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Malaria is an infectious disease caused by parasites of the genus Plasmodium 

spp. It is transmitted to humans by the bite of an infected female Anopheles 

mosquito. It is the most common disease in resource-poor settings, 

with 241 million malaria cases reported in 2020 according to the World 

Health Organization. Optical microscopy examination of blood smears 

is the gold standard technique for malaria diagnosis; however, it is a time-

consuming method and a well-trained microscopist is needed to perform 

the microbiological diagnosis. New techniques based on digital imaging 

analysis by deep learning and artificial intelligence methods are a challenging 

alternative tool for the diagnosis of infectious diseases. In particular, systems 

based on Convolutional Neural Networks for image detection of the malaria 

parasites emulate the microscopy visualization of an expert. Microscope 

automation provides a fast and low-cost diagnosis, requiring less supervision. 

Smartphones are a suitable option for microscopic diagnosis, allowing image 

capture and software identification of parasites. In addition, image analysis 

techniques could be a fast and optimal solution for the diagnosis of malaria, 

tuberculosis, or Neglected Tropical Diseases in endemic areas with low 

resources. The implementation of automated diagnosis by using smartphone 

applications and new digital imaging technologies in low-income areas is a 

challenge to achieve. Moreover, automating the movement of the microscope 

slide and image autofocusing of the samples by hardware implementation 

would systemize the procedure. These new diagnostic tools would join the 
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global effort to fight against pandemic malaria and other infectious and 

poverty-related diseases.
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Introduction

Malaria is one of the most common infectious diseases 
worldwide. It is caused by Plasmodium parasites and transmitted 
to humans by the bite of an infected female mosquito of the 
Anopheles genus. Over 241 million malaria cases were estimated 
in 2020, an increase from the 227 million of 2019 according to the 
World Health Organization (WHO) (World Malaria Report WHO 
2021). Malaria is endemic in 85 countries and caused 627,000 
deaths in 2020. Africa is the most affected continent with 95% of 
all malaria cases reported and 96% of all deaths (Talapko et al., 
2019; World Malaria Report WHO 2021). Low-income countries 
with non-accessible healthcare resources are the most affected 
regions and malaria-related mortality has a high correlation with 
poverty rates (Ren, 2019). Socioeconomic data were collected in 
several studies to demonstrate the aforementioned correlation, 
describing the global health situation of malaria in low-income 
countries (Ricci, 2012; Konishi et al., 2016). An early diagnosis, 
suitable treatment, and prevention strategies such as vaccination 
or mosquito net control are crucial to fighting the infection. Due 
to its high global health impact, this infectious disease is still a 
global issue. In addition, the COVID-19 pandemic has increased 
the number of malaria deaths and cases from previous years, due 
to the high impact of this pandemic on the administration of 
healthcare resources worldwide (Heuschen et al., 2021).

Plasmodium infection is produced by several protozoan 
parasites of the genus Plasmodium spp. (Tangpukdee et al., 2009). 
Five species of malaria cause infection in humans: P. falciparum, 
P. vivax, P. ovale, P. malariae, and P. knowlesi. P. falciparum is the 
most virulent species and produces the vast majority of deaths 
from severe malaria (Heide et  al., 2019). The life cycle of 
Plasmodium parasites is represented in Figure  1. The life and 
infective cycle of the five species are similar, and their morphology 
and biology are analogous (Talapko et al., 2019).

Malaria treatment is crucial to reducing mortality. Prompt 
treatment is recommended, within 24 h of the onset of fever, and 
is fundamental for the reduction of mortality among children 
<5 years of age (Simba et  al., 2018). After confirmation of 
Plasmodium infection by laboratory diagnostic techniques, such 
as Rapid Diagnostic Tests (RDT) or microscopy, anti-malarial 
drugs are administered. The treatment used should be determined 
by Plasmodium species, parasitaemia density, drug-resistant 
pattern where the infection was acquired, signs of severe malaria, 
and patient tolerance of oral medication (Griffith et al., 2007).

The implementation of early detection systems for malaria 
epidemics is a high priority in Sub-Saharan African regions 
(Guintran et  al., 2006). New advances in the regulation and 
development of malaria vaccines, such as the RTS, S/ASO1 
vaccine recommendation by the WHO, can reinvigorate the fight 
against malaria (WHO recommends groundbreaking malaria 
vaccine for children at risk, 2021). Laboratory techniques for 
malaria diagnosis by detecting Plasmodium parasites are 
extensively used worldwide; microscopic visualization of thin and 
thick blood smears is the gold standard technique for malaria 
diagnosis. RDTs are also used as recommended diagnostic tools 
and could be an affordable complement for a precise diagnosis due 
to their rapidness and easy handling. Both microscopic 
visualization and RDTs have their limitations and new diagnostic 
techniques are emerging to complement the tools used nowadays. 
As a breakthrough, new image analysis techniques based on deep 
learning, a subfield in artificial intelligence (AI), are being 
developed for the automated diagnosis of blood slides. 
Distinguishing between erythrocytes infected or uninfected with 
malaria parasites is possible with deep learning detection-based 
models. Image analysis techniques allow the detection of malaria 
parasites in digital images by pre-trained deep learning models 
with large image datasets. This process would emulate the optical 
microscope visualization of thick and thin blood smear samples 
and automate the procedure. Smartphone applications could 
integrate image analysis technology based on AI and would be an 
affordable option for resource-poor environments in 
endemic areas.

Identification of the different parasite morphologies in the 
whole Plasmodium life cycle is crucial to perform a correct 
diagnosis by microscopic examination of blood smears. The life 
cycle must be considered when experts perform manual labelling 
of digital images. Immature P. falciparum trophozoites (ring 
stage), White Blood Cells (WBCs), and erythrocytes are 
commonly labelled in malaria thick and thin blood smear digital 
images (Manescu et al., 2020). The labelled data would be used to 
train deep neural network models and create AI algorithms 
capable of detecting parasites and cells.

Malaria diagnosis

Malaria diagnosis is crucial to treat and eradicate Plasmodium 
infections. An early diagnosis is determinant in effectively fighting 
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against infection. Laboratory diagnosis is accepted worldwide and 
recommended for malaria detection (Tangpukdee et  al. 2009; 
World Malaria Report WHO, 2021). Diagnostic methods for 
infectious diseases should be fast, accurate, simple, and affordable 
(Vila et al., 2017). Several techniques are available and used to 
directly or indirectly detect the presence of malaria parasites in 
blood. Table 1 shows the advantages and disadvantages of the 
most important diagnostic methods for malaria parasite detection.

Clinical diagnosis

Clinical diagnosis is the least expensive option for malaria 
diagnosis (Wongsrichanalai et al., 2007), although the non-specific 
symptomatology and possible confusion with other infections or 
diseases with similar manifestations could overlap with the final 
diagnosis. Patient origin, malaria season, and age group are 
important aspects to consider. Clinical symptomatology could 
vary depending on the phase of the disease and the Plasmodium 
parasite species producing the infection. Plasmodium infection 
could produce asymptomatic, placental, uncomplicated, and 
severe malaria depending on the symptomatology and infection 
phase (Molyneux, 1989; Bartoloni and Zammarchi, 2012; Phillips 
et al., 2017).

