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Abstract: Imatinib is the most common first-line tyrosine kinase inhibitor (TKI) used to treat chronic-
phase chronic myeloid leukemia (CP-CML). However, only a proportion of patients achieve major
molecular response (MMR), so there is a need to find biological factors that aid the selection of the
optimal therapeutic strategy (imatinib vs. more potent second-generation TKIs). The aim of this
retrospective study was to understand the contribution of germline single-nucleotide variants (gSNVs)
in the achievement of MMR with imatinib. In particular, a discovery cohort including 45 CP-CML
patients was analyzed through the DMET array, which interrogates 1936 variants in 231 genes related
to the absorption, distribution, metabolism and excretion (ADME) process. Variants statistically
significant in the discovery cohort were then tested in an extended and independent cohort of
137 CP-CML patients. Finally, a total of 7 gSNVs (ABCG1-rs492338, ABCB11-rs496550, ABCB11-
rs497692, CYP2D6-rs1135840, CYP11B1-rs7003319, MAT1A-rs4934027 and SLC22A1-rs628031) and
one haplotype in the ABCB11 gene were significantly associated with the achievement of MMR with
first-line imatinibtreatment. In conclusion, we identified a genetic signature of response to imatinib
in CP-CML patients that could be useful in selecting those patients that may benefit from starting
imatinib as first-line therapy, therefore avoiding the toxicity related to second-generation TKIs.

Keywords: chronic myeloid leukemia; imatinib; major molecular response; single-nucleotide poly-
morphisms

1. Introduction

Tyrosine kinase inhibitors (TKIs) have radically changed the outcome of chronic
myeloid leukemia (CML) patients in the last 20 years. Imatinib, the first TKI developed,
is capable of inducing complete hematologic and cytogenetic response in the majority of
chronic-phase CML (CP-CML) patients, and the goal of CML therapy has moved to the
achievement of a major molecular response (MMR; defined as BCR::ABL1/ABL1 ratio
≤0.1% on the international scale (IS)) and possibly the achievement of a deep molecular
response (DMR; defined as BCR::ABL1/ABL1IS ratio ≤0.01%), which might represent an
“operational cure” as well as a prerequisite for treatment discontinuation [1,2]. Despite the
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excellent efficacy and improved clinical response obtained with imatinib, development of
resistance in a significant proportion of CML patients on imatinib therapy has emerged as
a challenging problem in clinical practice. The spectrum of therapeutic options for CML
patients has been enriched by second-generation TKIs, such as nilotinib, dasatinib and
bosutinib, all of them approved for first-line treatment and being more potent and/or
selective than imatinib in BCR::ABL1 inhibition. However, these second-generation TKIs
often present high toxicity compared to imatinib, so clinicians must carefully select the best
frontline choice of drug for CML treatment in order to minimize adverse events.

One of the main research focuses on CML has been the identification of biological pre-
dictors related to TKI response, allowing treatment optimization. Differences observed in
TKI efficacy are mainly due to its inhibitory potency of the BCR::ABL1 oncoprotein as well
as the acquisition of point mutations in ABL1 kinase domain that leads to an inefficient bind-
ing of the TKI to its target, the latter accounting for 30–40% of imatinib-resistant cases [3,4].
However, as with many other drugs, TKIs present an elevated interpatient variability that
results in different drug bioavailability, which in turn influences plasma and intracellular
concentrations and finally affects the therapeutic response. Germline single-nucleotide
variants (gSNVs) in genes involved in drug pharmacokinetics, i.e., drug metabolism and
transport (known as the ADME process: absorption, distribution, metabolism and excretion)
are likely to be the most important sources of individual variability in drug efficacy [5].

Imatinib, along with other TKIs, is a substrate for solute carrier transporters (SLCs),
such as human organic cation transporter 1 (hOCT1, encoded by the SLC22A1 gene), organic
cation transporter 2 (OCTN2, encoded by SLC22A5), organic anion-transporting polypep-
tide 1A2 (OATP1A2, encoded by SLCO1A2) [6] as well as organic anion-transporting
polypeptide 1B3 (OATP1B3, encoded by SLCO1B3), all of them participating in the active
uptake of imatinib into cells [7]. On the other hand, TKI efflux is mediated by the ABC
transporters, in particular ABCB1 (also known as multidrug resistance protein 1, MDR1)
and, to a lesser extent, ABCG2 (also known as breast cancer resistance protein, BCRP) [8].
Moreover, metabolization of imatinib, and almost all TKIs, occurs in the liver via the
cytochrome-P450, mostly CYP3A4 and 3A5 isoforms [9]. Changes in the functionality of
these proteins have been linked to gSNVs in their coding genes that could play an important
role in imatinib disposition and therapeutic response.

