated for comparison purposes. Furthermore, the influence of the ethanol-induced
precipitation on the PHAs extraction was studied (Supplementary Material Table S1). It was
found that when the lyophilized biomass concentration was 25 g/L, the PHB and PHBV
recoveries were negligible. The use of concentrations of 100 g/L led to lower recovery
efficiencies than those obtained when using a concentration of 50 g/L. This may be due
to the suspension at 100 g/L becoming very viscous, leading to quite low recovery of the
biopolymers [29]. Besides, the results showed that an increase in the extraction time from
1 to 3 h and a precipitation step using ethanol did not improve the recovery of the polymers
in comparison with the results showed in Table 1. Similarly, de Souza Reis et al. (2020) [29]
studied the effect of different extraction times (0.25, 0.5, 1, 1.5, and 2 h) and biomass to DMC
solvent proportions (1, 2.5, 5, and 10%) on the PHBV recovery from MMC. They obtained
recovery percentages of 32.9 when using a biomass to solvent ratio of 1% with an extraction
time of 1.5 h. Abbasi et al. (2022) [30] extracted PHBV from MMC using CF and DMC
as extraction solvents, obtaining recovery values of 33.5% and 30.6%, respectively. This
variability observed in the recovery percentage of PHBV could be due to the heterogeneity
and complex cell structure of the MMCs, meaning that a specific extraction method may
not have been efficient for all MMC sources [26,29].

3.3. Characterization of the Obtained Biopolymers

3.3.1. Quantitative 1H/13C Nuclear Magnetic Resonance (NMR)

Figure 4a shows the 1H-spectrum corresponding to the biopolymer obtained from
batch A (PHB), exhibiting three characteristic signals of PHB [31]. The signal corresponding
to the methyl group (peak 4 in Figure 4a) is the first doublet at 1.28 ppm (B4 in Figure 4a).
Signals at 2.50–2.58 ppm (peak 2 and peak 3 in Figure 4a) correspond to the methylene
group (B2 in Figure 4a), while the multiplet at 5.25 ppm (peak 1 in Figure 4a) corresponds to
the methine group (B3 in Figure 4a). Other small signals observed in Figure 4a may be due
to the presence of small amounts of HV. Figure 4b shows the 1H-spectrum corresponding
to the biopolymer from batch B (PHBV). According to the literature, this spectrum has
the characteristic signals of a copolymer PHBV 44. Methyl groups corresponding to HV
(V5) and HB (B4) are represented by the resonance peaks at 0.90 (peak 8 in Figure 4b) and
1.28 ppm (peak 7 in Figure 4b), respectively. The peak at 1.63 ppm (peak 6 in Figure 4b) is
due to the HV methylene protons (V4). Overlapping resonance peaks within the range of
2.50–2.60 ppm (peaks 3, 4, 5 in Figure 4b) represent the methylene protons of HV (V2) and
HB methylene group (B2). Resonance signals at 5.15 and 5.25 ppm (peaks 1,2 in Figure 4b)
are characteristic for the methine proton of HV (V3) and HB (B3), respectively.



Polymers 2022, 14, 3938 8 of 17

Figure 4. 1H-NMR spectra corresponding to PHB (a) and PHBV (b), obtained from batch A and B,
respectively.

The molar fraction of HB and HV corresponding to the polymer obtained from batch
B can be estimated by the intensity of the signals B3 with respect to V3, and V5 to B4 [32]
(Table 2). According to the data corresponding to the methine groups, the obtained copoly-
mer was composed of 58% of HB and 42% of HV on a molar basis. A similar composition
was obtained from the intensity of the methylene groups (59% and 41% of HB and HV,
respectively). It must be noted that these results are similar to those obtained by GC during
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the accumulation assay (Figure 3), confirming that the biopolymer obtained from batch B
was a copolymer of PHBV.

Table 2. Assignment of resonance peaks for 13C-NMR spectra of copolymer PHBV.

