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ABSTRACT: It has been recently suggested that diametral (so-called quality) similarity
thresholds are superior to radial ones for the clustering of molecular three-dimensional
structures (Gonzaĺez-Alemań et al., 2020). The argument has been made for two clustering
algorithms available in various software packages for the analysis of molecular structures from
ensembles generated by computer simulations, attributed to Daura et al. (1999) (radial
threshold) and Heyer et al. (1999) (diametral threshold). Here, we compare these two
algorithms using the root-mean-squared difference (rmsd) between the Cartesian coordinates
of selected atoms as pairwise similarity metric. We discuss formally the relation between these
two methods and illustrate their behavior with two examples, a set of points in two dimensions
and the coordinates of the tau polypeptide along a trajectory extracted from a replica-exchange
molecular-dynamics simulation (Shea and Levine, 2016). We show that the two methods
produce equally sized clusters as long as adequate choices are made for the respective
thresholds. The real issue is not whether the threshold is radial or diametral but how to choose
in either case a threshold value that is physically meaningful. We will argue that, when clustering molecular structures with the rmsd
as a metric, the simplest best guess for a threshold is actually radial in nature.

■ INTRODUCTION
Over 2 decades ago, Heyer et al.1 developed an algorithm to
cluster open reading frames (ORFs) based on their expression
levels, using what they came to call jackknife correlation as
pairwise similarity metric. The focus of the algorithm was to
find large clusters that had a “quality” guarantee, that is, a
minimum jackknife correlation between any two ORFs
belonging to the same cluster. In other words, clusters would
be guaranteed to have a maximum diameter, determined by a
correlation threshold, ensuring the transitive property for the
relation ‘correlation > threshold’ between element pairs in a
cluster (i.e., if correlation(a, b) > threshold and correlation(b,
c) > threshold, then correlation(a, c) > threshold, for any a, b, c
belonging to the cluster). The algorithm was named quality
cluster (QT_Clust) and it has since been used for the
clustering of several other types of data, including molecular
structures.2 In this study, we will refer to this algorithm as
QTC.
The same year, Daura et al.3,4 introduced an algorithm to

cluster molecular structures using the root-mean-squared
difference (rmsd) between the Cartesian coordinates of
selected atoms as pairwise similarity metric. The algorithm
was meant to favor the most populated cluster and was radial
in nature, that is, the rmsd threshold was applied from a
configuration taken as a cluster reference, meaning transitivity
was not ensured for the relation 'rmsd < threshold'. In this
study, we will refer to this algorithm as RTC. The two
algorithms are described under the Computational Details
section and analyzed formally under the Results and
Discussion section.

When applied to molecular structures using the rmsd as a
metric, both QTC and RTC scan a precalculated rmsd matrix
in search for the molecular configuration with the largest
number of neighbors satisfying the threshold, in an iterative
process that outputs a new cluster at each step and ends when
there are no further configurations to cluster. The difference
between the two algorithms lies in the nature of the threshold
(diametral or radial) and the procedure to count the neighbors
in. Recently, Gonzaĺez-Alemań et al.2 pointed out that, because
of their similarity, these two algorithms were often confused in
various software implementations commonly used in the field,
misleading their users. They also evaluated the performance of
the two algorithms by analyzing a trajectory of the tau
polypeptide extracted from a replica-exchange molecular-
dynamics simulation previously published by Shea and
Levine.5 In doing so, they used the same rmsd value for the
thresholds applied in the two algorithms. They concluded that,
due to its lack of a quality threshold, the RTC algorithm
(referred to as Daura’s algorithm in the paper) tends to cluster
unrelated configurations together and gave examples in which
different QTC clusters were found as composing a single RTC
cluster.
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Clearly, the results observed by Gonzaĺez-Alemań et al. had
little to do with the quality of the thresholds and much to do
with using the same rmsd value for a radial and a diametral
threshold. While the relation 'rmsd < threshold' is not
transitive for the set of configurations conforming a cluster
generated by the RTC algorithm, the alternative relation 'rmsd
< diameter' is. This leads to the following question: can we
generate clusters with a predetermined maximum diameter
using the RTC algorithm? In other words, can we choose the
radial threshold in the RTC algorithm in such a way that the
maximum diameter of a cluster will be equal to the threshold
we would use with the QTC algorithm? The answer is of
course yes, if one would actually wish to do so.
In the following sections, we will present formally and

