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Peptides are known to possess a plethora of beneficial properties and activities: antimicrobial, anticancer,
anti-inflammatory or the ability to cross the blood–brain barrier are only a few examples of their func-
tional diversity. For this reason, bioinformaticians are constantly developing and upgrading models to
predict their activity in silico, generating a steadily increasing number of available tools. Although these
efforts have provided fruitful outcomes in the field, the vast and diverse amount of resources for peptide
prediction can turn a simple prediction into an overwhelming searching process to find the optimal tool.
This minireview aims at providing a systematic and accessible analysis of the complex ecosystem of pep-
tide activity prediction, showcasing the variability of existing models for peptide assessment, their
domain specialization and popularity. Moreover, we also assess the reproducibility of such bioinformatics
tools and describe tendencies observed in their development. The list of tools is available under https://
biogenies.info/peptide-prediction-list/.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

In living organisms, peptides are short amino acid sequences
that accomplish a wide variety of biological functions [1–4]. Pep-
tides are expressed either as mature products [5] or cleaved from
natural precursor proteins. Considering their potential, researchers
have been long interested in the identification and functional char-
acterization of peptides with relevant activities.

Several machine learning (ML) models have been developed to
this end, providing new and relevant insights into the field [6].
However, considerable discrepancies in theoretical assumptions
can arise. For example, peptides are generally defined as short
amino acidic segments, but their minimum and maximum lengths
is a matter of discussion. While some researchers have provided
evidence of dipeptide self-assembly into higher-order structures
[7,8], certain activities require longer peptide lengths [9]. A similar
case applies to maximum lengths, with some studies considering
peptides above 100 residues [10,11]. Beyond theoretical assump-
tions, the goal behind model generation can also create significant
differences. While some tools specialize in predicting single-
activity peptides such as antimicrobial [12–17], anticancer [18–
21], antiparasitic [22] or antiviral [23], others intend to predict
multiple functions overlapping the same peptide [24,25]. In some
cases, these multiple classifications are faded by blurry definitions
such as ‘‘antimicrobial peptides” (AMPs). This category is often
found in the description of these tools and is sometimes inappro-
priately used to refer exclusively to antibacterial peptides instead
of more broad AMPs (which include e.g. antifungal and antiviral
peptides), a trend that can lead to unclear results [12,26].

Beyond traditional peptide functionalities, new activities are
arising and expanding this field of study. The characterization
and identification of peptides for therapeutic use has been a topic
of interest for many researchers in the last years. In this sense, anti-
aggregating peptides have emerged as promising candidates for
clinical therapies. For example, amphipathic and cationic alpha-
helical peptidic scaffolds have been described to bind alpha-
synuclein toxic species found in Parkinson’s Disease (PD) with
nanomolar affinity [27,28]. Strikingly, peptides with these features
often exhibit a crosstalk between anti-amyloid, antimicrobial and
antibiofilm activities [29]. This opens a new window in the search
for therapeutic strategies to treat and diagnose PD and other
related diseases at the molecular level. The emergence of new pep-
tide entities and applications points at developing novel tools for
predicting peptide activities with high confidence.

ML models are algorithms that can find patterns in provided
training data and make predictions on new and unseen datasets.
Therefore, the original dataset used for training such models is of
tremendous importance, as it determines the quality of the
obtained results. The blurry definitions of peptides with some
activities make the acquisition of high-quality positive data diffi-
cult. However, creating negative data is even more challenging as
there are essentially no experimentally verified negative examples.
The most common practice is generating negative data by sam-
pling a large database for peptides that most likely do not possess
the intended activities, e.g., by searching UniProt for entries not
annotated with specific keywords and restricting sequence length.
However, there are many ways to perform data sampling, and
authors usually define their own sampling method. It leads to
models that are meant to predict the same activity but possess dif-
ferent areas of competence. Moreover, it results in biased compar-
isons of the performance of such models [30].

