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Introduction: Dyslipidemia secondary to obesity is a risk factor related to
cardiovascular disease events, however a pathological conventional lipid
profile (CLP) is infrequently found in obese children. The objective is to
evaluate the advanced lipoprotein testing (ALT) and its relationship with
cardiac changes, metabolic syndrome (MS) and inflammatory markers in a
population of morbidly obese adolescents with normal CLP and without type
2 diabetes mellitus, the most common scenario in obese adolescents.
Methods: Prospective case-control research of 42 morbidly obese adolescents
and 25 normal-weight adolescents, whose left ventricle (LV) morphology and
function had been assessed. The ALT was obtained by proton nuclear
magnetic resonance spectroscopy, and the results were compared according
to the degree of cardiac involvement – normal heart, mild LV changes, and
severe LV changes (specifically LV remodeling and systolic dysfunction) –

and related to inflammation markers [highly-sensitive C-reactive protein and
glycoprotein A (GlycA)] and insulin-resistance [homeostatic model
assessment for insulin-resistance (HOMA-IR)]. A second analysis was
performed to compare our results with the predominant ALT when only
body mass index and metabolic syndrome criteria were considered.
Results: The three cardiac involvement groups showed significant increases in
HOMA-IR, inflammatory markers and ALT ratio LDL-P/HDL-P (40.0 vs. 43.9 vs.
47.1, p 0.012). When only cardiac change groups were considered, differences
in small LDL-P (565.0 vs. 625.1 nmol/L, p 0.070), VLDL size and GlycA
demonstrated better utility than just traditional risk factors to predict which
subjects could present severe LV changes [AUC: 0.79 (95% CI: 0.54–1)]. In
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the second analysis, an atherosclerotic ALT was detected in morbidly obese subjects,
characterized by a significant increase in large VLDL-P, small LDL-P, ratio LDL-P/
HDL-P and ratio HDL-TG/HDL-C. Subjects with criteria for MS presented overall
worse ALT (specially in triglyceride-enriched particles) and remnant cholesterol values.
Conclusions: ALT parameters and GlycA appear to be more reliable indicators of cardiac
change severity than traditional CV risk factors. Particularly, the overage of LDL-P
compared to HDL-P and the increase in small LDL-P with cholesterol-depleted LDL
particles appear to be the key ALT’s parameters involved in LV changes. Morbidly
obese adolescents show an atherosclerotic ALT and those with MS present worse ALT
values.

KEYWORDS

morbid obesity, adolescents, lipoprotein subclasses, atherosclerotic phenotype, metabolic

syndrome, cardiac changes, systolic dysfunction, small LDL particles
Introduction

Cardiovascular diseases (CVD) are the main cause of death

in the world (1) and, if the trend initiated in 2,000 continues,

CVD will also become the main cause of death among

contemporary children. Obesity is a multifactorial disease that

includes several preceding disorders of CVD, such as high

blood pressure (BP), insulin resistance, diabetes and

dyslipidemia. However, the majority of obese children present

a pre-pathological condition, therefore identifying which of

them are at increased risk of developing CVD is a challenge

for pediatricians.

In the conventional lipid profile (CLP), the increase in

cholesterol in low-density lipoproteins (LDL-C) has been

demonstrated as one of the most important factors associated

with CVD risk (2), but the role of high-density lipoprotein

cholesterol (HDL-C) or triglycerides (TG) remains unclear

(3). Additionally, the remnant cholesterol – a derivative from

the CLP that accounts for the cholesterol enclosed in the very

low-density lipoproteins (VLDL), intermediate-density

lipoproteins (IDL) and chylomicrons – has been also

associated with increased prevalence of ischemic heart disease

(4) and myocardial infarction (5). On the other hand, the

advanced lipoprotein testing (ALT), assessed by proton

nuclear magnetic resonance spectroscopy (1H-NMR) of

plasma, provides much information about lipoprotein

characteristics as it quantifies the concentration, particle size

and composition (cholesterol or TG) of each lipoprotein

subclass. Previous studies have shown how in situations of

apparent normality, specific lipoprotein alterations are highly

associated with future CVD events (6–9). Thus, the concept

of atherogenic dyslipidemia – applied to subjects with hypo

HDL-C, hypertriglyceridemia and normal LDL-C, but

increases in some ALT components – has been associated

with an elevated risk of CVD events (10–12).

Various studies have evaluated the ALT in obese adults and

adolescents and established its utility in predicting arterial wall
02
changes, coronary heart disease or CVD events (13–15),

however to our knowledge, none have analyzed which ALT

components are closely associated with cardiac changes in

obese adolescents. Our group showed in a previous

publication that morbidly obese adolescents presented left

ventricular remodeling and systo-diastolic dysfunctions,

closely related to body mass index (BMI) (16). The objective

of the current study is to evaluate the ALT and its

relationship with cardiac changes, metabolic syndrome (MS)

and inflammatory markers in the same cohort of morbidly

obese adolescents with normal CLP and without type 2

diabetes mellitus (T2-DM), the most common scenario in

obese adolescents.
Methods

Study population

Prospective observational case-control research of 67

adolescents of both genders between 10 and 17 years old.

Subjects with morbid obesity were recruited from

endocrinology clinics and control participants were recruited

from healthy volunteers in the cardiology and sports medicine

clinics.

Subjects with current infectious or recent acute

inflammatory processes, history of prematurity or birth weight

<2,000 g, and smokers or those whose pathologies could affect

the cardiovascular system – such as congenital heart disease,

chronic kidney disease, transplant, rheumatic diseases, and

HIV infection – were excluded. Similarly, obese subjects with

T2-DM and control subjects who practiced >7 weekly sport

hours, a threshold explained in our previous study (16), were

also excluded in this analysis.

