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Evolution of self‑organised division 
of labour driven by stigmergy 
in leaf‑cutter ants
Viviana Di Pietro  1,6*, Patrick Govoni  2,6, Kin Ho Chan  3, Ricardo Caliari Oliveira  1,4, 
Tom Wenseleers  1 & Pieter van den Berg  5

Social insects owe their widespread success to their ability to efficiently coordinate behaviour to 
carry out complex tasks. Several leaf-cutter ant species employ an advanced type of division of labour 
known as task partitioning, where the task of retrieving leaves is distributed between workers that cut 
and drop and those that collect the fallen leaves. It is not entirely clear how such highly coordinated 
behaviour can evolve, as it would seem to require the simultaneous mutations of multiple traits during 
the same generation. Here, we use an agent-based simulation model to show how task partitioning 
in leaf-cutter ants can gradually evolve by exploiting stigmergy (indirect coordination through the 
environment) through gravity (leaves falling from the treetop on the ground forming a cache). Our 
simple model allows independent variation in two core behavioural dimensions: the tendency to drop 
leaves and the tendency to pick up dropped leaves. Task partitioning readily evolves even under these 
minimal assumptions through adaptation to an arboreal environment where traveling up and down 
the tree is costly. Additionally, we analyse ant movement dynamics to demonstrate how the ants 
achieve efficient task allocation through task switching and negative feedback control.

Insect societies of ants, bees, wasps and termites are widespread and dominate nearly every environment on 
earth1. One of the reasons for their remarkable ecological success is their ability to perform tasks in a coordinated 
fashion2. While the behaviour of a single individual is simple in nature, dynamic interactions among individuals 
and between individuals and their environment can lead to the emergence of a variety of complex and adaptive 
collective behaviours3–8.

The functioning of a social insect colony requires performance of a wide range of tasks. While some tasks can 
be performed by single individuals (e.g., foraging in most bees and wasps2,9,10), others require many individuals to 
work in parallel (e.g., building a nest2,11). Some highly eusocial species exhibit task partitioning, where sequential 
actions are carried out by different sets of individuals, which requires an accurate temporal division of labour11–14. 
Task partitioning reduces delays caused by individuals switching tasks, allowing for increased work efficiency15,16.

One of the factors that can modulate coordination between individuals is an indirect communication process 
called stigmergy17,18. In this process, individuals leave traces or modify the environment in a way that alters the 
behaviour others that perceive these changes. The environment, therefore, documents and organizes collective 
behaviour, driving coordination without the need for direct communication17. Polistes wasps build their nest 
according to a stigmergic mechanism where individuals tend to build new hexagonal cells in between existing 
nest cells19,20. Over time, this mechanism ensures the emergence of a coherent nest architecture, even if the build-
ing activity is conducted concurrently by different individuals19,20. Stigmergy is also the central principle behind 
ant trail building, where pheromones dropped by one ant indirectly attract surrounding ants, stimulating further 
pheromone deposition in a behavioural positive feedback loop. The self-organized, collective behaviour or pat-
tern that emerges is what we know as an ant trail21. Other examples of such decentralized, collective behaviours 
that emerge through stigmergy include brood sorting (in bees22,23 and ants24–26), corpse disposal (in ants27,28), 
foraging patterns (in bees,29 and ants30–32) and mound building in termites33.
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A particularly interesting behavioural difference can be observed between leaf-cutter ant species (Atta and 
Acromyrmex spp.) that are ground-foraging as opposed to those that retrieve leaves from arboreal environments. 
While ground-foraging species typically cut and retrieve grass or seeds as an individual task, those that collect 
leaves from trees split the task of leaf retrieval, with one set of ants cutting and dropping leaf fragments from the 
tree and other workers then collecting the leaf fragments as they accumulate on the ground in a leaf cache34,35 
(Fig. 1a). Dropped leaves act as a stigmergic stimulus for the foraging ants, inducing them to collect from the 
cache whenever leaves are found. When foraging on trees, task partitioning harnesses gravity to reduce the energy 
and time costs associated with climbing up and down the tree, while a generalist strategy would be expected to be 
most efficient for ground-foraging species. However, task partitioning efficiency can be affected by accumulated 
transfer-related costs (i.e. time and effort of finding the dropped leaves or loss of leaves that are dropped but not 
found) or by trading off a high leaf delivery rate for enhanced information transfer on food quality (e.g. sequential 
load transport in Atta vollenweideri36, Acromyrmex crassispinus37 and Acromyrmex subterraneus subterraneus37).

