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Abstract: The decline in episodic memory (EM) performance is a hallmark of cognitive aging and
an early clinical sign in Alzheimer’s disease (AD). In this study, we conducted an epigenome-wide
association study (EWAS) using DNA methylation (DNAm) profiles from buccal and blood samples
for cross-sectional (n = 1019) and longitudinal changes in EM performance (n = 626; average follow-up
time 5.4 years) collected under the auspices of the Lifebrain consortium project. The mean age of
participants with cross-sectional data was 69 ± 11 years (30–90 years), with 50% being females. We
identified 21 loci showing suggestive evidence of association (p < 1 × 10−5) with either or both
EM phenotypes. Among these were SNCA, SEPW1 (both cross-sectional EM), ITPK1 (longitudinal
EM), and APBA2 (both EM traits), which have been linked to AD or Parkinson’s disease (PD) in
previous work. While the EM phenotypes were nominally significantly (p < 0.05) associated with
poly-epigenetic scores (PESs) using EWASs on general cognitive function, none remained significant
after correction for multiple testing. Likewise, estimating the degree of “epigenetic age acceleration”
did not reveal significant associations with either of the two tested EM phenotypes. In summary, our
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study highlights several interesting candidate loci in which differential DNAm patterns in peripheral
tissue are associated with EM performance in humans.

Keywords: DNA methylation; CpG; epigenome-wide association study; EWAS; episodic memory;
cross-sectional; longitudinal

1. Introduction

Episodic memory (EM) is a form of long-term declarative memory, which is involved
in the storage and retrieval of unique experiences in life, including information about the
location and time of events [1]. It is well established that a decline in EM performance
is a hallmark of cognitive aging [2–4] and human memory disorders, including amnestic
mild cognitive impairment (MCI) [5,6] and Alzheimer’s disease (AD) [5,7]. While several
genome-wide association studies (GWASs) have already been performed to evaluate the
role of genetic variants in general cognitive function [8,9] and EM performance [10–12], the
latter highlighting KIBRA [10,12] and CTNNBL1 [11,13] as potential candidate genes, the as-
sociation between epigenetic modifications in the genome and EM performance still remains
largely unknown. DNA methylation (DNAm) is the most commonly studied epigenetic
mark in humans, owing to the relative technical ease and high cost-efficiency of measuring
DNAm profiles on a genome-wide scale. To this end, several recent studies aimed at the
identification of novel biomarkers for cognitive decline [14,15], pre-symptomatic demen-
tia [16], and dementia risk [17] using DNAm profiles derived from blood. In a related line
of research, some studies have suggested an association of cognitive performance with
accelerated epigenetic aging when comparing DNAm-based age estimates with chrono-
logical age [18,19]. Together, this prior work supports the hypothesis that there may be
discernible DNAm patterns in the genome associated with cognitive function [20–23].

In this study, we performed comprehensive epigenome-wide association study (EWAS)
analyses on cross-sectional (n = 1019) and longitudinal (n = 626) changes in EM performance
in two datasets assembled under the auspices of the Lifebrain consortium project [24].
Analyzed samples had a mean age of 69 ± 11 years (30–90 years) and an average follow-up
period of 5.4 ± 0.5 years for the longitudinal EM phenotype. Genome-wide DNAm profiles
were generated from buccal swabs and whole blood using the Infinium MethylationEPIC
microarray (featuring ~850 K individual CpG sites) and highlighted 21 CpGs showing
at least suggestive (p < 1 × 10−5) evidence of association with cross-sectional and/or
longitudinal changes in EM performance. To our knowledge, our study represents the first
EWAS using the EPIC array investigating both cross-sectional and longitudinal changes in
EM performance. Our analyses highlight several functionally interesting candidate loci
showing altered DNAm patterns with respect to EM performance.

2. Materials and Methods

Please see Supplementary Figure S1 for an overview of all analyses that were per-
formed in this study.

2.1. Human Samples and Measurements of Episodic Memory

In this study, we analyzed a total of 1019 samples from two independent datasets
(Berlin Aging Study II (BASE-II) and Barcelona Brain Health Initiative (BBHI)) with EM
and genome-wide methylation data available.

Berlin Aging Study II (BASE-II) and GendAge Study: The BASE-II dataset used in
this study consists of older residents (60–85 years of age) from the greater metropolitan
area of Berlin, Germany. Cognitive assessments at baseline were performed as part of the
BASE-II study [25,26] and follow-up assessments were part of the GendAge study [27].
Overall, at follow-up, there were up to n = 800 samples (buccal (n = 678) and blood
(n = 800), both sampled as part of the follow-up assessments) from BASE-II with test
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results for cross-sectional (buccal (n = 678) and blood (n = 800), overlap of n = 656 samples
with data for both tissues) and longitudinal changes in episodic memory performance
(buccal (n = 626) and blood (n = 735), overlap of n = 605 samples with data for both
tissues) available for DNAm profiling, of which 656 individuals had both buccal and blood
samples available (Table 1). The BASE-II/GendAge studies were conducted in accordance
with the Declaration of Helsinki and approved by the ethics committee of the Charité—
Universitätsmedizin Berlin (approval numbers: EA2/144/16, EA2/029/09) and the Max
Planck Institute for Human Development, Berlin (approval number: LIP-2012-04). All
participants gave written informed consent before participating. For more information on
the EM assessments, see Supplementary Material.