Subjects were classified depending on the degree of cardiac

involvement and three groups were established: no cardiac

changes (n 25), formed by control and obese adolescents
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without LV changes; mild cardiac changes (n 17), consisting of

15 obese adolescents with LV remodeling and 2 control

adolescents with border systolic dysfunction; and severe

cardiac changes (n 25), constituted by morbidly obese

adolescents with LV remodeling and systolic dysfunction,

based on the threshold below defined. For the second analysis,

subjects were reclassified according to their BMI, calculated

from tables of the Barcelona Longitudinal Growth Study

1995–2017 (17), in two groups: subjects with morbid obesity

(SDS-BMI ≥4; n 42), and with normal weight (BMI 5th–85th

percentile, n 25). Finally, the last classification of subjects was

performed on the base of MS criteria from Cook et al. (18),

identifying two groups: subjects without MS (n 53), and with

MS (n 14).

Written informed consent for participation was obtained

and the Institutional Review Board at Vall d’Hebron Hospital

approved the protocol (PR-AMI-273/2018). All subjects

provided assent and an informed consent was signed by their

parents/legal guardians.
Clinical and laboratory assessment

Demographic data of age, gender and clinical status were

obtained from patient anamnesis. Blood pressure was

obtained using a Welch Allyn Spot Vital Signs Monitor

(4200B, Hillrom, Batesville, Indiana) after subjects had

rested for 5 min, in a supine position and with an

appropriately sized cuff giving measured mid-arm

circumference, according to the criteria of the European

Society of Hypertension (19), which also defines the high

BP values by age and gender.

EDTA blood samples were obtained at the time of

enrollment at the participating hospitals in the morning

after at least 8 h of fasting. Samples for lipoprotein particle

analysis were aliquoted, stored in liquid nitrogen (−80°C)
and shipped on dry ice to Biosfer Teslab, where the ALT

was measured by 1H-NMR spectroscopy, based on the

LipoScale test® (20). For each main lipoprotein class

(VLDL, LDL and HDL) we obtained large, medium and

small subclass particle concentrations (VLDL-P, LDL-P,

HDL-P), mean particle size and composition (ratio VLDL-

TG/VLDL-C, ratio LDL-TG/LDL-C, ratio HDL-TG/HDL-

C). Additionally, tests performed on blood samples from all

subjects were: fasting glycemia and insulin, glycated

hemoglobin and the CLP (total cholesterol, HDL-C, LDL-C

and TG). To evaluate insulin resistance, the homeostasis

model assessment of insulin resistance (HOMA-IR) was

calculated using the equation: fasting insulin (µU/ml) ×

fasting glucose (mmol/L)/22.5. Inflammation markers

evaluated were highly-sensitive C-reactive protein (hs-CPR)

and an NMR derived glycoprotein biomarker, termed

glycoprotein A (GlycA), arising from the concentration of the
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acetyl groups of N-acetylglucosamine and N-acetylgalactosamine

bond to plasmatic proteins. Glyc A is able to detect low-grade

chronic inflammation in obesity and insulin resistance’s disorders

(21–23), and in atherosclerosis progression (24).
Echocardiographic image acquisition
and analysis

Patients were examined using a Vivid S60 commercial

ultrasound scanner (GE Vingmed Ultrasound AS, Horten,

Norway) with a phased-array transducer (GE 3-MHz; GE

Vingmed Ultrasound AS). Images were obtained at rest in the

supine or left lateral decubitus position in the standard

tomographic views of the LV (parasternal long and short axis

and apical 4-chamber, 2-chamber, and long-axis views). All

echocardiographic images were obtained prospectively by an

experienced pediatric cardiologist, according to the criteria of

the American Society of Echocardiography (ASE) (25).

To evaluate the LV geometry, relative wall thickness (RWT)

and LV mass were calculated using LV linear dimensions and

following the recommendation of ASE (25). The LV mass was

determined by the adjusted Devereux’s equation and the

resultant value was indexed to height to the power of 2.7

(LVMI, g/m2.7). LV geometry was categorized as normal or

pathological (concentric remodeling, eccentric hypertrophy and

concentric hypertrophy) considering the following cutoff values

(95th percentile in the pediatric population): LVMI >45 g/m2.7

in males and >40 g/m2.7 in females (26), and RWT >0.41 (27).

The LV function was determined by two-dimensional speckle

tracking echocardiography, a well-validated and precise method to

quantify ventricular function with lower variability than LV

ejection fraction in pediatric patients (28). Strain and strain rate

(SR) were calculated according to the criteria of the ASE (25)

and the European Association of Cardiovascular Imaging (28).

Two-dimensional video loops were obtained for each patient in

apical four, three, and two-chamber views, acquiring images at a

frame rate of >65 frames/s. Offline image processing was

performed using EchoPAC (version 11.2, GE Vingmed

Ultrasound, Horten, Norway). After manually tracing along the

endomyocardial border, the software automatically generated the

epicardial border and the six segments, which were accepted

after a visual inspection. To determine SR and midline strain, at

least 17 out of 18 segments had to be included. Measured

parameters were LV end-systolic global longitudinal strain (GLS,

%) and LV early diastolic global longitudinal SR (early GLSR, 1/

sec). Resultant values were calculated by adding the strain of all

accepted segments and dividing the value by the total number of

segments. The GLS cutoff value which defined systolic

dysfunction in this study was −16.7%, which corresponds to the

lowest GLS value reported in a meta-analysis of LV strain

measures by echocardiography in children (29).
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TABLE 1 Clinical and laboratory characteristics of subjects depending on cardiac involvement degree groups.