analyze in detail the characteristics of the RTC and QTC
methods. Although the two methods have been available and
heavily used since over 2 decades, a detailed analysis of their
properties has not been published. We will show that it is
indeed possible to obtain equally sized clusters with the two
algorithms and will argue that this is in fact of little importance
because, first, the threshold is an arbitrary quantity that may
have different “ideal” values depending on the objective of the
analysis and, second, for the purposes discussed here the
simplest physically based guide to decide on the value of the
threshold is in fact radial in nature rather than diametral.

■ COMPUTATIONAL DETAILS
Clustering Algorithms. The two algorithms, QTC1 and

RTC,3,4 require as input the matrix of rmsds between all pairs
of configurations.
In its mth iteration, the QTC algorithm scans the matrix in

search for the configuration with the largest number of
neighbors in order to generate the mth cluster. Specifically,
each configuration not clustered in the previous m − 1
iterations (we shall refer to them as the available config-
urations) will be considered both as a seed of a tentative
cluster and as a potential neighbor of all other seeds. We use
the term tentative cluster to refer to a seed and its neighbors
before the neighborhood sizes of all seeds are compared to
select the actual cluster. For each seed, its neighbors will be
determined as follows: From all other available configurations,
the one that upon its addition extends the diameter of the
cluster the least, while fulfilling the condition that the diameter
must remain smaller than the threshold, is taken as the next
neighbor and included in the seed’s tentative cluster. This
process is repeated until no remaining available configuration
fulfills the threshold, at which point the tentative cluster for
that seed is complete. Note that within an iteration all available
configurations are tested as potential neighbors of each one of
the available seeds. Once the tentative clusters for all available
seeds have been obtained, the one with the largest number of
elements is promoted to constitute the mth cluster, and all
elements of that cluster are removed from the pool of available
configurations, thus finalizing the mth iteration. The algorithm
is stopped when there are no more configurations available or
new clusters fall below a preset minimum number of elements.
The RTC algorithm differs from the QTC one in the way

the neighbors of a seed are determined at each iteration: All
available configurations at a distance from the seed smaller
than the threshold are taken as elements of the seed’s tentative
cluster. Thus, the RTC algorithm avoids the double loop per
seed that characterizes the QTC algorithm �to find the next
element of the tentative cluster (inner loop over available

configurations) until no other configurations fulfilling the
diameter threshold are available (outer loop).
The clusterings were performed with inhouse software

reproducing exactly the algorithms described here. Results
using established software implementations (available free of
charge) on the tau-polypeptide example are provided as the
Supporting Information (SI) for comparison. For the RTC
case, results found in the SI were obtained using the
McLachlan algorithm6 as implemented in ProFit v3.3
(http://www.bioinf.org.uk/software/profit/) for the rmsd
calculation and the RTC algorithm as implemented in
HADDOCK v2.07 (cluster_struc, https://www.bonvinlab.
org/software/haddock2.2/) for the clustering. For the QTC
case, results found in the SI were obtained using the
implementation published by Gonzaĺez-Alemań et al.2

(https://github.com/rglez/QT). The results are exactly the
same, with small differences in the QTC case due to
implementation details that are explained in the SI document
and conform in both cases with the QTC algorithm.
MD Simulation Data. The trajectory of the tau

polypeptide was downloaded from https://github.com/
LQCT/BitQT/blob/master/examples/aligned_original_tau_
6K.dcd, together with the reference PDB file https://github.
com/LQCT/BitQT/blob/master/examples/aligned_tau.pdb.
It corresponds to the exact same trajectory used by Gonzaĺez-
Alemań et al.2 in their comparison of the QTC and RTC
clustering algorithms. The trajectory contains 6001 config-
urations of the polypeptide. We used the backbone N, H, Cα,
C, and O atoms of residues Lys2 to Asp11, that is, 50 atoms in
total, for least-squares fitting and rmsd calculation. The two
terminal residues, Gly1 and Leu12 and their capping groups,
were left out because they are relatively free to rotate and
would introduce unnecessary noise in the clustering of the rest
of the structure. Likewise, we excluded the side chains because
one generally focuses on the backbone to define a fold and side
chains would only introduce noise. This selection of atoms is
clearly different from that used by Gonzaĺez-Alemań et al.2 (all
atoms), but this is irrelevant for the questions addressed here.
To generate points for the example in two dimensions (not