Table 1. Summary statistics and description of the samples used in the cross-sectional (A) and
longitudinal changes in (B) EM performance analyses.

A: Cross-sectional EM performance.

Analysis N % F Age (mean ± sd) Age range DNAm PCs Genetic PCs

BASE-II
buccal-1 433 52 76 ± 4 65–86 12 11

BASE-II
buccal-2 245 50 76 ± 4 66–90 9 11

BBHI 341 46 54 ± 7 30–67 11 4

Meta-analysis 1019 50 69 ± 11 30–90 NA NA

BASE-II blood 800 50 76 ± 4 65–90 10 13

B: Longitudinal EM performance.

Analysis N % F Age (mean ± sd) Age range DNAm PCs Genetic PCs

BASE-II
buccal-1 403 52 70 ± 4 61–81 12 11

BASE-II
buccal-2 223 50 70 ± 4 61–85 8 7

Meta-analysis 626 51 70 ± 4 61–85 NA NA

BASE-II blood 735 50 70 ± 4 61–85 9 8

Table 1 legend: %F: percentage of females in the dataset; sd: standard deviation; DNAm: DNA methylation;
PCs: principal components; “buccal-1” and “buccal-2” refer to two separate laboratory batches in which the
BASE-II samples were analyzed. Samples for BASE-II were obtained during follow-up assessments, with 656
and 605 samples overlapping between buccal and blood samples in the cross-sectional and longitudinal analyses,
respectively. Provided ages for BASE-II at follow-up (cross-sectional) and baseline (longitudinal). Meta-analyses
are based on buccal samples, and blood samples were used for a separate EWAS.

Barcelona Brain Health Initiative (BBHI): The Barcelona Brain Health Initiative (BBHI)
is an ongoing, longitudinal study with the focus on evaluating factors determining brain
health [28]. Overall, there were 341 buccal samples from BBHI with test results for cross-
sectional EM performance available for DNAm profiling. Participants had an age range of
30 to 67 years (Table 1). The BBHI project was conducted in accordance with the Declaration
of Helsinki and following the recommendations of the “Unió Catalana d’Hospitals” with
written informed consent from all subjects. The protocol was approved by the Unió
Catalana d’Hospitals (approval number: CEIC 17/06). For more information on the EM
assessments, see Supplementary Material.

2.2. Episodic Memory Phenotypes

For the cross-sectional EM phenotype, the first principal component (PC) of memory
test performances (see above and Supplementary Material) was calculated with a principal
component analysis (PCA) using the PCA function in the R package FactoMineR (version
2.6) [29]. This variable (PC1) was corrected for age at the time of the assessment used
for the cross-sectional phenotype using a linear regression model performed with the lm
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function in R. The residuals of this regression were used as outcome phenotypes in the cross-
sectional EM EWAS analyses. For the longitudinal change in the EM phenotype, an annual
percentage change (APC) estimate was calculated for each memory test. As expected, we
observed a decrease in the test performance over time (average interval: 5.4 years) between
baseline measurement and follow-up in the BASE-II dataset (Supplementary Figure S2).
See Supplementary Material for more details.

2.3. DNA Extraction and Processing

Genomic DNA was extracted using commercial kits for blood (Plus XL manual kit,
LGC, London, UK), or buccal samples (Buccal-Prep Plus DNA Isolation Kit, Isohelix,
Harrietsham, UK) following the manufacturer’s instructions. To assess the concentration
and purity of the obtained DNA, we used a NanoDrop ONE spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). See Supplementary Material for more details.

2.4. DNA Methylation Profiling

DNAm profiling was performed at IKMB at UKSH campus Kiel using the “Infinium
MethylationEPIC” array (Illumina, Inc., San Diego, CA, USA), as described previously [23].
After calling the raw DNAm intensities with the iScan control software (version 2.3.0.0; Illu-
mina, Inc., San Diego, CA, USA), these data were exported in idat format for downstream
processing and analysis. See Supplementary Material for more details.

2.5. DNA Methylation Data Processing and Quality Control

DNAm data processing and quality control (QC) were performed using the same
procedures as described previously [23] unless noted otherwise using the R (version 3.6.1)
package bigmelon (version 1.22.0) with default settings [30]. Cell-type composition es-
timates were obtained with the R package EpiDISH (version 2.12.0) [31], followed by
correction of the DNAm values for cell-type composition with the removeBatchEffect func-
tion in the R package limma (version 3.52.4) [32]. For all statistical analyses, the DNAm
β-values were used. See Supplementary Material for more details.