Clinical symptomatology should be  complemented with 
laboratory diagnostic techniques to confirm the presence of 
Plasmodium parasites. Blood smear samples are used in the vast 
majority of diagnostic techniques.

Microscopic examination of blood 
smears

Direct microscopic examination of blood smears to observe 
malaria parasites is the gold standard technique for malaria 
diagnosis (Guintran et al., 2006; Collins and Jeffery, 2007; Heide 
et al., 2019). Prior to examination, the specimen is mostly stained 
with Giemsa or Leishman staining (Bejon et al., 2014), to afford 
the parasites a distinctive appearance (Malaria diagnosis and 
treatment CDC, 2019). The protocol for Giemsa staining of 
malaria blood films is a simple and fast technique to visualize the 
active form of parasites in blood (Turrientes and López, 2016). 
Malaria microscopy standard operating procedure is the protocol 
recommended by the WHO (Giemsa staining of malaria blood 
films WHO, 2016). The blood smear examination procedure is 
shown in Figure 2.

Knowing the life cycle of Plasmodium parasites (Figure 1) is 
important to perform a correct identification of the different 

FIGURE 1

Life cycle of the Plasmodium parasite. Mosquito, human liver, and human blood stages are represented. (1) Mosquito injects sporozoites; (2) 
Infected hepatocyte; (3) Ruptured exo-erytrocytic schizont; (4) Merozoites in peripheral blood; (5) Immature trophozoites in peripheral blood; (6) 
Ruptured schizont; (7) Some immature trophozoites develop into sexual precursor cells named gametocytes; (9) Ookinete (motile zygote).
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developmental stages of the parasites and the species for diagnosis. 
P. falciparum usually causes higher parasite levels and produces 
most malaria deaths in Africa (World Malaria Report WHO, 
2021). Maurer dots, poly-infected erythrocytes, and the 
characteristic banana shape of gametocytes are distinctive traits of 
P. falciparum infection (Zekar and Sharman, 2021). P. vivax and 
P. ovale are species sharing some similarities in the shape of 
parasites and quiescent liver forms. Both species infect young 
erythrocytes, have Schüffner’s dots, tend not to have multiple rings 
per cell, and contain malarial pigment. P. malariae usually causes 
lower parasite levels, due to its 72-h development cycle (24 h 
longer than P. falciparum and P. vivax), the lower production of 
merozoites per erythrocytic cycle, the predilection of parasites to 
develop inside old erythrocytes and the earlier development of 
immunity due to the combination of the previous factors (Collins 
and Jeffery, 2007). P. knowlesi is mostly present in Southeast Asia 
and was originally known as simian malaria. Due to its 24-h 

development asexual cycle, P. knowlesi infection can rapidly 
progress into severe malaria. Ring stage forms of P. knowlesi 
resemble P. falciparum and mature trophozoites and schizonts are 
similar to P. malariae forms (Amir et al., 2018). Gametocytes, the 
sexual stage of the parasite, are not responsible for clinical 
symptoms (Treatment of malaria CDC, 2013).

Microscopic visualization of thin blood smears allows the 
Plasmodium species identification from erythrocyte morphology 
and the distinctive features depending on the type of specimen 
infection. Thick blood smears are more efficient and provide 
higher sensitivity than thin blood smears (Wangai et al., 2011). The 
combination of both methods allows experts to determine the type 
and severity of the infection with a precise diagnosis. Parasite level 
calculations are performed manually in both types of samples. 
Direct microscopy observation is a tedious and time-consuming 
technique that requires experience and training. Continuous 
visualization of blood smears could trigger diagnostic errors due 

TABLE 1 Advantages and disadvantages of malaria diagnostic techniques.

Diagnostic technique Advantages Disadvantages References

Microscopic examination (i) Availability

(ii) Low-cost diagnosis

(iii) Parasite level calculations

(iv) Species identification

(i) Requires expert personnel

(ii) Results are expert-dependent

Dowling and Shute (1966), Collins and Jeffery, 

(2007), Guintran et al. (2006), Wangai et al. (2011), 

Poostchi et al. (2018), Heide et al. (2019), Malaria 

diagnosis and treatment  CDC, 2019

Quantitative Buffy Coat (QBC) (i) Fast preparation and diagnosis 

results

(ii) High sensitivity

(i) Requires expert personnel

(ii) Requires fluorescent microscopy

(iii) Specialized instrumentation

QBC Malaria Test, 2007, Tangpukdee et al. (2009), 

Siciliano and Alano (2015), About Malaria  

CDC, 2019, Shujatullah et al., 2006

Rapid Diagnostic Tests (RDTs) (i) Fast preparation and diagnosis 

results

(ii) Easy handling

(iii) Low-cost diagnosis

(iv) Species identification (usually 

P. falciparum from non-P. 

falciparum species)

(i) pfHRP2/3 gene deletions

(ii) Low sensitivity with low parasite levels

(iii) Low sensitivity with P. ovale and P. 

malariae species.

(iv) Cross-reactivity

(v) Prozone effect

Wongsrichanalai et al. (2007), Gillet et al. (2009), 

Murray and Bennett (2009), Tangpukdee et al. 

(2009), Bejon et al. (2014), Nima et al. (2017), 

Orish et al. (2018), Cunningham et al. (2019), 

Response plan to phrp2 gene deletions (WHO, 2019), 

Ajakaye and Ibukunoluwa (2020), Kavanaugh et al. 

(2021), Kavanaugh et al. (2021)

PCR (i) High sensitivity and specificity

(ii) Species identification

(iii) Reference tool for comparative 

studies

(i) Specialized instrumentation

(ii) Difficult implementation in endemic areas

(iii) Expensive diagnosis

Johnston et al. (2006), Li et al. (2014), Poostchi 

et al. (2018), Siwal et al. (2018), Haanshuus et al. 

(2019), Eshag et al. (2020), Leski et al. (2020), 

Feufack-Donfack et al. (2021), Mwenda et al. 

