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Temporal accumulation of evidence is crucial for making accurate judgments based
on noisy or ambiguous sensory input. The integration process leading to categorical
decisions is thought to rely on competition between neural populations, each encoding a
discrete categorical choice. How recurrent neural circuits integrate evidence for continu-
ous perceptual judgments is unknown. Here, we show that a continuous bump attractor
network can integrate a circular feature, such as stimulus direction, nearly optimally. As
required by optimal integration, the population activity of the network unfolds on a two-
dimensional manifold, in which the position of the network’s activity bump tracks the
stimulus average, and, simultaneously, the bump amplitude tracks stimulus uncertainty.
Moreover, the temporal weighting of sensory evidence by the network depends on the
relative strength of the stimulus compared to the internally generated bump dynamics,
yielding either early (primacy), uniform, or late (recency) weighting. The model can
flexibly switch between these regimes by changing a single control parameter, the global
excitatory drive. We show that this mechanism can quantitatively explain individual
temporal weighting profiles of human observers, and we validate the model prediction
that temporal weighting impacts reaction times. Our findings point to continuous
attractor dynamics as a plausible neural mechanism underlying stimulus integration in
perceptual estimation tasks.
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Integrating information over time is a fundamental computation that neural systems need
to perform in perceptual decision and continuous estimation tasks. While a categorical
perceptual decision usually requires discriminating stimuli in order to select between
several options [e.g., left vs. right motion of an random dot stimulus (1)], in stimulus-
estimation tasks, participants report a continuous stimulus feature—for example, the
average motion direction in degrees (2–5). Specifically, here, we consider tasks that require
estimating, as an analog quantity, the temporal average of a circular feature, such as the
direction of a time-varying stimulus. There is currently no neural network model that can
perform this computation.

Evidence integration in categorical decision tasks is thought to rely on slow recurrent
dynamics and competition between neural populations, each encoding one of the cate-
gorical choice options (6–9). The architecture of these discrete attractor neural network
models thus directly reflects the categorical nature of the decision task. By design, these
models do not maintain information about continuous features of the integrated stimulus,
as required in estimation tasks.

The optimal representation of continuous sensory stimuli in neural population codes
has been studied extensively using neural coding models (10–15). These models can
explain how to combine different cues in a single representation (10, 12) and how to read-
out the population for optimal stimulus discrimination (11, 14). However, these studies
have investigated neither the computations involved in temporal stimulus averaging nor
the underlying neural circuit mechanisms.

A potential candidate for such a circuit mechanism is the well-known continuous
attractor dynamics observed in recurrent neural networks (16–21). Continuous line
attractor models can integrate and represent a continuous feature in the graded firing
rate of a neural population (19–22). However, these rate-code-based models are not
suited for optimal integration of a circular feature (e.g., the average stimulus direction).
First, it is unclear how an angular quantity could be mapped onto the different levels of
neural population activity. Second, as we will show here, a single continuous variable is
insufficient to optimally integrate a circular feature because this computation unfolds in
a two-dimensional (2D) manifold, similar to the computation of a vector sum, which
requires keeping track of the vector length and direction. No model that represents only
a single variable (including rate-code-based line attractors) can perform this operation in
an optimal way. We thus do not consider rate-code-based models here and, instead, focus
on continuous bump attractor networks (16–18).
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Bump attractor networks have a topological ring architecture,
and, due to strong recurrent coupling, they can show localized
activity in a subset of neurons with a bell-shaped pattern (bump)
that persists even in the absence of tuned external input. Because
all states along the ring are energetically equal, the bump can be
centered anywhere along the network. The bump location thus
provides a substrate for encoding a continuous variable, such as
an orientation or a spatial location. Moreover, while intrinsically,
the bump position is stable, external inputs can drive the bump to
move. Due to these features, bump attractor networks have been
proposed as the neural mechanism underlying a variety of sensory
and cognitive computations: the emergence of contrast-invariant
orientation tuning in visual cortex (17); the identification of the
direction of a weak motion stimulus (23); multiple-choice deci-
sion making (24); the maintenance of spatial working memory
in prefrontal cortex (25, 26); and the representation of spatial
orientation and angular path integration in the mammalian head-
direction system (27–30), in the fly’s heading-direction system
(31), and in grid cells (32). None of these previous studies has in-
vestigated in detail how a bump attractor network can accumulate
sensory information to estimate the time average of a continuous
stimulus, as required in perceptual estimation tasks, and under
which conditions this accumulation is optimal.

Here, we show that the ring attractor model can accurately
compute the average of a time-varying circular stimulus feature.
By virtue of the transient dynamics during the slow formation of
the bump state, the network approximates a perfect vector inte-
grator (PVI), such that the phase of the activity bump tracks the
running circular average of the stimulus. Moreover, the temporal
weighting of sensory evidence can be flexibly controlled by the
overall excitatory drive that determines the internally generated
bump dynamics. To illustrate the relevance of our theoretical
results, we analyze data from psychophysical experiments, in
which human observers integrated a stream of eight oriented
stimulus frames. We show that the continuous attractor model
can quantitatively fit the observed heterogeneity of temporal
weighting regimes across subjects and confirm a model-predicted
relationship to the subjects’ reaction times (RTs).

Results

We start by simulating the integration of stimuli in a continuous
ring attractor model, as in experimental tasks that require esti-
mating, as an analog quantity, the average direction of motion of
a noisy random dot stimulus (2, 3) or of a sequence of oriented
Gabor patches (33–35). The network model has a ring architec-
ture and Mexican-hat connectivity (Fig. 1A), and its firing-rate
dynamics are described by Eq. 3 (Materials and Methods). Due to
strong recurrent connectivity, a localized bump of activity emerges
in the network (Fig. 1B). As has been shown previously (17),
a fast change of the stimulus to a new direction does not lead
to an instantaneous extinction and reappearance of the bump at
the new direction, but, rather, initiates a continuous translation
of the activity along the ring network, directed toward the new
stimulus direction (Fig. 1B). Thus, the bump position at a given
time depends on the current input to the network and on the
previous bump position.

We wondered whether through this mechanism the position
(phase, ψ) of the activity bump could track the average of a time-
varying stimulus. We simulated a task that required estimating
the average direction of eight successive oriented stimulus frames
with constant strength (e.g., stimulus contrast) and directions
distributed between −90◦ and +90◦. As illustrated in a represen-
tative trial (Fig. 1C ), we found that the evolution of the bump

phase closely approximated the cumulative running average of
the stimulus—that is, the time average of the stimulus up to
a given time point (Fig. 1 C, Top). Indeed, estimation curves,
obtained by simulating many trials, show that, on average, the
bump phase closely tracks a continuous estimate of the averaged
sensory input (Fig. 1D). The estimation accuracy improves with
the stimulus duration, as expected from an integration process
(error bars in Fig. 1D). This improvement can also be seen in
psychometric curves obtained by converting the analog estimate to
a categorical choice (Fig. 1E). In sum, these simulations show that
the bump attractor network can integrate the stimulus over times
much larger than the neural time constant (τ = 20 ms, stimulus
duration Tstim = 2 s).