2.6. Epigenome-Wide Association Analyses to Identify Differentially Methylated Probes

Statistical analyses to identify differentially methylated probes (DMPs) were per-
formed in each dataset separately using linear regression models performed by the lm
function in R and the EM phenotype (residuals of the first PC regressed on age, see above)
as a continuous outcome variable. To account for differences in the DNAm profiles due to
technical (e.g., laboratory batch, microarray) and other factors, we performed a PCA on a
subset of uncorrelated CpGs in the cell-type corrected data as described previously [23]
and included these DNAm PCs as covariates in the regression model. See Supplementary
Material for more details.

2.7. Calculation of Poly-Epigenetic Scores (PESs) for General Cognitive Abilities and AD

PESs were calculated for each individual based on the test statistics from a published
blood-based EWAS on cognitive abilities [15], on all phenotypes that were evaluated in that
publication: general cognitive ability (g), general fluid cognitive ability (gf), vocabulary,
digit symbol test score (digit), logical memory (LM), and verbal fluency (verbal). Linear
regression models were fitted to the cross-sectional and longitudinal changes in EM on PESs,
adjusting for the same covariates as in the primary EWAS. See Supplementary Material for
more details.

2.8. Epigenetic Age Estimation

To estimate the “epigenetic age” (i.e., DNAm age), we applied the “Horvath multi-
tissue predictor” (HMTP) using the R script provided in the primary publication [33].
DNAm age acceleration is defined as the residual of a linear regression of epigenetic age
on chronological age. This estimate of epigenetic age acceleration in our study was used
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as an independent variable to predict EM performance using the same linear models
as for the primary EWAS analyses. Cell-type composition estimates according to the R-
package EpiDISH [31] were included as a covariate in the linear regression analysis. See
Supplementary Material for more details.

2.9. Look-Up of EM-Associated CpGs in an Independent EWAS on AD-Related Phenotypes in
Human EC

To further characterize the CpGs with suggestive evidence of association with EM,
we used test statistics from our recent AD EWAS of DNAm in the EC [23]. Results for
EM-associated CpGs identified in this study were obtained for the Braak stage and AD case–
control analyses generated in our previous study [23]. Additional association results were
retrieved from EWASs on the AD Braak stage [34–37] and cognition [15]. See Supplementary
Material for more details.

2.10. Look-Up of EM-Associated CpGs in an Independent Buccal–Brain Correlation Map

To estimate whether the DNAm patterns observed in this study could potentially also
be seen in the primary tissue of interest for cognition—the brain—we used data from the
correlation map of DNAm profiles ascertained from 120 matched human brain and buccal
samples recently generated by our group [38]. Samples used in these buccal–brain DNAm
correlation analyses are independent from those use here.

2.11. Look-Up of EM-Associated CpGs in a Buccal mQTL Database

To investigate the potential genetic influence on the DNAm at the EM-associated CpGs,
we used an in-house buccal mQTL database, which is based on 837 buccal samples from
the BASE-II dataset, out of which 675 samples were also used in this EWAS (manuscript
in preparation). Briefly, for the buccal dataset, both genome-wide QC’ed DNAm profiles
(761,034 CpG-sites) and SNP genotyping data (7,663,257 SNPs) were available for mQTL
analysis. For cis mQTL computations (with cis mQTLs defined as within ±1 Mb of the CpG
site), we used the matrix eQTL software (version 2.3) [39], which performed an additive
linear model with sex, genetic PCs 1 to 5, DNAm PCs 1 to 10, and genotyping batch
as covariates. Before association analysis, genome-wide DNAm profiles were adjusted
for cell type composition estimates. Cis mQTLs with p < 1.00 × 10−15 were defined as
genome-wide-significant for this arm of our analyses.

2.12. DNAm–mRNA Correlation Analyses

To estimate whether the DNAm patterns of CpGs showing suggestive association with
EM in this study correlated with gene expression in human brain samples, we correlated
DNAm status with RNA sequencing results generated in EC samples from healthy controls
from ref. [23]. The analyses performed here entailed computing Spearman rank correlations
using R’s cor.test function between DNAm of a CpG and normalized RNA-seq data of
the respective annotated gene(s), with annotations to specific gene regions according to
the Illumina manifest (version 1.0 B5) for the EPIC array and the GREAT annotation
tool (v4.0.4) [40]. Multiple testing was accounted for by computing thresholds using the
false-discovery rate (FDR) applying the Benjamini–Hochberg method. See Supplementary
Material for more details.

