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Colon Capsule Endoscopy (CCE) is a minimally invasive procedure which is

increasingly being used as an alternative to conventional colonoscopy. Videos

recorded by the capsule cameras are long and require one or more experts’

time to review and identify polyps or other potential intestinal problems that

can lead to major health issues. We developed and tested a multi-platform

web application, AI-Tool, which embeds a Convolution Neural Network (CNN)

to help CCE reviewers. With the help of artificial intelligence, AI-Tool is able to

detect images with high probability of containing a polyp and prioritize them

during the reviewing process. With the collaboration of 3 experts that reviewed

18 videos, we compared the classical linear reviewmethod using RAPID Reader

Software v9.0 and the new software we present. Applying the new strategy,

reviewing time was reduced by a factor of 6 and polyp detection sensitivity

was increased from 81.08 to 87.80%.

KEYWORDS

colon capsule endoscopy, artificial intelligence, screening time, polyp detection,

colorectal cancer prevention

Introduction

Colorectal cancer is the third most common type of cancer worldwide and ranks

second on the list of most aggressive and deadly cancers (1). According to the Global

Cancer Observatory, out of an estimated total of 1.9 million cases in 2020, this disease

has caused the death of more than 935,000 people worldwide (1). This type of cancer

has also been linked to unhealthy lifestyle habits such as smoking, alcohol consumption,

unhealthy diets or sedentary lifestyle (2, 3). A clear relationship has been drawn between

colon cancer and obesity (4, 5) along with genetic predisposition (6).

One of the initial signs of the development of colon cancer is the

appearance of polyps in the colon that grow in an uncontrolled manner (7).

The detection of polyps when they are still small is crucial to prevent their
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transformation into cancer. Screening programs are aimed to

detect early-stage cancer, improving the patient’s chances of

survival (8, 9). With the disruption of colonoscopy screening

programs due to the COVID-19 pandemic, an increase in

incidence of 0.2–0.9% and deaths of 0.6–1.6% is predicted over

the next 30 years (2020–2050) (10). To be able to mitigate

these effects, well-resourced screening programs are urgently

needed. Unfortunately, not all healthcare systems can afford a

large increase in demand for colonoscopy which is usually a

primary or secondary screening test. Therefore, other equally

effective methods should be considered (10, 11). Among those

alternatives, CCE has proven to be one of the most safe and

effective tools, with an accuracy very similar to that of traditional

colonoscopies (12). It is less invasive for the patient (13),

it does not cause discomfort during the procedure [only

minimal discomfort before the procedure due to required bowel

preparation (13)] and no anesthesia is needed. However, the

reading of CCE videos is time-consuming and requires qualified

medical personnel (14–16). Further studies have compared CCE

sensitivity and reading time using different RAPID Reader

viewing modes such as QuickView (17–19), as well reading

performance of expert and non-expert physicians (20). For CCE

to be considered as an alternative procedure in colorectal cancer

detection, the use of AI could streamline the process without

compromising accuracy (21–23).

AI has been extensively applied to medical imaging

problems (24). In the colon capsule endoscopy field, multiple

methods have been presented to automatically detect ulcers (25),

polyps (26, 27), Crohn’s disease (28), bowel cleanliness (29) or

blood and mucosal lesions (30). These methods have shown

promising results, but they are generally validated with limited

data or biased datasets which does not guarantee a good

generalization in clinical practice (22, 31). To our knowledge,

few attempts have been presented with similar evaluation

to the one we propose in this paper. In Aoki et al. (32)

a CNN-based method is presented to detect erosions and

ulcerations. In Beg et al. (33), a method to detect colonic

lesions is introduced comparing two reviewing procedures.

There is no doubt that AI has potential benefits to both doctors

and patients, but its application to the clinical practice is

challenging. AI is not yet at a point where it can completely

replace the intervention by human experts (22). Although

U.S. Food and Drug Administration (FDA) has approved

some assistance algorithms (34), no guidelines establishing

the role of AI currently exist. In order to achieve this,

these systems would need to gain confidence of medical

experts and ethical and regulatory issues would need to be

solved (15, 35). This is why it is important to develop systems

that cooperate with the experts, facilitating their decision

making.

In this paper, we present a novel CNN-based system,

AI-Tool, to assist physicians with the detection of colonic

polyps. Given a video, it outputs a probability score per

image frame to contain a polyp and a heatmap explaining

the reasoning of the prediction. This heatmap, allows the

expert to focus on the area of the image where the

CNN suggests the polyp to be located. An experiment

performed with 18 videos revised by 3 expert readers,

has shown that the proposed system reduces screening

time significantly while it also increases the sensitivity

of polyp detection.