that this is important), we simply took the x and y coordinates
of the backbone N atom of Lys2 after least-squares fitting of all
configurations to configuration number 2910. A subset of 1501
elements was then constructed by selecting 1 element every 4,
starting with element 1.

■ RESULTS AND DISCUSSION
Theoretical Framework and Properties. We note that

throughout this article we use the term diameter in its
generalized form, that is, as the largest distance between any
two points on the boundary of a closed geometric figure (in
this case a cluster). Likewise, we use the term sphere as a short-
hand for (n − 1)-sphere, defined as the (n − 1)-dimensional
boundary of an (n-dimensional) n-ball.
Let S x x i Ix ( , ..., ) :m i i i n

n
m,1 ,= { } be a set of

Euclidean vectors in a Cartesian frame (for convenience, we
shall also refer to xi as a point in that frame) representing the
Nm configurations of the molecule that are available for
clustering at the mth iteration of the RTC or QTC algorithm,
where n is the number of coordinates that will be used for the
rmsd calculation, I i i N i J: 1 ,m m1= { } is the
set of indices of the elements of S1 that are available for
clustering at the mth iteration and Jm, with J1 = 0̷ and
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J j j N C l mx: 1 , , 1 1m j l1 1= { }> , i s
the set of indices of the elements of S1 that have been already
clustered in previous iterations, where Cl stands for the cluster
set defined in iteration l (see below).
Let xk ∈ Sm be the seed for a tentative cluster of elements of

Sm and Am,k(θ) = {xi ∈ Sm : rmsdki < θ} the set of elements
within a rmsd-threshold θ ∈ R>0 from xk. Note that

nx xrmsd ( )ki i k a
1/2= , where na is the number of atoms

involved in the rmsd calculation (in principle, n = 3 × na).
Then, we define Am(θ) = {Am,k(θ) : k ∈ Im} as the collection of
such sets for all available seeds and Bm(θ) = {|Am,k(θ)| : k ∈
Im}, where |Am,k(θ)| stands for the cardinality of Am,k(θ), as the
collection of corresponding set sizes.
In the RTC algorithm, Am,k(θ) is the tentative cluster

“proposed” by seed xk, which shall be then compared to the
tentative clusters “proposed” by all other seeds. Thus, we
define Dm(θ) = {Am,k(θ) ∈ Am(θ) : |Am,k(θ)| = max(Bm(θ))} as
the collection of sets with the largest number of elements and
Em(θ) = {k ∈ Im : Am,k(θ) ∈ Dm(θ)} as the collection of
corresponding indices. The mth cluster (output of the mth
iteration of the algorithm) is then defined as Cm(θ) = {Am,k(θ)
∈ Dm(θ) : k = f(Em(θ))}, where f is a function that returns one
element from a set, typically the function min(), in which case
Cm(θ) would be the set with the lowest index from those with
the largest number of elements.
To impose the condition that the diameter of Cm(θ) is

smaller than θ, as done in the QTC algorithm, we need to
define a new set Fm,k(θ) = p(Am,k(θ)), where p is an element-
selection procedure, that is, Fm,k(θ) ⊂ Am,k(θ), such that rmsdij
< θ, ∀ xi, xj ∈ Fm,k(θ). Fm,k(θ) is, in this algorithmic context, the
tentative cluster “proposed” by seed xk, which shall be
compared to the tentative clusters “proposed” by all other
seeds. Thus, as done for the tentative clusters in the RTC case,
we define Fm(θ) = {Fm,k(θ) : k ∈ Im} as the collection of such
sets for all available seeds and redefine Bm(θ) = {|Fm,k(θ)| : k ∈
Im} as the collection of corresponding set sizes. Accordingly,
we redefine Dm(θ) = {Fm,k(θ) ∈ Fm(θ) : |Fm,k(θ)| =
max(Bm(θ))} and Em(θ) = {k ∈ Im : Fm,k(θ) ∈ Dm(θ)}. The
mth cluster is then defined as Cm(θ) = {Fm,k(θ) ∈ Dm(θ) : k =
f(Em(θ))}.
Note that the latter cluster definition is not specific for the