Previous studies have analyzed the influence of gSNVs in ADME genes and the
response to TKI treatment, mainly imatinib. However, most of them show limitations
in patient selection criteria, such as including heterogeneous populations of patients in
different CML phases or treated with different TKIs at first-line as well as different treatment
doses [10–15]. In addition, few gSNVs, identified through a candidate gene approach, have
been proposed as involved in imatinib response [15–18]. Besides the metabolizers and
transporters mentioned above, other enzymes may be implicated in the imatinib ADME
processes. To explore this hypothesis and due to the relevance of determining the factors
that influence variability in response to CML treatment, the aim of this study was to evaluate
genetic variants that may be involved in the achievement of MMR with first-line imatinib
treatment by using a more complete multi-gene approach through the drug-metabolizing
enzyme and transporter (DMET) genetic platform (Affymetrix). Indeed, this platform
has been used in different cancer populations and other diseases [19–21] and is capable
of simultaneously investigating 1936 genetic variants in 231 ADME genes [22]. With this
premise, we performed the present retrospective study by using the DMET genetic platform
in the context of a multicenter “real-life” discovery set of 45 CP-CML patients treated with
first-line imatinib. Afterwards, those SNVs significantly associated with the achievement of
MMR in the discovery set were tested in an independent and multicenter “real-life” cohort
of 137 CP-CML patients also receiving imatinib as first-line treatment.
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2. Materials and Methods
2.1. Study Population

A total of 182 CP-CML patients, collected between 2005 and 2016, were retrospectively
included in the study; all patients were of Caucasian ethnicity and treated with imatinib
400 mg daily as first-line treatment. In particular, 45 out of 182 patients were used as
the discovery set and 137 as an extended cohort. The study was approved by the local
Ethical Committee of the Germans Trias i Pujol Hospital, Badalona, Barcelona. Genomic
analysis was performed after obtaining written informed consent for study participation in
accordance with national legislation and the Helsinki Declaration. All clinical information
was collected from the patient’s medical records. Table 1 summarizes selected demographic
and clinical characteristics of our study population. Both the discovery set and the extended
cohort were comparable. Patients were retrospectively selected according to the following
criteria: (1) a minimum of 1 year follow-up, (2) absence of toxicity or intolerance to imatinib
that required a change of TKI treatment or a dose reduction and (3) in case of imatinib failure,
absence of previously identified mutations in the ABL1 gene or additional cytogenetic
abnormalities to avoid any statistical confounding bias.

Table 1. Patients’ characteristics divided by the discovery set and the extended cohort.

Clinical Characteristics Discovery Set (n = 45) Extended Cohort (n = 137)

Median age at diagnosis, y (range) 52 (19–73) 52 (23–86)

Sex, n (%)
Female 21 (47) 57 (42)

Male 24 (53) 80 (58)

Sokal, n (%)
Low risk 20/42 (48) 61/127 (48)

Int 1 risk 18/42 (43) 47/127 (37)

High risk 4/42 (9) 19/127 (15)

ELTS 2, n (%)
Low risk 26/39 (67) 53/84 (63)

Int risk 11/39 (28) 23/84 (27)

High risk 2/39 (5) 8/84 (10)

Imatinib treatment duration, m (range) 52 (6–142) 78 (6–208)

Median follow-up, y (range) 13 (5–18) 13 (1–19)

Exitus, n (%) 5 (9) 21 (15)
1 Int: intermediate; 2 ELTS: EUTOS long-term survival score.

2.2. Response Definition and Patient Classification

Bone marrow morphology and cytogenetic studies were performed on bone mar-
row samples to confirm the diagnosis and to categorize the CML phase. BCR::ABL1
transcript levels were measured in peripheral blood by real-time qPCR, as previously de-
scribed [23]. ABL1 was used as the endogenous control gene, and the results were reported
as %BCR::ABL1/ABL1 on the IS, and molecular response (MR) monitoring was performed
at diagnosis (baseline) and every 3 to 6 months of imatinib treatment thereafter.

In the present retrospective case-control study, we applied the following classification
criteria: for the discovery set, patients were retrospectively classified as “non-responders” if
they had failed to achieve MMR at 12 months of imatinib initiation, so only patients with an
optimal MR according to European LeukemiaNet 2013 (ELN2013) recommendations [24]
were included as “responders”. On the other hand, patients in the extended cohort were
classified as “non-responders” if they had failed to achieve a BCR::ABL1/ABL1IS ratio
<10% at 6 months or a BCR::ABL1/ABL1IS ratio <1% at 12 months with imatinib as first-
line treatment, according to ELN2013 recommendations for TKI treatment failure. In the
extended cohort, patients considered as “responders” were those with an optimal response
or those with “warning” criteria—as described by ELN2013—that did not change imatinib
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dose or switch to another TKI. All the patients in this group eventually achieved MMR with
first-line imatinib treatment. The reason for applying different classification criteria in our
two cohorts was that in the discovery set, we aimed to select only the gSNVs that allowed
us to differentiate between very good responders (achievement of MMR at 12 months) and
poor responders (ELN2013 “warning” and/or failure criteria). However, in the extended
cohort, only patients that changed from imatinib to a different TKI due to ELN2013 failure
criterion (and not “warning” criterion) were considered as “non-responders”, thus better
resembling the clinical practice.