3. Results
3.1. EM Performance Measures in the Analyzed Datasets

For the cross-sectional EM performance phenotype, we had data from 1019 partici-
pants available for the meta-analysis across datasets from two study centers, with a mean
age of 69 years ± 11 years. The longitudinal change in EM performance was available for
626 buccal and 735 nonoverlapping blood samples in the BASE-II dataset, with a mean
age at baseline of 70 ± 4 years and an average of 5.4 ± 0.5 years between baseline and
follow-up assessments. For an overview of the samples available for the cross-sectional
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and longitudinal EM EWAS analyses, see Table 1. Overall, the cross-sectional EM per-
formance and longitudinal change in EM performance correlated moderately (R = 0.42,
p = 1.87 × 10−35). For a visual summary of the longitudinal change in EM performance
in the BASE-II dataset, see Supplementary Figure S2. As expected, there was a tendency
toward lower test scores at the follow-up timepoint when compared to baseline analyses
for all four tests. A paired t-test on the change in EM performance over time revealed that
test scores differed significantly between both time points for three out of four tests applied
in this dataset (see legend to Supplementary Figure S2).

3.2. EWAS Meta-Analyses Highlight Several CpG Loci Showing at Least Genome-Wide Suggestive
Association with Cross-Sectional and Longitudinal Changes in EM Performance

Overall, our EWAS analyses displayed low genomic inflation factors λ, with a max-
imum λ of 1.03 (Supplementary Table S1). While the EWAS analyses performed in this
study did not identify any epigenome-wide significant signals (p < 9 × 10−8; according to
Mansell et al. [41]; Figure 1), they highlighted several loci showing suggestive (p < 1 × 10−5)
evidence of association with cross-sectional or longitudinal EM performance. Specifically,
in the EWAS of cross-sectional EM performance, we identified nine loci showing evidence
at this level (Figure 1A). Three of these loci also showed at least nominally significant
association (p < 0.05) with a longitudinal change in EM performance (Table 2A), with effects
pointing in the same direction in all instances. For the longitudinal change in EM perfor-
mance, we observed a total of twelve suggestive EWAS signals (Figure 1B; Table 2B), six of
which also showed at least nominally significant association (p < 0.05) with cross-sectional
EM performance with the same direction of effect (Table 2B).

Table 2. Suggestively significant signals (p < 1 × 10−5) of EWAS meta-analysis with cross-sectional
(A) and longitudinal change in (B) EM performance.

A: Cross-sectional EM performance.

CpG Location Gene annotation * Effectcross-sect. pcross-sect. Effectlongitudinal plongitudinal

cg25311963 chr1:1546691 MIB2 −7.15 1.41 × 10−6 −0.10 0.93
cg15402943 chr4:90659260 SNCA, TIGD2 −6.38 3.07 × 10−6 −0.81 0.45
cg18370700 chr5:2212396 IRX4, IRX2 5.38 3.48 × 10−6 0.98 0.28
cg12160320 chr19:8279608 CERS4, CD320 −5.76 4.74 × 10−6 −2.04 0.04
cg13468767 chr17:9672024 DHRS7C, USP43 −2.69 5.60 × 10−6 −0.53 0.27
cg27110655 chr19:48259098 GLTSCR2, SEPW1 6.90 6.39 × 10−6 1.39 0.26
cg14408927 chr8:18875728 PSD3 4.57 7.96 × 10−6 1.90 0.02
cg17268483 chr15:50477521 SLC27A2, HDC 13.02 8.48 × 10−6 5.07 0.03
cg02064414 chr14:23122560 OXA1L, OR6J1 4.24 9.69 × 10−6 0.97 0.21

B: Longitudinal EM performance.

CpG Location Gene annotation* Effectlongitudinal plongitudinal Effectcross-sect. pcross-sect.

cg08891989 chr7:5272846 WIPI2, SLC29A4 8.96 2.56 × 10−7 5.19 0.02
ch.13.1159947F chr13:78677888 EDNRB, POU4F1 −16.43 5.05 × 10−7 −5.90 0.16

cg16525470 chr19:10983625 CARM1, YIPF2 −5.50 7.75 × 10−7 −5.03 7.22 × 10−4

cg19857541 chr3:108836800 MORC1 9.13 1.05 × 10−6 5.93 0.01
cg05275832 chr2:27984686 SUPT7L, MRPL33 −4.87 1.11 × 10−6 −2.89 0.03
cg14744604 chr14:93559541 ITPK1, CHGA −5.50 2.50 × 10−6 −1.36 0.36
cg19531475 chr13:24472454 C1QTNF9B −7.04 4.55 × 10−6 −4.28 0.02

cg21390166 chr22:21455845 BCRP2, SLC7A4,
GGT2 −4.13 4.76 × 10−6 −1.84 0.10

cg18632612 chr8:140116347 COL22A1, KCNK9 3.70 6.21 × 10−6 1.24 0.25
cg19100344 chr1:231372247 C1orf131, GNPAT 4.00 7.50 × 10−6 1.48 0.21
cg16655166 chr2:8063199 LOC339788, ID2 5.04 7.96 × 10−6 −0.08 0.96
cg27184903 chr15:29285727 APBA2, NDNL2 6.01 8.79 × 10−6 6.22 3.93 × 10−4