Optimal Stimulus Integration with Bump Attractor Dynamics.
Motivated by the observation that the phase of the bump
can track the average of the stimulus with striking precision
(Fig. 1), we next sought to identify and characterize the neural
network mechanisms underlying stimulus integration in the
bump attractor network. To study the dynamics of the movement
of the bump, we applied a standard perturbation method (ref. 36;
SI Appendix) and reduced the network model (Eq. 3) to a 2D
differential equation for the amplitude, R(t), and the phase of
the bump, ψ(t):

τ
∂R

∂t
= Ĩ1 cos

(
ψ − θstim)+ Ĩ0R − cR3 + ξ1(t), [1a]

τ
∂ψ

∂t
=− Ĩ1

R
sin

(
ψ − θstim)+ ξ2(t)

R
, [1b]

where τ is the neural time constant, and the time-varying stimulus
input is characterized by its strength Ĩ1 and its orientation θstim(t).
The additional excitatory drive Ĩ0 is proportional to the global
excitatory drive to each neuron, relative to its critical value at
the onset of the bump (Ĩ0 ∝ I0 = Iexc − Icrit; SI Appendix). The
constant c depends on the synaptic connectivity profile and
the nonlinear neural transfer function (SI Appendix, Eq. S3). In
the absence of stimulus input (Ĩ1 = 0), the bump dynamics is
determined by the terms Ĩ0R and −cR3 in Eq. 1a, and we refer
to them as the “internally generated bump dynamics.” Finally, the
noise terms ξ1(t) and ξ2(t) are related to the internal stochasticity
and to fluctuations in the stimulus realized as independent noise
inputs to each neuron in the full model (Eq. 3). Note that such
reduced models have been long studied in physics (37) and that
they are universally valid near the bifurcation, independent of the
details of the original network model. This reduced model allows
us to study the dynamics of the bump analytically.
Perfect vector integration. A key insight of this paper is gained by
comparing the 2D model (Eq. 1) with the optimal computation
of the running average of the stimulus direction. This implies
keeping track of the circular mean of the time-varying stimulus
direction θstim(t), which requires computing the vector sum of the
stimulus vectors, each defined by their strength I1 and their direc-
tion θstim (SI Appendix, Fig. S1 A and C ; Materials and Methods).
To compare this optimal solution with the bump attractor net-
work, we derived a dynamical system that continuously tracks the
cumulative circular average, the PVI. Optimal integration in the
PVI unfolds on a 2D manifold, with an angular variable represent-
ing the stimulus average and a radial variable representing stimulus
uncertainty. The corresponding 2D equation (Eq. 4) turned out
to be nearly identical to the amplitude equation, but without the
intrinsic dynamics of the bump amplitude (the two terms depend-
ing on R in Eq. 1a). This remarkable equivalence indicates that—
when the internally generated bump dynamics are negligible—the
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Fig. 1. Stimulus integration in the bump attractor network. (A) Ring network with Mexican-hat connectivity— that is, strong local excitation (red connections)
and broader inhibitory coupling (blue). (B) Network activity for neurons arranged according to their position in the ring (A). Due to strong recurrent connectivity,
a bump of activity emerges in this network at a position determined by the external input and persists when the input is removed. For time-varying inputs,
the activity bump (dashed line) moves toward a new position (solid black line). (C) Network activity in a single trial. The initial activity of the network (Middle) is
spatially homogeneous and evolves into a bump while integrating a time-varying stimulus composed of eight oriented stimulus frames (Bottom). (C, Top) The
phase of the bump (red) as a function of time closely tracks the running average of the orientations of the stimulus frames (blue). (D and E) Continuous stimulus
estimate (D) and probability of clockwise choices (E) as a function of the average stimulus direction for stimulus durations of 1 s (four stimulus frames of 250 ms)
and 2 s (eight stimulus frames). Categorical choices were obtained by converting positive angles to clockwise reports and negative angles to counterclockwise
reports. Error bars indicate SD. Stim., stimulus.

bump attractor model achieves optimal integration by tracking
the stimulus average in the phase and the stimulus uncertainty in
the amplitude of its population activity. In the following, we will
develop an intuition for this result and investigate the additional
properties of the bump attractor model that originate from its
nonlinear amplitude dynamics.
Dynamics of the bump. From Eq. 1b, it directly follows that the
rate of change of the phase (the angular speed dψ/dt) depends
on the ratio of the stimulus strength I1 and the bump amplitude
R. Thus, for a given stimulus strength I1, the higher the ampli-
tude of the bump, the smaller the angular speed—that is, larger
bumps are more sluggish (SI Appendix, Fig. S2B). The steady-
state bump amplitude is determined by the global excitatory
drive I0 (R∞ ∝

√
I0; SI Appendix), indicating the key role of this

parameter for the integration dynamics.
A deeper understanding about how a time-varying stimulus

impacts the phase of the bump can be gained if we visualize the
dynamics of the amplitude equation, Eq. 1, as a three-dimensional
potential well Θ(R,ψ), given by (SI Appendix)

Θ(R,ψ) =−RĨ1 cos
(
ψ − θstim)− Ĩ0

2
R2 +

c

4
R4. [2]

This allows us to describe the mechanism underlying the evolution
of the bump graphically as a heavily damped ball sliding down
the walls of the potential (Fig. 2). In the absence of stimulus
input (I1 = 0), the potential Θ(R,ψ) resembles a juice-squeezer-
shaped surface with a circular well representing bump attractor
states (R > 0) that are neutrally stable along the angular dimen-
sion ψ (Fig. 2A). The unstable fixed point at the center of the
manifold corresponds to a bump with zero amplitude (R = 0)

(Fig. 2, point 1)—i.e., the uniform activity state.* The formation
of the bump is described by the movement of the ball that
rolls downward toward the stable manifold, while increasing its
distance to the center, R (Fig. 2 A and B, transition from point 1
to point 2). When presenting a stimulus to the network (I1 > 0),
the radial symmetry of the potential is broken, and a deeper region
arises at the location of the stimulus θstim (Fig. 2 A, Right). If the
ball has already reached the stable manifold, the stimulus will force
it to move toward this deeper state along the manifold (Fig. 2A,
transition from point 2 to point 3), corresponding to a movement
of the bump toward θstim, accompanied by only slight changes
in bump amplitude (Fig. 2B). In contrast, if the ball has not
yet reached the stable manifold—i.e., when a stimulus is applied
during the initial bump formation, as in Fig. 1C—it will cause
both a change in bump phase and, together with the internally
generated bump dynamics, a change in bump amplitude.

In general, successive stimulus frames of a time-varying stim-
ulus drag the bump toward their respective orientations in a
continuous fashion (Fig. 1C ), with an angular displacement that
depends on the current bump amplitude (SI Appendix, Fig. S2B).
We can distinguish two distinct stages of the bump dynamics:
1) the transient regime, in which the bump amplitude is grow-
ing continuously; and 2) a fully formed bump. The integration
properties of the bump in these two stages are qualitatively dif-
ferent. In the first stage, during the transition from homogeneous
network activity to a persistent bump state, the bump grows in
amplitude, driven by the internal dynamics and the stimulus, and
successive stimulus frames become less and less effective in moving

*Note that for Ĩ0 ≤ 0, the potential is a paraboloid with a single equilibrium at the center
and the uniform activity state is stable (SI Appendix, Fig. S2A).
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Fig. 2. Dynamics of the bump attractor network in the potential landscape.
(A) Geometrical representation of the potential corresponding to the dynam-
ics of the bump attractor (Eq. 2). The surface of this potential represents the
dynamical 2D manifold of Eq. 1, such that a point on this surface is a possible
state of the activity bump, characterized by its amplitude R and phase ψ. The
movement of the red ball in each potential corresponds to the dynamics of
bump formation and translation shown in B. (B) Evolution of the network
activity from the unstable homogeneous state 1 to the stable bump state 2 in
the absence of external stimuli (̃I1 = 0), followed by a translation of the bump
(transition from state 2 to state 3) toward the location of the stimulus θstim

when the external stimulus is present (̃I1 > 0). Note that for Ĩ1 = 0, the bump
forms at an arbitrary angle ψ, determined by noise fluctuations.

the bump. In the second stage, when the bump amplitude has
reached its steady state, it cannot grow further, and the impact
of subsequent stimuli becomes constant over time. Equipped
with the theoretical insights gleaned from our analysis of Eqs. 1
and 2, we can now study different stimulus-integration regimes in
the network.