(2021)

LAMP (i) High sensitivity and specificity

(ii) Species identification

(iii) No thermocyclers needed

(i) Specialized instrumentation

(ii) Expensive diagnosis

Ocker et al. (2016), Selvarajah et al. (2020), Morris 

and Aydin-Schmidt (2021)

Serology (i) Seroprevalence

(ii) Malaria transmission

(i) Non-reliable diagnostic technique

(ii) Not indicative of active infection

Tangpukdee et al. (2009), Oviedo et al. (2020)

Flow cytometry (i) Quantification of infected 

erythrocytes

(ii) Automated parasite level 

calculations

(i) Low sensitivity

(ii) Specialized instrumentation

(iii) Difficult implementation in endemic areas

Poostchi et al. (2018), Khartabil et al. (2022)

Biomarkers (i) High diagnostic potential

(ii) Easy handling

(i) Specialized instrumentation Jain et al. (2014), Krampa et al. (2017))

QBC: Quantitative Buffy Coat, RDTs: Rapid Diagnostic Tests, PCR: Polymerase Chain Reaction, LAMP: Loop-Mediated Isothermal Amplification, Serology, Flow cytometry, and 
biomarkers.
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to the difficulty of the procedure (Dowling and Shute, 1966). The 
quality of the microscope and the staining reagents are also 
limiting factors (Malaria diagnosis and treatment CDC, 2019). 
False-negative cases lead to the unnecessary use of antibiotics, 
other consultations and, in some cases, progression to severe 
malaria. False-positive cases imply a misdiagnosis, unnecessary use 
of anti-malaria drugs, and suffering their potential side effects 
(Poostchi et al., 2018). However, microscopic examination of thin 
and thick blood smears is commonly used in endemic areas and 
resource-poor settings, due to its availability and easy handling. 
Other diagnostic techniques could complement and improve 
traditional microscopic examination and resolve its limitations.

Quantitative Buffy Coat

The Quantitative Buffy Coat (QBC) test is a qualitative 
screening method for rapidly detecting the presence of malaria 
parasites in centrifuged capillary and venous blood (QBC Malaria 
Test, 2007). Blood is centrifuged in specially coated QBC tubes 
and visualized by optical fluorescence microscopy. The technique 
is based on a density gradient that separates the blood cells and 
allows the identification of parasitic forms by fluorescent 
microscopic observation of the capillary tube. The dye commonly 
used is acridine orange, which allows the identification of parasites 
between the erythrocyte and leukocyte areas. The QBC tubes also 
have an anticoagulant for the correct visualization of the sample 
and to avoid artefacts due to blood clotting (QBC Malaria Test, 
2007). QBC presents higher sensitivity and specificity than 
conventional thick blood smear diagnosis due to the additional 

concentration of parasites in the narrow zone of the blood tubes 
(Siciliano and Alano, 2015; About Malaria CDC, 2019). This 
technique requires well-trained personnel, specialized 
instrumentation, is costlier than conventional light microscopy, 
and is difficult to determine the species and number of parasites 
(Tangpukdee et al., 2009).

Rapid diagnostic tests

Rapid Diagnostic Tests (RDTs) are a suitable option and 
complement for detecting Plasmodium infection. RDTs are 
lateral-flow immunoassays that allow visualization of specific 
antigen–antibody recognition events (Response plan to phrp2 
gene deletions WHO, 2019). They confer a qualitative diagnosis 
with a fast response time of less than 30 min (Cunningham et al., 
2019). RDTs depend on the observation of a visible band on a 
nitrocellulose strip produced by the capture of dye-labelled 
antibodies. A drop of peripheral blood and a buffer solution are 
usually used to perform the diagnosis on the RDT device by 
detecting specific Plasmodium antigens. The majority of RDTs 
are based on the detection of the P. falciparum-specific protein 
histidine-rich protein II (HRP2) or universal antigen target for 
all malaria parasites, such as Plasmodium lactate dehydrogenase 
(p-LDH) or aldolase (Tangpukdee et  al., 2009). HRP2 is 
localized in the cytoplasm of P. falciparum and on the surface 
membrane of infected erythrocytes (Murray and Bennett, 2009). 
Gene deletions of the parasite target gene pfhrp2 are observed in 
several studies in endemic areas such as Ethiopia and Bangladesh 
(Wongsrichanalai et al., 2007; Bejon et al., 2014; Giemsa staining 

FIGURE 2

Blood smear microscopic examination procedure. Thick blood smear is first examined to determine the presence of malaria parasites. If the 
sample is positive, a thin blood smear is examined to determine Plasmodium species identification. Parasite quantification is performed to 
determine severity of the infection.
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of malaria blood films WHO, 2016; Treatment of malaria CDC, 
2013; Nima et al. 2017). False-negative results due to pfhrp2/3 
gene mutation could trigger an incorrect diagnosis. Low parasite 
density, incorrect interpretation of results, or P. malariae and 
P. ovale infections are also causes of false-negative results and 
reasons for an incorrect diagnosis by RDTs (Kavanaugh et al., 
2021). A prozone effect due to excess antigen could trigger an 
incorrect diagnosis, although it is not a common event (Gillet 
et al., 2009). False-positive results are less common and can also 
trigger an incorrect diagnosis. Cross-reactivity due to high 
parasite levels or the presence of other disease antigens are the 
main causes of false-positive results (Orish et  al., 2018; 
Kavanaugh et  al., 2021; Pyle-Eilola et  al., 2021). RDTs are a 
useful diagnostic support feature for conventional diagnosis, 
however, they cannot substitute microscopy examination 
(Ajakaye and Ibukunoluwa, 2020).

Polymerase chain reaction

Polymerase Chain Reaction (PCR) diagnosis is a suitable 
alternative to conventional techniques. It is based on the 
amplification of Plasmodium DNA, and has high sensitivity, 
specificity and relatively low complexity (Leski et al., 2020). It is 
more sensitive than microscopy and capable of identifying malaria 
parasites at the species level when conventional methods are not 
able to detect the parasite (Johnston et al., 2006). In addition, the 
determination of Plasmodium species by PCR assay allows the 
unequivocal diagnosis in mixed species infection (Siwal et al., 
2018) or low parasite levels (Haanshuus et al., 2019), which are 
difficult to detect by microscopic examination. Some of the main 
disadvantages of PCR diagnosis are the implementation of a 
non-routine technique in remote areas, the long-time (2–3 h) 
needed for diagnosis, and the high cost of the technology 
(Poostchi et al., 2018). Nowadays, PCR is being implemented as a 
diagnostic technique for malaria, although it is not the gold 
standard procedure and is not more widely used in endemic 
countries. Molecular techniques are useful to detect asymptomatic 
patients or those with very low parasite levels; their performance 
with this casuistry is considerably better than the other diagnostic 
techniques employed (Mwenda et  al., 2021). This molecular 
diagnosis technique is commonly used in high-income countries 
or regions to perform epidemiological studies (Li et  al., 2014; 
Eshag et al., 2020; Feufack-Donfack et al., 2021). As an example, 
novel PCR assay, such as MC004 RT-PCR, is demonstrated to be a 
useful tool for clinical settings and has a high degree of sensitivity 
and specificity (Beyene et al., 2022).