Table 2 legend: Suggestive CpGs (p < 1 × 10−5) of the EWAS meta-analyses; panel A: cross-sectional EM
performance EWAS meta-analysis; bolded entries show association at a nominal level (p < 0.05) with longitudinal
change in EM; panel B: longitudinal change in EM performance EWAS meta-analysis; bolded entries show
association at a nominal level (p < 0.05) with cross-sectional EM. * Gene annotation according to the Illumina
manifest (v1.0 B5) for the EPIC array and the GREAT annotation tool [40]; CpGs / genes in grey highlight loci
with independent prior EWAS evidence (Supplementary Table S1).
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Figure 1. Manhattan plot for EWAS meta-analysis using cross-sectional (A) and longitudinal change
in (B) EM performance. Figure 1 legend: Panel (A): Cross-sectional EM performance EWAS; panel
(B): Longitudinal change in EM performance EWAS; the red line indicates the epigenome-wide
significance threshold of 9 × 10−8 according to Mansell et al. [41], whereas the purple line indicates
the suggestive significance threshold of 1 × 10−5. CpGs with suggestive evidence of association are
marked in purple and annotated with the gene name according to the Illumina manifest (version 1.0
B5). CpGs without gene name were not annotated to a gene in this manifest. Chromosome = number
of human chromosome without sex chromosomes.

Notably, our EWAS on cross-sectional and longitudinal changes in EM performance
highlighted four genes, IRX2, SEPW1, HDC, and ITPK1, that were previously described in
the context of other independent EWASs utilizing the AD case–control status and Braak
stage as outcomes [34,42,43]. Other genes highlighted by this study include CD320, which
was reported to be associated with Huntington’s disease in a previous EWAS [44]; USP43,
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which was shown to have DNAm levels associated with progressive supranuclear palsy [45];
APBA2, which was reported in an EWAS of Parkinson’s disease (PD) [46] (Supplementary
Table S2). In addition, cg17268483 (annotated with the genes SLC27A2 and HDC) showed
association at a nominal p-value (p < 0.05) with an AD Braak stage and case–control status in
our previous AD EWAS in the EC [23] (Supplementary Table S2). Lastly, our look-up of the
EWAS results on cognitive performance recently reported by McCartney et al. [15] showed
that three CpGs (cg18370700 [IRX4/IRX2], cg17268483 [SLC27A2/HDC], and cg19857541
[MORC1]) were also at least nominally significantly associated with at least one phenotype
in the McCartney et al. study displaying the same direction of effect (Supplementary
Table S2). Taken together, there is a high level of concordance between previous EWAS
results on EM and traits related to neurodegenerative diseases at 1/3 (i.e., 7 of 21) of the EM
EWAS loci highlighted here, supporting the overall plausibility (and perhaps relevance)
of our results. In addition, two of the EM EWAS loci, cg12160320 and cg13468767, also
showed a moderate to high correlation of DNAm between matched prefrontal cortex
and buccal samples according to our recently derived buccal–brain correlation map [38]
(Supplementary Table S2).

Finally, we determined the overlap between suggestive EWAS results generated here
and DNAm loci associated with SNP genotypes from a methylation quantitative trait
locus (mQTL) database comprising results on 837 individuals recently generated in buccal
samples by our group (data not shown; m.s. in preparation). This look-up revealed that
DNAm at the majority (17/21, 81%) of CpGs suggestively associated with EM was under
genetic control at FDR = 0.05, i.e., all CpGs except cg08891989, cg16525470, cg05275832,
and cg19100344 (rows highlighted in grey in Supplementary Table S2). Thus, these four
nongenetic CpGs may be regulated predominately by nongenetic factors.

3.3. Poly-Epigenetic Score Analysis for Cognitive Abilities and AD Show Only Little
Correspondence with Episodic Memory EWAS

The number of CpGs used for the calculation of each phenotype PES and p-value
threshold can be found in Supplementary Table S3. To assess how well our novel EM-based
EWAS results compare to EWASs from other efforts beyond looking up individual CpG
results, we calculated PESs based on summary test statistics from a recently completed
blood-based EWAS on cognitive abilities [15], and our own AD EWAS in the human
brain (EC) [23]. These analyses served the purpose of assessing the potential overlap in
epigenetic signatures across different but related phenotypes, e.g., cognitive performance
in domains other than EM and the presence of AD. Each of these PESs were then tested
for association with cross-sectional and longitudinal changes in EM performance in our
datasets (Supplementary Tables S4 and S5, respectively).