2.3. Genotype Analysis in the Discovery Set and in the Extended Cohort

DNA was isolated from whole blood using QIAcube® (Qiagen, Hilden, Germany)
with the QIAamp DNA Blood Mini Kit (Qiagen). DNA concentration and quality status
were assessed with the QIAxpert System (Qiagen). The Affymetrix DMET Plus Premier
Pack (Affymetrix, Santa Clara, CA, USA) was used to genotype DNA from the 45 CP-CML
patients included in the discovery set [22], which allows the analysis of up to 1936 variants
in 231 adsorption, distribution, metabolism and excretion (ADME) genes. Selected gSNVs
significantly associated with response to imatinib (p < 0.05) in the discovery set were then
tested in an independent cohort of 137 CP-CML patients using the 96.96 Dynamic ArrayTM

integrated fluidic circuit (IFC) with SNP Type Assay chemistry on the Biomark HD system
(Fluidigm, South San Francisco, CA, USA), with previous pre-amplification of all the DNA
samples and following the manufacturer’s instructions.

For both genotyping platforms, call rates less than 95% were excluded from further
analysis. The accuracy of genotyping was confirmed by performing triplicates of all the
samples, all of them being 100% concordant.

2.4. Statistical and Bioinformatics Analysis

The study group characteristics were described as frequency and percentage for
categorical variables and median and range for quantitative variables. Comparisons of
continuous variables between groups were made using the median test, while categorical
variables were compared using the χ2 test or Fisher exact test, if necessary.

Regarding genotyping data, and as shown in the flowchart in Figure 1, we first
performed a quality control check of the initial 1936 variants and excluded those that were
monomorphic as well as those with a minor allele frequency (MAF) <1%. Then, we tested
the Hardy–Weinberg equilibrium (HWE) to further eliminate gSNVs deviating from the
equilibrium (p ≤ 0.05). After the quality control check, gSNVs were correlated with the
achievement of MMR with first-line imatinib treatment using the SNPassoc package from
R software [25] which provides the p-value for the likelihood ratio test of association (or
Fisher’s exact test if some cell is empty), odds ratios with 95% confidence intervals (CIs) and
the Akaike information criterion, assuming different genetic models. Bonferroni correction
for multiple comparisons was implemented in all the analyses.

Only in the analysis of the extended cohort and with the aim of statistically validating
our previous results, we performed a cross-validation analysis and a permutation test.
Cross-validation uses different portions of the data to test and train a model on different
iterations. In the present study, we randomly divided our sample into 5 equal groups
and performed the same association analysis up to 5 times, always leaving out one of the
groups. The permutation test was carried out to check the significance of the univariate
associations of the selected gSNVs with the achievement of MMR at any time. In this type
of non-parametric test, genotypes are permuted relative to affection status (in this case,
MMR achievement as case or control status) to produce many random datasets, and the
process of training and recording of outputs is repeated. We permuted the case/control
status for all the individuals up to 10,000 times and estimated the association p-values for
all gSNVs with the logistic regression model.

In addition, those gSNVs statistically significant in the extended cohort for the above-
mentioned analyses were studied by cumulative incidences considering MMR as a time-
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dependent variable. In this case, competing risk analysis was applied by using the Fine and
Grey model (for which achievement of the MMR was the event of interest, and competing
risks were any event that led to permanent cessation of first-line imatinib).
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Finally, haplotype blocks between gSNVs were inferred using the Haploview soft-
ware package [26], and their association with imatinib response was evaluated using the
Haplo.stats package in R v4.0.1 software.

Two-sided p-values < 0.05 were considered statistically significant. The statistical pack-
ages SPSS version 24.0 (SPSS Inc., Chicago, IL, USA) and R v4.0.1 software (R Foundation
for Statistical Computing, Vienna, Austria) were used for all the analyses and the creation
of graphics.

3. Results
3.1. gSNVs Associated with MMR Achievement in the Discovery Set

Regarding patients’ classification criteria for the discovery set (n = 45), 17 (38%) patients
achieved MMR at 12 months of starting imatinib and were considered as “responders”
(controls), whereas 28 (62%) did not achieve MMR at 12 months and were considered as
“non-responders” (cases).