Whereas the evolutionary advantages of adopting task partitioning are evident, particularly in the case of 
arboreal leaf-cutter ants foraging on sufficiently tall trees, it remains unclear how this phenomenon could have 
evolved. At first sight, it seems like the evolution of task partitioning would require several complex traits to 
evolve simultaneously, including the capacity to split the tasks into subtasks and the capacity to execute these 
subtasks in a coordinated fashion. Although a previous model has shown that task allocation can evolve without 
any pre-adapted building blocks38, the open behavioural architecture of this model (that made use of a gram-
matical evolution approach) and high mutation rate used might have allowed the simultaneous origin of several 
traits during the same generation, even if this would typically not be plausible in real biological systems. In addi-
tion, the relation between task partitioning and the involved core actions (dropping and picking up of leaves), 
how these two actions carried out by separate sets of individuals may coevolve, as well as how these actions may 
dynamically coordinate collective behaviour, remains unclear. This last point is particularly pertinent in social 
insect behaviour, where the lack of a central decision-making structure necessitates the integration of individual 
interactions to effectively respond to a variable environment5–7,39.

In this study, we take a minimalist approach, only allowing the independent evolution of two core behav-
iours: the probability to drop a leaf and the probability to pick up a dropped leaf. In this way, we study how 
task partitioning can gradually evolve through the simultaneous evolution of independent mutations, without 
requiring biologically implausible mechanisms such as high mutation rates. We study the coevolution of these 
two behaviours with respect to the potential for efficiency gain (given by the height of the tree), hypothesizing 
that task partitioning more readily evolves in arboreal environments with taller trees. Finally, we analyse patterns 
in ant movement dynamics that emerge in each investigated scenario to gain a more mechanistic understanding 
of how the ants collectively achieve efficient foraging strategies.

The model
We developed a simple agent-based model40 inspired by the foraging behaviour observed in leaf-cutter ants. We 
designed a 2D arena (shown in Supplementary Fig. S1) consisting of a grid of cells in which 25 foraging ants 
could move around, collect leaves from a tree, and bring them to the nest over a period of 10,000 timesteps. 
The arena was partitioned (as illustrated in Fig. 1b) into the Forage area (A) on the top of the tree, where ants 
could collect leaves, the Drop area (B) where ants could decide to drop collected leaves, the Tree area (C) which 
represents the trunk of the tree (the height of which could vary, see below), the Cache area (D) where dropped 
leaves accumulated and ants could pick them up, and the Nest area (E) where ants could deliver collected leaves. 
The total number of leaves brought to the nest by the end of the simulation was used as a proxy for colony fitness.

Initialized in random locations around the grid, the ants move one cell per simulation time step in a direction 
decided by whether they are carrying a leaf, whether they detect a leaf (within 5 cells from their current position), 
and according to their recent history. If the ants detect a leaf in the Cache area, they walk towards it and pick 
it up according to their pick-up probability (PP), walking towards the nest as soon as they picked up the leaf. If 
they do not detect a leaf or decided to not pick it up, they walk towards the Forage area. Here, they either cut 
and carry a leaf (with 95% probability) or climb down the tree toward the nest without carrying a leaf (with 5% 
probability; a behaviour observed in Atta columbica41 that allows flexibility in the ratio of droppers to collectors 
over time). Upon moving into the Drop area, they drop the leaf (which would then appear in the Cache area) 
according to the drop probability (PD).