Overall, we observed only a very modest concordance between these prior studies
and our current EM results. Upon comparing the results from McCartney et al. [15] to
the cross-sectional EM performance (Supplementary Table S4), we found that only up
to 0.8% of variance in cross-sectional EM performance could be explained by the blood-
based PES on general cognitive function (p = 0.01), and up to 0.6% of variance in cross-
sectional EM performance could be explained by the blood-based PES on the vocabulary
phenotype (p = 0.03). None of these associations remained significant after adjustment for
multiple testing using Bonferroni correction for ten independent tests (p = 0.12 and p = 0.34,
respectively). Furthermore, the buccal-based PES did not show any association with cross-
sectional EM performance. This is not unexpected, considering that the test statistics used
for the cognition PES calculations were originally generated in blood-based DNAm profiles
of McCartney et al. [15]. Likewise, there were no clearly discernible signals upon testing
the cognition PES with longitudinal changes in EM performance in our dataset using both
blood and buccal specimens (Supplementary Table S5). Again, this is not unexpected, given
that the test statistics used for the PES calculations are based on cross-sectional (and not
longitudinal) cognition phenotypes of McCartney et al. [15].
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Lastly, for the AD EWAS-derived PES, we found several associations of the buccal-
based scores with cross-sectional EM performance, but not a longitudinal change in EM
performance (Supplementary Table S4). In contrast to the cognition PES described in the
previous paragraph, these associations remained significant after adjustment for multiple
testing (9.75 × 10−3 < padj < 0.01, with up to 2.8% of the variance in cross-sectional EM
performance explained by the AD PES). In summary, none of the performed PES analyses
point toward a large overlap in associated DNAm patterns across the EM phenotypes
considered here. The best concordance in this context was achieved by the buccal-based
AD PES and cross-sectional EM performance.

3.4. Correspondence of EWAS Results in Blood and Buccal Samples Underscores Tissue Specificity

For the BASE-II dataset, both buccal and blood samples were available, which allowed
for a detailed evaluation of the tissue-specificity of the DNAm patterns associated with
EM performance of our study. To this end, we compared the buccal-based EWAS results
generated in this dataset (cross-sectional n = 678; longitudinal n = 626) with those obtained
from EWASs in blood from a largely overlapping set of individuals (cross-sectional n = 800;
longitudinal n = 735). Correlating the BASE-II EWAS test statistics from the buccal samples
(with the two batches of buccal samples meta-analyzed) and the blood samples only showed
modest correlation coefficients (cross-sectional: r = 0.05, p < 2.23 × 10−308; longitudinal:
r = 0.03, p = 1.6 × 10−197), arguing that the two different peripheral tissue types (blood and
buccal) derived from the same individuals at the same timepoint capture different aspects
of DNAm variance related to brain function.

3.5. Correlation Analysis between DNAm Levels and mRNA Expression in Human Brain Samples
Highlights Three Loci

To assess whether gene expression in the brain correlates with DNAm at the CpG sites
suggestively associated with EM performance in the meta-analysis for buccal samples, i.e.,
whether DNAm at these CpGs is associated with the gene expression of annotated genes,
we used a dataset of matched RNA-seq and DNAm profiles from the EC, and calculated
Spearman rank correlations for CpG-gene pairs as described previously [23]. While CpGs
were selected from the primary EWAS results in buccal samples, the correlation with
mRNA levels in the brain was calculated using DNAm data generated in the same brain
samples. This resulted in the evaluation of 23 CpG-gene pairs (Supplementary Table S6), of
which two showed significant Spearman rank correlations at FDR = 0.05. According to this
analysis, DNAm at cg27184903 was positively correlated with the expression of APBA2
(ρ = 0.34, q = 4.7 × 10−4) and NDNL2 (ρ = 0.34, q = 4.7 × 10−4). While the number and
strength of the associations identified in this analysis were overall modest, we note that
they were generated in an entirely independent dataset and may still provide some initial
functional clues with respect to the EM EWAS signals observed in the main analyses of
our study.

3.6. Horvath Epigenetic Age Acceleration Is Not Associated with EM Performance

To probe for a potential correlation between DNAm age acceleration and EM perfor-
mance in our datasets, we estimated DNAm age in our dataset using the HMTP “clock”.
As expected and reported previously [33,47], the HMTP DNAm age estimates were highly
correlated with chronological age for all datasets included in our study (Figure 2, Pear-
son correlation coefficients r: 0.29–0.50, 2.56 × 10−51 < p < 8.77 × 10−9; Supplementary
Table S7A). Interestingly, comparing these DNAm age estimates in the 656 BASE-II indi-
viduals having both blood and buccal-derived DNAm data available revealed that the
correlation of chronological age and DNAm age was considerably higher in the blood
dataset (r = 0.49, p = 2.49 × 10−41, Supplementary Figure S3A) when compared to the
buccal-based estimates (r = 0.31, p = 3.14 × 10−16, Supplementary Figure S3B). These results
indicate that the HMTP clock performs better in blood-based DNAm samples, while it
tends to underestimate DNAm ages with respect to chronological age in other tissues,
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particularly buccal-derived DNA, which is in line with previously reported results [33,48].
Notwithstanding this “technical verification” of the DNAm age estimation approach, none
of the analyzed datasets showed a noteworthy association between DNAm age acceleration
and cross-sectional or longitudinal changes in EM performance (Supplementary Table S7B,
Supplementary Figure S4). This means that DNAm age acceleration does not appear to be
a useful biomarker for either cross-sectional or longitudinal changes in EM performance, at
least not in the datasets analyzed here and when employing the Horvath clock algorithm.