From the initial 1936 variants tested in the DMET Affymetrix array, 1096 of them were
excluded due to homozygosity for the wild-type allele, MAF < 1% and/or a genotyping
rate <95%. A total of 840 variants fulfilled the criteria and were tested for association
with response to imatinib. The analysis highlighted that 76 gSNVs, in 51 different genes,
showed a significant association with the achievement of MMR at 12 months with first-line
imatinibtreatment in the discovery set (Figure 1 and Table S1).

3.2. gSNVs Associated with MMR Achievement in the Extended Cohort

The extended cohort included a total of 137 CP-CML patients, of whom 37 (27%) were
considered as “non-responders” (cases) and 100 (73%) were considered as “responders”
(controls). All the patients included in the category of “responders” achieved MMR (most
of them before 20 months of imatinib treatment). The 76 gSNVs previously associated with
imatinib response in the discovery set were genotyped using the Biomark HD platform. Six
SNVs (rs743616, rs11770903, rs2884737, rs17685, rs12960, rs13226149) were excluded due to
a genotyping rate <95%. Finally, the association analysis included a total of 70 gSNVs and
was performed in 137 CP-CML patients (extended cohort). Seven gSNVs in six different
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genes showed a significant association with MMR achievement at any time in the extended
cohort (Table 2).

Table 2. SNVs significantly associated (p < 0.05) with MMR achievement with imatinib first-line
treatment in the extended cohort. Genetic model of inheritance and genotype are indicated in each case.

Gene RefSNP ID Location Model a Genotype N Cases b (%)/
N Controls c (%)

OR (95% CI) p

SLC22A1 rs628031 Met408Leu Recessive G/G–A/G
A/A

30 (24)/94 (76)
7 (58)/5 (42)

4.52
(1.33–15.43) 0.015

ABCG1 rs492338 Intron Log-additive
0: T/T
1: C/T
2: C/C

16 (39)/25 (61)
16 (27)/43 (73)
5 (15)/28 (85)

0.54
(0.31–0.92) 0.021

ABCB11 rs496550 Intron Log-additive
0: G/G
1: A/G
2: A/A

15 (38)/24 (62)
19 (26)/55 (74)
3 (13)/20 (87)

0.51
(0.28–0.94) 0.027

ABCB11 rs497692 Ala1028Ala Log-additive
0: G/G
1: A/G
2: A/A

15 (38)/25 (62)
18 (25)/53 (75)
3 (13)/21 (87)

0.51
(0.28–0.94) 0.027

CYP2D6 rs1135840 d Ser486Thr Log-additive
0: C/C
1: C/G
2: G/G

12 (22)/43 (78)
12 (24)/39 (76)
13 (46)/15 (54)

1.70
(1.03–2.82) 0.037

CYP11B1 rs7003319 3′UTR Dominant C/C
A/C–A/A

11 (19)/48 (81)
26 (34)/51 (66)

2.32
(1.02–5.25) 0.038

MAT1A rs4934027 Intron Dominant C/C
C/T–T/T

31 (36)/55(64)
6 (12)/43 (88)

0.25
(0.1–0.65) 0.002

a: Selected by Akaike information criterion (AIC); b: imatinib non-responders (failure to achieve MMR);
c: imatinib responders; d: this gSNV did not fulfill HWE but was included due to its potential implication
in CML/leukemogenesis.

The presence of two copies of the minor allele A for rs628031, located in the SLC22A1
influx transporter gene, showed lower rates of MMR achievement compared to patients
with G/G and A/G genotypes for this gSNV (p = 0.015). Moreover, patients carrying
one or two copies of the C allele in rs492338, a gSNV located in another transporter gene,
the ABCG1, were more likely to achieve MMR (p = 0.021). Two gSNVs present in the
transporter coding gene ABCB11, rs496550 and rs497692, also showed an association; in
87% and 75% of patients with A/A and A/G genotypes, respectively, and for both gSNVs,
MMR was achieved with first-line imatinib, whereas only 62% of patients harboring the
G/G genotype for both gSNVs achieved MMR (p = 0.027). These two gSNVs showed
practically equal genotype frequencies as well as odds ratios, indicating a possible genetic
linkage by being inherited together.

Two gSNVs in different genes of the cytochrome P450 family were significantly associ-
ated with imatinib treatment; the presence of two copies of the minor allele G for rs1135840,
located in the CYP2D6 gene, was associated with high risk of MMR failure (p = 0.037). Of
note, from all the statistically significant gSNVs, rs1135840 was the only one that did not
fulfill HWE (p = 0.019) but was included in the final analysis due to its possible relevance
to leukemogenesis [27] (discussed in more detail further on). Patients with genotypes
A/C and A/A for rs7003319, located in the CYP11B1 gene, showed lower rates of MMR
achievement than patients with the C/C genotype (66 vs. 81%, respectively, p = 0.038).