Variable No cardiac
disorder

Mild cardiac
changes

Severe cardiac
changes

P value P value No vs
Mild vs Severe

(N = 25) (N = 17) (N = 25) No vs
Mild

No vs
Severe

Mild vs
Severe

Age (years) 14 [13-15] 14 [13-16] 14 [13-15] 0.179 0.743 0.239 0.352

BMI (kg/m2) 19.5 [17.9-22.7] 35.2 [32.7-38.9] 37.8 [34.9-40.2] <0.001 <0.001 0.238 <0.001

BMI SD -0.1 [-0.9-1.1] 7.0 [5.9-8.4] 7.8 [6.4-9.0] <0.001 <0.001 0.303 <0.001

SBP (mmHg) 113 [101-119] 120 [114-128] 126 [119-141] 0.011 <0.001 0.178 <0.001

DBP (mmHg) 64 [57-69] 66 [59-76] 76 [67-81] 0.307 0.001 0.040 0.002

BP ≥p90 (%) 12 35 68 0.124 <0.001 0.059 <0.001

LABORATORY PARAMETERS

Fasting glucose (mg/dL) 79 [71-84] 82 [72-90] 83 [78-88] 0.279 0.022 0.662 0.094

HbA1c (%) (N=57) 5.2 [5.1-5.5] 5.3 [5.2-5.5] 5.4 [5.2-5.6] 0.291 0.172 0.650 0.315

HOMA-IR 1.4 [1.0-2.3] 3.6 [1.8-5.0] 6.6 [3.8-8.2] 0.019 <0.001 0.013 <0.001

Classical lipid profile

Total Cholesterol (mg/dL) 173 [164-188] 181 [143-201] 179 [169-198] 0.749 0.282 0.729 0.610

LDL-C (mg/dL) 103 [91-113] 98 [77-120] 106 [96-121] 0.635 0.327 0.254 0.433

HDL-C (mg/dL) 52 [45-60] 44 [41-55] 44 [41-48] 0.048 0.001 0.283 0.003

Triglycerides (mg/dL) 71 [60-92] 95 [75-118] 87 [74-140] 0.026 0.010 0.933 0.018

Remnant cholesterol (mg/dL) 18.9 [13.5-22.5] 24.2 [17.5-30.3] 22.0 [18.1-36.9] 0.037 0.019 0.977 0.032

HDL-C ≤40 mg/dL (%) 0 18 14 0.059 0.235 0.672 0.115

Triglycerides ≥150 mg/dL (%) 0 12 16 0.158 0.110 1.000 0.126

Inflammatory markers

Highly sensitive C-reactive
protein (mg/dL) (N=63)

0.02 [0.01-0.09] 0.12 [0.06-0.24] 0.24 [0.14-0.52] 0.012 <0.001 0.041 <0.001

Glycoprotein A (µmol/L) 618 [583-747] 707 [659-830] 845 [731-982] 0.030 <0.001 0.034 <0.001

Lipoprotein Particles

VLDL-P (nmol/L)

Total 30.1 [25.5-40.7] 45.0 [29.3-55.1] 37.4 [31.6-69.5] 0.041 0.007 0.691 0.016

Large 0.8 [0.7-1.2] 1.3 [0.9-1.6] 1.1 [0.9-1.6] 0.024 0.007 0.866 0.013

Medium 3.3 [2.6-5.0] 4.7 [3.6-8.0] 5.0 [2.7-6.2] 0.022 0.114 0.635 0.070

Small 26.1 [22.7-33.6] 39.3 [25.0-47.3] 30.1 [27.6-59.9] 0.046 0.005 0.596 0.014

LDL-P (nmol/L)

Total 1023.6
[913.5-1131.3]

1017.8
[818.1-1182.7]

1123.0
[1015.8-1245.2]

0.868 0.034 0.115 0.086

Large 165.0 [151.6-174.9] 163.8 [129.8-188.7] 172.3 [147.3-183.0] 0.582 0.720 0.497 0.752

Medium 300.4 [248.3-356.3] 299.0 [146.3-378.2] 335.7 [257.6-381.7] 0.635 0.290 0.244 0.402

Small 560.0 [517.1-599.2] 565.0 [522.8-639.0] 625.1 [551.7-685.3] 0.390 0.003 0.070 0.011

HDL-P (µmol/L)

Total 26.5 [23.7-29.3] 24.3 [20.6-29.0] 24.2 [22.1-25.6] 0.244 0.015 0.547 0.064

Large 0.22 [0.2-0.3] 0.26 [0.2-0.3] 0.25 [0.2-0.3] 0.001 0.035 0.155 0.003

Medium 9.3 [8.6-10.4] 9.0 [8.1-10.3] 8.9 [7.9-9.3] 0.363 0.034 0.391 0.112

Small 16.8 [14.5-18.9] 15.2 [12.0-19.2] 14.8 [13.2-16.4] 0.405 0.029 0.599 0.129

Size (nm)

VLDL size 42.3 [42.0-42.4] 42.4 [42.3-42.4] 42.1 [42.0-42.3] 0.337 0.218 0.037 0.106

LDL size 21.1 [20.9-21.2] 21.0 [20.7-21.2] 21.0 [20.9-21.1] 0.060 0.049 0.635 0.072

HDL size 8.3 [8.2-8.3] 8.3 [8.2-8.4] 8.3 [8.2-8.3] 0.434 0.233 0.990 0.488

Composition

Ratio VLDL-TG/VLDL-C 3.70 [3.4-4.0] 3.62 [3.5-4.1] 3.9 [3.5-4.2] 0.929 0.367 0.513 0.643

Ratio IDL-TG/IDL-C 1.20 [1.1-1.4] 1.20 [1.1-1.4] 1.10 [1.1-1.2] 0.868 0.148 0.163 0.245

(continued)
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TABLE 1 Continued

Variable No cardiac
disorder

Mild cardiac
changes

Severe cardiac
changes

P value P value No vs
Mild vs Severe

(N = 25) (N = 17) (N = 25) No vs
Mild

No vs
Severe

Mild vs
Severe

Ratio LDL-TG/LDL-C 0.11 [0.1-0.1] 0.12 [0.1-0.1] 0.14 [0.1-0.2] 0.660 0.006 0.044 0.017

Ratio HDL-TG/HDL-C 0.23 [0.2-0.3] 0.29 [0.2-0.4] 0.30 [0.2-0.4] 0.011 0.005 0.992 0.007

Ratio LDL-P/HDL-P 40.0 [31.7-47.6] 43.9 [34.4-45.9] 47.1 [40.7-53.1] 0.646 0.005 0.037 0.012

Non-HDL-P (nmol/L) 1034.7
[934.9-1148.1]

1122.0
[837.8-1228.5]

1153.1
[1042.3-1282.1]

0.929 0.013 0.141 0.053

Values expressed in median and 25-75% IQR; P value determined using Kruskal-Wallis test followed by Dunn’s post hoc test for multiple comparisons; Dichotomous

variables (Fisher exact test); BMI, Body Mass Index; SD, Standard deviation; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; HOMA-IR, Homeostatic model

assessment insulin resistance.