Different strategies can be used to extract the information from
unstructured data, such as peptide primary sequences. The usage
of shallow models requires the conversion of unstructured sequen-
tial data into the structured, tabular format by employing some
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heuristic algorithm for feature engineering. Thanks to their archi-
tectural flexibility, deep models can learn from structured and
unstructured data [31]. Irrespective of the method, predictive
models are created to provide useful tools to the scientific commu-
nity to solve specific problems. In this sense, users are interested in
obtaining a wide range of high-quality predictions as quickly and
efficiently as possible, providing valuable insight into their data.
Furthermore, the method should be robust and stable so that users
can accurately re-run computations. Web servers are usually the
preferable option to fulfill these requirements, but researchers
and private companies with privacy concerns may consider them
unsuitable when dealing with sensitive data. Consequently, devel-
opers are also encouraged to provide standalone applications in
code repositories that can be employed independently by users
in local environments. Additionally, standalone tools can be easily
integrated with the local analytical pipelines and thus be more
appropriate for high-throughput studies.

Considering all the benefits and general appeal of predictive
models, an overwhelming number of bioinformatics tools have
been developed in the last years to systematically predict and clas-
sify peptides. Such tools are based on different features and ML
algorithms that aim at identifying specific activities. This seem-
ingly positive fact sometimes turns against users as they may
struggle to find the best suited predictor for their precise needs.
The problem is exacerbated when functional published tools
drown among broken web servers that are no longer available
[32] or unreported code repositories [33] that lead to serious
reproducibility issues.

Although some overviews of these ML models have been pub-
lished [34], there is still a need for a systematic review of the cur-
rent state of the peptide prediction field. In this work, we inspect
the characteristics of 140 existing ML tools for peptide activity
identification and describe observed associations and tendencies.
With this minireview, we expect readers to find an exhaustive
and integrated resource for conducting their peptide activity pre-
diction tasks successfully, as well as raising awareness about the
reproducibility crisis of many ML models for the scientific
community.
2. Methods for data acquisition

Current software tools appearing in the tool list of the online
supplementary website were screened using PubMed’s API and
Google Scholar looking for the keywords antimicrobial, anticancer,
antifungal, antiviral, antiparasitic, antitoxin, antiangiogenic, antibio-
film, antihypertensive, antiinflammatory, cell-penetrating peptides,
blood–brain barrier peptides, chemotactic, quorum sensing, surface-
binding or neuropeptides and peptide prediction in the title or the
abstract of the publication until July 1st, 2022. The code provided
in repositories was not tested, as it is considered to be the same
that was provided during the review process. However, we did test
web servers both for the availability of the hosting site and the
functionality of the tool on October 14th, 2022. If web server links
are no longer working, they are considered non-active. On the
other hand, tools that provide an active web server but do not pro-
vide results when a model input is given are deemed as non-
functional. It is important to note that this assessment of function-
ality of the web server depends very highly on the date and hour of
the accession and it could change dynamically.

To measure the popularity of tools, we obtained their citations
from CrossRef on October 14th, 2022. Due to their nature, citations
are noisier measures of popularity for more recent tools. However,
they still at least partially reflect the general interest of the scien-
tific community.
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The list of tools was manually curated from original publica-
tions to assess their reproducibility into golden, silver, or bronze
categories as proposed by Heil et al. in 2021 [35]. We included
an additional category (‘‘below bronze”) for tools that did not fulfill
the minimum information required for bronze reproducibility:
data, models, and source code published and downloadable.
Besides these minimum requirements, if the model repository is
well documented, key analysis details are suitably recorded and
dependencies can be set up in a single command (e.g. via docker,
conda, snakemake or renv) the tool is granted a silver category.
The gold category is only given for those methods that allow the
reproduction of the entire analysis with a single command (e.g.
via makefile, snakemake, drake or targets). This workflow is sum-
marized in the Supplementary Fig. 1.
3. List of existing models

The PubMed and Google Scholar screening rendered a total of
140 tools for predicting different peptide functions published from
2009 to July 2022, which are freely available for all users as an
online supplementary website at https://biogenies.info/peptide-
prediction-list/.

In this peptide prediction list, tools can be easily sorted accord-
ing to their functional prediction as detailed in the previous section
by keyword search. The overall availability of each method can be
assessed by the presence of an active and functional web server,
code and training repositories and general reproducibility. There-
fore, each tool can be searched by name and publication DOI so
that users can identify all available bioinformatics resources linked
to the tool according to their needs.