Finally, the gSNV rs4934027 located in the MAT1A gene, showed a significant associa-
tion with imatinib response, since 88% of patients with genotypes C/T and T/T achieved
MMR as opposed to 64% of patients with the C/C genotype (p = 0.002).
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3.3. Validation of the Results Obtained in the Extended Cohort by Cross-Validation Analysis and
Permutation Test

Two additional association analyses were performed for the extended cohort to val-
idate the significant impact of gSNVs on MMR achievement at any time with first-line
imatinib treatment. Cross-validation analysis was used to guarantee that significant results
were independent of the partitions applied to our study sample. The extended cohort was
randomly divided into a total of five partitions of the same sample size (27–28 patients per
group) and the association analysis was performed up to five times, always retaining one
of the partitions out of the analysis. Therefore, the five association analyses included a total
of 110–111 patients, of which 29–30 (26–27%) were classified as non-responders (cases).

Table 3 shows the gSNVs significantly associated with MMR achievement obtained
in each of the five analyses performed, with results grouped in A, B, C, D or E sets. All
the seven significant gSNVs obtained in the first association study with the entire cohort
(Section 3.2) were also significant in one or more of the association analyses in the cross-
validation test, which reinforces our results. Additionally, ABCB11 rs495714 was significant
in one of the groups but did not show significance in the association analysis for the total
cohort. MAT1A rs4934027 was the only one statistically significant in all the analysis groups,
thus confirming that patients with C/T and T/T genotypes for this gSNV are more likely
to achieve MMR with first-line imatinib.

Regarding the permutation test, we observed that all the gSNVs statistically significant
in the analysis with the entire cohort (Section 3.2) maintained a significant association with
MMR achievement after performing 10,000 iterations of the case-control status. Moreover,
two new gSNVs, rs4148304 at the UGT2A1 gene and rs1065852 at the CYP2D6 gene, were
significant only in this analysis (p = 0.012 and p = 0.003, respectively) (Table 4).

Table 3. gSNVs significantly associated (p < 0.05) with MMR achievement with imatinib first-line
treatment in the cross-validation analysis. Groups A, B, C, D and E correspond to one of the five
analyses performed for this test.

Group Gene RefSNP ID Model a Genotype N Cases b (%)/
N Controls c (%)

OR (95% CI) p

A MAT1A rs4934027 Dominant C/C
C/T–T/T

26 (36)/46 (64)
3 (8)/34 (92)

0.16
(0.04–0.56) 0.001

B CYP11B1 rs7003319 Dominant C/C
C/A–A/A

6 (13)/39 (87)
24 (36)/42 (64) 3.71 (1.37–10) 0.006

B MAT1A rs4934027 Dominant C/C
C/T–T/T

24 (36)/43 (64)
6 (14)/37 (86)

0.29
(0.11–0.79) 0.009

C ABCG1 rs492338 Log-additive
0: T/T
1: C/T
2: C/C

13 (38)/21 (62)
12 (27)/33 (73)
4 (15)/23 (85)

0.54
(0.3–0.99) 0.039

C CYP2D6 rs1135840 Log-additive
0: C/C
1: C/G
2: G/G

8 (19)/33 (81)
9 (21)/33 (79)

12 (52)/11 (48)

2.11
(1.18–3.79) 0.010

C MAT1A rs4934027 Dominant C/C
C/T–T/T

26 (35)/48 (65)
3 (9)/30 (91)

0.18
(0.05–0.66) 0.003

C ABCB11 rs495714 Log-additive
0: A/A
1: A/G
2: G/G

13 (43)/17 (57)
14 (24)/45 (76)
2 (10)/19 (90)

0.38
(0.19–0.77) 0.005

C SLC22A1 rs628031 Log-additive
0: G/G
1: A/G
2: A/A

9 (21)/34 (79)
14 (25)/42 (75)
6 (67)/3 (33)

2.14
(1.05–4.35) 0.032

C ABCB11 rs496550 Log-additive
0: G/G
1: G/A
2: A/A

13 (43)/17 (57)
15 (25)/46 (75)
1 (6)/16 (94)

0.35
(0.17–0.74) 0.004
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Table 3. Cont.