The Ring Model Shows a Variety of Temporal Evidence-
Integration Regimes. Our theoretical results showed that the
changes in bump phase caused by a time-varying stimulus
critically depend on the bump amplitude, suggesting its key
role in the integration of sensory stimuli. To investigate this,
and to confirm the validity of the analytical results in a wide
parameter range, we ran simulations in which networks with
different steady-state bump amplitudes had to estimate the average
direction of a sequence of oriented frames, distributed between
−90◦ and +90◦, as in Fig. 1C. The bump amplitude was set
by varying the global excitatory drive to the network I0 and
keeping all other parameters fixed. To quantify the dynamics of
evidence integration, we used the psychophysical kernel (PK),
which measures the impact of each stimulus frame on the final
direction estimate (i.e., the bump position at the end of the trial)
using a regression model (Materials and Methods).

We first considered the simpler case, where a trial starts with
an initial bump (i.e., the ball is in the circular attractor well;
point 2 in Fig. 2). This is relevant because spontaneous bump
states have been observed in prefrontal and visual cortex (38–40),
and we elaborate on the potential impact on perceptual judgments

further below. The PKs we obtained for different values of I0
are qualitatively similar (Fig. 3A): They all rise, indicating that
the stimulus frames later in the trial have more impact on the
final estimate (i.e., the bump phase ψ at the end of the trial)
than early stimulus frames. This commonly called “recency” effect
becomes weaker as I0 increases, yielding a decrease of the PK
slope (Fig. 3C ). The reason for the general overweighting of late
stimulus information (leaky integration) in the bump attractor
model is not trivial, but can be understood by comparison with
the PVI (Eq. 4) and, more specifically, by comparing their cor-
responding potentials. The potential of the PVI (Eq. 5) takes the
form of a plane going through the origin and tilted toward the
stimulus direction θstim. Thus, the evolution of R in the PVI
only depends on the particular combination of the directions of
stimulus frames in each trial, and, on average, R will grow because
of a net movement in the direction of the mean of the stimulus dis-
tribution θ̄stim (SI Appendix, Fig. S1D shows how the growth rate
depends on the width of the stimulus distribution). As R grows,
the angular updates become smaller with each stimulus frame
(in other words, as the number of samples grows, the running
average direction increasingly relies on the already-accumulated
information). This is in contrast to the integration process in the
bump attractor network with a formed bump, in which the bump
amplitude is fixed (determined by the shape of the potential;
Fig. 2A), and integration occurs only in the angular direction.
Because of this, the network gives equal weight to the angular
updates over time, thus partly erasing the accumulated stimulus
information, while overweighting late stimulus information. The
strength of the recency effect depends on the bump amplitude. As
described in the previous section, the smaller the I0, and, thus,
the bump amplitude, the larger the angular displacement for a
given stimulus strength I1 and the faster the bump can track the
orientation of incoming stimuli, resulting in a PK with increasing
recency effect (Fig. 3 A and C and SI Appendix, Fig. S2).

Strikingly, when we ran simulations in which the network had
to estimate the average stimulus direction starting the trials in
the homogeneous network state, with no bump formed (i.e., at
the unstable center position on the potential; point 1 in Fig. 2;
see SI Appendix for details on the initial conditions), we ob-
served three qualitatively distinct integration regimes, depending
on the global excitatory drive to the network I0 (Fig. 3B and
Movies S1–S3). In the first regime, a small I0 yields again a
recency PK (Fig. 3 B, Left). Here, the steady-state bump amplitude
is relatively small, and the bump can only grow very slightly over
time (Fig. 3D, red line). Thus, stimulus integration is limited
by the small bump amplitude, as in the previously considered
case with the bump formed from the beginning of the trial
(Fig. 3 A, Left).

Second, for large I0, the networks showed a “primacy” effect—
that is, early stimulus information now had a higher impact on the
final estimation than later stimulus information (Fig. 3 B, Right
and Movie S3). This can be understood by considering that in this
regime, the bump amplitude is small at the beginning of the trial,
but then quickly grows to a large amplitude (Fig. 3D, blue line).
Thus, the bump can quickly follow the stimulus direction early in
the trial during the formation of the bump, but while growing, it
becomes increasingly sluggish, and stimulus information becomes
comparably less effective in displacing the bump. Compared to the
PVI, the bump amplitude grows too quickly because it is driven
by the internally generated dynamics in addition to the stimulus
(i.e., the potential is not flat as for the PVI, but has a peak in the
center; Fig. 3 B, Top Right). The resulting down-weighting of later
stimulus frames only occurs while the bump is growing (transition
from point 1 to point 2 in Fig. 2). Once the steady-state bump
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Fig. 3. The global excitatory drive I0 determines the integration regime of the network. (A) PKs for increasing values of I0 (Lower; from left to right, I0 = 0.02,
0.05, and 0.08) with a fully formed bump as the initial condition. The PKs describe the impact of each stimulus frame on the estimated average orientation.
(A, Upper) For small values of I0, the potential takes the form of a steep paraboloid, where the bump has little space to grow (Upper Left). Intermediate values of
I0 transform the potential into a wide surface similar to a dish with a relative flat central area (A, Upper Center). Increasing I0 widens the potential and gives rise
to an increasingly deeper circular manifold at the bottom of the juice squeezer (A, Upper Right). (B) PKs as in A, but with spatially homogeneous initial conditions
(flat network activity; ball at the center of the potential). PKs were obtained from numerical simulations of the ring attractor network (colored lines) and from
simulating the amplitude equation (dashed gray lines; Eq. 1). (C) PK slope as a function of the excitatory drive I0, for the spatially homogeneous (black line) and
inhomogeneous (blue line) initial conditions. (D) Evolution of the bump amplitude for different values of I0. Colored lines correspond to values of I0 used in B.
The evolution of the vector length in the PVI is shown for comparison (dotted gray line). (D, Inset) Distribution of the bump amplitude at the end of the trial. The
histograms for I0 = 0.05 and for the PVI (in black) perfectly overlap. (E) PK slope as a function of the stimulus duration, with stimuli composed of eight frames
of varying duration between 10 ms and 2.5 s (i.e., a total stimulus duration of up to 20 s). Corresponding PKs are shown in SI Appendix, Fig. S4A. Stim., stimulus.

amplitude has been reached (corresponding to the attractor well of
the potential), the model starts to overweight incoming evidence,
and, as a consequence, for very long stimulus durations, the model
will eventually show a recency PK (Fig. 3E, blue line).

Third, for intermediate values of I0, primacy and recency
effects balance out, and we obtained an almost perfectly uniform
PK (Fig. 3 B, Center and Movie S1). Thus, in this regime, all
stimulus frames had the same impact on the final estimate over
the whole trial (PK slope = 0; Fig. 3C ). In this case, the potential
has only a relatively small peak at the center, approximating the
flat potential of the PVI (Fig. 3 B, Center Upper). The growth rate
of the bump amplitude is mainly driven by the stimulus, as in the
PVI (SI Appendix, Fig. S1D). The value of I0 in which the model
best approximates the PVI depends on the stimulus strength, the
stimulus duration, and the distribution of the stimulus directions
(SI Appendix, Fig. S4). Approximately perfect integration is only
possible as long as the bump amplitude can be strongly shaped by
the external stimulus (before the well of the potential is reached)—
that is, perfect integration relies on the transient dynamics during
the transition from spontaneous activity to a persistent bump
state. For long stimulus durations, the bump state will eventually
be reached, and integration again becomes leaky, as indicated by
a recency PK (Fig. 3E, positive PK slopes). In contrast, for very
short stimulus durations, the internally generated bump dynamics
become negligible, and the PKs approach uniform integration in
all cases (Fig. 3E). Thus, primacy, uniform, and recency PKs are
robustly observed for small and intermediate stimulus durations

(Tstim in the range of hundreds of milliseconds up to several
seconds).