We systematically and independently varied PD and PP to obtain an overview of the colony fitness associated 
with these variables, depending on the tree height. The colony paid a fitness cost linearly associated with PP, 
reflecting the assumption that ants spend time and energy looking for food items at the at the Cache area (see 
Methods for details). On the other hand, PD has a cost intrinsically embedded in the model: dropping leaves 
that are not picked up results in a steadily increasing unused cache, wasted time and energy, and a severely 
affected colony fitness. This cost is parallel to that associated with leaves that are dropped but not found due to 
wind, rain, or other complicating factors. We ran all simulations for three different environments: a terrestrial, 
ground-foraging environment (a tree height of 1 cell), an intermediate environment (three height 10), and an 
arboreal environment (tree height 20). Having obtained fitness landscapes with respect to both behavioural 
variables for each tree height, we plotted the geographic distribution of the ants over time for the generalist and 
task partitioned strategies and ran evolutionary simulations to verify if the fitness maxima in the landscapes can 
be attained (see Methods for details).
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Figure 1.   Overview of the model system and simulation design. (a) Visual representation of the two types of foraging 
strategies observed in leaf-cutter ants, task-partitioned (top) and generalist (bottom). Under task partitioning, individuals 
either cut and drop leaves from the treetop (‘droppers’) or collect and return the dropped leaves on the ground (‘collectors’). 
In contrast, generalists individually cut and return leaves to the nest. (b) Schematic representation of the model showing the 
different areas of the arena and the corresponding ant decisions and actions in each area. The red circles indicate the two key 
behavioural variables in the model: the tendency to drop leaves from the tree (given by the ‘drop probability’, PD) and the 
tendency to pick up leaves in the cache area (given by the ‘pick-up probability’, PP). Depending on these probabilities, the ant 
will decide to act or not, indicated by the green boxes. A third decision node in the Drop area (B) controls forage probability, 
fixed at 0.95, to implement a small amount of noise in the system, allowing the ants to dynamically balance flows between the 
areas. Created with BioRender.com.
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Results
The fitness landscapes in Fig. 2 show the impact of tree height on the relative effectiveness of generalist and task 
partitioned foraging strategies. In a terrestrial environment, a fully generalist strategy that never drops leaves or 
picks up dropped leaves has the highest fitness, as shown in the lower-left corner (Fig. 2a). In an intermediate 
environment, fitness changes only slightly along the diagonal (where drop and pick-up probabilities are equal), 
indicating the two strategies have similar foraging productivities (Fig. 2b). Finally, in an arboreal environment, 
the highest fitness is observed on the upper-right corner, suggesting that task partitioning is favoured (Fig. 2c). 
In this scenario, fitness gradually increases from the bottom left (generalist) to the top right (task-partitioned) 
corner, suggesting that task partitioning can gradually evolve from a fully generalist strategy in our model (see 
also Supplementary Fig. S2 for the locations through time of single ants under both a generalist and a task-
partitioning strategy).

Movement and behavioural dynamics among the various zones of the grid are illustrated by the collective 
activity graphs (Fig. 2d-i). Increasing tree height strongly affects the productivity of the generalist strategy 
(PP = PD = 0; middle panels). As the ants spend more time walking up and down the tree, less time is spent forag-
ing and returning leaves to the nest. This is reflected by the fact that an increasing proportion of the ants is on 
the tree at any given moment (green lines). As a consequence, increasing tree height leads to reduced fitness 
of the generalist strategy (compare the bottom left corners in Figs. 2a-c). A notable characteristic of generalist 
movement dynamics is the oscillation, or exchange, between ants in the Forage area and Nest area. The amplitude 
of the oscillations, although initially high, dampens due to movement stochasticity averaging out over time. 
The populations in the two key areas oscillate around the same number of ants, regardless of the environment, 
demonstrating how it takes equal time to forage as it does to return leaves to the nest.

Figure 2.   Fitness landscapes and collective movement plots. The topmost graphs show the fitness of colonies 
foraging in terrestrial (a), intermediate (b) and arboreal (c) environments, depending on pick-up probability 
(PP) and drop probability (PD). Colours indicate colony fitness, while the arrows indicate the fitness gradient. 
Ten replicate simulations were run, averaged, and linearly interpolated for all possible combinations of PP and PD 
from 0 to 1 with intervals of 0.05 for each environment. The middle graphs (d,e,f) show the locations of the ants 
over the first 1,000 time steps of 50 replicate simulations in each environment for a colony using the generalist 
strategy (PP = PD = 0; corresponding to the star in the bottom left corner of the upper graphs), while the bottom 
graphs (g,h,i) show the same for a colony using a fully task-partitioned strategy (PP = PD = 1; star in the top right 
corner). In these graphs, ants in the Cache area and the Drop area were respectively included in the counts for 
the Nest area and Forage area.
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In contrast, the task-partitioned strategy is robust to increasing tree height and characterized by more stable 
collective dynamics (PP = PD = 1; bottom panels). After an initial spike of dropper ants in the Forage area results in 
an accumulation of dropped leaves in the Cache area, collector ants in the Nest area rebound before settling into 
an equilibrium with the droppers, when the flow of ants walking up matches the flow walking down, balancing 
coordination between the two tasks. The slightly greater steady state population in the Nest area is explained by 
the inefficiency of multiple ants finding and walking to the same leaf, which is not an issue in the Forage area 
due to relative abundance. Significantly, while the fitness of the generalist strategy decreases with increasing 
tree height, task-partitioned fitness is robust, allowing the ants to adaptively coordinate when foraging in an 
arboreal environment.