Group Gene RefSNP ID Model a Genotype N Cases b (%)/
N Controls c (%)

OR (95% CI) p

C ABCB11 rs497692 Log-additive
0:G/G
1: G/A
2: A/A

13 (42)/18 (58)
15 (25)/44 (75)
1 (6)/17 (94)

0.37
(0.18–0.76) 0.004

D ABCG1 rs492338 Log-additive
0: T/T
1: C/T
2: C/C

13 (38)/21 (62)
14 (29)/35 (71)
3 (13)/20 (87)

0.53
(0.28–0.98) 0.038

D CYP2D6 rs1135840 Log-additive
0: C/C
1: C/G
2: G/G

10 (21)/37 (79)
9 (23)/30 (77)

11 (50)/11 (50)

1.86
(1.07–3.25) 0.026

D MAT1A rs4934027 Dominant C/C
C/T–T/T

24 (37)/40 (63)
6 (14)/37 (86)

0.27
(0.1–0.73) 0.006

D ABCB11 rs496550 Log-additive
0: G/G
1: A/G
2: A/A

12 (38)/20 (62)
16 (28)/41 (72)
2 (11)/17 (89)

0.51
(0.26–0.99) 0.04

D ABCB11 rs497692 Log-additive
0: G/G
1: A/G
2: A/A

12 (36)/21 (64)
15 (28)/39 (72)
2 (10)/18 (90)

0.51
(0.26–0.99) 0.04

E ABCG1 rs492338 Log-additive
0: T/T
1: C/T
2: C/C

14 (48)/15 (52)
13 (27)/36 (73)
3 (11)/24 (89)

0.37
(0.19–0.71) 0.002

E MAT1A rs4934027 Dominant C/C
C/T–T/T

24 (36)/43 (64)
6 (15)/34 (85)

0.32
(0.12–0.86) 0.017

E SLC22A1 rs628031 Log-additive
0: G/G
1: A/G
2: A/A

8 (18)/37 (82)
16 (30)/37 (70)
6 (60)/4 (40)

2.44
(1.22–4.88) 0.009

a: Selected by Akaike information criterion (AIC); b: imatinib non-responders (failure to achieve MMR); c: imatinib
responders.

Table 4. gSNVs significantly associated (p < 0.05) with MMR achievement in the permutation test
(performed with a total of 10,000 iterations).

Gene RefSNP ID Model a p

ABCG1 rs492338 Log-additive 0.023

CYP2D6 rs1135840 Log-additive
Recessive

0.032
0.016

UGT2A1 rs4148304 Recessive 0.012

CYP11B1 rs7003319 Dominant 0.047

MAT1A rs4934027 Log-additive
Dominant

0.003
0.002

CYP2D6 rs1065852 Recessive 0.003

SLC22A1 rs628031 Recessive 0.017

ABCB11 rs496550 Log-additive 0.027

ABCB11 rs497692 Log-additive 0.027
a: Selected by Akaike information criterion (AIC).

3.4. Cumulative Incidences of MMR Achievement for the Selected Significant gSNVs Obtained in
the Extended Cohort

For all the gSNVs significantly associated with MMR achievement in the different
analyses performed for the extended cohort, we additionally studied the cumulative
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incidence of achieving MMR at any time to assess the impact of the different gSNVs and
their genotypes from imatinib initiation and during follow-up.

In this case, six patients were excluded from the analysis due to the lack of the exact
date of MMR achievement. Cumulative incidences with 95% CI for each gSNV are shown
in Table S2. Only the gSNVs that showed a significant association (p < 0.05) with MMR
achievement as a time-dependent variable were graphically represented (Figure 2). For
those cases in which the significant hereditary model is recessive or dominant, cumulative
incidences as well as graphs are represented for both the three genotypes separately and
the re-grouped genotypes.

J. Clin. Med. 2022, 11, x FOR PEER REVIEW  10  of  16 
 

 

 

Figure 2. Cumulative incidence (95% CI) of MMR for the gSNVs with p‐value < 0.05. (A) 95% CI of 

MMR  for  rs492338  (ABCG1)  for  each  of  the  three  genotypes.  (B)  95% CI  of MMR  for  rs628031 

(SLC22A1) grouped by recessive model. (C,D) 95% CI of MMR for rs4934027 (MAT1A) for each of 

the genotypes and grouped by dominant model. (E,F) 95% of MMR for rs1065852 (CYP2D6) for each 

of the genotypes and grouped by recessive model. 
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of the genotypes and grouped by recessive model.
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Of note, patients carrying the A/A genotype for rs628031 (SLC22A1) showed a signifi-
cant decrease in MMR cumulative incidence, as well as patients with at least one copy of the
T allele for rs4934027 (MAT1A). In contrast, patients carrying two copies of the minor allele
T for rs1065852 (CYP2D6) had a significant advantage in achieving MMR with first-line
imatinib treatment.