Siurana et al. 10.3389/fped.2022.887771
Statistical analysis

Data from the study were analyzed using descriptive statistics.

Quantitative results were expressed as median and 25–75

interquartile range, while qualitative or dichotomous variables

were expressed as percentages. Chi-square test (χ2) and Fisher’s

exact test were used, according to the size and characteristic of

qualitative variables, to compare proportions and to study

relationships between them. The comparison between

quantitative variables was made by nonparametric Mann–

Whitney U test or nonparametric Kruskal–Wallis test followed

by Dunn’s post hoc test for multiple comparisons. To estimate

correlations between parameters, the Pearson and Spearman’s

Rho correlation coefficients were calculated as appropriate for

the type of the data. Data was analyzed by using IBM SPSS

Statistics for Windows, version 23.0 (IBM Corp., Armonk,

N.Y.) and values of p < 0.05 were considered significant.

A three-step multivariate analysis was applied to identify

important variables and patterns that allowed distinguishing

between the three cardiac involvement groups. In the first

step, we applied three statistical approaches to identify

the variables that make the largest contributions to the

discrimination between groups. These approaches include

the Wilcoxon rank-sum test, the Random Forest, and the

Partial Least Squares discriminant analysis (PLS-DA). Those

variables that resulted significant with a p-value <0.05 were

selected as the candidate for the Wilcoxon rank-sum test,

and the 5–10 most important variables were determined by

the variable importance score or the variable importance in

projection (VIP) score using the Random Forest or the

PLSA-DA, respectively. To avoid overfitting, 10-fold cross-

validation was performed. In the second step, by using a

Venn diagram we selected the most prominent variables

and those that will be included in the model by determining

those that overlap by the statistical approaches. In the third

step, we used the Principal Component Analysis (PCA) as

an unsupervised method to visualize the capacity of the

selected variables to drive group separation. Ellipses in PCA
Frontiers in Pediatrics 05
represent 90% confidence intervals around the centroid of

each data cluster. Finally, we built a linear fitting model,

and by computing the area under the curve (AUC) and the

95% confidence interval of a receiver operating

characteristics (ROC) curve we evaluated and quantified

how accurately the selected variables were able to

discriminate between groups. Patients were randomly

assigned to training (60%) and test (40%) sets. We

performed 10-fold cross-validation with 100 replicates on

the training data during the model construction process and

tested the model on the hold-out data. Analysis was

performed using the R statistical software version 4.1.1

(Chapman & Hall/CRC Computational Biology Series).

Additionally, a logistic regression was performed to model

the probability of dichotomous events (mild or severe

cardiac changes, and no changes or severe cardiac changes)

with the selected variables in the previous statistical analysis.
Results

A total of 42 adolescents with obesity and 25 adolescents

without obesity, age-matched, were included in our study. No

subject was excluded, although HbA1c was not registered in

ten subjects of the obese group and hs-CPR values were

missed in one control and three obese subjects. Main clinical,

laboratory and echocardiographic data from the three cardiac

groups are summarized in Table 1. No significant differences

were noted in age, but most obese subjects were classified in

the mild or severe cardiac change groups. However, the

significant increase observed in BP, HOMA-IR and

inflammation markers among the three groups suggests a

relationship between the severity of cardiac changes and the

worsening in CV risk factors, except in the conventional lipid

profile, where no differences were found among both groups

with cardiac changes. In contrast, significant differences were

detected in the ALT (Table 1), and a pathological phenotype

related to cardiac changes was defined (Figure 1): increases in
frontiersin.org
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concentrations of total VLDL-P, large VLDL-P, total LDL-P,

small LDL-P, ratio LDL-P/HDL-P, and ratio HDL-TG/

HDL-C, and decreases in concentrations of total HDL-P and

medium HDL-P, and in the LDL size.

Data of LV geometry and speckle tracking determinations

from the echocardiographic evaluation are summarized in

Supplementary Table S1.

Table 2 shows the clinical characteristics, laboratory

parameters and ALT of subjects classified by obesity index.

The obese subjects exhibited, in addition to the pathological

ALT phenotype observed in subjects with cardiac changes, a

mild, though significant, difference in the concentration of

HDL-C (52 vs. 44 mg/dl, p < 0.001), triglycerides (77 vs.

91 mg/dl, p < 0.001) and remnant cholesterol (19.1 vs.
FIGURE 1

The lipid contour is a graphical model to facilitate the lipoprotein profile in
silhouettes represent the patient groups’ values with respect to the value
group’s contour delimits a smaller central area when the variables have val
higher than the reference population’s mean for L-VLDL-P, VLDL-P, Rem-C
population’s mean for LDL-Ø, HDL-P and M-HDL-P variables). Colored
regarding data in Tables 1–3. Bottom of the figure: VLDL-P, total VLDL pa
LDL-P, small LDL particles; HDL-P, total HDL particles; M-HDL-P, mediu
triglyceride enriched HDL; Rem C, remnant cholesterol.
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23.9 mg/dl, p 0.010) (Figure 1). Finally, data of subjects

categorized by MS criteria are summarized in Table 3.