Loop-mediated isothermal  
amplification

Loop-Mediated Isothermal Amplification (LAMP) is a 
molecular technique based on the amplification of nucleic acids 

employing Bacillus stearothermophilus DNA polymerase (Morris 
and Aydin-Schmidt, 2021). It has a 99% sensitivity and 93% 
specificity for malaria parasite detection compared with 
microscopy and does not require thermocyclers (Ocker et  al., 
2016). A fluorescence spectrophotometer is usually needed to 
read-out diagnostic results, which restricts the applicability in 
rural areas. However, new LAMP assays are designed with a 
fluorescence readout unit in order to detect P. falciparum parasites 
(Puri et al., 2022). It is not widely implemented as a diagnostic 
method, although it is postulated as an interesting alternative to 
conventional PCR methods and could be  progressively 
implemented in resource-poor settings (Selvarajah et al., 2020).

Other diagnostic techniques

Serology is based on the detection of antibodies against 
blood-stage malaria parasites. It is not commonly used for a rapid 
malaria diagnosis, although it is mainly used to perform 
seroprevalence studies of the disease. As an example, 
Immunofluorescence Antibody Testing (IFA) uses specific 
antigens for the quantification of IgG and IgM antibodies in serum 
samples (Tangpukdee et  al., 2009). Combined strategies using 
serological, antigen detection, and DNA data are used to estimate 
malaria transmission and perform epidemiological studies 
(Oviedo et al., 2020).

Flow cytometry is a laser-based cell counting method that 
allows the quantification of erythrocytes infected by malaria 
parasites. It offers automated parasite level counts and has a low 
sensitivity (Poostchi et  al., 2018). New advances based on 
fluorescence flow cytometry have shown that the Sysmex XN-31 
device can determine the Plasmodium species and quantify 
parasites in blood. However, it can generate false positive results 
in case of abnormal erythrocytes cell morphology and the device 
was tested in a non-endemic region (Khartabil et al., 2022).

Biomarkers are cellular, biochemical, or molecular alterations 
that indicate the presence of biological, pathogenic, or therapeutic 
responses, with a high potential for diagnosis (Jain et al., 2014). 
The development of malaria biomarker detection, multiplex 
biomarkers for multiple Plasmodium parasite infections, and 
biosensors are new improvements to be considered as diagnostic 
tools (Krampa et al., 2017).

Diagnostic methods comparison

To perform a comparison between the different diagnostic 
methods for malaria parasite detection it is important to 
consider the parasite levels. Low parasite levels are related to 
lower sensitivity values due to the less number of parasites in 
blood. Higher parasite levels are easier to detect with all the 
aforementioned techniques, although in some specific cases, a 
prozone effect could trigger antigen detection issues by RDTs 
(Gillet et al., 2009). The commercial brand of the techniques 
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(QBC, RDTs, and PCR), RDT storage conditions, and response 
time are crucial for the correct interpretation of diagnostic 
results and could affect the final outcome. In the case of thick 
and thin blood smears, the expertise of the microscopist is 
determinant. The reference technique used as the standard 
against which others are compared to evaluate the quality of the 
method is also decisive (Feleke et al., 2021). Table 2 shows the 
diagnostic methods most commonly used for malaria parasite 
detection in terms of sensitivity and specificity. In some cases, 
no differentiation between thick and thin blood smear samples 
was observed in comparative studies and meta-analyses to 
determine sensitivity and specificity. However, thick blood 
smears provide a higher sensitivity than thin blood smear 
samples (Wangai et al., 2011). PCR is considered to have 100% 
sensitivity and specificity and is usually used as the 
reference method.

Novel diagnostic tools by using 
image analysis techniques

The global health impact of malaria has accelerated the 
development and implementation of novel diagnostic strategies to 
fight against the disease. Novel diagnostic techniques based on 
image analysis and AI are being developed for malaria parasite 
detection; an emulation of microscopic visualization by image 
capturing and processing could be a fast and efficient alternative 
to performing the diagnosis. In the last years, computational 
microscopic imaging methods for object detection have held 

higher importance in medical and biomedical studies (Das et al., 
2015). Several software applications and tools are being developed 
to detect malaria parasites in thick and thin blood smear sample 
images using conventional light microscopy (Luengo-Oroz et al., 
2012; Dallet et al., 2014; Das et al., 2015; Pirnstill and Coté, 2015; 
Bashir et al., 2017; Oliveira et al., 2017; Laketa, 2018; Manescu 
et al., 2020; Yang et al., 2020; Yu et al., 2020).

Deep learning is a set of computational AI processes and 
methodologies that allow automated learning and the generation 
of algorithms by emulating the human brain. It is based on 
databases information, and uses artificial neural networks with 
multiple layers to train and generate AI algorithms (Alzubaidi 
et al., 2021). Deep learning has, in many aspects, boosted and 
improved the procedure for traditional computer vision imaging 
techniques (M K. Georgieff, 2016). Convolutional Neural 
Networks (CNN) are artificial neural networks widely used as 
trained classifier models to detect objects in images or videos by 
deep learning algorithms. Specifically, CNN classification is 
applied in medical diagnosis to analyse and extract efficient 
features from images as an AI healthcare tool (Sarvamangala and 
Kulkarni, 2021). Imaging radiology techniques for early 
diagnosis and treatment of emerging infectious diseases such as 
Zika, Ebola, or Chikungunya are other image analysis 
applications (Jardon et al., 2019). Microscope image analysis 
using a U-Net (convolutional network architecture) to segment 
and detect Leishmaniosis (Górriz et al., 2018) is a representative 
study of the wide variety of possibilities of CNNs. The high 
computing capacity achieved over the past years and the 
increased amount of training data for CNNs have boosted the 

TABLE 2 Sensitivity and specificity of malaria diagnostic methods.

Diagnostic methods Sensitivity Specificity Specifications References

Microscopy 75.20% 97.12% Comparative study.Thick blood films are 

20–40 times more sensitive than thin 

blood films. Parasite density interferes 

with the final result and is crucial to 

obtain a reliable conclusion.

Bejon et al. (2006),  

Wangai et al. (2011),  

Feleke et al. (2021)

QBC 55.9% 88.8% Lagos State University Teaching Hospital. Adeoye and Nga (2007)

70.5% 92.1% University College Hospital, Ibadan, Oyo 

State, Nigeria.

Ifeorah et al. (2017)

RDTs 84.2% 99.8% BinaxNOW test. DiMaio et al. (2012)

63.4–100% 53.4–99.9% Mixed brands (Comparative study). Boyce and O’Meara (2017)

84.2% 95.2% University College Hospital, Ibadan, Oyo 

State, Nigeria / pLDH RDT Optimal.

Ifeorah et al. (2017)

37–88% (37 and 51% in asympt.) 93–100% (28% in one outlier) Mixed brands (Comparative study). Feleke et al. (2021)

LAMP 100% 86–99% LAMP compared with PCR. Feleke et al. (2021),  

Puri et al. (2022)

95–98% 91–99% LAMP compared with PCR. Morris and Aydin-Schmidt 

(2021)

PCR Considered 100% Considered 100% Used as a reference to be compared with 

other techniques.