To increase the accessibility of the online supplementary web-
site, tools with available web servers or repositories can be easily
accessed through the link provided in the corresponding columns.
Additionally, all the information can be copied or downloaded as
csv, Excel or PDF files.
4. Trends and associations in ML-based peptide predictors over
time

4.1. The vast diversity of functional activities derived from peptide
predictors

One of the main questions that developers ask themselves when
developing a new predictor is what are the key points that differ-
entiate average from successful and well-cited tools, beyond the
journal of publication. This is important, as bioinformaticians are
constantly aiming to provide the best possible resources that
would help researchers in their respective work fields, offering
solutions to major concerns. For example, pathologies affecting
the nervous system, such as Parkinson’s or Alzheimer’s disease,
require dedicated software to screen for peptides with the ability
to cross the blood–brain barrier. Other cases include AMPs or anti-
cancer peptides, which have been widely studied for their implica-
tion for human health and disease and the development of novel
therapeutics in the last decade [36,37]. This is exemplified by the
high number of tools predicting these activities (Fig. 1A). Anti-
cancer predictors are found to be the most prevalent with 42 tools,
closely followed by the antimicrobial activity with 40, which
accounts for 20.5 % and 19.5 % of all annotated activities (205),
respectively. Nonetheless, activities with a lot of available tools
do not have the highest median number of citations per year
(Fig. 1B). This could be a consequence of the high level of compe-
tition between predictors in the most popular activities. In this
sense, anticancer and AMPs have a median of around 5.5 citations
per year, whereas, for example, toxic, antifungal or antiviral pep-
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tides surpass them despite having much less available tools (3,
10 and 20, respectively). Thus, the available activities highlight
the variability of the functional landscape of peptide prediction,
which is experiencing an evident rise in popularity. It is translated
into a sixfold increase of available models developed in the last five
years, from 34 in 2017 to 205 in 2022 (Fig. 1C). This year-to-year
model increase is also appreciated when considering non-
cumulative values of tools deployed per year (Supplementary
Fig. 2). The overwhelming amount of peptide tools is becoming a
source of confusion and misunderstanding for many researchers,
as they struggle to find the optimal resource for their specific
needs.

4.2. Emergence of deep architectures

Given the revolution of deep learning (DL) in the proteomics
field, it is also relevant to consider the differences between deep
and shallow ML algorithms in the peptide activity prediction area.
The benefit of the deep frameworks in the field of peptide property
predictions is not obvious as the peptide datasets are usually more
limited than protein ones, especially considering the number of
available sequences [38]. Still, DL models are rapidly gaining pop-
ularity, accounting for almost half of the published models in 2021,
whereas no deep models were published before 2018 (Fig. 2A).
When considering the number of citations of these models, some
differences in the relative amount of citations for deep models in
comparison with non-deep models can be observed (Fig. 2B). To
quantify this observation, we introduce the citation score (C score)
and plot it against the year of publication (Fig. 2C). The C score pro-
vides an overview of the appeal of deep models, representing the
relative number of citations of deep models vs non-deep models.
That is, a C score of 1 means that deep models have the same rel-
ative amount of citations as non-deep models. As an example, if
this value were 1.2, it would indicate that deep models are 20 %
more cited than shallow models. With this score, it is clear that,
except for those tools published in 2021, deep models are more
appealing than non-deep models according to their relative num-
ber of citations. It highlights the popularity of deep models and
provides a plausible explanation for the explosion of deep models
created in 2021.

4.3. ML algorithm: what is the most common choice?

A key question when developing an ML algorithm relies on the
final classifier that will be selected for the prediction. Among all
ML classifiers used by the tools, shallow models represented by
support vector machines (SVM) and random forests (RF) are the
most frequent, with 64 and 59 independent architectures, respec-
tively (Supplementary Fig. 3). They are closely followed by DL algo-
rithms (51) that have emerged as a common method to build ML
models either alone or in a combination of an ensemble. For the
sake of completeness, all independent ML classifiers from ensem-
bles were included. Both RF and SVM, like all other shallow ML
algorithms, work with structured data. They are also quite popular
in the ML field for being easy to train and tune, but they require
converting unstructured sequential data to a tabular format using
feature engineering. SVMs can perform both linear and non-linear
classification and regression but are often difficult to scale to large
datasets. In contrast, RF methods are less appropriate for regres-
sion but are able to learn how important each feature is to the pre-
diction [39].