Obese adolescents who accomplished MS criteria showed

overall worse BP, insulin resistance and hs-CRP values than

any of the previous groups. Their CLP was characterized

by marked differences in triglycerides (78 vs 124 mg/dL,

p < 0.001) and remnant cholesterol (19.6 vs 30.3 mg/dL,

p < 0.001), while the ALT was characterized by significant

increases in: total VLDL-P, large VLDL-P, ratio LDL-P/

HDL-P and ratio HDL-TG/HDL-C (Figure 1). The

resultant ALT did not differ when only obese subjects were

categorized by MS criteria, remarking the central role of

hypertriglyceridemia in subjects with MS (Supplemental

Table S2).
terpretation and its association with cardiovascular risk. The colored
s of an apparently healthy population (black circle) (30). The study
ues associated with an increased risk of developing CVD (i.e., values
, S-LDL-P, LDL-P, HDL-TG/HDL-C variables; or lower than reference
silhouettes are represented in percentage of increase or reduction
rticles; L-VLDL-P, large VLDL particles; LDL-P, total LDL particles; S-
m HDL particles; LDL-Ø, LDL particles diameter; HDL-TG/HDL-C,
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TABLE 2 Clinical and laboratory characteristics of subjects depending on body mass index groups.

Variable Non-obese (N = 25) Obese (N = 42) p value

Age (years) 14 [13-15] 14 [13-15] 0.726

Male 52% (N=13) 33% (N=14) 0.198

BMI (kg/m2) 19.4 [17.9-22.1] 36.8 [34.3-39.8] <0.001

BMI SD -0.2 [-0.9-0.7] 7.5 [6.4-8.5] <0.001

Waist circumference (cm) 69 [65-74] 111 [102-120] <0.001

SBP (mmHg) 108 [101-118] 124 [118-134] <0.001

DBP (mmHg) 60 [60-68] 74 [65-78] <0.001

LABORATORY PARAMETERS

Fasting glucose (mg/dL) 76 [71-84] 83 [75-89] 0.012

HbA1c (%) (N = 57) 5.2 [5.1-5.5] 5.3 [5.2-5.5] 0.218

HOMA-IR 1.2 [1.0-1.7] 5 [3.6-7.9] <0.001

Classical lipid profile

Total Cholesterol (mg/dL) 180 [164-191] 178 [156-197] 0.613

LDL-C (mg/dL) 102 [90-115] 105 [91-118] 0.604

HDL-C (mg/dL) 52 [48-61] 44 [41-49] <0.001

Triglycerides (mg/dL) 77 [60-90] 91 [72-130] 0.006

Remnant cholesterol (mg/dL) 19.1 [14.1-22.5] 23.9 [18.0-36.3] 0.010

Inflammatory markers

Highly-sensitive C-reactive protein (mg/dL) 0.02 [0.01-0.05] 0.22 [0.13-0.45] <0.001

Glycoprotein A (µmol/L) 620 [583-687] 802 [705-938] <0.001

LIPOPROTEIN PARTICLES

VLDL-P (nmol/L)

Total 30.0 [25.5-40.7] 42.8 [31.5-63.7] 0.002

Large 0.8 [0.7-1.2] 1.3 [0.9-1.6] 0.001

Medium 3.7 [2.8-5.4] 4.6 [3.0-6.5] 0.072

Small 26.1 [22.4-33.6] 37.3 [27.3-55.6] 0.002

LDL-P (nmol/L)

Total 1023.6 [904.7-1136.9] 1096.5 [977.4-1196.7] 0.133

Large 165.1 [150.6-183.3] 164.4 [145.2-182.5] 0.726

Medium 300.4 [225.2-356.3] 332.1 [249.9-384.6] 0.371

Small 560.0 [517.1-607.0] 616.2 [527.3-676.3] 0.019

HDL-P (µmol/L)

Total 27.0 [24.2-30.1] 24.2 [21.7-26.4] 0.001

Large 0.2 [0.2-0.3] 0.2 [0.2-0.3] 0.010

Medium 9.6 [8.7-10.9] 8.9 [7.9-9.4] 0.018

Small 17.3 [14.8-19.2] 17.8 [12.8-17.0] 0.005

Size (nm)

VLDL size 42.3 [42.2-42.4] 42.2 [42.0-42.4] 0.371

LDL size 21.1 [21.0-21.2] 21.0 [20.9-21.1] 0.058

HDL size 8.3 [8.2-8.3] 8.3 [8.2-8.3] 0.123

Composition

Ratio VLDL-TG/VLDL-C 3.7 [3.4-3.9] 3.9 [3.5-4.2] 0.249

Ratio IDL-TG/IDL-C 1.2 [1.1-1.4] 1.1 [1.1-1.3] 0.042

Ratio LDL-TG/LDL-C 0.1 [0.1-0.1] 0.1 [0.1-0.2] 0.023

Ratio HDL-TG/HDL-C 0.2 [0.2-0.3] 0.3 [0.2-0.4] 0.002

Ratio LDL-P/HDL-P 37.1 [31.7-45.2] 46.2 [38.9-51.8] 0.001

Non-HDL-P (nmol/L) 1034.7 [915.5-1163.1] 1127.8 [1002.7-1245.4] 0.068

Values expressed in median and 25-75% IQR; P value calculated by non-parametric Mann-Whitney U test; Dichotomous variables (Fisher exact test); BMI, Body Mass

Index; SD, Standard deviation; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; HOMA-IR, Homeostatic model assessment insulin resistance.
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TABLE 3 Clinical and laboratory characteristics of subjects depending on metabolic syndrome (MS) diagnosis.