3.5. Haplotype Analysis and Association with MMR Achievement

Finally, we investigated the presence of haplotypes within the 70 selected gSNVs
analyzed in the extended cohort. Using Haploview software [26], we found a total of
10 haplotype blocks (Figure 3). We then evaluated the association of these haplotype
blocks with the response to imatinib. Logistic regression analysis revealed that only
one haplotype was significantly associated with the achievement of MMR: block 9 on
chromosome 2 (Figure 3D), formed by rs496550, rs495714, rs497692 gSNVs of the ABCB11
gene. In particular, carriers of the ABCB11-AGA haplotype, which was present in 45% of
our extended cohort, had a higher probability of MMR achievement with first-line imatinib
treatment, compared with the most frequent ABCB11-GAG haplotype, which was present
in 54% of our extended cohort (OR (95% CI): 0.51 (0.28—0.93), p = 0.027).
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4. Discussion

Imatinib is a specific inhibitor of the BCR::ABL1 fusion protein and is an example of
successful targeted therapy, still being the treatment of choice for most of de novo CML
patients with low-risk disease. Successful identification of genetic markers of imatinib
response would provide a risk evaluation tool for stratification of CML patients at diagnosis,
paving the way for a personalized therapeutic approach. To this end, a refined stratification
of patients in terms of likelihood of achieving MMR would be the necessary starting
point, enabling the identification of those patients who are more likely to benefit from
imatinib rather than from a more toxic second-generation TKI and helping to evaluate
the risk/benefit balance. Polymorphic variants in genes involved in imatinib mesylate
pharmacokinetics may explain at least part of the interindividual variability of imatinib
response in CML patients [28].

In this study we moved, for the first time in CML, from testing a few gSNVs in a
limited number of genes to the application of a pharmacogenetics platform, namely the
Affymetrix DMET array, which allows the simultaneous analysis of a wide panel of genetic
variants in genes involved in the ADME process. Indeed, the previously published literature
on pharmacogenetics in CML used a multiple gene candidate approach although only
focused on specific gSNVs and, as a downside, is likely to miss important significant results.
Moreover, as opposed to previously published studies that included different treatment
approaches, we included a homogeneous cohort of only CP-CML patients treated with
imatinib 400 mg/day as first-line therapy [10–18]. In particular, our study included two
different real-life practice patient cohorts; the first one (n = 45) was used as the discovery set,
in which the DMET array was applied. Of note, 62% of patients in the discovery set were
classified as “non-responders” due to the classification criteria used for this cohort, where
only patients with optimal MR were considered as “responders”, thus not corresponding
with the percentage described in the literature [29]. A total of 76 gSNVs were significantly
associated with MMR achievement with imatinib treatment in this first cohort and were
included in the analysis with the extended cohort (n = 137), in which 27% of patients were
considered as “non-responders”, thus resembling the results from the literature [29].

Overall, after the confirmation step in this extended cohort and deepening the inves-
tigation through cross-validation and permutation analyses, we identified seven gSNVs
in six genes—ABCG1 rs492338, ABCB11 rs496550, ABCB11 rs497692, SLC22A1 rs628031,
CYP2D6 rs1135840, CYP11B1 rs7003319 and MAT1A rs4934027—significantly associated
with the achievement of MMR with imatinib first-line treatment.

Several studies have reported that genetic variants in influx transporters, such as
SLC22A1, as well as efflux transporters, such ABCG2 and ABCB1, may be associated
with imatinib levels. Among the SLC22A1 gene, the most commonly reported gSNVs are
rs628031, rs683369 and rs35191146. Takahashi et al. [30] found an association between
genotype GG of rs628031 and the achievement of MMR with imatinib treatment in a cohort
of 67 Japanese CML patients. These results were in concordance with the findings observed
by Koren-Michowitz et al. [16] and Vaidya et al. [18]. In our study, 25 gSNVs present at the
SLC22A1 gene were tested with the DMET array and only rs628031 showed an association
with imatinib response, both in the discovery set and the extended cohort. This gSNV
represents a non-synonymous variant that promotes the change of methionine for valine
at position 408 (M[ATG] > V[GTG]). Our results suggest that carrying two copies of the
A allele decreases the probability of MMR achievement with imatinib, which is in line
with the abovementioned studies in addition to the extended meta-analysis published by
Cargnin S. et al. [31]. Notably, this gSNV has also been associated with decreased response
to metformin in patients with type II diabetes mellitus [32].