QTC algorithm but general for a group of diameter-based
algorithms. This is because, as it is defined, the procedure p is
not unique. That is, the condition rmsdij < θ, ∀ xi, xj ∈ Fm,k(θ),
Fm,k(θ) ⊂ Am,k(θ) can be satisfied by different selection
procedures p, leading to different subsets Fm,k(θ) of Am,k(θ).
For example, the tentative cluster Fm,k(θ) can be grown starting
from its seed following the procedure by Heyer et al.1 and
described under the Computational Details section (the
procedure p implemented in the QTC algorithm), or could
be grown following a specific sequence of configurations (e.g.,
time sequence), that is, testing at each step if the next
configuration in sequence satisfies the diametral threshold
instead of searching for the configuration that minimizes the
increase in the cluster diameter (note that this would produce
different Fm,k(θ) subsets for different configuration sequences).
Another variant of p could be searching for the subset Fm,k(θ)
with the largest number of elements, and so forth.
While the RTC and QTC algorithms are generally presented

as invariant to permutation (referring to the order in which the
algorithm evaluates the seeds or the order in which the
configurations are tested for inclusion in a seed’s tentative

cluster), they are strictly not. This is because the collection
Dm(θ) defined above may contain more than one set. Indeed,
when using these algorithms in practice, at any given iteration
it is relatively common to see two or more seeds tie as the ones
generating the tentative clusters with the largest number of
elements (this is precisely why f is needed in the definition of
Cm(θ)), in which case both algorithms become configuration-
order sensitive (for a given function f). An illustrative example
of many candidate seeds forming tentative clusters of the same
size in a given iteration is given in the Supporting Information
(see the comment on cluster 2 in the QTC case). It is true,
however, that ties tend to occur between seeds that are very
close in space, thus having a relatively small impact on the
clustering.
We shall use the term cluster shape to refer to the convex

hull of the set of points that belong to the cluster. Thus, the
cluster shape with maximum volume is for either algorithm a
sphere, of radius θ for RTC clusters and θ/2 for QTC ones.
Note that we can define three types of geometric centers for
both RTC and QTC clusters. The first type is the center of the
neighbor-search volume (a sphere) and corresponds to the
position of the seed (as we have seen above, both algorithms
search within Am,k(θ)). For this reason, it is customary to refer
to the seed, particularly in the RTC case, as the central element
of the cluster, but this is, as we shall see, misleading if we give it
a spatial significance. The second type is the geometric center
of the cluster shape, which will only coincide with the first one
if the cluster is spherical (RTC case) or spherical and centered
on the seed (QTC case). And the third type is the geometric
center of the cluster elements, which will only coincide with
the second one if the spatial distribution of points in the cluster
is homogeneous (which is rare). Thus, it is in fact common for
the seeds of even RTC clusters to be relatively distant from the
geometric center of the cluster shape and/or the geometric
center of the cluster elements.
The seed of a QTC cluster tends in fact to be close to the