Variable No MS (<3 factors) (N = 53) MS (≥3 factors) (N = 14) p value

Age (years) 14 [13-15] 14 [13-15] 0.825

BMI (kg/m2) 32.1 [19.4-37.0] 38.1 [35.9-43.0] <0.001

BMI SD 5.7 [-0.1-7.5] 7.9 [6.5-10.3] 0.001

SBP (mmHg) 118 [106-122] 131 [126-144] <0.001

DBP (mmHg) 67 [59-74] 77 [69-80] 0.002

LABORATORY PARAMETERS

Fasting glucose (mg/dL) 79 [72-86] 84 [82-89] 0.024

HbA1c (%) (N = 57) 5.3 [5.1-5.5] 5.4 [5.1-5.6] 0.515

HOMA-IR 2.3 [1.3-4.7] 7.4 [4.2-8.9] <0.001

Classical lipid profile

Total Cholesterol (mg/dL) 176 [164-193] 188 [164-207] 0.185

LDL-C (mg/dL) 103 [90-117] 105 [95-121] 0.633

HDL-C (mg/dL) 49 [43-56] 42 [36-47] 0.003

Triglycerides (mg/dL) 78 [64-99] 124 [103-163] <0.001

Remnant cholesterol (mg/dL) 19.6 [14.6-24.1] 30.3 [25.2-44.4] <0.001

Inflammatory markers

Highly sensitive C-reactive protein (mg/dL) 0.09 [0.02-0.21] 0.37 [0.15-0.50] 0.001

Glycoprotein A (µmol/L) 701 [616-787] 868 [777-999] 0.001

LIPOPROTEIN PARTICLES

VLDL-P (nmol/L)

Total 31.7 [26.9-45.0] 59.6 [47.6-82.5] <0.001

Large 0.9 [0.7-1.3] 1.6 [1.3-1.8] <0.001

Medium 3.7 [2.6-5.4] 6.1 [4.5-9.4] <0.001

Small 28.3 [23.3-38.6] 52.2 [40.1-71.4] <0.001

LDL-P (nmol/L)

Total 1033.2 [913.5-1175.2] 1092.5 [998.0-1256.9] 0.235

Large 165.1 [146.0-183.3] 161.1 [147.8-180.5] 0.841

Medium 311.5 [232.6-368.0] 347.7 [256.5-377.1] 0.600

Small 575.8 [529.4-627.0] 644.2 [518.6-714.6] 0.112

HDL-P (µmol/L)

Total 25.5 [23.0-28.7] 23.5 [20.3-26.0] 0.099

Large 0.2 [0.2-0.3] 0.3 [0.2-0.3] 0.158

Medium 9.1 [8.4-9.9] 8.3 [7.5-9.5] 0.079

Small 16.2 [13.9-18.7] 14.6 [12.3-16.5] 0.096

Size (nm)

VLDL size 42.3 [42.0-42.4] 42.2 [42.1-42.4] 0.877

LDL size 21.0 [20.9-21.2] 20.9 [20.8-21.0] 0.112

HDL size 8.3 [8.2-8.3] 8.3 [8.3-8.3] 0.316

Composition

Ratio VLDL-TG/VLDL-C 3.7 [3.5-4.1] 4.0 [3.5-4.2] 0.267

Ratio IDL-TG/IDL-C 1.2 [1.1-1.4] 1.1 [1.1-1.2] 0.064

Ratio LDL-TG/LDL-C 0.1 [0.1-0.1] 0.1 [0.1-0.2] 0.007

Ratio HDL-TG/HDL-C 0.2 [0.2-0.3] 0.4 [0.3-0.5] <0.001

Ratio LDL-P/HDL-P 42.1 [33.6-47.3] 49.5 [43.3-52.8] 0.006

Non-HDL-P (nmol/L) 1066.3 [934.9-1194.3] 1127.8 [1027.1-1317.5] 0.087

Values expressed in median and 25-75% IQR; P value calculated by non-parametric Mann-Whitney U test; Dichotomous variables (Fisher exact test); BMI, Body Mass

Index; SD, Standard deviation; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; HOMA-IR, Homeostatic model assessment insulin resistance.

Siurana et al. 10.3389/fped.2022.887771

Frontiers in Pediatrics 08 frontiersin.org

https://doi.org/10.3389/fped.2022.887771
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


TABLE 4 Bivariate correlations between lipoprotein particles and left ventricle structural and functional parameters, insulin resistance index,
inflammatory marker and triglycerides.

Remodeling Systolic GLS Early GLSR HOMA hs-CRP TG

VLDL-P (nmol/L)

Total 0.37* 0.30† −0.28† 0.52* 0.23 0.96*

Large 0.39* 0.32* −0.31* 0.53* 0.25† 0.91*

Medium 0.30† 0.12 −0.12 0.35† 0.08 0.91*

Small 0.38* 0.33* −0.30† 0.53* 0.25† 0.95*

LDL-P (nmol/L)

Total 0.18 0.16 −0.11 0.28† 0.21 0.33*

Large −0.05 −0.08 0.13 0.06 −0.04 0.28†

Medium 0.07 0.05 −0.03 0.22 0.14 0.35*

Small 0.30† 0.32* −0.25† 0.30† 0.34* 0.21

HDL-P (µmol/L)

Total −0.24† −0.42* 0.44* −0.33* −0.51* 0.14

Large 0.40* 0.11 −0.23 0.25† 0.17 0.49*

Medium −0.19 −0.36* 0.39* −0.23 −0.39* 0.06

Small −0.20 −0.36* 0.37* −0.30† −0.47* 0.13

Size (nm)

VLDL size 0.06 −0.19 0.16 −0.09 −0.21 0.29†

LDL size −0.25† −0.25† 0.23 −0.07 −0.25† 0.17

HDL size 0.13 0.15 −0.17 0.15 0.27† −0.09

Composition

Ratio VLDL-TG/VLDL-C 0.05 0.19 −0.04 0.14 0.25† −0.04

Ratio IDL-TG/IDL-C −0.16 −0.20 0.22 −0.36* −0.32* 0.45*

Ratio LDL-TG/LDL-C 0.29† 0.29† −0.25† 0.47* 0.30† 0.65*

Ratio HDL-TG/HDL-C 0.40* 0.30† −0.33* 0.52* 0.33* 0.88*

Ratio LDL-P/HDL-P 0.27† 0.42* −0.37* 0.45* 0.51* 0.18

Non-HDL-P (nmol/L) 0.23 0.20 −0.15 0.33† 0.24 0.42*

Remnant cholesterol (mg/dl) 0.35* 0.23 −0.25† 0.46† 0.20 0.97*

GLS, global longitudinal strain; GLSR, global longitudinal strain rate; HOMA-IR, homeostatic model assessment insulin resistance; hs-CRP, highly-sensitive C-reactive

protein; TG, triglycerides.