Figure 2. Scatterplot of chronological age and HMTP DNAm age estimates. Figure 2 legend: Samples
were colored according to tissue (dark blue: buccal; purple: blood); the black line denotes perfect
concordance between chronological age (years) and Horvath epigenetic age (years).

4. Discussion

In this study, we performed a number of comprehensive EWAS analyses probing for
potential associations between genome-wide DNAm profiles and cross-sectional and longi-
tudinal changes in EM performance in two carefully phenotyped datasets of the Lifebrain
consortium. While we identified no signals passing a recently proposed epigenome-wide
significance threshold for the EPIC array [41], we identified several loci showing at least
suggestive evidence of association (p < 1 × 10−5) with either or both EM phenotypes.
Intriguingly, several of our suggestive EM EWAS signals were previously reported to be
associated with cognitive functioning or neurodegenerative diseases, such as AD, Hunt-
ington’s disease, or PD, in EWAS and GWAS (Supplementary Table S1). In particular, this
relates to the CpGs located close to the genes SNCA, SEPW1, ITPK1, and APBA2, which
we consider the functionally most interesting findings of our study and which we briefly
discuss in the subsequent section.

SNCA encodes the neuronal protein “alpha-synuclein”, which is involved in the synap-
tic activity of neurons by regulating the release of neurotransmitters [49–52]. Aberrant
polymerization of the protein is a hallmark of several neurodegenerative diseases, including
PD and Lewy Body Dementia [53]. Genetic variants in SNCA are established risk factors
for PD (e.g., ref. [54,55]) and Lewy Body Dementia (e.g., ref. [56]). In addition, recent
work suggests that transgenic mice with the A53T mutation in SNCA displayed learning
and memory deficits, providing a potential direct link between SNCA and cognitive func-
tion [57]. SEPW1 encodes “selenoprotein W”, which has been shown to be expressed in
the brain, among other tissues [58]. It is involved in protecting cells from oxidative stress
during the development of the nervous system. Furthermore, previous EWASs reported
associations of CpGs annotated to SEPW1 with Huntington’s disease [44] and AD [34].
Knockout of the protein in mice resulted in changes in the amygdala and hippocampus,
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as well as impaired fear memory [59]. ITPK1, which encodes “inositol-tetrakisphosphate
1-kinase”, is an enzyme that belongs to the inositol 1,3,4-trisphosphate 5/6-kinase fam-
ily [60]. Higher phosphorylated forms of inositol in mammalian cells are essential for life,
and animal models show that reduced ITPK1 levels can cause neural tube defects [61]. A
recent proteomics study in human brain samples from the ROS/MAP dataset showed an
association between levels of ITPK1 protein and cognitive decline [62]. This fits to DNAm
data from a largely overlapping set of individuals, i.e., the EWAS by Zhang et al., also
showing a highly significant association between methylation patterns near ITPK1 and
Braak staging [34]. In follow-up work, the ROS/MAP group later explained the association
between ITPK1 and cognitive decline to be mediated by microstructural changes in the
brain [63]. Lastly, ABPA2 encodes for “amyloid beta precursor protein binding family A
member 2”, which was reported to play a crucial role in synaptic vesicle exocytosis [64].
In addition, it binds to the amyloid precursor protein (APP), a hallmark protein in AD
pathogenesis, modulating its proteolytic fragmentation [65]. Overexpression of ABPA2 has
been shown to lead to a decrease in Aβ secretion in mice [66], along with protecting them
from and rescuing memory deficits in an AD mouse model [67]. In addition to its ties to
AD, differential DNAm at the ABPA2 locus was reported to be associated with PD [46].