Methods

Study population

Eighteen videos of patients with at least one colon polyp

obtained using the PillCam COLON 2 capsule (Medtronic)

were randomly selected for this experiment following a Simple

Randomization strategy. The data used in this study are

retrospective CCE videos from patients that were conducted on

behalf of the NHS Highland Raigmore Hospital in Inverness.

All patients from this study came from referrals for symptoms

or were on surveillance lists within the Highlands and Islands

area of Scotland and had a positive Fecal Immunochemical

Test (FIT). Referrals and final diagnoses were made based

on local considerations, outside the influence of the teams

conducting CCE procedures. Bowel preparation in accordance

with a standardized, PEG-based, split-dose cleansing protocol

was performed in all patients. All videos were obtained using

PillCam COLON 2 which has two heads (front and rear). They

were anonymized to protect patient information. Patients’ mean

age was 58.1 ± 18.7 years (range, 18–92 years) and mean colon

transit time was 4 h 10 min (range, 0.17–14.2 h).

Before the experiments began, the two videos obtained from

each of the heads of the capsule were meticulously reviewed

by four independent CCE readers, experts from now on, in

order to create the ground truth for the experiments (gold

standard). Each detected polyp was assigned a unique identifier,

the timestamp of the first and the last image where the polyp was

visible, and from which head it was reported. The independent

analysis of the experts was then shared with all experts, reaching

a consensus in case of discrepancies. As experts, we have

arbitrarily considered CCE readers with at least 3 months of

experience in CCE. All of them have formal training in reviewing

CCE videos and they analyze about 5–20 videos a week. On a

daily basis, they follow the standard review protocol to ensure

that each video is reviewed in a consistent, repeatable and well-

documented manner. The results of all of them were validated

by a medical doctor with 2 years of experience who created

a final report about the results. In no case were any concerns

reported back by that clinician either from the review nor from

any possibly follow-up procedure about the quality of the report.
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Both, the final report and the gold standard used as ground-

truth for the experiment in this study are the responsibility of

the medical doctor that approved the results.

During this process, a total of 52 unique polyps were

found. The video with the most polyps had 7, while

there were 5 videos with only one polyp. The polyps’ size

was estimated with RAPID. A total of 23 polyps were

identified as large (≥6 mm) and 29 polyps as small (<6

mm). There were 5 polyps larger than 10 mm and only

one polyp smaller than 3 mm. The characterization of

morphologies was done in accordance with the requirements

from the referring clinicians, matching standard Paris

classifications where possible. In no case polyps were

selected or discarded based on size or morphology,

all polyps reported by the physicians were included

in the study.

Experimental design

Three experienced CCE readers reviewed the videos selected

for this experiment. Each reader reviewed half of the videos

using the standard RAPID Reader Software v9.0 (Medtronic)

and the other half using the AI-Tool. Results obtained by the

experts using each of the tools are reported in terms of number of

polyps detected (sensitivity) as well as time needed to complete

the reviews (screening time).

The experiment conducted in this study was restricted to the

images of the colon. Identification of the entrance and exit of

the colon was previously provided to the readers. When they

used RAPID software, they were asked to perform the standard

screening procedure without any screening time limitation. No

information other than a single video identifier was provided to

the reviewers during the analysis of the videos. For the AI-Tool,

the review time was limited to 30 min regardless of the video’s

length.

For both tools, readers were required to review the

videos without pauses or external stimuli that could lead

to distractions. During the review, the readers labeled the

images that they identified as a polyp using the tools provided

within each of the applications. In the case of RAPID,

experts were asked to tag all the unique polyps they found.

When using the AI-Tool, experts were asked to make a

decision, polyp, clear or other, for each sequence that was

presented to them.

CCE readers

The expert readers are endoscopy nurses with at least 2

years of experience with CCE. They have a formal CCE training

and conduct between 5 and 20 video analyses per week. On a

daily basis, they follow a standard operating procedure to ensure

TABLE 1 Detection of polyps distinguishing by size, visibility and

morphology.

#Polyps RAPID AI-Tool

Size Small (<6 mm) 29 76.92% 85.42%

Large (≥6 mm) 23 85.71% 91.18%

Visibility Low (<4 frames) 9 58.33% 80.00%

Normal (4− 10 frames) 15 73.91% 81.82%

High (>10 frames) 28 92.31% 93.33%

Morphology Pedunculated 4 100.00% 100.00%

Sessile 25 81.82% 92.86%

Flat 23 75.76% 80.56%

52 81.08% 87.80%

that each video is analyzed in a consistent, repeatable way and

documented according to common standards. None of these

three readers were part of the gold standard creation process.

Screening tool: RAPID reader v9.0

RAPID Reader v9.0 is a Medtronic proprietary software,

used to review and interpret wireless capsule endoscopy videos.