Feleke et al. (2021),  

Mwenda et al. (2021)

QBC: Quantitative Buffy Coat, RDTs: Rapid Diagnostic Tests, pLDH: Plasmodium lactose dehydrogenase, LAMP: Loop-Mediated Isothermal Amplification, PCR: Polymerase Chain 
Reaction, asympt: Asymptomatic.
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TABLE 3 Visual image differences between thick and thin blood smear samples to distinguish malaria forms by artificial intelligence techniques.  
(A) Thick blood smear sample 1,000x Giemsa staining. WBC nuclei and immature trophozoites (T) are distinguished with an arrow. (B) Thin blood 
smear sample 1,000x Giemsa staining. Erythrocytes infected with young trophozoites (T) of P. falciparum and uninfected erythrocytes (RBC) 
distinguished with an arrow. Maurer dots are present in infected erythrocyte morphology.

Thick blood smear sample Thin blood smear sample

(A) (B)

Main features Main features

– Positive/Negative diagnosis.

– Possible to distinguish all development stages of the blood life cycle of the parasites.

– Non-species identification (except in the case of P. falciparum gametocytes).

– Haemolysis of erythrocyte cells.

– Amorphous morphology of immature Plasmodium trophozoite cytoplasm.

– High sensitivity.

– Common appearance of Giemsa artefacts.

– Plasmodium species identification by parasite and erythrocyte morphology.

– Parasite development stages identification inside erythrocytes.

– High specificity.

– Fewer artefacts and confusion forms.

– Fixing sample with methanol in Giemsa staining technique.

– Erythrocyte and staining artefacts.

– Thick blood smear malaria parasite detection by artificial intelligence imaging tools 

(Rosado et al., 2016; Xiong et al., 2019; Manescu et al., 2020; Yang et al., 2020; Yu 

et al., 2020).

– Thin blood smear malaria parasite detection by artificial intelligence imaging tools 

(Ross et al., 2006; Tek et al., 2010; Dallet et al., 2014; Kareem et al., 2012; Mushabe 

et al., 2013; Oliveira et al., 2017; Rosado et al., 2017; Sankaran et al., 2017; Dantas 

Oliveira et al., 2018; Pillay et al., 2019; Pardede et al., 2020; Yu et al., 2020; Abubakar 

et al., 2021; Davidson et al., 2021).

use of this technology for medical applications (O’Mahony 
et al., 2020).

In particular, automated microscopy imaging analysis could 
also be an alternative to conventional microscopy examination for 
malaria diagnosis. The preparation and type of sample are 
important facts to consider to perform the correct identification of 
biological features. Table 3 summarizes the visual image differences 
between thick and thin blood smears and their analysis by AI 
techniques (Ross et al., 2006; Mushabe et al., 2013; Dallet et al., 
2014; Oliveira et al., 2017; Sankaran et al., 2017; Dantas Oliveira 
et al., 2018). Thick blood smear examination is crucial for a correct 
diagnosis of malaria, allowing the consequent visualization of thin 
blood smears for species identification (Figure 2). Thick blood 
smears are more sensitive and appropriate for low malaria parasite 
levels (Dowling and Shute, 1966). Nevertheless, the frequency of 
artefacts observed in this type of sample is higher in comparison 
with thin blood smears (Prairie, 2012).

CNNs for the detection of malaria parasites in thick blood 
smears are less used in comparison with thin blood smears. New 
automated parasite detection in thick blood smears based on deep 
learning and neural networks is an optimal alternative to 

traditional parasite microscopy visualization, as demonstrated in 
several studies (Xiong et al., 2019; Manescu et al., 2020; Yang et al., 
2020). Other important factors for the visualization of thick blood 
smears are erythrocyte haemolysis, WBC cytoplasm rupture, and 
the variable shapes of ring-stage trophozoites. Most of the 
methods published for malaria parasite identification are based on 
supervised procedures that require a previous manual labelling 
procedure of microscopic images. Malaria digital images of thick 
and thin blood smears need to be labelled to create a dataset large 
enough to allow the generation of an optimal detection model 
(Shambhu et al., 2022). This process requires to manually define 
the bounding box of each parasite of a set of images to train the 
neural network model.

Image acquisition

Image capturing/acquisition is the first step towards generating 
an image database for future analysis and identification. Acquisition 
depends on the equipment and infrastructure of the laboratories. 
Microscope-integrated cameras are often used to acquire digital 
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images with conventional light microscopy. However, smartphone 
cameras with an adapter bracket are an affordable alternative for 
automated malaria diagnosis applications (Srikanth et al., 2008; 
Dallet et al., 2014; Rosado et al., 2016, 2017; Oliveira et al., 2017; 
Yu et  al., 2020). Thus, in low-income countries, smartphone 
cameras would be a useful tool for acquiring digital images and 
replacing integrated microscope cameras, which are usually more 
expensive. The quality and resolution of the digital image, pixel 
morphology and density would determine future image processing 
and analysis. Other types of techniques for acquiring malaria 
parasite images with different microscopes are also used, such as 
fluorescent microscopy, binocular microscopy, or polarized 
microscopy (Poostchi et al., 2018). Nevertheless, image acquisition 
with conventional light microscopy is the most similar procedure 
to emulate conventional microscopic malaria diagnosis in endemic 
countries. Image acquisition is the first step for both traditional 
image processing techniques and deep learning methods (Hegde 
et al., 2019).

Traditional image processing techniques 
for malaria parasite detection

Image pre-processing is used in traditional computer vision 
techniques to automatically detect parasites and allows the 
preparation of acquired images to improve further analysis. Most 
studies perform noise reduction, enhancement of image contrast, 
and image resizing. These modifications would facilitate future 
procedures of feature extraction. As an example, Gaussian average 
filters or low-pass filters are used to reduce the noise of malaria 
microscopy images (Fatima and Farid, 2020). Moreover, background 
image assumption and colour normalization and correction to 
reduce the effects of illumination is an affordable solution to reduce 
image errors (Tek et  al., 2016). Colour normalization and grey 
world-based colour normalization are pre-processing methods to 
minimise sample staining issues that could trigger image artefacts. 
Pre-processing imaging methods for smartphone image acquisition 
by colour normalization and background removal are useful tools 
to prepare images for the automated diagnosis of leishmaniasis or 
bartonellosis in remote locations (Cesario et  al., 2012). Image 
resolution and quality are decisive to perform a correct and precise 
diagnosis via imaging methods.

Image segmentation is very often required to extract features. 
Segmentation consists of classifying each pixel as part of the 
objects in the original image. Morphological operations, Hough 
transform, K-means clustering, watershed algorithm, edge-based 
segmentation algorithms, rule-based segmentation, template 
matching, and marker-controlled watershed are segmentation 
techniques used for thin and thick blood smear images, among 
other applications (Poostchi et  al., 2018). Many of these are 
complemented with thresholding techniques as a final step to 
extract and define the different segmented regions.