cluster’s boundary. This is due to the specific procedure p that
selects the elements of Fm,k(θ) from Am,k(θ). As described
under the Computational Details section, at each step in the
process of recruiting new elements for the tentative cluster
Fm,k(θ), the point that minimizes the increase in diameter while
fulfilling the diametral threshold θ is selected. Thus, the first
steps of the procedure are highly determined by the local
distribution of points around the seed, which is never equal in
all directions. This will introduce an early bias or dominant
direction and sense for the cluster’s growth, which may be
more or less prominent depending on the exact spatial
distribution of points. In cases in which the distribution
induces a marked directionality (which could be relatively
frequent as we shall see in the 2D example below) and
assuming a spherical cluster, the cluster will tend to grow in
eccentric spherical layers away from the seed, leaving the seed
at or very close to the cluster’s boundary. Note that it is the
local distribution of points around the seed that primarily
determines the direction and sense of growth of Fm,k(θ), rather
than the global spatial distribution of points in Am,k(θ).
Therefore, Fm,k(θ) is not necessarily the subset of Am,k(θ) with
the highest cardinality. Another consequence of this is that,
unlike for RTC clusters, for QTC clusters the relation |Cm(θ)|
> |Cm+1(θ)| does not need to hold: the direction of growth of
the tentative cluster around a given seed xk may in some cases
be less optimal for set Sm than for set Sm+1, so that we may have
|Fm,k(θ)| < |Fm+1,k(θ)|, which can eventually lead to a situation
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in which |Fm,k(θ)| < |Fm,j(θ)|, where Fm,j(θ) = Cm(θ), and
|Fm+1,k(θ)| > |Fm,j(θ)|, where Fm+1,k(θ) = Cm+1(θ). In practice,
however, the fact that Cm(θ) is selected from a collection
Fm(θ) of overlapping tentative clusters Fm,k(θ) makes this
potential inversion of cluster-size order very infrequent and we
have only observed it in two cases in the examples below, for
very small (irrelevant) clusters.
To adequately compare the RTC and QTC algorithms in

practical applications, one needs to keep in mind that θ is a
radial threshold (i.e., θr) in the RTC algorithm and a diametral
threshold (i.e., θd) in the QTC algorithm. If the spatial
distribution of points is such that the diameters of the RTC
clusters are approximately equal to two times the threshold θr
in at least one direction, the extreme case being spherical
clusters, one should use θr = θ/2 as the RTC threshold and θd
= θ as the QTC threshold for comparable results. However, as
we shall see in the tau-polypeptide example, the distribution of
points has rarely these characteristics when working with n-
dimensional data representing molecular configurations from
computer simulation. First, the region of this n-dimensional
space corresponding to a conformer of the molecule (where
the term conformer may be taken as a very well-defined
structure or a broader structural state, depending on the
purpose of the clustering) will generally have an irregular shape
and its immediate surrounding may be void in many directions,
so that even if the algorithm tries to mix in points
corresponding to neighbor conformers (when the threshold
is too big) in many spatial directions there might be simply
nothing to mix in. Second, the density of points in this n-
dimensional space is typically reduced in clustering exercises
due to the selection of only one structure every so many
simulation steps, which has the effect of blurring the

underlying cluster topology (if such should physically exist).
Therefore, in order to have equally sized clusters, the relation
between the rmsd thresholds θr (RTC) and θd (QTC) will be
in practice θd/2 ≤ θr < θd.
A more important question, however, is how to choose the

threshold. Typically, the option of choice in the literature is
trial and error: both algorithms, particularly RTC, are
sufficiently fast that one can actually run them several times
with different θ values, until the outcome satisfies any chosen
criteria. The criterion is often visual, that is, the structures in a
cluster “look the same”.2 While this may fit the purpose in
some types of studies, it is actually a weak criterion from a
physical standpoint. As a general rule, before clustering data
points in an n-dimensional space, one may want to query this
space to gather information on the distribution of data points
in it. This is also what makes physical sense in this case because
the space in question is the molecule’s configuration space
(reduced to the number of coordinates used for the rmsd
calculation and the given ensemble sample). As will be shown
for the tau-polypeptide example below, the simplest effective
way to query this space is by calculating the distribution of
rmsd values. This can be done for the full (half) rmsd matrix,
but the mixing of underlying distributions generally reduces its
informative value. Instead, we propose that a first tentative
clustering may be performed to calculate the rmsd distribution
for each of the seed elements of the most populated clusters
(as representatives of the high-density regions of interest), that
is, taking the respective full columns (or rows) from the rmsd
matrix. In many cases, these distributions will show a first
region of relatively high probability density, followed by a deep
and then a second, larger increase in probability density. This
deep in the probability density corresponds to the end of the