Accuracy of Stimulus Estimation. We next quantified the esti-
mation accuracy in the different temporal integration regimes of
the bump attractor model (shown in Fig. 3B). We computed
stimulus-estimation curves by reading out the bump phase from
the network activity at the end of the trial, averaging the estimates
across trials, and plotting them as a function of the actual mean
orientation θ̄stim (Fig. 4A).
Estimation bias. When varying the bump amplitude through a
change in excitatory drive I0, we found that the estimation curves
always stayed close to the identity line (Fig. 4A). We quantified
this by computing the estimation bias (SI Appendix) and obtained
best < 2◦ for all values of I0 (SI Appendix, Fig. S5E , red line).
Unbiased estimation in the bump attractor model† is a direct
consequence of starting the integration process in the neutral
center of the potential and the symmetry of the potential (Fig. 2,
point 1). The direction of the first stimulus frame determines
the initial phase of the forming bump in an unbiased manner.
Subsequently, the bump moves and grows, but as long as the
directions of the stimulus frames are drawn independent and iden-
tically distributed from some underlying distribution, clockwise

†Note that unbiased estimation curves are expected for temporally unstructured stimuli,
as we used here. Any nonuniform stimulus weighting yields trial-to-trial imprecision in the
estimates, but those get averaged out when computing the estimation curve.
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Fig. 4. Dependence of estimation accuracy on the global excitatory drive
I0 and the noise σOU. (A) Estimated average (Avg.) direction as a function of
the true average of a 2-s stimulus composed of eight oriented frames, for
increasing values of I0. Solid lines indicate the average across trials, and the
shadings indicate SD. (A, Insets) Corresponding PKs from Fig. 3B. (B) The rms
error (SI Appendix) of the ring attractor network with noise (σOU = 0.15) and
without noise (σOU = 0) as a function of the global excitatory drive I0. The
estimation error for σOU = 0.15 (black line) corresponds to the estimations
shown in A. The estimation error for a perfect weighted average of the stim-
ulus directions (with the same temporal weighting as the network model, but
otherwise optimal; SI Appendix) is shown for comparison. Note that the curve
corresponding to σOU = 0 has been shifted such that for both conditions the
critical value of Iexc at the bifurcation point is aligned. (C) Dependence of
the estimation error on the stimulus duration and the noise amplitude σOU.
Stimuli had eight frames of varying durations, as in Fig. 3E, and the excitatory
drive was I0 = 0.05. Estimation error curves for other values of I0 are shown
in SI Appendix, Fig. S4C.

and counterclockwise bump displacements are equally likely, and
the trial average of the estimates remains unbiased, irrespective of
the temporal weighting regime (SI Appendix, Fig. S5A). We also
investigated the estimation bias in the network with an initially
formed bump (Fig. 3A and SI Appendix, Fig. S5). In psychophys-
ical experiments, this initial bump position could be determined
by a reference line shown before the onset of the stimulus (3, 4), or
it could be related to the subject’s prior expectation before the start
of the stimulus (5). In the network, we found an attractive bias of
the estimates toward the initial condition that decreases over time
as the stimulus is integrated (SI Appendix, Fig. S5D). Moreover,
for a fixed stimulus duration, its magnitude increased with the
global excitatory drive I0 to the network (SI Appendix, Fig. S5E ,
blue line). The reason is that a higher I0 yields larger bumps that
are more sluggish and, thus, need more time to overcome the bias
caused by the initial bump position.
Estimation error. We found that the trial-to-trial variability of the
estimates depended on the integration regime (Fig. 4A, shaded
areas; Fig. 4B). Several factors could give rise to estimation errors
in the attractor model and may thus contribute to this depen-
dence: 1) internal noise and stimulus fluctuations of magnitude
σOU (Materials and Methods); 2) suboptimal evidence integration
due to nonuniform evidence integration (i.e., nonuniform PKs);
and 3) additional impact of the nonlinear internally generated
bump dynamics on evidence integration not captured by the
PK. We first considered the impact of the noise by running
simulations of the network without noise (σOU = 0) and ob-
tained, as expected, a general decrease of the estimation errors
(Fig. 4B, orange line). We next tested to what degree the remaining

estimation errors could be accounted for by the nonuniform
evidence weighting in the primacy and recency regimes. To show
this, we compared the dependency of the estimation error on
I0 of the attractor model, with the estimation error obtained by
computing the true average of the stimulus directions with the
PVI, but weighted with the PKs from the bump attractor model
(Fig. 4B, dashed line). The obtained estimation errors are almost
indistinguishable from the errors of the noiseless bump attractor
network. Thus, the increase of estimation errors for nonoptimal
I0 can be attributed to the suboptimal, nonuniform, temporal
weighting captured by the PK. Because the nonlinear internally
generated bump dynamics of the ring model can only yield an
approximately uniform PK, the estimation errors are nonzero,
even for the best I0 for a given stimulus distribution (particularly
for wide distributions; SI Appendix, Fig. S4D). We confirmed that
the estimation errors for the noiseless bump attractor network
were low for the entire range of stimulus durations for which
uniform weighting is achieved (Fig. 4C, dashed line; Fig. 3E, black
line). Furthermore, we found that the relative contribution of
noise and suboptimal evidence integration to the estimation error
depends on the stimulus duration (Fig. 4C ). For short stimulus
durations, the noise cannot be averaged out, and it becomes the
dominant factor. For very long stimulus durations, the noise is
essentially averaged out, and estimation errors are primarily caused
by suboptimal weighting, as indicated by converging estimation
error curves in Fig. 4C. Finally, we found that temporal gaps
in the stimulus stream increased the estimation errors due to
noise-driven bump diffusion during the gap periods and changes
in evidence weighting caused by longer total integration times
(SI Appendix, Fig. S6). Together, these results show that the es-
timation accuracy in the bump attractor network is limited by
noise and by the internally generated bump dynamics causing
nonuniform evidence integration, whereas further contributions
of nonlinearities (not captured by the PK) are negligible.
Robustness of stimulus estimation to noisy connectivity. All sim-
ulations so far were obtained from ring attractor networks with
idealized, rotation-invariant, and noiseless connectivity profiles. It
is well known that even small noise in the weight profiles destroys
the neutrally stable ring attractor manifold and leads to a few dis-
crete attractor states (28). The drift of the bump toward one of the
few stable positions can be disastrous for working memory, where
one wants to store a localized, cue-specific activity pattern over a
prolonged time interval (41). However, we reasoned that stimulus
integration in the transient regime during the formation of the
bump may be more robust against heterogeneous connectivity.
To test this, we ran simulations with different noisy connectivity
matrices and found that this leads to systematic deviations of the
stimulus-estimation curves from the identity line (i.e., estima-
tion biases) and increased estimation errors (SI Appendix, Fig. S7).
Nevertheless, even for relatively large noise in the connectivity
matrices, the estimation curves were monotonic functions of the
stimulus average in all cases, and all networks showed primacy,
uniform, and recency PKs, as observed for noiseless connectivity
(SI Appendix, Fig. S7).

The Ring Model Explains Heterogeneity in Integration Dynamics
in Humans. We tested whether human subjects show variations
in their integration dynamics in a stimulus-averaging task and
whether the ring model could parsimoniously account for those
variations (Fig. 5). In this task, a visual stream of eight oriented
Gabor patters was presented to participants (Fig. 5A; ref. 33).
Each frame had an orientation between −90◦ and 90◦ and a fixed
duration of 250 ms. At the end of the stream, participants reported
whether, on average, the tilt of the eight frames fell closer to the
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Fig. 5. The ring attractor model accounts for experimentally observed PKs.
(A) Category-level averaging task (33–35). Participants reported whether, on
average, the tilt of eight oriented Gabor patterns fell closer to the cardinal
{0◦, 90◦} or diagonal {−45◦, 45◦} axes. (B) PKs obtained from human sub-
jects were heterogeneous. Thin lines represent the PKs of individual subjects
and data points with error bars the group averages. We fit the ring model to
the experimental data by varying the excitatory drive I0 (dashed lines).

cardinal or diagonal axes. Participants were able to combine the
evidence favoring either option, improving their accuracy in trials
with higher evidence (33–35).