Position Diad/Triad 13C (ppm)

V5
VV 9.33
VB 9.36

B4
BB 19.73
BV 19.77

V4

VVV 26.75
BVV 26.77
VVB 26.82
BVB 26.85

V2

VVV 38.64
BVV 38.65
VVB 38.76
BVB 38.79

B2
BV 40.77
BB 40.78

B3
VB 67.61
VV 67.67

V3
BB 71.87
BV 71.91

B1
BB 169.15
BV 169.32

V1
VB 169.35
VV 169.52

B and V represent butyrate and valerate units, respectively.

Figure 5 shows resonance 13C-spectra corresponding to the obtained polymers. The
results for the resonance peaks were similar to those documented in the literature [14,32–34].
Only four clearly discernible peaks can be observed in the 13C-spectrum corresponding to
PHB (Figure 5a). Those peaks correspond to carbonyl (B1) at 169.12 ppm, methyl carbon
(B4) at 19.77, and methylene (B2) and methine (B2) at 40.78 and 67.62 ppm, respectively.
All those peaks are characteristic of PHB. Conversely, the 13C-spectrum corresponding
to PHBV (Figure 5b) was typical of a copolymer PHBV. Figure 6 shows an expansion of
several zones corresponding to the 13C-spectrum depicted in Figure 5b. The methylene
moieties of HB and HV are responsible for the peaks between 26 and 41 ppm.

Carbonyl peaks can be observed at around 169 ppm [14,22,34]. These signals contribute
to diads of HB and HV units, namely BB, BV, VB, or VV, where B corresponds to butyrate,
and V to valerate. The peak at 169.15 ppm is consistent with the carbonyl resonance of
PHB, and it was assigned to the sequence BB. According to Doi et al. [35], the sequence
VV was assigned for the peak that appears with a difference of 0.38 ppm. Intermediate
peaks with low intensities were assigned to the BV and VB sequences. The obtained peaks
within the methylene region were consistent with those reported in the literature. First,
the peak at 40.78 ppm that corresponds to the methylene of the HB unit (B2) exhibits a
shoulder due to the presence of two almost overlapping peaks. The split is due to the diad
sequences BV and BB. For the HV unit, the signals for the side-chain methylene group (V4)
and main-chain methylene group (V2) may be differentiated, unless both signals are split
into four peaks and have almost similar intensities. The main-chain methylene signal is
observed between 26.75 and 26.85 ppm and the shift for side-chain methylene is around
38.64–38.79 ppm. In both cases, peaks were assigned for triad sequences of VVV, BVV, VVB,
and BVB.
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Figure 5. 13C-NMR spectra corresponding to PHB (a) and PHBV (b) obtained from batch A and B,
respectively.

The molar ratio of HV with respect to HB in the copolymer can be obtained from
the signals corresponding to the methine carbons at 67.61 ppm for PHB (B3 in Figure 5a),
and at 71.91 ppm for PHV (V3 in Figure 5b) [14]. According to these considerations,
PHBV was composed of 58.4% of HB and 41.6% of HV. The calculated composition was
in agreement with that obtained from the 1H spectrum. Results obtained from the HSQC
spectra confirmed the assignment of resonance peaks of the carbons belonging with their
corresponding hydrogen signals. The C-H couplings in HSQC are shown in Figure 7 for
PHB, and Figure 8 for PHBV.
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Figure 6. Detail of 13C-NMR spectrum corresponding to PHBV obtained from batch B.

Figure 7. HSQC spectra corresponding to PHB obtained from batch A.
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Figure 8. HSQC spectra corresponding to PHBV obtained from batch B.