Feature extraction is the next procedure. The characterization 
of thin and thick blood smear images by features such as staining 

colours, cell texture, and morphology are carefully chosen 
(Poostchi et  al., 2018). For example, erythrocyte feature 
calculations in thin blood smear images are performed by open-
source platforms such as PyRadiomics 2.2.0 (Savkare and Narote, 
2015). Feature extraction facilitates the subsequent learning and 
classification steps by providing quantitative information on 
certain image parameters.

Machine learning or pattern recognition is the final step of the 
image analysis procedure before identification. Classification 
methods are used for the identification of parasites and WBCs in 
thick blood smear samples, or infected and uninfected erythrocytes 
in thin blood smears. It is important to distinguish between the 
parasite identification procedures for the two sample types. In both 
cases, the performance of the technology developed should 
be  optimized in terms of accuracy, sensitivity, and specificity 
(Poostchi et al., 2018). Most articles published on the identification 
of malaria parasites in thick blood smears are for P. falciparum 
infections (Yang et  al., 2020). Thin blood smear parasite 
identification is used to distinguish between erythrocytes infected 
or uninfected with malaria parasites. In addition, parasite species 
identification and the development stage of the parasite in thin 
blood smears are detected by using traditional pattern recognition 
techniques that include, for example, Support Vector Machine 
(SVM) or logistic regression classifiers (Tek et al., 2010). Response 
time depends on the computational complexity of the predictive 
model. Complexity increases the time of response, although an 
evaluation between complexity and time is crucial to perform a 
correct and sufficiently fast identification (Freire et al., 2021).

Convolutional neural networks for 
malaria parasite detection

Convolutional neural networks are computational systems 
inspired by biological neurons designed to process data (Anwar 
et al., 2018). Image input is analysed to recognize visual patterns 
and complete the future identification of objects as an output. 
Neurons in deep networks are controlled by an activation 
function, which is responsible for controlling the output. 
Operations such as pooling and regularizers, with L1, L2 norms, 
batch normalization, or dropout are key elements to make the 
predictive models learn better and faster (Goodfellow et al., 2016; 
Anwar et al., 2018). Overfitting issue due to a memorization of 
data instead of learning could interfere in the final training 
outcome and obtaining of robust final predictions (Demšar and 
Zupan, 2021).

An important fact to consider when training CNNs is to have 
sufficient representative data. Data is commonly distributed into 
three sets: training, validation, and testing. The prediction model 
learns from the multiple examples of the dataset and the same 
training data is fed into the CNN repeatedly in an iterative 
procedure. During training, the validation dataset allows 
hyperparameter tuning and model evaluation by a continuous 
optimization. Finally, a test dataset is used to assess the model 
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after completing the training process with unseen data (Xu and 
Goodacre, 2018).

Object detection deep learning models are able to identify and 
locate objects of a certain class in images and videos (Jiao et al., 
2019). During the last few years, object detection models have 
been improved and most of the state-of-the-art object detectors 
use deep learning networks. Usually, raw images need a simple 
pre-processing to resize them and fed them into the network. The 
model itself decides and computes the appropriate features and 
provides an output that leads to the identification and location of 
objects. Among other uses, medical imaging may benefit from 
object detection techniques, in particular, it could be a useful 
alternative to malaria parasite detection (Jiao et al., 2019).

Object detectors are classified as two-stage or one-stage. 
Two-stage detectors have high localization and object recognition 
accuracy, whereas one-stage detectors achieve high inference 
speed (Jiao et  al., 2019). The most representative two-stage 
detector is Faster R-CNN (Ren et al., 2017) and one-stage object 
characteristic detectors are YOLO (Redmon et al., 2016) and SSD 
(Konishi et al., 2016).

In most cases, manually labelled data is required to perform 
all the aforementioned processes. Unsupervised training is an 
alternative, although most medical imaging studies are performed 
with supervised training data. Supervised learning based on image 
annotation is diverse and several strategies have been described 
(Sarangi, 2014). Whole-image classification is the annotation of 
the whole image as a type or class. Non-discerning objects are 
detected in the image, so the whole image is classified as a type. 
Object detection using bounding boxes within each image is 
another option when solving classification tasks. It requires a more 
time-consuming supervised annotation procedure of the different 
objects in the image. CNNs use the dataset and identify every 
bounding box as an object class (Ibrahem et al., 2022).

In the case of image segmentation, the identification of objects 
is based on a pixel-by-level classification. Each pixel is classified as 
a class object with its own value and annotations are manually 
added to images. However, it is an even higher time-consuming 
task for large databases, therefore automatic annotation 
procedures are being developed. Thus, other conventional 
machine learning methods and deep learning procedures are used 
to automatically annotate images (Murthy et  al., 2015; Cao 
et al., 2020).

Furthermore, CNNs need large datasets with annotated data. 
ImageNet is one of the largest available datasets of universal 
images for researchers and non-commercial use (ImageNet, 2021). 
In the particular case of malaria, a sufficiently large dataset of 
malaria annotated images is needed to train CNN models and 
perform an automated identification of parasites. Malaria thick 
blood smears from the Institute of Electrical and Electronics 
Engineers (IEEE) DataPort is an open-source image dataset 
(Malaria Thick Blood Smears | IEEE DataPort, 2021). Strikingly, 
there are not many publicly available datasets of malaria thick and 
thin blood smear images. Data augmentation techniques, to 
artificially enlarge image datasets and obtain better performances, 

is nowadays used with promising results as DACNN model 
demonstrates (Oyewola et al., 2022).

CNNs have been shown to have optimum performance with 
computer-aided image diagnosis applications in specific fields of 
study and can be generalised for other medical imaging tasks 
(Shin et al., 2016). Object detection models, such as YOLOv3, 
YOLOv4 and YOLOv5 are used for malaria parasite detection 
(Abdurahman et al., 2021; Rocha et al., 2022). Feature scale and 
addition of detection layers are modifications that provide better 
performances than state-of-the-art articles. Moreover, Faster 
R-CNN (Hung and Carpenter, 2017; Ren et al., 2017) and SPPnet 
(Zhou et al., 2018) are optimized neural networks used to speed 
up and enhance identification time. Recent studies demonstrate 
the potential of CNNs for malaria parasite detection with 
promising results, such as VGG-19 model by transfer learning 
mechanism (Alnussairi and İbrahim, 2022; Jameela et al., 2022) or 
transformer-based models to obtain optimized performance 
parameters (Islam et al., 2022). The general procedure for malaria 
parasite detection using deep learning imaging methods is 
represented in the bottom part of Figure 3. Nowadays, CNNs have 
improved and replaced the use of traditional methods.