We merged the data from three studies (33–35) carried out
using very similar experimental conditions (n = 61 subjects;
Materials and Methods). We computed their individual PKs and
classified the subjects according to their temporal weighting
behavior (primacy, uniform, and recency) (Materials and
Methods). As previously reported (34), across participants, there
was a tendency for late temporal weighting (recency). However,
subject-by-subject analysis revealed a broad range of integration
dynamics (Fig. 5B and SI Appendix, Fig. S8). The majority of
participants weighted more the sensory evidence during the late
periods of the stimulus (33/61), yet a substantial proportion of
the participants weighted the evidence approximately uniformly
(20/61). Finally, a minority of participants (8/61) weighted early
frames of the stimulus more than late frames, showing a primacy
PK. Qualitatively, the ring model could capture these different
temporal integration dynamics observed in the psychophysical
experiments (Fig. 3). To assess whether the model could explain
the data in a quantitative manner, we performed simulations
with the same stimulus statistics as in the behavioral experiment.
We systematically adjusted both the global excitatory drive
to the network, I0, and the noise level, σOU, such that the
ring network reproduced, on average, the experimental results
(Fig. 5B), characterized by the slope of the across-subjects PKs
and the average performance for each integration regime (primacy,
uniform, and recency). The intersubject heterogeneity in temporal
evidence weighting could thus parsimoniously be explained by
varying the overall excitatory drive that determines the amplitude
of the bump, while adjusting the noise fluctuations to match the
performance of the subjects.

It is conceivable that the global excitatory drive does not only
differ between individuals, but that it could also be modulated
on a trial-to-trial basis, such that it may therefore change the
time course of evidence integration, depending on the current
task conditions. Such a task-driven change has previously been
observed in a similar task as in Fig. 5 that studied the mechanisms
of perceptual choices under focused and divided attention (35). In
that task, two spatially separated stimulus streams were presented
simultaneously, and subjects had to integrate either a single or

both streams in a trial-to-trial basis. We built a network model
consisting of two ring circuits (SI Appendix) and found that the
results of this experiment can be explained by a change in the
excitatory drive that controlled the allocation of a fixed amount of
resources between the two circuits (SI Appendix, Fig. S9). In sum,
our model suggests that the overall excitatory drive determines the
integration regime. Control signals, like top-down attention sig-
nals or neuromodulatory gain changes, can impact the dynamics
of evidence integration, and the model makes specific predictions
about the underlying changes in neural activity.

Bump Attractor Dynamics Links Integration Dynamics and
RTs. Finally, to derive specific predictions from the model that
go beyond the shape of the PK, we extended the model by
coupling the ring-integration circuit to a canonical decision circuit
(6, 7) and studied the decision build-up in the different evidence-
integration regimes (Fig. 6 and SI Appendix, Fig. S10). In this
two-circuit model (Fig. 6A and SI Appendix), evidence about the
average stimulus direction is integrated in the phase of the activity
bump in the integration circuit and then converted to a categorical
choice in the decision circuit. The model architecture is similar to
previous models that incorporate a decision read-out circuit (14,
42), and it is consistent with experimental evidence suggesting

A B

C D

Fig. 6. Dependence of RTs on the shape of the PK. (A) Ring integration circuit
coupled to a categorical decision circuit (SI Appendix). Left (L) and right (R)
excitatory populations in the decision circuit receive inputs, IL and IR, from
their corresponding side of the ring. The inhibitory population (I) promotes
winner-take-all competition (6). At the end of the stimulus presentation,
the decision process is triggered by the activation of an urgency (or choice
commitment) signal that initiates the competition. (B) Dependence of RTs
on the excitatory drive I0 in the model. (B, Upper) Average activities of the
L and R populations for low (dashed) and high (solid) I0 and stimuli with
average direction of 15◦. RT is measured from the onset of the urgency signal
(at t = 2 s; shaded area) until one of the firing rates reaches the threshold
rth = 50 Hz. B, Upper, Inset shows the summed bottom-up inputs, IL and IR.
(B, Lower) Average activity of the integration circuit at the end of the stimulus
presentation. (C) Average RTs as a function of the PK slope. (D) RTs of human
subjects (n = 47) vs. their PK slopes show a significant correlation (r = 0.39,
P = 0.006, t test). Subjects’ RTs were z-scored for each dataset (SI Appendix).
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that premotor cortex shows discrete attractor dynamics in binary
decision tasks (43, 44). However, we would like to note that, while
our two-circuit model is broadly consistent with existing data, a
direct validation of our specific architecture must await future
experiments, ideally from simultaneous multiarea recordings.

Specifically, we were interested in how the dynamics of the
bump impacts the RT, from stimulus offset to reaching a categori-
cal choice. We found that the model predicts a direct relationship
of RTs and the shape of the PK (Fig. 6C ). Different PKs in the
model are obtained by varying the excitatory drive to the network
(Fig. 5). Increasing the excitatory drive leads to an increase of
the bump amplitude and a transition from recency over uniform
to primacy weighting (Fig. 3 B and C ). The bump amplitude,
in turn, affects the RT in the two-circuit model (Fig. 6B). RTs
are larger for small bump amplitudes because the decision circuit
receives weaker input and, therefore, takes longer to reach the de-
cision threshold. Taken together, the model predicts that primacy
temporal weighting should be accompanied by shorter RTs and
recency weighting by longer RTs—i.e., RT should increase with
the slope of the PK (Fig. 6C ). Note that we would obtain the
same prediction if we replaced the decision circuit with a different
mechanism (e.g., a drift-diffusion model), as long as the RT is a
function of the firing rate in the integration circuit. We tested
this nontrivial prediction in the experimental data and indeed
found a significant correlation between the subjects’ RTs and PK
slopes (Fig. 6D). It is unlikely that the differences in RTs could
be explained by a different fraction of correct trials depending
on the PK slope because we did not find a correlation between
PK slope and the fraction of correct trials (Fig. 6D; r = 0.04,
P = 0.774, n = 47, t test). Moreover, we found that RTs in
human subjects decreased with the average stimulus evidence
for correct trials and increased for incorrect trials, which is also
captured by the network model (SI Appendix, Fig. S10). In sum,
the two-circuit model provides a mechanistic link between neural
population activity, evidence-integration dynamics, and RTs that
can be further validated experimentally.

Discussion

We investigated the neural network mechanisms underlying the
integration of a time-varying stimulus (e.g., a sequence of visual
gratings with different orientation) for continuous perceptual
judgments. Analytically and through simulations, we showed that
the classical continuous ring attractor model (17, 25, 28) can
nearly optimally compute the time integral of stimulus vectors
defined by the strength and the direction of the stimulus. As re-
quired by optimal integration of a circular feature, the population
activity of the network unfolds on a 2D manifold with an angular
and a radial latent variable. The angular variable corresponds to
the circular average of the stimulus directions and is represented
by the position of the network’s activity bump. The radial variable
evolves, depending on the dispersion of the stimulus directions,
and it is represented by the amplitude of the activity bump. Thus,
the network simultaneously tracks the running average of the
stimulus and the uncertainty of sensory information. The precise
dynamical regime in which the model closely approximates perfect
vector integration depends on the stimulus statistics, as well as
the stimulus strength and duration (SI Appendix, Fig. S4). It is
characterized by a relatively wide and shallow potential, so that
the evolution of the bump is dominated by the stimulus, and not
by the internally generated bump dynamics (Fig. 3).