The comonomer composition distribution (CCD) of a copolymer has been identified
as a key factor in determining the physical properties of a biopolymer [34]. To evaluate
the degree of randomness of the obtained polymer in batch B, 1H NMR (Figure 4b) and
13C NMR (Figure 5b), spectra were analyzed using the procedure proposed by Kamiya
et al. [36] and other authors [34,37]. Two parameters, D and R, can be calculated from
the relative peak intensities of 1H and 13C NMR spectra. Statistically random copolymers
have D values in the range 0.99–1.5, while D > 1 or D < 1 define non-random copolymers.
Besides, a D value close to 0 is characteristic for alternating nature copolymers, while
D > 1 indicates “blocky” copolymers [21,36]. However, in cases where D is greater than 1,
the copolymer may be a true block copolymer, a mixture of random copolymers, or a
mixture of HB and HV homopolymers [36,37]. It must be noted that according to several
authors, the parameter R is more sensitive than D for estimating the degree of randomness
of a copolymer [34,37]. A value of R around 0 indicates a diblock copolymer, while an R
value of 1 corresponds to a completely random distribution [21,34,37].

Table 3 shows the relative peak intensities of 13C NMR spectra corresponding to the
copolymer PHBV. These were used to calculate the parameter D and R. For the PHBV
obtained in this study, the calculated value of D was 4.06. Thus, it can be concluded that
the microstructure corresponds to a “blocky” copolymer character. Considering reports
found in the literature, PHBV may be considered as a mixture of random copolymers, or
a simple block structure [21,34]. Moreover, R value obtained herein was 0.65, supporting
the idea that the obtained PHBV is closer to a “blocky” copolymer rather than a random
copolymer. As a general rule, “blocky” materials have better elongation properties (e.g.,
larger Young’s module and tensile strength) than random polymers [38,39].
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Table 3. Experimental monomer, dyad, and triad sequence mole fractions obtained from 1Ha and
13Cb NMR spectra corresponding to the copolymer PHBV.

Monomer
FB

0.587 a

0.584 b

FV
0.413 a

0.416 b

Dyad

FBB 0.409
FBV 0.176
FVB 0.151
FVV 0.264

Triad

FVVV 0.181
FVVB 0.081
FBVV 0.075
FBVB 0.075

B: butyrate unit; V: valerate unit. a determined by 1H NMR spectra and b determined by 13C NMR spectra.

3.3.2. Gel-Permeation Chromatography (GPC)

The results obtained regarding the mass-average molecular weight (Mw), number-
average molecular weight (Mn), and polydispersity index (PDI) are summarized in Table 4.
These parameters are of great importance as they are responsible for the end-use suitability
of a given polymer for specific applications [37,40].

Table 4. Molecular weights corresponding to the obtained biopolymers.

PHA Mw (×104 Da) Mn (×104 Da) PDI

PHB 4.53 1.69 2.7
PHBV 3.49 1.23 2.8

Mw: mass-average molecular weight. Mn: number-average molecular weight. PDI: polydispersity index.

The corresponding Mw and Mn of the polymers obtained in this study were lower
than PHA molecular weights frequently reported [40]. The reason for such low molecular
weights may be a consequence of the effect of different conditions during the extraction
process. On one hand, the first extraction step was the biomass digestion using NaClO for
1 h at 100 ◦C. Although these conditions are favorable for disrupting cell walls, they also
may favor polymer hydrolysis, yielding a decrease of the molecular weight of the obtained
polymer [13,41]. In this sense, several authors report that amorphous polymers are weak
to alkaline saponification [42]. However, other authors support the use of NaClO in the
presence of an extraction solvent, arguing that once PHA is released, it may be immediately
dissolved in the extraction solvent, preventing the polymer hydrolysis [42]. Moreover,
the temperature and time of the thermal treatment also affect the molecular weight of the
obtained polymer. As a general rule, higher temperatures increase the PHA solubility, but
also favor its hydrolysis [40]. Additionally, other variables, such as the extraction from
dried or wet cells, and fermentation conditions (pH, type and concentration of the carbon
source, and nutrients) were reported as factors that affect the molecular weight of the
obtained biopolymers [14,37,43].