This software is widely used by colon capsule endoscopy

professionals designed to review the video in a comfortable way.

The video is shown in temporal order and the app allows to label

images, to add comments to images and to measure any part of

the image with an integrated ruler function. The user can change

the replay speed of the video at any time and the application

shows the approximate area of the abdomen where the capsule

is located. It also warns the user if the capsule is passing through

an area at high speed, so the user can know if special attention is

required. RAPID has several modes to review videos: single view

with the frontal camera, twin head mode showing both cameras

simultaneously (Figure 1) and collagemode which shows a batch

of frames selected by traditional computer vision techniques.

Screening tool: AI-Tool

The AI-Tool is a software designed to assist clinicians in the

detection of polyps, by complementing any proprietary video

reviewing software, such as RAPID. It embeds a Convolutional

Neural Network (CNN) into a web tool that presents images

with potential polyps to the user in a sequence of declining

certainty. Therefore, images that are very likely to contain a

polyp will appear first. At the time we started the study, the

CNN from Laiz et al. (26) was the state of the art for polyp

detection so it was chosen among other candidates (36–38) as

the core of the AI-Tool. The hyperparameters of the model
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FIGURE 1

RAPID Reader Software v9.0a: screen with images from both camera heads (green/yellow) and marked thumbnails. ahttps://www.medtronic.

com/covidien/en-gb/products/capsule-endoscopy/pillcam-software.html.

FIGURE 2

Candidate polyp sequence displayed in the AI-Tool. Each colored bar shows the probabilities for a polyp in one head of the capsule. The

proposed image is presented in the center frame and 4 context images are placed by each side.

were fixed after a 5-Fold cross validation process using 120

CCE videos (2,080 polyp images and 246 k negative images).

Different hyperparameters were tested (the same for the five

models) and those that gave the best results in the validation

sets were selected. A single model was then trained using the

120 CCE and embedded into the AI-Tool. The experimental

validation of the network has shown a sensitivity over 90%

at a specificity of 95% when evaluated in a fully automatic

setting (when no expert is involved) using full videos. All 120

videos used in the training of the CNN were excluded for this

experiment.

The AI-Tool computes two outputs using a CNN: a

probability score per frame to contain a polyp and a heatmap

to visualize the reasoning behind the score using CAM (39),

an algorithm that uses the values of the latest CNN layers

to display the image areas most relevant for classification. In

this particular case, this method presents the most relevant

image zones that allow the CNN to classify an image as

polyp.

Each potential polyp image is displayed along

with eight context frames, the four preceding and the

four following it (Figure 2). For each frame, a colored

square is shown to indicate the probability of it being

a polyp using a colorblind friendly palette that can be

customized when the application starts. Each image can

be enlarged by clicking on it, then further information

is presented such as the probability or the timestamp of

the sequence. The image sequence can be also displayed

as a video using the left and right keyboard arrows.

Heatmaps can always be activated showing the most

likely area to contain a polyp. A further benefit of

the heatmap is that it helps readers to understand the

reasoning behind the polyp probability and as a consequence,

increase their trust in the system.
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Results

Polyp detection

The overall sensitivity of polyp detection using RAPID

as the screening procedure was 81.08% while using the AI-

Tool the sensitivity increased to 87.80%. Table 1 shows the

percentage of polyps found using both tools distinguishing

between three categories: polyp size (in millimeters), visibility

(in number of frames) and morphology. The sensitivity using

RAPID turned out to be 76.92% for polyps smaller than 6 mm

and 85.71% for larger polyps. Both numbers increased when

the AI-Tool was used (85.42 and 91.18% for small and large

polyps, respectively).

The biggest difference between both tools was observed in

the visibility of the polyp. For polyps appearing in a few frames

(low visibility), the table shows a significant improvement when

using the AI-Tool. While RAPID achieved an accuracy of

58.33%, the AI-Tool reached 80.00%. This represents an increase

of 21.67% in this category. Smaller improvements using the AI-

Tool were also reported for polyps appearing in a larger number

of frames.

These results show that small polyps and polyps that appear

for only a few frames are more likely to be detected using the

AI-Tool than using the RAPID application.

CCE screening time

One of the aims of this study was to compare the time needed

for the detection of polyps using RAPID and our AI-Tool.

FIGURE 3

Mean sensitivity curve of the experiments using both

applications. In green the Super-Expert curve (gold standard)

that represents the maximum value that the blue line could

reach. This curve has been calculated simulating an expert who

never makes mistakes when identifying a polyp while using the

AI-Tool.

The average time required for the experiments performed with

RAPID was 47.11 min (11.6 min for each hour of CCE video

reviewed) with a maximum of 126 min. Let us recall that the

time for analysis using the AI-Tool was fixed at 30 min for all

the experiments.