A key finding here is that optimal stimulus averaging relies
on the transient dynamics during the formation of the bump,

whereas evidence weighting in a network with a fully formed
bump becomes suboptimal. The limiting factor imposed by the
internal dynamics of the network is that the bump amplitude
cannot grow beyond a maximum value that depends on the model
parameters and is proportional to the overall excitatory drive to the
network. When the maximum bump amplitude is reached, which
will eventually happen for long stimulus durations, the model has
reached the neutrally stable ring attractor and can still track the
average stimulus phase. However, the model is then overweighting
later stimulus frames, similar to a leaky integrator. In addition to
this recency effect, the model can also show primacy temporal
weighting when the internal network dynamics contributes to a
rapid initial growth of the bump, and initial stimulus frames have
a relatively higher impact on the evolution of the bump phase. In
sum, we have uncovered the fundamental mechanism underlying
stimulus integration in the phase and the amplitude of the bump
of the ring attractor model.

Flexibility of Temporal Integration. The internally generated
bump dynamics endow the bump attractor network with a variety
of integration kernels, ranging from early (primacy) over uniform
to late (recency) temporal weighting. The key parameter that
controls the integration dynamics is the global excitatory drive
to all neurons in the network, I0 (Fig. 3). Keeping all other
parameters fixed, I0 determines the depth and the width of the
potential (SI Appendix, Fig. S2) and, thus, the maximal bump
amplitude and the intrinsic network dynamics. We showed that
by varying I0, the model could account for the heterogeneity
in how human observers weighted sensory evidence across a
stream of oriented stimulus frames (Fig. 5), as well as for
their RTs (Fig. 6 and SI Appendix, Fig. S10). In addition to a
different level of global excitatory drive, subjects are likely to
show other differences as well—for example, a different E /I
ratio or a different gain of the neural circuits involved in evidence
integration. Effectively, in the model, these intersubject differences
can be captured by different values of I0. In particular, it can be
shown that a change in the slope of the neuronal transfer function
is mathematically equivalent to a change in I0. The global cortical
gain can also be modulated in a task-dependent manner across
time in individual subjects—for example, controlled by top-
down control signals or neuromodulation (45–47). This provides
a mechanistic explanation for attention-driven differences in
evidence integration (SI Appendix, Fig. S9). Moreover, a time-
varying neural gain or excitatory drive in the model can
switch the network from an integration regime into a working-
memory regime that has different requirements. During stimulus
estimation, the excitatory drive should be moderate, so that the
network has a relatively shallow potential and would act as a
PVI. Subsequently, after stimulus presentation, an increase of I0
can make the potential wider and deeper and, thus, increase the
stability of the bump against noise and against further incoming
stimuli, as is needed for distractor-resistant working memory (25,
48). Such a transition could also be gradual—for example, caused
by a ramping I0 (49).

Mechanisms Underlying Biases in Perceptual Estimation and
Categorization Tasks. Independent of the temporal weighting
regime, the average orientation estimates of the model were al-
ways unbiased, as long as the integration process starts with
homogeneous network activity (Fig. 4). Starting the integration
process with a formed activity bump shifts temporal integration
toward recency and can introduce estimation biases toward the
initial bump position (Fig. 3 and SI Appendix, Fig. S5). The exis-
tence of bump states before stimulus presentation is supported
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by neural population recordings (38–40). A recent paper (5)
investigated how prior expectations influence motion-direction
estimation in humans and found attractive biases toward the
predictive cued direction and a correlation between reported
directions and directions decoded from magnetoencephalography
(MEG) activity that emerged before stimulus onset. These find-
ings are consistent with the initial bump condition in our model
(SI Appendix, Fig. S5).

Moreover, it has been shown in combined discrimination and
estimation tasks that stimulus estimation is influenced by a cate-
gorical decision causing postdecision biases (3, 4, 15, 50). It has
been suggested that these bias effects are mediated through selec-
tive attention signals and through changes in global gain (4, 50).
Our bump attractor model allows for testing these hypotheses.
For example, in the seminal work of Jazayeri and Movshon (3),
subjects showed a repulsive bias of direction estimates (away from
a reference) while performing a fine-motion-discrimination task.
In contrast, subjects showed an attractive bias (toward a reference)
in a similar coarse discrimination task, in which they had to report
whether the dots moved toward or 180◦ away from the reference.
In the model, a spatially modulated attention signal, targeting the
location of the two possible choices in the ring, could potentially
reproduce the experimentally observed biases. During the fine-
discrimination task, the attention signal would attract the bump
toward the clockwise or counterclockwise directions away from
the reference, causing a repulsive bias, and the same mechanism
would cause the attraction bias during the coarse-discrimination
task. Overall, our network model provides a comprehensive com-
putational framework for investigating the neural mechanisms
underlying stimulus estimation and perceptual categorization and
their interaction in future studies.

Comparison with Other Models. Bump attractor models have
previously been used to model angular path integration in the
head-direction system (27–30, 51). This involves the integration
of angular head velocity (at which the animal’s head turns), such
that the bump position tracks the current direction of the head
(52). This integration process relies on a different mechanism than
stimulus integration in our model. Head-direction models trans-
late a velocity signal into a rotation of the bump by introducing an
asymmetry in the attractor dynamics. This can be realized through
populations of right- and left-rotation cells that are selectively
activated by rightward and leftward angular head-velocity inputs
and are connected to head-direction cells with a spatial offset (27,
51). As a result, in these models, the angular head velocity controls
the speed of the bump, such that a constant angular head velocity
yields a constant bump rotation. In contrast, our model does
not include a rotation mechanism, and the bump moves with an
angular speed that is determined by the sine of the difference of the
current bump positionψ and the stimulus direction θstim (Eq. 1b).
Furthermore, nearly optimal computation of the stimulus average
is only possible in the transient regime, while head-direction
models operate in the regime in which the bump is already fully
formed.

Furthermore, bump attractor networks have previously been
used to model multiple-choice decision making, with several
activity bumps representing discrete choice options (24). Evidence
accumulation in this model relies on competitive dynamics be-
tween the bumps, which lead to ramping up of the firing rate
of the winning bump. This is in stark contrast to the stimulus
averaging carried out jointly in the amplitude and the phase of a
single activity bump in our model.

Mathematically, our bump attractor model can be viewed as
a generalization of the discrete attractor model of two-choice

perceptual decision making (6, 7, 9, 53). However, the dynamics
of evidence integration in the two models are fundamentally
different. Discrete attractor models have a double-well potential
that usually leads to a primacy temporal weighting because once
the system settles into one of the two attractors, it remains there
until the end of the trial. Recently, we have described how uniform
and recency weighting can be obtained when fluctuations in the
stimulus together with the internal noise are strong enough to
overcome the categorization dynamics and cause transitions be-
tween the attractor states (53). In contrast to this, in the bump at-
tractor model, a continuous integration process—without abrupt
transitions—is realized in the amplitude and phase of the bump,
and the stimulus always impacts the bump phase, yielding recency
without the need for strong fluctuations.

A previous model proposed that populations of Poisson-spiking
neurons can represent probability distributions, with the ampli-
tude of a bump-shaped population activity related to the variance
of the distribution (12, 14). In our model, bump amplitude and
stimulus variability are also related, but as a consequence of the
optimal computation of the circular mean. A further substantial
difference is that the two models solve a very different task:
Our model computes the circular average of stimuli with time-
varying orientation based on attractor dynamics, whereas the
model from Beck et al. (14) computes the posterior distribution
of accumulated noisy stimulus information for optimal decision
making by means of near-linear integration.

Several previous models of categorical decision making can
explain primacy and recency effects in evidence accumulation
based on different mechanisms (53–57). Here, we have shown
that the global excitatory drive or a global gain change provides
a parsimonious explanation for different PK shapes in continuous
estimation tasks. How a change in evidence integration is realized
in the brain is an interesting open question that needs to be
addressed experimentally (e.g., ref. 58).