Figure 1. Representation of the first 20 clusters of 1501 points in 2D. (A) RTC algorithm, θ = 1.1 Å. (B) QTC algorithm, θ = 2.2 Å. The color
sequence is the same in both panels, starting with dark green for the first cluster. The seed elements of the clusters are indicated with a black circle
(with the area matching the cluster color). Points belonging to clusters with an index higher than 20 are indicated as black squares. (C) Detail of
the process of generation of cluster 1 from panel B (dark green): to illustrate this process, the points are shown in four different colors following
their sequence of inclusion in the cluster. Thus, initial growth from the seed (dark-green circle) is indicated as a dark-green trajectory. Elements in
red, light green, and blue correspond to successive phases in the growth of the cluster, in this order.
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first layer of configurations around the seed and may therefore
be interpreted as a (spherical) region of conformational
transition. After comparing the distributions for the seed
elements of the main clusters, this information can be used to
assess the threshold for a second, final clustering. Note that this
information is radial in nature, and it therefore leads to a value
for θr rather than θd.
In the next subsections, we illustrate some of the properties

discussed above of the RTC and QTC algorithms with two
examples.
Example Case in 2D. Figure 1 shows the clustering of the

set of 1501 points in two dimensions (see the Computational
Details section) performed with the RTC (panel A) and QTC
(panels B and C) algorithms. This is a good example of a major
limitation of fixed-size clustering algorithms: if the data has no
particular underlying structure or the threshold is completely
inadequate, these algorithms will still partition the data
according to the chosen threshold. The question of how to
choose a threshold is, therefore, of particular significance, even
if we will ignore it in this first example.
Note that, as mentioned under the Theoretical Framework

and Properties section, for densely populated spaces with few
void regions, a selection of thresholds such that θr = θd/2,
where θr is the threshold used with the RTC algorithm and θd
is the threshold used with the QTC algorithm, produces
equally sized clusters in the two cases. As also mentioned,
while the seeds of the RTC clusters tend to be closer to the
centroids of their cluster shapes, the seeds of the QTC clusters
tend to be closer to the clusters’ boundaries.
Panel C illustrates the generation process of QTC clusters,

using the first cluster from panel B (dark green) as an example.
The initial steps are shown as a trajectory starting from the
seed (dark-green circle). Consecutive phases in the growing of
the cluster are illustrated with elements in red, light green, and

blue, in this order. The directionality of the growth, away from
the seed in eccentric circular layers, can be clearly observed.
Clustering of Structures from a MD Trajectory.

Following the strategy described above to infer a physically
meaningful threshold, we first used the RTC algorithm to
perform a clustering of the 6001 configurations of the tau-
polypeptide, in order to identify points in the 150-dimensional
space (50 atoms × 3 coordinates) that are in regions of high
density. In this case, we chose the seed elements of the six
most populated clusters to then examine the distribution of
rmsds between each of these elements and the other 6000
configurations. In order to see how the distributions may vary
depending on the threshold used for this initial clustering, we
chose six evenly spaced thresholds between 0.12 and 0.17 nm.
The results are shown in Figure 2.
In all distributions, an initial region corresponding to a first

layer of configurations around the seed can be distinguished,
after which the probability density goes down to zero or close
to it. The distributions for the seeds of the first, most
populated clusters tend to be less sensitive to the threshold
used for the clustering, as expected. This is not so much
because the clusters are more populated but because they are
generated first, that is, the following clusters are affected by
which configurations have or have not been already taken by
the previous ones. Although the rmsd value at which the
probability density reaches zero differs for the different
distributions, 0.17 nm stands out as a possible consensus
threshold: it is a point at which the probability density either
reaches zero (notably for the seeds of cluster 1) or has not yet
recovered significantly from zero.
Based on these observations, we focused on the clusterings

performed with θr values of 0.12 nm, that is, the lowest value
that seems adequate for some of the distributions shown in
Figure 2, and 0.17 nm. To define the corresponding θd
thresholds for the QTC algorithm, we looked at the diameter