Furthermore, ATP-binding cassette (ABC) transporters are a family of enzymes in-
volved in the efflux of different drugs. Several studies have reported that genetic variants
in these efflux transporters, such as ABCG2 and ABCB1, may be associated with imatinib
plasma levels [8,33]. Among all the gSNVs in ABCG2 and ABCB1 genes included in the
DMET array, none of them showed a significant association with imatinib response in our
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discovery set. However, different gSNVs in other ABC transporters, such as ABCG1 and
ABCB11, did show an association and were included in the analysis of the extended cohort.
One gSNV in ABCG1, rs492338, showed an association with MMR achievement in all the
statistical and bioinformatics analyses performed. This gSNV represents an intronic variant;
hence, it does not imply any change in the protein sequence but may have a role in the
correct generation of the encoded protein. In our study, patients carrying two copies of
the T allele showed lower rates of MMR compared to patients with one or two copies of
the C allele (Figure 2A). Since ABCG1 is implicated in the active transport of cholesterol
and other lipoproteins [34,35], together with the observed synergistic effect of imatinib and
antilipidemic drugs in anti-leukemia activity [36,37], we hypothesize that genetic variations
in ABCG1 play a role in imatinib excretion mediated by possible changes in the lipidic
composition of the cellular membrane. Besides ABCG1, we found an association with three
gSNVs in the ABCB11 gene and imatinib response; of these, rs496550 and rs497692, which
represent an intronic and a synonymous variant, respectively, were significant in all the
analyses. Additionally, these two gSNVs together with the rs495714 gSNV belonged to
a haplotype that was statistically linked to MMR achievement. Patients harboring the
ABCB11-AGA genotype (loci rs496550, rs495714 and rs497692, respectively) showed higher
probability of MMR achievement with first-line imatinib treatment. As far as we know,
none of the pharmacokinetic studies of imatinib has pointed out an involvement of the
ABCG1 and ABCB11 proteins in imatinib transport; however, it cannot be excluded that
these transporters are directly or indirectly involved in imatinib uptake. Even though we
have performed several statistical analyses to avoid random results, we cannot completely
exclude the possibility that the associations found in our study occurred by chance, making
it essential to replicate the observation in an independent dataset.

Besides drug transporters, proteins related to imatinib metabolization have been
associated with therapeutic response. Among them, two members of cytochrome P450,
CYP3A4 and CYP3A5, have been widely described as major contributors to this process [9].
Other isoforms such as CYP2C8, CYP2C9 and CYP2D6 have also been related to imatinib
metabolism, although to a lesser extent. Different studies have demonstrated the asso-
ciation of specific gSNVs in the genes coding for these proteins and imatinib response
rates [11,15,38,39]. In our study, among the gSNVs in CYP450 isoforms tested with the
DMET array, 17 showed a significant association with imatinib response in the discovery
set and were included in the extended cohort. Finally, only two of these 17 gSNVs were
significantly associated with MMR achievement in the extended cohort: one of them was
rs7003319 in the CYP11B1 gene, which encodes a variant present in the regulatory region
3’UTR and had a significant association with MMR in the dominant model, since patients
carrying A/C or A/A had lower rates of MMR achievement. As far as we know, neither
this gSNV nor the CYP11B1 enzyme have been related to CML, but Ravegnini et al. [40]
described an association of rs7003319 and higher survival rates in patients with gastroin-
testinal stromal tumor treated with imatinib. The other gSNV was rs1135840 from CYP2D6,
which represents a change of serine for threonine at position 486 (S[AGC] > T[ACC]).
However, this gSNV did not fulfill HWE; a possible explanation for this phenomenon
is that HWE is a population property, and in many human genetics studies, subjects are
ascertained through their disease status (in this case, leukemia), so that affected individuals
are more represented in the sample than in the general population. As a result, when a
marker is associated with the disease, the corresponding genotypes may no longer be a
random sample [41]. In fact, as we did not include any healthy control in our study, we
may have selected a specific genotype associated with CML and/or leukemogenesis [27].

Finally, the gSNV rs4934027 in the MAT1A gene was significant in all the statistical
analyses performed, being the one with the lowest p-value in our extended cohort. Neither
this gene nor this gSNV have been previously described in CML or in imatinib metabolism,
and considering that rs4934027 represents an intronic variant, its role in imatinib resistance
should be further investigated.
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Due to the retrospective nature of this study, there are some limitations to consider;
first, imatinib plasma levels were not tested, and concomitant treatment was not available,
which may have affected the imatinib response in both cases. Second, although those
patients would eventually benefit from a different TKI as first-line therapy, the influence
of such gSNVs with second-generation TKIs should be also studied to be sure that those
drugs in first-line are the alternative to imatinib.

In conclusion, to the best of our knowledge, this study represents the first example of
DMET array application in CML patients, which allowed us to interrogate multiple gSNVs
in a previously selected uniform cohort. Data reported here are promising and, if validated
in a larger cohort, would be of great value for selecting those patients who are likely to
benefit from starting imatinib as first-line therapy (i.e., MMR achievement), avoiding the
toxicity related to second-generation TKIs and promoting patient’s adherence to treatment
as well as improving the cost–benefit balance due to the high cost of second-generation
TKIs compared to generic imatinib.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm11206217/s1, Table S1: gSNVs significantly associated (p < 0.05)
with MMR achievement to imatinib first-line treatment in the exploratory cohort (n = 45) and included
in the analysis with the extended cohort; Table S2: cumulative incidences (median (95% CI)) of MMR
achievement for each of the genotypes of the gSNVs statistically significant obtained in the analyses
of the extended cohort (n = 137). p-value is indicated for each gSNV and those statistically significant
are highlighted in bold.
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