Experimental Predictions Provided by Our Model. Our model
accounts for the heterogeneity in PKs observed in humans (Fig. 5),
and we have confirmed the model prediction of a relationship
between PKs and RTs (Fig. 6). To further validate the dynamical
mechanisms that we propose, we derived several specific predic-
tions that can be tested in human or monkey experiments.

First, our model predicts characteristic changes of the evidence-
integration dynamics when changing the strength, the duration,
or the statistics of the stimulus. PKs should shift toward recency
for longer stimulus durations (Fig. 3E) and for higher stimulus
contrast, which could be tested in a psychophysical experiments
with randomly interleaved trials. Additionally, the model predicts
that broader distributions of the stimulus directions would shift
the PK toward primacy and also increase the estimation error
(SI Appendix, Fig. S4D). These predictions are constrained by the
fundamental mechanisms that govern the integration dynamics
in the bump attractor network, which are fully captured by the
amplitude equation (Eq. 1).

Second, the dynamics of evidence integration crucially depends
on the global excitatory drive or gain of the model (Fig. 3), and
this could be tested experimentally by using pharmacological or
optogenetic manipulations. A recent study has compared stimulus
integration in human participants in sessions where they have
been administered the N -methyl-D-aspartate receptor antagonist
ketamine or a placebo (59). Reduced excitability under ketamine
led to more recency PKs (more leaky integration), consistent with
a reduction in excitatory drive in our model.

Third, the central prediction of our model is a systematic
relationship between the amplitude of the population response
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and the rate of change of its phase (SI Appendix, Fig. S2B). This
could be validated in simultaneous multiunit recordings from
parietal or frontal areas in monkeys performing an orientation-
averaging task. It would require decoding the current estimate
of the average direction during evidence integration and measure
the impact of individual stimulus frames on this estimate. The
change of phase in response to the same orientation difference
(between stimulus frame and current average) should decrease
in a manner inversely proportional to the population firing rate.
Neural recordings would also allow for testing whether neural
firing rates and the estimates reported by the subject are related,
as predicted by the bump attractor model, as in prefrontal cortical
neurons during spatial working memory (26). Thanks to recent
advances in fine-grained decoding of sensory and decision in-
formation across multiple brain areas from MEG activity (60),
it may be possible to test the same prediction noninvasively in
humans.

Finally, our work suggests that the same neural circuits that
are involved in working memory may also be able to carry out
stimulus averaging in perceptual estimation tasks. Bump attractor
dynamics may thus be a versatile and unifying neural mechanism
underlying both working memory and evidence integration over
prolonged timescales.

Materials and Methods

Ring Model. The dynamics of the bump attractor model are described in terms
of the effective firing rate, r (θ, t), of a neural population arranged in a ring, θ ∈
[−π, π) (Fig. 1A), obeying the integro-differential equations (17, 18, 61).

τ
∂r
∂t

=−r +Φ

(
τ

2π

∫ π

−π

w
(
θ − θ′

)
r
(
θ′, t

)
dθ′

+ Iexc + Istim (θ, t) + ξ (θ, t)

)
, [3]

where τ is the neural time constant and Φ(·) is the quadratic/square-root
current-to-rate transfer function (ref. 62; SI Appendix, Eq. S3). The synaptic input
to a neuron with preferred orientation θ consists of a recurrent current due to
the presynaptic activity at a location θ′ with a weight w (θ − θ′) and external
currents Iexc + Istim (θ, t) plus fluctuations ξ (θ, t). The connectivity profile,
w(θ), is written in terms of its Fourier coefficients, wk (k = 0, 1, 2, . . . ), and
represents the effective excitatory/inhibitory coupling and can therefore include
both positive and negative interactions. Fig. 1A shows an example of Mexican-hat-
type connectivity with strong recurrent excitation and broad inhibition. External
inputs are divided into a global net excitatory drive Iexc that modulates the
excitability of the network and a time-varying input Istim that represents the
sensory stimulus. In general, the sensory stimulus can be written in terms of
its Fourier coefficients Ik , k = 1, 2, . . . , with directions θk(t). Throughout this
work, we will focus on an input of the form Istim(θ, t) = I1 cos

(
θ − θstim(t)

)
to model a stimulus with constant strength I1 and a time-varying orientation
θstim(t), but our derivations are equally valid for time-varying stimulus
strengths I1. A detailed description of the stimuli used in the simulations is
given in SI Appendix. Finally, the fluctuation term ξ (θ, t) reflects the joint
effect of the internal stochasticity of the network and temporal variations in the
stimulus. For simplicity, we model these fluctuations as independent Ornstein–
Uhlenbeck processes for each neuron, with amplitude σOU = 0.15 and time
constant τOU = 1 ms. SI Appendix, Table S1 summarizes the values of the model
parameters.

PVI. In order to understand the integration process carried out by the ring
attractor model, we derived a dynamical system that perfectly integrates a circular
variable to compute the circular average. In general, the optimal strategy to keep
track of the average, z̄(t), of a time-varying stimulus, z(t), is to compute the
cumulative running average. For discrete-time stimuli, the cumulative running
average can be computed iteratively as: z̄t = z̄t−1 +

1
t (zt − z̄t−1) , t =

1, 2, . . . , where t represents discrete time points. If we assume that the
updates z̄t − z̄t−1 are small enough, and taking z(t) ∈C to be a stimulus
vector with strength I(t) and direction θstim(t), the cumulative running
average can be written as z̄(t) = 1

t R(t)eψ(t) (SI Appendix), and its dynamics
obey

dR
dt

= I(t) cos
(
ψ − θstim(t)

)
, [4a]

dψ
dt

=− I(t)
R

sin
(
ψ − θstim(t)

)
. [4b]

We refer to this 2D equation as the PVI. The corresponding potential landscape
is a plane going through the origin and tilted toward the stimulus direction θstim:

ΘPVI (R, ψ) =−RI cos
(
ψ − θstim

)
. [5]

The angular variable ψ of the PVI (Eq. 4b) exactly describes the evolution
of the circular average of the orientations of the stimulus frames—i.e., the PVI
computes the cumulative circular average (SI Appendix, Fig. S1 A and C).

The radial variable R of the PVI has several interpretations. First, R(t) is the
magnitude of the integrated vectors (i.e., the length of the resulting vector), and
the average magnitude of z̄(t) can be computed as |̄z(t)|= 1

t R(t). Second, from
this geometric interpretation, it is easy to see that R(t) measures the dispersion
of the directions θstim, with R(t) growing linearly with t if θstim(t) is a constant. If
θstim(t) is sampled from some underlying distribution, the growth will be slower
and depends on the width of the distribution (SI Appendix, Fig. S1 B and D).
Third, if we assume that θstim(t) is sampled from a von Mises distribution with
mean μ and concentration κ, the running circular mean ψ(t) will also be
distributed according to a von Mises distribution, with concentration proportional
to R(t)κ. In a Bayesian framework, ψ(t) and R(t) thus track the mean and the
concentration of the posterior distribution (63).

PK. To quantify temporal evidence weighting, we measured the impact of indi-
vidual stimulus frames during the course of the trial on the eventual direction
estimate using a regression model. Because we are considering circular features
(i.e., estimation of the average stimulus direction), linear regression is not well
suited, and we define the PK as the weights of a circular regression model instead
(SI Appendix). To quantify the overall shape of a PK, we define the PK slope (53).
It is the slope of a linear regression of the PK, with negative values indicating a
decaying PK (primacy), zero indicating uniform integration, and positive values
indicating an increasing PK (recency). Formally, we fit the PK with a linear function
of time, PK(t) = β0 + kβ1t, where β1 is the PK slope and k = 1

2var(t) is a factor
that normalizes the PK slope to the interval (−1, 1).