Figure 2. rmsd distributions for the seeds of the six most populated clusters, after RTC clustering with six different thresholds. Each curve
corresponds to the distribution of the rmsds between the given seed and all other 6000 configurations. The distributions are cut at 0.20 nm for
clarity (the inset in panel D shows the full distributions from panel A as example). Panels A to F correspond to the distributions for the seeds of
clusters 1 to 6, respectively. Each panel contains the distributions for six seeds, resulting from RTC clusterings with θr values of 0.12 (black), 0.13
(red), 0.14 (green), 0.15 (blue), 0.16 (orange), and 0.17 nm (brown). The dashed vertical lines show the positions of the thresholds (with colors
matching the corresponding distributions). When two distributions overlap (i.e., clusterings with different thresholds produce the same seeds for
the given cluster number), the overlapping curves are replaced by circles of the corresponding color.
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of cluster 1 in each of these two RTC clusterings. Note that
cluster 1 is our best guide because its diameter is not
conditioned by previous clusters. The diameter was 0.199 nm
for C1

RTC(0.12) and 0.278 nm for C1
RTC(0.17). With these

reference values and taking into account that the probability
density for a rmsd distance above 0.25 nm in C1

RTC(0.17) is
very small (only 17 elements at distances between 0.25 and

0.278 nm), we decided to choose θd values of 0.20 and 0.25
nm for the QTC algorithm.
Note that, as already discussed, the diameter of an RTC

cluster should be generally expected to be smaller than 2θr for
actual data sets from simulation, as confirmed by the values
indicated in the previous paragraph. The reason for this is
illustrated in Figure 3. This figure shows, for every pair of

Figure 3. Relation between the distance to the seed and corresponding angle for every pair of elements of a cluster (excluding the seed).
Specifically, rmsdij + rmsdik, for all xj, xk ∈ C1(θr), j, k ≠ i, where xi is the seed of C1(θr) and θr has the values 0.12 nm (A) and 0.17 nm (B), against
the angle φ between the vectors xij and xik, where xij = xj − xi.

Figure 4. rmsd distributions for the first 10 clusters, using the RTC algorithm with θr = 0.12 nm (black) and the QTC algorithm with θd = 0.20 nm
(red). The number of elements in the cluster is for each case indicated.

Figure 5. rmsd distributions for the first 10 clusters, using the RTC algorithm with θr = 0.17 nm (black) and the QTC algorithm with θd = 0.25 nm
(red). The number of elements in the cluster is for each case indicated.
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elements (excluding the seed) of clusters C1
RTC(0.12) (panel A)

and C1
RTC(0.17) (panel B), the relation between the sum of

their rmsd distances to the seed and the angle between the
vectors associated with these distances. Thus, while there are
pairs of points for which the sum of rmsds adds up indeed to
2θr, that is, 0.24 nm (panel A) and 0.34 nm (panel B), the
angle between the corresponding vectors is in no case close to
180°, which precludes the maximum diameter from being
reached. This figure also shows that, as expected (see panel A
in Figure 2), the point density is abruptly cut (solid wall at 0.24
nm) when using the 0.12 nm threshold (panel A), while a
threshold of 0.17 nm leads to a well-defined cluster (panel B).
Figure 4 shows the distribution of rmsd values within each of

the first 10 clusters, for the RTC clustering with θr = 0.12 nm
and the QTC clustering with θd = 0.20 nm. Seven of the
clusters, including the first four, overlap almost perfectly. For
three of the clusters, the QTC algorithm appears to have a
higher tendency to populate the far-right side of the
distribution.
Figure 5 shows the corresponding distributions for the RTC

clustering with θr = 0.17 nm and the QTC clustering with θd =
0.25 nm. It becomes here more apparent that the QTC
algorithm has a higher tendency to generate split distributions
and populate the far-right side of the distribution. For example,
it can be observed that an artificial cluster C4

QTC, containing
two different populations with similar weights, has displaced by
one position in the ranking the QTC clusters that correspond
to C4

RTC and C5
RTC.