Spearman coefficient. Values expressed in r.

*p < 0.01.
†p < 0.05.
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Correlation analysis between ALT components and

variables of LV geometry and function, HOMA-IR and

inflammatory markers are summarized in Table 4. The

ratios LDL-P/HDL-P and HDL-TG/HDL-C were the

variables better correlated to cardiac changes as well as to

insulin resistance and inflammatory parameters. Moreover,

considering the specific subclasses of lipoprotein particles,

the results indicated that large VLDL-P, small LDL-P and

total HDL-P (inversely) subclasses have the best correlation

to LV remodeling and systo-diastolic dysfunction, while

lipoprotein particles rich in triglycerides (VLDL-P, TG-

enriched HDL and cholesterol-depleted LDL) had the

highest association with HOMA-IR. Lastly, total HDL-P and

small LDL-P were particles related with hs-CRP values,

whereas GlycA proved to be better correlated with every
Frontiers in Pediatrics 09
component of the ALT, so this inflammatory marker was

chosen for the multivariable analysis. Correlation analysis

between ALT and CLP components are summarized in

Supplementary Table S3. Triglycerides appeared particularly

associated with VLDL-P and large HDL-P.

The final multivariable model with the largest AUC [0.79

(95% CI: 0.54–1)] for distinguishing mild cardiac change

subjects from those with severe cardiac changes identified

the following pattern: HOMA-IR, GlycA, VLDL-diameter

and large HDL-P (Figure 2). In contrast, for differentiating

normal heart subjects from those with severe cardiac

changes the largest AUC [0.91 (95% CI: 0.74–1)] resulted

from the following variables: BMI standard deviation,

HOMA-IR, systolic BP, diastolic BP, GlycA, small VLDL-P,

small LDL-P and ratio HDL-TG/HDL-C (Figure 3). To
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FIGURE 2

Multivariable model to differentiate mild cardiac change subjects (1) than those with severe cardiac changes (2). The variables included in the model
were those that overlap by at least two of the three statistical approaches. An area under the curve (AUC) of 0.79 (95% CI: 0.54–1) was obtained with
the next pattern: HOMA-IR, glycoprotein A (Glyc-A), VLDL diameter and large HDL-P. Predictive accuracy = 0.8; p-value = 0.051; out-of-bag error =
0.27.
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assess the usefulness of lipoprotein subclasses and

glycoprotein A in the multivariable diagnostic model, ROC

curves with only traditional CV risk factors (BMI standard

deviation, HOMA-IR, systolic and diastolic BP) were

developed and compared with the previous analysis.

Figure 4 shows the comparative ROC curve analysis. A

binomial logistic regression was performed on mild vs.

severe cardiac changes groups, where remaining

independent parameters of the final model (adjusted R2 =

0.53, p < 0.0001) were HOMA-IR (OR 1.4; 95% CI: 1.0–1.9;

p < 0.050), VLDL size (OR 0.0; 95% CI: 0.0–0.9; p < 0.050)

and large HDL-P (OR 0.0; 95% CI: 0.0–0.3; p < 0.050); and

on normal vs. severe cardiac changes groups, where the

remaining independent parameter of the final model

(adjusted R2 = 0.84, p < 0.0001) was the BMI standard

deviation (OR 2.8; 95% CI: 1.2–6.6; p 0.010).

Reproducibility of echocardiographic parameters has been

demonstrated previously (16), showing good intraclass

correlation coefficients.
Frontiers in Pediatrics 10
Discussion

This study showed that morbidly obese adolescents with LV

changes presented a pathological phenotype in the ALT despite

exhibiting normal values in the CLP (Figure 1). Large VLDL-P,

small LDL-P and total HDL-P were the subclasses more closely

related to cardiac changes, while the ratio which highlighted the

excess of LDL-P in relation to HDL-P appeared to be the

variable more closely associated with severity in the LV

changes. Furthermore, when obese adolescents were classified

by MS criteria or obesity index, the resulting ALT was

determined by the high triglyceridemia of these subjects, and

hence, predominated TG-enriched lipoproteins, like VLDL

and TG-enriched HDL (increase in the ratio HDL-TG/HDL-

C) (Figure 1). Additionally, the inflammatory markers

exhibited a correlation with the aforementioned pathological

ALT and especially with lower levels of total HDL-P and an

altered LDL subclass distribution, moved to the smallest LDL-

P. Finally, multivariable models showed the relevance of
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FIGURE 3

Multivariable model to differentiate normal heart subjects (0) from those with severe cardiac changes (2). The variables included in the model were
those that overlap by the three statistical approaches. An area under the curve (AUC) of 0.91 (95% CI: 0.74–1) was obtained with the next pattern:
body mass index standard deviation (BMIsd), HOMA-IR, systolic blood pressure (SBP), diastolic blood pressure (DBP), glycoprotein A (Glyc-A), small
VLDL-P, small LDL-P and ratio HDL-TG/HDL-C. Predictive accuracy = 0.84; p-value = 0.004; out-of-bag error = 0.1.
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VLDL size and large HDL-P—as well as BP, insulin resistance

and inflammation—in the changes observed in obese

adolescent’s hearts. Our results have highlighted the

importance of ALT and GlycA as differentiating indicators of

cardiac severity in adolescents with a similar degree of

obesity, where minimum differences can be found in BMI, BP

or insulin resistance levels.

Previous studies performed in obese or diabetic children

have shown similar results. Thus, the most frequently

reported ALT was defined by increases of small LDL-P and

VLDL-P and decreases of LDL size and large-medium HDL-P

(13, 31–33).