The strengths of our study lie in the availability of both cross-sectional and longitudinal
changes in EM performance data, the combination of two independent and carefully phe-
notyped EWAS datasets, leading to comparably large overall sample sizes (cross-sectional
n = 1019; longitudinal n = 626), and the application of stringent quality control and data
processing procedures (as evidenced by relatively low genomic inflation factors λ for all our
analyses; Supplementary Table S1) minimizing the risk for spurious association signals. Fur-
thermore, in addition to performing the primary EWAS analyses using EM as an outcome,
we also performed a range of auxiliary analyses with the goal to facilitate the interpretation
of our main findings. This included comparing our results with a recent blood-based EWAS
on cognitive abilities [15] by calculating PESs. While in the buccal datasets, these only
showed limited concordance with our EM phenotypes, this correlation improved when
using the blood-based DNAm data. However, we note that this improvement was only
minor, suggesting that other factors (such as phenotype definition or technical aspects) may
have contributed to the differences in EWAS results. Second, while we generally observed
high correlations between Horvath multi-tissue DNAm age and estimates and chronologi-
cal age in all datasets, we found no significant association of epigenetic age acceleration
with either cross-sectional or longitudinal changes in EM performance. While this finding
is in agreement with some previous data [20,68], it does not agree with the results from
Marioni et al. [18] and Zheng et al. [19], which are similar to our study in many aspects.
For instance, the authors of ref. [18] also used HMTP age acceleration, cross-sectional (but
not longitudinal) cognitive performance, and physical fitness and analyzed a dataset with
a similar age range (70–76 years) and sample size (cross-sectional n = 920) generated from
blood-based DNAm profiles. They found a significant association between DNAm age
acceleration and fluid-type general intelligence (p = 0.024). Given the low concordance
between PES-based analyses constructed from data in ref. [15] and our DNAm profiles
(see above), the difference in DNAm clock results, again, possibly relates to differences
in the cognitive phenotypes used and/or technical differences across studies. Lastly, we
correlated DNAm and RNA sequencing data recently generated by our group in an inde-
pendent dataset of EC-based brain samples [23]. While, overall, this only revealed a modest
degree of correlation across all CpG-mRNA pairs analyzed (Supplementary Table S2), one
locus (cg27184903) in particular showed a significant correlation between DNAm and gene
expression levels of APBA2. Specifically, the results of these analyses suggest that increases
in DNAm at CpG cg27184903 lead to an increase in APBA2 mRNA expression, providing a
direct potential mechanistic link of this finding to EM performance.

Possible limitations of our study include the following aspects. First, all DNAm
profiles are based on “bulk” tissue, making it difficult to decipher whether and which of the
observed association signals are dependent on changes in cell type composition. To address
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this issue, we estimated the cell type composition using current reference databases for
blood and epithelial tissues [31] and corrected our DNAm data directly for these estimates.
EWAS results only changed marginally, so it is unlikely that inter-individual variations
in cell-type composition have substantially affected our results. We also note that cell
counts determined directly in the laboratory (available for the blood samples of the BASE-II
dataset) correlated very highly with equivalent cell-type composition estimates derived
in silico from the DNAm data (Supplementary Figure S5), underscoring the validity of
the deconvolution methods and reference datasets used here. However, future studies
using single-cell-based DNAm profiling would be needed to more extensively address this
problem. Second, as with all EWASs, we are unable to disentangle cause–effect relationships
related to our results, i.e., the observed changes in DNAm patterns could either represent
the consequence or cause for the observed changes in EM performance. However, as one
of the overarching aims of our study was to probe for novel (epigenetic) biomarkers of
cognitive performance in easily accessible, nonbrain tissues, causality relationships are not
a major concern. Third, while we went to great lengths to control for confounding factors
due to unknown factors in our study, we cannot exclude the possibility that some signals
reported here reflect spurious associations due to residual (and uncontrolled) confounding
factors. However, given the overall very low degree of inflation of the epigenome-wide
test statistics across essentially all our analyses, we do not expect such confounding factors
to have affected our results to a large extent. Finally, we only observed limited overlap of
our EWAS signals with previous EWASs on cognitive abilities, in particular, those from
ref. [14] and ref. [15]. This might be due to the fact that previous EWASs did not specifically
use EM as a cognitive trait (but rather tested other domains of cognitive functioning) and
that all previous EWASs in the field utilized DNAm profiles generated from blood, but
not buccal samples. With respect to the latter point, we note that the PES analyses using
blood-based EWAS results for cognitive functioning from ref. [15] also only showed a
very modest overlap with our blood-derived DNAm data (Supplementary Table S4). This
observation argues for genuine differences in DNAm patterns between our EM phenotypes
and the cognitive phenotypes utilized in ref. [15], which are not due to the use of a different
peripheral tissue.

In conclusion, our EWAS on cross-sectional and longitudinal changes in EM perfor-
mance highlighted several loci with at least suggestive evidence of association. These
include SNCA, SEPW1, ITPK1, and APBA2, which have all been previously implicated
to relate to neurodegenerative diseases and/or cognitive functioning. Future studies are
needed to validate our findings, to further elucidate their potential implications in brain
function, and to assess the utility of the highlighted CpGs as potential molecular biomarkers
of cognitive performance.
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R = 0.49) and the BASE-II buccal datasets (B, R = 0.31) using individuals where both blood and buccal
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