Automated malaria parasite level 
calculations using deep learning 
methods

Automated parasitaemia counting by image analysis is a useful 
tool that could overcome and provide support to manual parasite 
level quantification. Conventional malaria parasite level calculations 
by microscopy visualization of thick and thin blood smears are not 
precise and difficult to reproduce. An estimation is usually 
performed and, when parasite levels are high, is tedious and time-
consuming. Thick blood smear parasite level quantification is 
routinely performed by counting the number of parasites and 
leukocytes in a blood smear sample (WHO and Regional Office for 
the Western Pacific, 2016). Thin blood smear quantification is based 
on the counting of infected erythrocyte cells in each microscopy 
field (WHO and Regional Office for the Western Pacific, 2016). 
Quantification of parasite levels via digital image analysis techniques 
would require the shortest period of time. An image analysis 
software was developed to perform this function automatically with 
thick blood smear images (Arco et al., 2015). For thin blood smear 
automated parasitaemia calculations there are image analysis tools 
available to improve conventional manual counting. Determination 
of malaria P. vivax parasite concentration is possible using image 
processing techniques (Prasad et al., 2020). Plasmodium AutoCount 
is a digital image analysis tool to perform an automatic count of 
parasites in Giemsa-stained thin blood smears (Ma et al., 2010). 
Other image processing tools based on OpenCV software libraries 
were satisfactory in determining parasite levels in thin blood smear 
samples (Swain et al., 2018). Previously mentioned methods used 
image processing techniques, such as noise reduction with filters 
and binary transformations, to determine the presence of malaria 
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parasites inside erythrocytes and perform a final parasite 
level calculation.

Mobile phone applications for malaria 
parasite detection

Mobile phone applications are being developed for the 
automatic detection of malaria parasites (Cesario et  al., 2012; 
Rosado et al., 2016, 2017; Oliveira et al., 2017; Yu et al., 2020; Zhao 
et al., 2020). Smartphone image capturing is a suitable and easy 
alternative for the acquisition of blood smear images through the 
microscope lens. Only an optical microscope, a mobile adapter, 
and a conventional smartphone are needed to perform an imaging 
diagnosis. Mobile phone cameras could substitute integrated or 
external microscopy cameras and perform an optimum diagnosis 
by image analysis.

The integration of CNN predictive models in a smartphone 
software application is possible. Adapted CNN models perform 
the entire diagnosis in a single device. The coalescence between 
malaria automated diagnosis and smartphone software is a 
milestone and challenge for future implementation in worldwide 
laboratories. Image analysis and deep learning procedures allow 
smartphones to be  one of the best alternatives for the 
implementation of automated malaria parasite detection. Even in 
resource-poor settings, smartphones are an available and relatively 
cheap option. One of the main problems of smartphone cameras 

was image quality and adaptation to microscopy lenses. Nowadays, 
smartphone cameras provide high image quality, although 
adaptation to the microscope is not as good as expected. Images 
could be disturbed by light microscopy issues, lens adaptation to 
smartphone cameras, or image quality downgrades related to 
image focus. Microscope image auto-focus is also an issue to solve. 
The technology to fully automate the entire procedure of image 
focusing, image acquisition, and parasite identification by an 
independent device is still required.

As an example, Malaria Screener is an affordable and effective 
solution for automatic malaria parasite detection by a mobile 
phone application (Yu et al., 2020). It combines image acquisition, 
smear image analysis, and result visualization. It is a semi-
automated system based on digital images and CNN models to 
predict the presence of malaria P. falciparum parasites in thin and 
thick blood smears. Other applications were developed to combine 
automatic detection of malaria parasites via an optical 
magnification prototype with a smartphone device that performs 
image processing and analysis (Rosado et  al., 2016). VGG16 
classification CNN, or other CNN models, were integrated into 
smartphone applications to automatically detect the presence of 
malaria parasites inside erythrocytes in thin blood smear samples 
(Zhao et al., 2020).

Gamification of the technology for the identification of 
malaria parasites in digital images is also an innovative application. 
As an example, a web-based game where online volunteers analyse 
thick blood smear images to detect malaria parasites was 

FIGURE 3

Representation of the different procedures using Traditional Computer Vision Imaging methods or Deep Learning methods (Convolutional Neural 
Networks) for malaria parasite identification in thick and thin blood smear samples.
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developed for the creation of an annotated image database 
(Luengo-Oroz et al., 2012).

To sum up, smartphone applications might be the future for 
autonomous image acquisition and analysis by AI technologies, 
and a suitable alternative for malaria and Neglected Tropical 
Disease (NTDs) diagnosis. The possibility to integrate predictive 
models and image acquisition in a single device confers a wide 
range of applications in the field of image analysis for diagnostics.

Microscopy automation linked to 
smartphone software technology

Microscopy automation to move blood smear samples and 
capture focused images automatically is a challenging approach. 
Automation would solve the limitations related to the non-fully 
autonomous diagnosis procedure performed. Image processing 
methods allow automation of the diagnosis, although a person is 
still needed to move the X-Y axis and issue focus of the 
microscope. A few studies have implemented automatic 
hardware devices to solve this problem and optimise the 
automation of malaria diagnosis (Kaewkamnerd et  al., 2012; 
Gopakumar et al., 2018; Muthumbi et al., 2019). Microscopy 
adaptation is crucial to fully implement the aforementioned 
technology in real clinical and diagnosis practices. Low-cost 
hardware optimization with 3D printing models to manufacture 
specific parts or pieces of the microscope would be a suitable 
option in resource-poor settings with endemic malaria. A 
3D-Printed portable robotic mobile-based microscope for the 
diagnosis of global health diseases is an example of the potential 
of this technology (García-Villena et al., 2021). As mentioned 
before, some studies present the possibility of developing an 
optical device that emulates or substitutes an optical microscope. 
An optical prototype with 1,000x magnification adapts to the 
smartphone camera and avoids possible light issues (Rosado 
et  al., 2016). Nevertheless, conventional optical microscopy 
adaptation is the most suitable technique for image acquisition 
and analysis by smartphone applications.

Implementation of malaria digital 
microscope imaging diagnosis in 
resource-poor settings

More than 90% of severe malaria produced by P. falciparum is 
estimated to affect young children under 5 years old in 
Sub-Saharan Africa, in areas with resource-poor settings 
(Schumacher and Spinelli, 2012; Gitta and Kilian, 2020). The gold 
standard method for malaria diagnosis by the WHO is still 
microscopy, although this is dependent on laboratory resources 
and could result in diagnostic errors due to a lack of 
instrumentation, medical devices, or well-trained laboratory staff. 
Microscopic examination of blood smears and RDTs are the 
techniques most used for malaria diagnosis and improvements 

aimed at the development of new and better diagnostic techniques 
are being implemented in endemic areas (Gitta and Kilian, 2020). 
The increase of RDT usage in malaria-endemic areas is replacing 
microscopic examination of blood smears due to the lack of 
resources and well-trained personnel. In addition, the biosocial 
situation of mothers and children in resource-poor regions, such 
as Imo State in south-eastern Nigeria, has an impact on the 
increased appearance of complicated malaria cases (Iloh et al., 
2013). A non-precise diagnosis or treatment due to the low 
availability of resources is a serious issue in endemic areas. 
Consequently, the implementation of new and affordable 
diagnostic imaging techniques could help solve this problem.