Evolutionary simulations confirm that a task-partitioned strategy can gradually evolve from a fully generalist 
strategy in an arboreal environment. (Fig. 3; see Supplementary Fig. S3, S4 for the other tree heights). For an 
intermediate environment, the selection gradient is approximately flat, resulting in a wide distribution of strate-
gies along the diagonal where PP = PD (Supplementary Fig. S4). As expected, in the terrestrial, ground-foraging 
environment, colonies remain concentrated in the lower-left corner, confirming a generalist strategy is in that 
case most rewarding (Supplementary Fig. S3).

Discussion
In this paper, we developed a model simulating a foraging scenario in leaf-cutter ants to gain insight on the evo-
lutionary basis of self-organized division of labour. Our model shows how task partitioning can evolve gradually 
from a minimal set of traits, even if colonies are genetically, morphologically and behaviourally homogeneous. 
We observed that the ants reliably evolve towards a task-partitioned strategy when there are efficiency gains to 
be made through stigmergic coordination, i.e. in an arboreal environment. This strategy is characterized by an 
equilibrium that emerges from environmental and behavioural feedback, in which some individuals end up 
predominantly cutting and dropping leaves at the crown of the tree, whereas others pick up the dropped leaves 
at the bottom of the tree and bring them back to the nest.

Our simulations show that a fully generalist strategy can gradually evolve towards a task-partitioned strategy 
without the need for the simultaneous emergence of multiple adaptive mutations or pleiotropy (where mutations 
of a single locus affect more than one trait simultaneously). Even if the probabilities to pick up and drop leaves 
mutate independently and in small steps, evolution reliably produces task-partitioning in environments where 
there is scope for efficiency gain. This reflects recent empirical research that finds ant collective behaviour to 
indeed be shaped by adaptive evolution42–44.

Previous models, not only involving social insects, showed that task allocation increases individual efficiency 
and reduces costs associated with switching tasks38,45–49. In line with these studies, our model shows that a 
dynamically coordinated form of task allocation readily evolves when switching costs are sufficiently high (in 
our case, in arboreal environments), while a generalist strategy is favoured when they are low (in our case, in ter-
restrial environments). In reality, tree height is not the only determinant of the adaptiveness of task-partitioning 
strategy. Task partitioning with direct transfer or cache formation has also been observed in ground-foraging 
species, when food resources are far from the nest location50. In such cases, cache formation can be due to high 
trail traffic, intersections between human and ant trails or changes in forager speed35. Overall, our findings add 
to previous evidence of the efficiency advantages of this type of division of labour51 and show that it can gradu-
ally evolve from a non-partitioned state38,52.

Several previous studies have made use of embodied multiagent simulations with relatively open behavioural 
architectures, for example based on artificial neural networks or grammatical evolution, to gain insight into 
the evolution of social behavioural strategies such as cooperation and communication across a wide range of 
domains, from ecology and neuroscience to robotics and engineering38,53–56. This has the clear advantage that 

Figure 3.   Evolutionary simulation. (a) Evolutionary trajectories (white lines) of 100 replicate simulations of 50 
colony populations initialized with PP and PD between 0 and 0.2, plotted on the arboreal fitness landscape. Black 
dots represent evolved outcomes after 10,000 generations. (b) Degree of task partitioning, defined as the average 
between PP and PD, plotted as a function of evolutionary time for the same 100 simulations.
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the evolutionary process is relatively unconstrained by specific assumptions, and therefore in principle able to 
evolve a large range of behavioural reaction norms57. At the same time, such architectures may be subject to 
‘soft constraints’58 (making some phenotypes more likely to evolve than others) that are often not obvious from 
considering the architecture alone, and therefore can suffer from some hidden biases and assumptions that one 
would not encounter with simpler architectures. Furthermore, understanding the drivers that underlie evolution 
in such open behavioural architectures is often far from straightforward. Our study should be considered com-
plementary to previous models of division of labour with such open architectures38. While our genotype space 
is highly constrained (two-dimensional), it does clearly show how two core behavioural dimensions (picking up 
and dropping leaves) can coevolve to produce self-organized division of labour.