Psychophysical Data and Data Analysis. We used published data from three
studies carrying out psychophysical experiments, in which human subjects had
to categorize the average direction of a stream of eight oriented Gabor patterns
with orientations uniformly distributed in the range between −90◦ and 90◦.
(Fig. 5A; refs. 33–35). In each trial, participants reported whether, on average, the
orientation of the eight samples [each sample with a duration 250 ms (33, 34),
respective 333 ms (35)] fell closer to the cardinal or diagonal axes. In total, we
analyzed the data of 71 subjects. A detailed description of the data is given in
SI Appendix.

PKs of each participant were obtained as the weights of logistic regression
(SI Appendix, Fig. S8). To characterize the shape of individual PKs, we used lo-
gistic regression with the constraint that the PK is either uniform (constant) or a
linear function of time. We compare the model fits using the Akaike information
criterion and classify each PK as uniform (best model has a constant PK), primacy
(linear model with negative slope), or recency (linear model with positive slope)
(SI Appendix, Fig. S8).

Data, Materials, and Software Availability. The psychophysical data and
analysis scripts and the code of the computational models are available at GitHub
(https://github.com/wimmerlab/flexbump) (64). Previously published data were
used for this work (33–35).
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30. R. Chaudhuri, B. Gerçek, B. Pandey, A. Peyrache, I. Fiete, The intrinsic attractor manifold and
population dynamics of a canonical cognitive circuit across waking and sleep. Nat. Neurosci. 22,
1512–1520 (2019).

31. S. S. Kim, H. Rouault, S. Druckmann, V. Jayaraman, Ring attractor dynamics in the Drosophila central
brain. Science 356, 849–853 (2017).

32. Y. Burak, I. R. Fiete, Accurate path integration in continuous attractor network models of grid cells.
PLOS Comput. Biol. 5, e1000291 (2009).

33. V. Wyart, V. de Gardelle, J. Scholl, C. Summerfield, Rhythmic fluctuations in evidence accumulation
during decision making in the human brain. Neuron 76, 847–858 (2012).

34. S. Cheadle et al., Adaptive gain control during human perceptual choice. Neuron 81, 1429–1441
(2014).

35. V. Wyart, N. E. Myers, C. Summerfield, Neural mechanisms of human perceptual choice under focused
and divided attention. J. Neurosci. 35, 3485–3498 (2015).

36. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer Series in Synergetics, Springer,
Berlin, 1984), vol. 19.

37. M. C. Cross, P. C. Hohenberg, Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112
(1993).

38. T. Kenet, D. Bibitchkov, M. Tsodyks, A. Grinvald, A. Arieli, Spontaneously emerging cortical
representations of visual attributes. Nature 425, 954–956 (2003).

39. C. Papadimitriou, R. L. White, 3rd, L. H. Snyder, Ghosts in the machine II: Neural correlates of memory
interference from the previous trial. Cereb. Cortex 27, 2513–2527 (2017).

40. J. Barbosa et al., Interplay between persistent activity and activity-silent dynamics in the prefrontal
cortex underlies serial biases in working memory. Nat. Neurosci. 23, 1016–1024 (2020).

41. A. Renart, P. Song, X. J. Wang, Robust spatial working memory through homeostatic synaptic scaling
in heterogeneous cortical networks. Neuron 38, 473–485 (2003).

42. T. A. Engel, X. J. Wang, Same or different? A neural circuit mechanism of similarity-based pattern
match decision making. J. Neurosci. 31, 6982–6996 (2011).

43. H. K. Inagaki, L. Fontolan, S. Romani, K. Svoboda, Discrete attractor dynamics underlies persistent
activity in the frontal cortex. Nature 566, 212–217 (2019).

44. D. Peixoto et al., Decoding and perturbing decision states in real time. Nature 591, 604–609 (2021).
45. G. Aston-Jones, J. D. Cohen, An integrative theory of locus coeruleus-norepinephrine function:

Adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).
46. P. Eckhoff, K. F. Wong-Lin, P. Holmes, Optimality and robustness of a biophysical decision-making

model under norepinephrine modulation. J. Neurosci. 29, 4301–4311 (2009).
47. R. K. Niyogi, K. Wong-Lin, Dynamic excitatory and inhibitory gain modulation can produce flexible,

robust and optimal decision-making. PLOS Comput. Biol. 9, e1003099 (2013).
48. J. D. Murray, J. Jaramillo, X. J. Wang, Working memory and decision-making in a frontoparietal circuit

model. J. Neurosci. 37, 12167–12186 (2017).
49. A. Finkelstein et al., Attractor dynamics gate cortical information flow during decision-making. Nat.

Neurosci. 24, 843–850 (2021).
50. B. C. Talluri et al., Choices change the temporal weighting of decision evidence. J. Neurophysiol. 125,

1468–1481 (2021).
51. P. Song, X. J. Wang, Angular path integration by moving “hill of activity”: A spiking neuron model

without recurrent excitation of the head-direction system. J. Neurosci. 25, 1002–1014 (2005).
52. B. K. Hulse, V. Jayaraman, Mechanisms underlying the neural computation of head direction. Annu.

Rev. Neurosci. 43, 31–54 (2020).
53. G. Prat-Ortega, K. Wimmer, A. Roxin, J. de la Rocha, Flexible categorization in perceptual decision

making. Nat. Commun. 12, 1283 (2021).
54. B. W. Brunton, M. M. Botvinick, C. D. Brody, Rats and humans can optimally accumulate evidence for

decision-making. Science 340, 95–98 (2013).
55. Z. Z. Bronfman, N. Brezis, M. Usher, Non-monotonic temporal-weighting indicates a dynamically

modulated evidence-integration mechanism. PLOS Comput. Biol. 12, e1004667 (2016).
56. W. Keung, T. A. Hagen, R. C. Wilson, A divisive model of evidence accumulation explains uneven

weighting of evidence over time. Nat. Commun. 11, 2160 (2020).
57. R. D. Lange, A. Chattoraj, J. M. Beck, J. L. Yates, R. M. Haefner, A confirmation bias in perceptual

decision-making due to hierarchical approximate inference. PLOS Comput. Biol. 17, e1009517
(2021).

58. A. J. Levi, Y. Zhao, I. M. Park, A. C. Huk, Sensory and choice responses in MT distinct from motion
encoding. BioRxiv [Preprint] (2021). https://www.biorxiv.org/content/10.1101/2021.06.24.
449836v1. Accessed 25 June 2021.

59. A. Salvador et al., Premature commitment to uncertain decisions during human NMDA receptor
hypofunction. Nat. Commun. 13, 338 (2022).

60. P. R. Murphy, N. Wilming, D. C. Hernandez-Bocanegra, G. Prat-Ortega, T. H. Donner, Adaptive circuit
dynamics across human cortex during evidence accumulation in changing environments. Nat.
Neurosci. 24, 987–997 (2021).

61. D. Hansel, H. Sompolinsky, “Modeling feature selectivity in local cortical circuits” in Methods in
Neuronal Modeling: From Ions to Networks, C. Koch, I. Segev, Eds. (MIT Press, Cambridge, MA, 1998).
pp. 499–567.

62. N. Brunel, Dynamics and plasticity of stimulus-selective persistent activity in cortical network models.
Cereb. Cortex 13, 1151–1161 (2003).

63. A. Kutschireiter, L. Rast, J. Drugowitsch, Projection filtering with observed state increments with
applications in continuous-time circular filtering. IEEE Trans. Signal Process. 70, 686–700 (2022).

64. J. M. Esnaola-Acebes, A. Roxin, K. Wimmer, Computer code and experimental data for “Flexible
integration of continuous sensory evidence in perceptual estimation tasks.” GitHub.
https://github.com/wimmerlab/flexbump. Deposited 21 October 2022.

PNAS 2022 Vol. 119 No. 45 e2214441119 https://doi.org/10.1073/pnas.2214441119 11 of 11

https://www.biorxiv.org/content/10.1101/2021.06.24.449836v1
https://www.biorxiv.org/content/10.1101/2021.06.24.449836v1
https://doi.org/10.1073/pnas.2214441119