Smartphones are a portable and suitable alternative for 
malaria diagnosis via imaging techniques, which could 
be implemented in resource-poor settings and remote endemic 
areas. They could improve and automate malaria diagnosis with 
less need for resources and personnel. CNN models could 
be  integrated inside smartphone software and an internet 
connection would not be required. The provision of health centres 
with mobile devices by governmental organisations and national 
programs against malaria would be a determinant factor for the 
correct implementation of this novel technology for malaria 
diagnosis. However, due to the constraints specific to many 
malaria endemic areas, this may be  a major problem to 
be addressed in the coming years by political willingness. The 
benefits of smartphones for diagnostics can be of significant value, 
not only for malaria, but also for the diagnosis of many other 
tropical diseases or NTDs (Vasiman et al., 2019). Due to that, 
implementation in regional hospitals or small healthcare centres 
would be a challenge for future studies. New object detection 
models trained with smartphone camera images are suitable for 
malaria diagnosis deployment in resource-poor settings 
(Abdurahman et al., 2021).

Diagnostic performance studies to validate the technology are 
a must for the future implementation of a tool. The performance 
evaluation should be carried out under ideal and resource-poor 
conditions to determine its effectiveness in different environments. 
There are many barriers to overcome in order to transition a 
product or technology from development to introduction and 
implementation. Some of the main barriers are the adjustment to 
the health and laboratory systems necessary to ensure effective 
adoption and implementation, demonstration of the technology’s 
value, evaluation of operational viability, policy and regulatory 
requirements of government organizations, operation research to 
evaluate the net effect of the technology in the field, distribution, 
service and repair, and quality assurance and control 
(Palamountain et al., 2012).

The implementation of new diagnostic techniques in 
laboratory environments has to be regulated and controlled by the 
Food and Drug Administration and WHO protocols 
(Palamountain et al., 2012). The technology should be validated 
and accepted by international and national authorities as 
described (Mugambi et al., 2018). Most efforts to implement new 
diagnostic tools in resource-poor settings are focused on 
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infectious diseases such as HIV, Tuberculosis, and Malaria. Deep 
understanding and coordination of the stakeholders involved in 
the diagnostic development and implementation are milestones 
for the success of diagnostic interventions (Mugambi et al., 2018).

Discussion and concluding 
remarks

Epidemic malaria is very prevalent in Sub-Saharan Africa and 
tropical regions with low resources. It is still a global health issue 
that should be solved by mosquito control strategies, rapid and 
accurate diagnosis, and correct treatment (World Malaria Report 
WHO, 2021). Therefore, diagnosis is crucial for the eradication of 
the disease and to reduce mortality in prevalent regions. However, 
the recurrent problems in these environments with conventional 
microscopic examination due to lack of resources and 
experimented microscopists (Ngasala and Bushukatale, 2019), and 
the increasing failure of RDTs mainly due to gene mutations 
(Golassa et al., 2020), reinforces the necessity of developing new, 
affordable, and accessible diagnostic methods for 
Plasmodium infection.

Advances in image analysis and processing allow and 
postulate the implementation of automated malaria diagnosis as 
a new diagnostic tool. Thick and thin blood smears would be the 
samples analysed by the new technology. Traditional image 
analysis techniques were used to automatically detect malaria 
parasites in thin and thick blood smears (Turrientes and López, 
2016), as demonstrated in several studies (Tek et al., 2010). The 
irruption of deep learning methodologies with CNNs has boosted 
and improved the results for the identification of malaria parasites 
in comparison with traditional computer vision techniques. For 
CNN models and, specifically medical image processing and 
analysis, it is crucial to have a large image dataset to obtain reliable 
results. Unfortunately, open-source image datasets are not globally 
available and are usually used for individual CNN training.

Open image availability would be a beneficial resource for the 
scientific community. The ImageNet (ImageNet, 2021), parasite 
image (Li and Zhang, 2020), and malaria thick blood smear 
(Malaria Thick Blood Smears | IEEE DataPort, 2021) databases are 
representative examples. Neural networks such as YOLO are used 
as CNN models to detect malaria parasites in blood smears 
(Abdurahman et al., 2021).

In addition, the integration of CNN models into 
smartphone software is possible. Thus, the implementation of 
digital image analysis-based diagnostic tools in endemic areas 
with smartphone applications could improve and automate 
malaria diagnosis by the emulation of the gold standard 
microscopy examination technique. As an example, fully 
automated systems, such as the slide screening microscope 
EasyScan GO, evaluate their performance against WHO slide 
samples with promising results (Horning et  al., 2021). 
CNN-based models are widely used as predictive models with 
the capacity to distinguish parasite forms and blood cells and 

could be implemented in low-resource settings (Zhao et al., 
2020). Automated parasite detection, parasite level calculations, 
and faster diagnosis are some of the main advantages of image 
analysis for malaria diagnosis. This technology could be used 
as a fast and precise tool to perform parasite level calculations 
(Ma et al., 2010). Overall, the use of smartphones and artificial 
intelligence techniques for diagnosis might help the global goal 
of malaria eradication in the coming years. The support and 
enhancement of traditional microscopy-based diagnostic 
techniques through the use of AI, the upgrading of laboratory 
infrastructures in malaria endemic areas and the improvement 
of computer technology over the years may help to implement 
such techniques in most remote areas. Integrating innovations 
into the current microscopy method would reinforce malaria 
elimination (Nema et al., 2022).

Hardware automation is still in the process of optimization to 
complete the goal of independent predictive and mechanized 
diagnostics. Other limitations such as image quality dependence, 
laboratory infrastructure requirement, local regulatory 
organization permissions, or the necessity to create a standardized 
protocol for the final diagnosis should be addressed. Nevertheless, 
several studies are improving predictive models, pre-processing 
techniques, microscope automation, and faster detections 
(Sriporn et al., 2020; Masud et al., 2020). Artificial intelligence 
improvements and better predictive algorithms due to computing 
power evolution could be an advance in terms of automatic image 
diagnosis with optimized predictive results in the following years. 
In conclusion, with diagnostic techniques based on image analysis, 
the samples used are the same (thick and thin blood smear) and 
the procedure of sample preparation, parasite observation and 
interpretation would be very similar to conventional microscopy. 
In addition, it would provide technical support to health 
professionals and help to automate the process in order to increase 
its efficiency.

In this review, we have summarised the main advances, 
challenges, and limitations in the automation of malaria 
diagnosis using digital image analysis by AI tools. Smartphone 
applications are a suitable option to integrate diagnosis 
technology into a single device and confer laboratories a new 
tool for malaria and other disease diagnoses. New advances 
and improvements in AI would be the final milestone for the 
optimisation and implementation of the technology worldwide. 
In conclusion, we are ever closer to developing a fast, efficient, 
and optimum new diagnosis tool for malaria parasite detection 
available for laboratories located in malaria-endemic 
regions worldwide.
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