Although individual ML algorithms have been described to be
highly accurate and precise in their predictions, some tools use
the combination of different models to create an ensemble that
can potentially improve the prediction capabilities of individual
models. This includes deep and non-deep combinations that claim

https://biogenies.info/peptide-prediction-list/
https://biogenies.info/peptide-prediction-list/


Fig. 1. Peptide prediction landscape by predictive activity, according to the number of publications per activity (A), the average number of citations per year (B) and the
cumulative number of tools (C). In this plot, activities are counted individually. That is, if a tool has more than one predictive activity, each one is counted independently.
Those activities with 10 or more published tools are presented in color (antibacterial, antimicrobial, antiinflammatory, cell-penetrating, anticancer, antifungal and antiviral).
In these cases, the average number of citations is displayed as a boxplot to better show the distribution of the average citation differences between activities. These results
indicate that the activities with the highest amount of models do not necessarily have the highest average citations.
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to be a viable strategy for obtaining more reliable classifications,
for example by using features obtained by a DL algorithm to train
a shallow model [40].

4.4. Bioinformatics resources: web servers, code repositories and
reproducibility issues

Once the purpose of the tool is defined and the corresponding
method has been validated, developers need to think of suitable
platforms to allow users to run predictions. Web servers are usu-
ally the priority option because they provide an easy framework
to run calculations without the necessity of technical expertise in
programming or command-line management.

Aside from practical usability aspects, the tool should be repli-
cable given the source code and the data are provided. Interest-
ingly, it is only recently that the authors have put more
emphasis on the reproducibility of their tools. Indeed, the first tool
with at least a bronze level of reproducibility was published in
2018 (Supplementary Fig. 4). In an effort to balance this bias, which
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might be driven by the recent assessment of reproducibility stan-
dards for machine learning in the life sciences [35], here we only
analyze the reproducibility status of published tools from 2018
onwards (111 out of the 140 tools). We observed that tools that
do not incorporate open web servers (57 out of 111) tend to have
a lower number of citations than those that include them (Fig. 3A).
Nonetheless, having an active web server at the time of publication
is not enough. Published web servers tend to go offline due to the
associated maintenance costs and technical management required.
Among all 57 peptide tools with associated web servers, 24 were
no longer accessible or functional (42.1 %) on October 15th 2022.
It means that these tools have lost potential interactions with users
that could be interested in running predictions using their algo-
rithms. This is also reflected in the total number of citations, where
tools with non-active web servers obtain fewer citations than
active predictors.

The most concerning observation, however, is related to the
reproducibility (or lack thereof) of ML methods (Fig. 3B). Of the
111 tools, only 38 (34.2 %) contained the minimum information



Fig. 2. Comparison between deep and non-deep models, according to the number of published models (A) and the number of citations (B). The citation score for the deep
models (C) indicates for which years deep models were more cited than non-deep models (scores over 1). This score provides an accurate perspective on the attractiveness of
DL against shallow tools.
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required to reproduce the ML algorithm independently: source
code, data, and models published and downloadable. Among them,
nine gold and four silver tools presented the highest possible stan-
dard of reproducibility (Table 1). The rest fell into the ‘‘below
bronze” category where, in the best-case scenario, only web ser-
vers were provided to allow users to run predictions. Something
remarkable, however, is that web server availability is a much bet-
ter indicator of the average number of citations per year than the
reproducibility standard of these tools (Fig. 3C). This situation
may be the root cause of the ML reproducibility crisis, as making
a reproducible model is time-consuming and does not render an
apparent citation-wise benefit. Given the existing lag between
the date of publication and when tools start receiving their first
citations, it is also possible that the average number of citations
per year for very recent tools is underestimated compared to
longer-lived tools.