We obtained for each cluster Cm, as shown in Figures 4 and
5, the center of geometry of the elements of the cluster, xm(c),
and then calculated the rmsd between the seed element and
this point, as well as the radius of gyration of the cluster. Note
that the radius of gyration of the mth cluster is here defined as
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The results are shown in Figure 6. As anticipated, panel A
confirms that while the seeds of QTC clusters are in a majority
of cases further from the center of geometry of the cluster
elements than the seeds of RTC clusters, the latter are clearly
off-center also. We therefore suggest to avoid, in either case,
the term central element to refer to the seed element. Panel B

illustrates that, except for cases in which a tight match between
the rmsd distributions in Figures 4 and 5 exists, the RTC
clusters tend to be more compact (lower rog) than the QTC
clusters.
When looking at the total number of clusters generated by

the two algorithms, we see that they differ remarkably (see the
Supporting Information). Thus, while the number of clusters
generated by the RTC algorithm using θr values of 0.12 and
0.17 nm is 1338 and 493, respectively, corresponding numbers
for the QTC algorithm with θd values of 0.20 and 0.25 nm are
599 and 276, respectively. However, focusing on the upper part
of the ranking list, we see that for RTC with θr = 0.12 nm the
number of clusters with 100 or more elements is 6 and these
cover 19% of the overall population, while for QTC with θd =
0.20 nm the number of clusters is also 6 and they cover 20% of
the population. If we extend this to clusters with 10 or more
elements, the numbers start to diverge, with RTC producing
98 clusters that cover 50% of the population and QTC
producing 161 clusters covering 70% of the population. The
trends are similar but the results less divergent for the
comparison between RTC with θr = 0.17 nm and QTC with θd
= 0.25 nm. Here, the RTC algorithm generates 8 clusters with
100 or more elements covering 25% of the population and 149
clusters with 10 or more elements covering 82% of the
population, while the QTC algorithm generates 7 clusters with
100 or more elements covering 25% of the population and 150
clusters with 10 or more elements covering 91% of the
population. Thus, while the upper part of the ranking looks
very much the same with the two algorithms, RTC produces
many more small clusters at the end of the ranking.
How can we explain such large differences in the total

number of clusters? The neighbor-search volume for the RTC
algorithm is strictly spherical, while for the QTC algorithm it is
a volume within a sphere, with the diameter as the only shape
restraint. This makes the QTC algorithm more flexible in
terms of cluster shapes, allowing it to capture more of the
elements that would lay just outside a cluster boundary in the
RTC case. Thus, the RTC algorithm tends to generate many
more artificial clusters with orphan elements in the lower part
of the cluster ranking. On the other hand, the greater shape
flexibility of the QTC algorithm makes it have a higher
propensity to incorporate points from non-self neighbor
densities in a cluster, thus mixing in it different populations.

Figure 6. Distance of the seed from the center and cluster compactness (lines between points are drawn only to help visually distinguish the four
data sets in each plot.) (A) rmsd between the seed element and the center of geometry of the elements in the cluster. (B) Radius of gyration of the
cluster. Black circles (black solid line): RTC clustering with θr = 0.12 nm. Red circles (red solid line): QTC clustering with θd = 0.20 nm. Black
squares (black dashed line): RTC clustering with θr = 0.17 nm. Red squares (red dashed line): QTC clustering with θd = 0.25 nm.
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However, and as a conclusion, these differences between the
two algorithms tend to be rather irrelevant in practice.

■ DATA AND SOFTWARE AVAILABILITY
The data used in this study was downloaded from https://
github.com/LQCT/BitQT/blob/master/examples/as indi-
cated under the Computational Details section. Although the
calculations shown here were performed with inhouse
software, these calculations can be performed with a variety
of software packages implementing the RTC and QTC
algorithms (see some of the potential choices in Gonzaĺez-
Alemań et al.2). We provide in the Supporting Information a
comparison between our results for the tau polypeptide and
results using one of the alternative software options in each
case. The results for the two software choices are exactly the
same, with small differences in the QTC case due to
implementation details that are explained in the SI document
and conform in both cases with the QTC algorithm.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01079.

Tau_results_diff_software.xlsx: listing of clusters, in-
cluding seed element and number of elements, from the
tau-polypeptide example, with θr values of 0.12 nm and
0.17 nm (RTC clustering) and θd values of 0.20 nm and
0.25 nm (QTC clustering), corresponding to the data
presented here (inhouse software) and computed with
alternative available software, as indicated under the
Computational Details section (XLSX)
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