Figure 3 shows the average sensitivity curve as a function

of time for both applications. AI-Tool took only 8.00 min to

reach the same accuracy as RAPID (point A). Since the mean of

RAPID experiments was 47.11 min we can state that the AI-Tool

reduces the time needed to reach the same accuracy as RAPID

by a factor of 47.11/8.00 ≈ 6. We can also see that RAPID

experiments reached a 55.41% of sensitivity (point B) by minute

30 when the AI-Tool experiments finished.

The shape of the curves is also an aspect worth considering.

While the RAPID curve has an almost linear behavior, the AI-

Tool curve shows an initial steep slope and, after minute 16, it

is almost flat. In the first 10 min of the analysis 84.14% of the

polyps are detected. In the next 10 min, this number rises to

86.59%, which represents an increase of 2.45% in this period.

Finally, only 1.21% of the polyps are detected in the last 10min of

the experiment. This indicates that our application is proposing

the relevant images in the first minutes of visualization. It is also

worth mentioning that without limiting the time to 30 min as

we did, the detection of polyps may slightly increase because

those with a very low score would have been presented to the

reviewers. However, this was not the objective of our study, since

we aimed to see if the video review could be done better and in a

shorter period of time.

Qualitative results

Heatmaps are a key element of our tool. They allow the

medical staff to trust the system and make an informed decision

on each image sequence. Figure 4 shows the heatmaps activation

for three different categories. First, in the image on the left,

we see high-scoring polyps. We observe how the heatmaps

generated by the CAM algorithm are well defined and show the

area where the polyp is located. In the center, we see polyps

with a very low score, which the network erroneously classifies

as negative. In this case, the heatmaps are not activated. Finally,

in the image on the right we can see images that do not contain

any polyp but to which the system assigns a high score.

It can also be seen that the false positive patterns correspond

to textures and morphologies compatible with polyps. In almost

all of them a rounded area is displayed which, without the

context of the other images, can be difficult to classify as a polyp

image or not. In addition, this is a valuable information for the

reviewers of the video, as the heatmap shows the area on which

it is important to focus their attention.

We now focus on showing the images of polyps that have not

been detected with either of the two applications (specificity).

Figure 5 shows those polyps not detected with the AI-Tool
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FIGURE 4

Left: Images of correctly identified polyps with their respective heatmaps (True Positives). Center: Images of polyps with a very low score (False

Negatives). Right: Images that do not contain a polyp but still have a very high score (False Positives).

FIGURE 5

Polyp frames to which the app has attributed a small score and, therefore, none of the experts have been able to review in the first 30 min.

Polyps are circled in white.

because of the imposed time restriction (30 min). The score

given to these image does not exceed 15%, therefore, the experts

never reviewed them. In fact, these four images are the polyps

with the lowest score of this study. The polyps of these images

are difficult to find since they are partially occluded or do not

present a regular morphology.

Figure 6 shows images of polyps reviewed and discarded

by all the experts even though the AI-Tool assigned them a

remarkably high probability. These missed polyps are the result

of human error or discrepancies between the video reviewer and

the experts who generated the ground truth.

Finally, Figure 7 shows some examples of polyp images

missed in RAPID experiments but correctly detected using the

AI-Tool. Due to the size of the polyp and the fast movement

of the capsule that took few images, these polyps are especially

difficult to find using RAPID. In contrast, they are easy to find

for AI-Tool users as they are presented with the clearest image.

Conclusions

In this paper, thanks to the AI enhancement, we mitigate

one of the main drawbacks of CCE, the required time

for the analysis while increasing the detection rate of the

FIGURE 6

Images that all experts have reviewed and found not to be

polyps. Polyps are circled in white.

experts. redWe consider that these improvements further

improve the value proposition of CCE as a clinically viable

alternative to traditional imagingmethods of the gastrointestinal

tract.

The proposed method, AI-Tool, uses the output of a

CNN architecture. It scores frames based on the probability

of containing a polyp and then it reorders the video images
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FIGURE 7

Example of polyps missed in RAPID experiments. Polyp frames are tagged with a red square. Polyps are circled in white.

to present the most relevant ones first. The validation was

performed by three clinical experts that analyzed 18 videos,

comparing the standard method with and without the proposed

AI-enhanced application. With the assistance of the AI-Tool,

the time required to review the videos was reduced by a factor

of 6 and the sensitivity increased from 81.08 to 87.80%. In the

case of small polyps (<6 mm), the improvement in sensitivity

obtained by the AI-Tool was 8.50%, and, for polyps with low

visibility (seen in <3 frames), the improvement in detection

was 21.67%.
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