5. Discussion

Peptide property prediction has positioned itself as a key field of
activity within bioinformatics in recent years. The ability of pep-
tides to mediate different types of functional activities and interac-
tions with other biomolecules offers innovative candidates to
target specific pathologies. At the molecular level, peptide therapy
emerges as a promising strategy to specifically target the patholog-
ical agents underlying these diseases [28,41,42]. Early predictors
used architectures different from ML, but the difficulty in identify-
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ing the contribution weight of each feature to the final decision
limited their performance. Thanks to recent advances in ML and
bioinformatics, an increasing number of tools based on ML have
been released, as it is becoming the standardized method to gener-
ate predictive algorithms.

The success of ML methods in predicting peptide properties has
led to the development of a vast amount of tools that intend to be
useful resources for the scientific community. In this sense,
researchers generally prefer the development of user-friendly
web servers that are easy to use rather than complex code reposi-
tories that only people with some bioinformatics and program-
ming background can run. Based on our analysis, it seems that
providing open-source code does not render any benefit citation-
wise, and as a consequence, researchers may opt to keep their orig-
inal code for future research without losing significant impact. We
believe this is the origin of the reproducibility crisis we have
described in this minireview since only 27 % of all tools (38 out
of 140) present the minimum information required to reproduce
the ML algorithm from scratch.

A similar tendency applies to DL algorithms, which have
become the standard ‘‘advanced” models for peptide property pre-
diction for some researchers. The ability of these algorithms to
learn relevant features directly from the data led many experts
in data science and related disciplines to translate this knowledge
into the peptide prediction field. Although DL was successfully
applied to identify AMPs in metagenomics data [43], it is not clear
whether the success DL has seen in other fields of science has yet



Fig. 3. Comparison of tools published from 2018 onwards according to the average number of citations per year, web server availability and their reproducibility standard. (A)
The density chart of models according to the number of citations. Density colors represent the availability of web servers. (B) Bar chart representing the number of models
fulfilling the given reproducibility standard. (C) The beeswarm chart of models. The y-axis represents the reproducibility standard and x-axis represents the average number
of citations per year. The color of the point represents the availability of the web server.

Table 1
Tools granted with the gold or silver standard of reproducibility classification as
adapted from Heil et al. [35]. Most of them are designed to predict anticancer or
antimicrobial activities, which account for the majority of peptide tools as observed in
Fig. 1.

Tool name Activity prediction Reference

ACP-MHCNN Anticancer [20]
CancerGram Anticancer [18]
DeepACP Anticancer [19]
iACP-FSCM Anticancer [21]
amPEPpy 1.0 Antimicrobial [16]
AmpGram Antimicrobial [14]
AMPlify Antimicrobial [17]
PredAPP Antiparasitic [22]
PPTPP Antiangiogenic; Antibacterial;

Anticancer; Antiinflamatory; Antiviral;
Cell-penetrating; Quorum sensing;
Surface-binding

[24]

Ampir Antimicrobial [15]
Macrel Antimicrobial [13]
MLBP Anticancer; Antihypertensive;

Antiinflamatory; Antimicrobial
[25]

PreAntiCoV Antiviral [23]
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been translated to peptide property prediction. Indeed, some stud-
ies suggest that DL models so far have failed to improve perfor-
mance over shallow models for AMP identification [38].

An influx of new tools for developing deep and shallow models
significantly reduced the entry barrier for peptide activity predic-
tion. Still, these tools can not replace researchers in assessing the
6531
correctness of their models. Here, biological domain knowledge
helps in the design of robust benchmarks for a fair evaluation of
the performance of proposed models. For example, it was reported
that some AMP predictors yield higher probabilities of antimicro-
bial activity for long peptides which makes little sense from the
biological point of view [10]. As the majority of the effort in the
field is directed toward proposing new tools and not evaluating
existing ones, we are still unaware of the similar shortcomings of
available solutions.

Altogether, we argue that there is a need for reorganization and
clarification in the peptide property prediction field. The redun-
dancy of specific tools and the difficulty of finding optimal bioin-
formatics resources keep adding complexity to the standard use
of these methods. To at least partially alleviate this issue, we
enhance our minireview with an online supplementary web
resource that collects all available peptidic tools to scrutinize
accessible models and help users find the best for their needs.
We aim to raise awareness among researchers and developers
about the reproducibility crisis observed in peptide property pre-
diction and encourage them to work together to promote open
science and cooperation between researchers.
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