VLDL are the main carriers of plasmatic triglycerides, and

hence appear particularly increased in subjects with

hypertriglyceridemia. In contrast, LDL are cholesterol-

enriched lipoproteins and their concentration is not so

triglyceride-dependent, however in hypertriglyceridemia

conditions the LDL particles have been found to be smaller
Frontiers in Pediatrics 11
and compositionally cholesterol-depleted (34). The small

LDL-P possesses an increased atherogenicity – on account of

mechanisms like endothelial barrier crossing facility or

oxidation susceptibility (34) – and it has been postulated as

a predictor risk factor for coronary heart disease (35).

Similarly, the relevance of LDL-P concentration to predict

future CVD events rather than LDL-C has been also

documented in the Framingham Offspring Study (6), where

the highest risk was attributed to subjects with high LDL-P

and low LDL-C. Our study, performed in a population with

low LDL-C, has shown a significant increase in the small

LDL-P subclass in the obese group. Additionally, in the

descriptive statistics between subjects with severe cardiac

changes and those with mild cardiac changes, the small

LDL-P and cholesterol-depleted LDL (increase in the ratio

LDL-TG/LDL-C) seemed to be the best differentiating ALT

parameters, having also been found correlated with LV

remodeling, systo-diastolic dysfunction, insulin resistance and
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FIGURE 4

Comparative analysis between ROC curves considering only traditional cardiovascular risk factors (body mass index standard deviation, blood
pressure and HOMA-IR) and ROC curves shown in Figures 2, 3. (A) When Normal heart subjects were compared to those with severe cardiac
changes, the addition of lipoprotein subclasses and glycoprotein A to the model with traditional risk factors did not change the area under the
curve (AUC) (0.92 vs. 0.91) [Only traditional risk factors: AUC 0.92 (95% CI: 0.77–1); predictive accuracy = 0.88; p-value = 0.0001; out-of-bag
error = 0.1]. (B) When mild cardiac change subjects were compared to those with severe cardiac changes, the addition of lipoprotein subclasses
and glycoprotein A caused an increase in the AUC (0.58 vs. 0.79) [only traditional risk factors: AUC 0.58 (95% CI: 0.3–0.86); predictive accuracy =
0.6; p-value = 0.596; out-of-bag error = 0.32].
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inflammation. Concerning triglyceride levels, a strong positive

correlation was found with all subclasses of VLDL-P and large

HDL-P, but apparently, their levels were independent of the

small LDL-P, as reported in the Framingham Offspring

Study. Regarding VLDL-P, greater significant differences were

noted in adolescents with obesity and metabolic syndrome,

especially in large and small subclasses, and VLDL size

seemed to be useful to differentiate levels of cardiac

involvement. The hypersecretion of large VLDL-P, as a result

of overnutrition and insulin resistance, has been previously

proposed as a key pathological mechanism in atherogenic

dyslipidemia (36, 37).

Cardioprotective functions of HDL include, in addition to

the reverse cholesterol transport to the liver, the inhibition of

LDL oxidation and anti-inflammatory actions in the

endothelium (38, 39). However, in conditions of

hypertriglyceridemia and insulin resistance, the overstimulated

cholesteryl-ester-transfer protein enriches HDL composition

in TG by means of exchanging TG by cholesteryl esters with

other lipoprotein subclasses (40–42). Consequently, TG-

enriched HDL have their beneficial features reduced – in T2-

DM patients by up to 52% of the HDL antioxidative capacity

(43) – and have been associated with atheroma plaque

formation (44). Our results have highlighted the prevalence of

TG-enriched HDL among participants with cardiac changes

and especially in those with MS, as well as a relationship

between TG-enriched HDL and LDL and the insulin

resistance. Hence, the HDL’s cardioprotective function might

be decreased in these subjects.

Furthermore, a reduced number of total and medium HDL-

P concentration and size has been associated with higher CVD

risk in adults (45, 46), and previous studies conducted in obese

adolescents with insulin resistance or T2-DM noted a

significant decrease in large HDL-P (47). Nevertheless, these

findings were not reproduced in the descriptive analysis of

our cohort, where the significant reduction was shown in the

total HDL-P concentration, without significant distinctions

between the subclasses, however the large HDL-P reduction

was identified as a differentiating factor between mild and

severe cardiac changes in the multivariable analysis, which

gives prominence to the widely recognized role of smaller

HDL size in CVD (48).

Remnant cholesterol marks the overall load of TG-enriched

lipoproteins (VLDL and IDL), which in situations of

hypertriglyceridemia can carry as much or more cholesterol

than LDL (49). How it interacts in the atherosclerosis

physiopathology is still unclear but its association with CVD,

as a factor related to coronary artery disease, has been

established and an increased risk – up to 2.7 times in

concentrations ≥39 mg/dl – has been reported as independent

of obesity (5). The highest remnant cholesterol values in the

present study were near to this hypothetical threshold and

belonged to obese adolescents with metabolic syndrome, who
Frontiers in Pediatrics 13
also were the subjects with the highest triglyceride levels.

However, a close relationship with cardiac changes was not

demonstrated.

This study has some limitations. The cross-sectional design

and small sample size limit the extraction of causal conclusions.

The criteria for the degrees of cardiac involvement have been

defined by the authors and have not been previously tested in

other publications. They are based on the concept that severity

increases with the addition of cardiac changes, from only LV

remodeling to systolic dysfunction, defined by GLS, a widely

studied parameter linked to mortality (50). The diastolic function

was not included in the group definition criteria because of the

lack of a single parameter for its identification, but the early

GLSR was incorporated to the correlation analysis instead.

In conclusion, our results have shown that morbidly obese

adolescents present an atherosclerotic ALT despite showing

no pathological concentrations in the conventional lipid

profile. Subjects that meet the criteria for metabolic syndrome

present overall worse ALT and remnant cholesterol values

because of the highest triglyceride levels.

Furthermore, when the obese adolescents are classified by

the degree of cardiac change, ALT and GlycA appear to be

more reliable indicators of severity than traditional CV risk

factors as BMI, BP or insulin resistance. Particularly, the

overage of LDL-P compared to HDL-P and the increase in

small LDL-P with cholesterol-depleted LDL particles appear

to be the key ALT’s parameters involved in LV changes.
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