The polydispersity index (PDI) of a given polymer is a measure of the heterogeneity
of the polymer chain lengths [40]. In principle, PDI values range from one to infinity. A
polymer composed of molecules with the same chain lengths has PDI values close to one.
Conversely, PDI > 1 are characteristic of polymers composed of different chain lengths.
While for a typical addition polymerization, PDI can range around 5–20, most probable PDI
values for typical step polymerizations are around two. As a general rule, polymers with
PDI close to one are preferred, which enables their use in a huge range of applications [41].
Although molecular weights of the obtained polymers were lower than those commonly
found in the literature, their PDI values (Table 4) were within the range reported (from 1.84
to 7.12) by other authors during PHAs extraction from MMC [10,21].
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3.3.3. Thermogravimetry (TGA) and Differential Scanning Calorimetry (DSC)

Figure 9 shows that TGA profiles corresponding to both obtained polymers were
similar. The degradation of both polymers occurred as a single step, starting at around
200 ◦C. In both cases, the temperature corresponding to the maximum degradation rate was
291 ± 1 ◦C. The degradation temperature for a 5% weight loss obtained for both polymers
was 243 ± 2 ◦C. This value was within the range reported by other authors [21,23,42].

Figure 9. Thermogravimetric curves corresponding to PHB (continuous line) and PHBV (dotted line)
obtained from batch A and B, respectively.

Table 5 shows the results obtained with the DSC corresponding to the obtained
polymers. PHB exhibited a single melting point at 154.6 ◦C. This value is within the range
of results reported in several studies [42–44]. Conversely, for PHBV, two melting points
were observed at 78.3 and 152.9 ◦C. These melting points were close to those reported
by Arcos-Hernández et al. [21] (77.5 and 159.2 ◦C) corresponding to a PHBV obtained
using the same feeding strategy and carbon source as in the experiments reported herein.
According to several authors [21,36], blocky copolymers with D > 1.5, such as the PHBV
obtained in the present study, can exhibit two or three melting points as a result of the
presence of polymers with different structures.

Table 5. Thermal characterization parameters corresponding to the obtained biopolymers.

PHA Td-5% Td-max Tm1 ∆Hm1 Tm2 ∆Hm2 Xc (%)

PHB 244.9 – – 154.6 47.2 35.8
PHBV 242.3 78.3 15.9 152.9 3.44 14.7

T5%: degradation temperature corresponding to 5% weight loss. Tmax: temperature corresponding to the maximum
degradation rate. XC: crystallinity (Equation (1)). Temperature values are expressed in ◦C and ∆H in J g−1.

Based on the melting enthalpy for each biopolymer, the degree of crystallinity (Xc) was
obtained using Equation (2). Table 5 shows that the degree of crystallinity corresponding to
PHBV was 2.4 times lower than that corresponding to PHB. According to several authors,
polymers with higher crystallinity have a greater range of potential applications [23,45].

4. Conclusions

In this study, PHB and PHBV were obtained from MMC using acetic and a mixture
of acetic/propionic acids as carbon sources. Overall, the recovery of PHBV was higher
than PHB, regardless of which extraction solvent was used. The PHAs recovery without
a NaClO pre-treatment step was highest when DMC was employed, while when CF was
used, a pre-treatment step was necessary to improve the extraction of PHB and PHBV.
PHAs characterisation by 1H and 13C NMR spectra demonstrated that PHBV corresponded
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to a “blocky” copolymer. In general, thermal properties suggested that the presence of
HV units confers desirable thermal characteristics for further PHA processability. The
decomposition temperature of both polymers was similar, but the melting point and degree
of crystallinity were lower in PHBV than that of PHB. Further studies are necessary to
microbiologically characterize the MMC obtained.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14193938/s1, Table S1: PHA recovery efficiencies (RE)
using DMC at 90 ◦C. Depicted values correspond to the average ± one standard deviation of three
measurements.
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