In our model, colonies are genetically homogeneous, meaning that all individuals within a colony have 
identical pick-up and drop probabilities and have identical morphologies. Whereas in reality, both genetic and 
morphological heterogeneity among foragers is present in leaf-cutter ant species59–63. While in some species, ants 
with differing phenotypes in some species engage in entirely distinct tasks, such as brood care and foraging, other 
species produce a range of forager ant sizes that specialize in different vegetation. In the case of Atta cephalotes, 
heterogeneity in foragers size emerges only at large colony sizes, suggesting that the benefits of specialization, and 
potentially individual-stable task allocation, might increase with increasing access to resources59. This may be 
related to the effect of mismatches between load size and carrying capability in sequential load transport, which 
has been shown to negatively affect leaf transportation rate36,37. Also, as colonies grow, they tend to shift from 
foraging on small herbs to foraging on tall trees59. This might be because efficient foraging on tall trees via task 
partitioning requires a suitably large colony to sustain flow along the tree between dropper and collector roles59,64. 
In view of these considerations, interesting extensions to our model would include phenotypic specialization, the 
explicit modelling of multiple components that contribute to fitness, and allowing colony size to change over time.

Leaf-cutter ants belong to a group (Attini tribe) of over 200 fungi-growing ant species, most of which do not 
cut leaves but collect debris from the ground to feed the fungus64. The transition to leaf cutters (Atta and Acro-
myrmex, 8–12 million years ago) coincided with relative ecological dominance from forest to grassland and was 
followed by many changes in colony organization such as the emergence of polymorphic worker castes and an 
increase in colony size, as well as the evolution of advanced task allocation to process food resources64,65. This shift 
suggests terrestrial grass-foraging preceded that of arboreal leaf-foraging, aligning with our assumptions64,66, and 
that dropping and collecting behaviours coevolved as a result of climbing and the costs associated. Therefore, if 
ants follow a generalist strategy, they only focus on cutting leaves from the tree or grass themselves, not paying 
the cost of spending time looking for pre-processed fragments. On the other hand, when leaves are dropped, ants 
will invest more time looking for those leaves and coevolution of the two behaviours is needed to dynamically 
coordinate efficient division of labour.

Further empirical study of leaf-cutter ant foraging is needed to gain a more comprehensive understanding 
of how individual behavioural mechanisms give rise to collective patterns. We focused on stigmergy via leaves 
as the main method of communication, leaving out any kind of direct communication or recruitment signals 
to affect behaviour. However, signals such as pheromones or stridulation may significantly impact division of 
labour and movement67,68. In field quantification, foraging Atta ants were estimated to not pick up approximately 
half of the leaf fragments dropped34,69. It is unclear if this is due to limited detection ability, the decision to focus 
on competing tasks, or other environmental variables. However, although a percentage of leaves are lost, it has 
been shown that using task partitioning is rewarding if the ratio of the cost of the carriers to that of the droppers 
is smaller than the ratio of the number of leaves successfully retrieved to the number of lost leaves69. This would 
be the case when the cost of processing the leaf material at the bottom of the tree is compensated by saving mul-
tiple trips up and down on tall trees69, which means that our results should broadly hold for relatively tall trees.

The foraging dynamics exhibited by our model closely align with previous empirical studies and theoretical 
models of ant foraging and task allocation70–77. In these studies, complex behavioural dynamics emerge due to 
local interactions and feedback loops in order to uniformly distribute tasks within the colony. In our case, the 
cache of dropped leaves is controlled by task switching coupled with negative feedback between the cache and 
collector ants: more dropped leaves attract collectors, depleting the cache, until the collector ants are forced 
to abandon their task, walking up the tree to replenish the cache. These homeostatic mechanisms resemble an 
integral control scheme75 as put forth in a recent social insect model as well as several adaptive biochemical and 
neuronal networks78–82. As predicted in the above studies, delay due to the time taken to switch tasks (walking 
the tree) can cause oscillations in the feedback network (Supplementary Fig. S5). Moreover, the ants collectively 
move in similar patterns regardless of initialization assumptions (Supplementary Fig. S6). Given the simplicity, 
robustness, and prevalence of negative feedback control, it is possible that these dynamics are fundamental to the 
task of stigmergic foraging with a dynamic division of labour. Our stigmergic task switching dynamics parallel 
those modelled from chemical and tactile interactions, demonstrating the essential nature of negative feedback 
to coordinating task allocation77. Similar dynamics emerge by evolving neural network-controlled agents to 
balance two objectives in a dynamically changing environment, supporting the hypothesis83 that task switching 
via negative feedback is central to efficient division of labour.

Our results show how a seemingly complex group-level phenomenon such as task partitioning can arise from 
a minimal behavioural architecture via the coevolution of two independent behavioural variables. We have high-
lighted the potential importance of stigmergy, tree height and negative feedback control to drive the functioning 
of task partitioned foraging in leaf-cutter ants. Our work provides a foundation to help generate experimentally 
testable hypotheses for how this behavioural phenomenon may have evolved.
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Methods
Environment and agents.  The model was coded in Python v3.9 using the “Mesa” package84 developed 
for agent-based models. The size of the 2D grid depended on the environment considered: 11 × 16 cells for a 
terrestrial environment with tree height = 1, 11 × 25 cells for an intermediate environment with tree height = 10, 
and 11 × 35 cells for an arboreal environment with tree height = 20 (Supplementary Fig. S4: example grid for an 
arboreal environment). The vertical sizes of each area except the Tree area were kept constant between the dif-
ferent environmental scenarios: 7 cells for the Forage area, 1 for the Drop area, 1 for the Cache area, and 7 for the 
Nest area. The nest comprised a single cell and is located at (6, 3).

The forager ants are autonomous agents, initialized in random locations around the grid, moving one cell 
per time step. Movement with a leaf is calculated in straight lines down the tree to the nest, mimicking path 
integration, while without a leaf, the ant stochastically moves up or down the tree (by picking forward, diagonal, 
or horizontal cells in a uniform distribution) to simulate olfactory noise85.

Colony fitness.  The fitness of a colony was determined by the total number of leaves the ants collected over 
a total of 10,000 time steps. In addition, we assumed that colonies paid a fitness cost that was linearly associated 
with PP, as follows:

where ω denotes colony fitness, W denotes the total amount of leaf fragments brought back to the nest and c 
denotes the magnitude of the fitness costs associated with PP. For all simulations shown, c = 0.3.

Simulation set‑up.  To construct the fitness landscapes, we ran 10 replicate simulations for all possible 
combinations of PP and PD from 0 to 1 with intervals of 0.05 for each environment (for a total of 441 combina-
tions of PP and PD for each environment). We averaged the resulting fitness over the replicates per parameter 
combination, and performed a linear interpolation on these averages to create the fitness landscapes (top panels 
of Fig. 2a–c).

For the evolutionary simulations, we constructed populations of 50 colonies that were each initialized with 
values for PP and PD randomly drawn from a uniform distribution in the interval 0 and 0.2. Generations were 
non-overlapping and population size was held constant throughout the generations. Colonies each obtained a fit-
ness (ω) based on their values of PP and PD that were extracted from the landscapes previously produced. Colonies 
were assumed to reproduce sexually, proportionally to their fitness. For simplicity, we assumed haploid genetics 
and that the two loci were unlinked. Offspring colonies randomly and independently inherited the values of PP 
and PD from one of their parent colonies, with a small chance of mutation (0.01) that was independent between 
the two loci. Mutations at both loci were implemented by drawing a number from a normal distribution with 
mean 0 and standard deviation 0.1 to the parent value, truncated to the range 0–1. All simulations were run for 
10,000 generations. We ran 100 replicate simulations for each environment.

Code availability
The data and codes generated during the current study are available in the Mendeley Data repository, https://​
doi.​org/​10.​17632/​njms3​jnbp4.2. The code to reproduce our model is also freely available via: https://​pgovo​ni21.​
github.​io/​ants-​task-​parti​tioni​ng-​ABM/.
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