
1. Introduction
Transpiration (T) is the main component of terrestrial evaporation (E) biologically controlled by plants and 
accounting for ∼60% of E in global terrestrial ecosystems (Lian et al., 2018; Wei et al., 2017). Its quantification 
is important to study the effects of altered water supply or demand on terrestrial ecosystem functioning (Fisher 
et al., 2017), the relationship between terrestrial water and carbon cycling (Baldocchi, 1994; Ponton et al., 2006), 
the sensitivity of terrestrial ecosystems to climatic shifts (Good et al., 2017), and the role of terrestrial ecosys-
tems in the global hydrological cycle (Schlesinger & Jasechko, 2014; van der Ent et al., 2010) and in the shaping 
of weather and climate (Miralles et al., 2014; Vergopolan & Fisher, 2016). Yet despite its relevance and scien-
tific importance, T remains challenging to monitor and predict across large spatial scales, as evidenced by the 
large spread in T/E estimates emanating from climate models (25%–90%; Berg & Sheffield, 2019), hydrological 
models (31%–64%; Wei et al., 2017), and satellite-driven algorithms (24–76%; Miralles et al., 2016). Accurate 
and reliable predictions across large spatial scales are needed for more informed land use and water resource 
management (Fisher et al., 2017), yet often gains in accuracy occur at the expense of model parsimony and an 
increased dependence on input data that is difficult to acquire at these scales.

Abstract Transpiration makes up the bulk of total evaporation in forested environments yet remains 
challenging to predict at landscape-to-global scales. We harnessed independent estimates of daily transpiration 
derived from co-located sap flow and eddy-covariance measurement systems and applied the triple collocation 
technique to evaluate predictions from big leaf models requiring no calibration. In total, four models in 608 
unique configurations were evaluated at 21 forested sites spanning a wide diversity of biophysical attributes 
and environmental backgrounds. We found that simpler models that neither explicitly represented aerodynamic 
forcing nor canopy conductance achieved higher accuracy and signal-to-noise levels when optimally configured 
(rRMSE = 20%; R 2 = 0.89). Irrespective of model type, optimal configurations were those making use of key 
plant functional type dependent parameters, daily LAI, and constraints based on atmospheric moisture demand 
over soil moisture supply. Our findings have implications for more informed water resource management based 
on hydrological modeling and remote sensing.

Plain Language Summary Forests comprise the largest share of Earth's vegetated surface area 
and play an integral role in its hydrological cycle. Forests transfer moisture from below the surface to the 
atmosphere via transpiration, affecting surface moisture budgets and weather patterns at local-to-regional 
scales. Our ability to accurately predict transpiration in forests is thus critical to reliable weather prediction 
and more informed water resource management. The most accurate predictions stem from process-oriented 
models with detailed representations of plant hydraulic architecture and leaf stomata regulation. These 
models, however, rely on inputs that are not widely available and thus are not well-suited for predictions across 
broader spatial scales. Here, we sought to identify models that could be readily applied using conventional 
input data streams to predict daily transpiration across a wide diversity of forested ecosystems and over 
large spatial  scales. This was carried out by evaluating predictions emanating from four models of varying 
complexity against two independent estimates of daily transpiration. We found the most parsimonious models 
to be those requiring few meterological variables and one forest structural variable as input, achieving an 
accuracy 33% higher and explaining 16% greater variance than the most complex models requiring additional 
meteorological and forest structural variables as input.
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Several approaches to model T exist. Many seek to constrain plant-atmosphere CO2 fluxes and water vapor 
exchange at the leaf level through the coupling of net CO2 assimilation rate and leaf stomatal conductance (gs), 
implying that T is tightly coupled with photosynthesis (Ball et al., 1987; Dickinson et al., 1998; Leuning, 1995). 
These carbon-coupled (CC) approaches vary widely in their sophistication and complexity, where the rate of 
photosynthesis can be based either on light use efficiency (Running et al., 2004) or biochemical models (Collatz 
et al., 1991; Farquhar et al., 1980), and where gs and photosynthesis may either be based on empirical relation-
ships or optimality theory where stomata act to maximize carbon gain while minimizing water loss (Cowan & 
Farquhar, 1977; G. Katul et al., 2010; Medlyn et al., 2011). Some CC approaches incorporate the physiology of 
plant hydraulic transport, with the most sophisticated approaches being those linking plant hydraulics to stomatal 
conductance with optimizations based on hydraulic risk (Y. Wang et al., 2020). CC approaches founded on prin-
ciples of water-use efficiency, optimality theory, and hydraulic transport are, however, difficult to apply at large 
scale due to their reliance on several poorly known parameters or physical traits that vary substantially among 
different biomes and regions (Knauer et al., 2018; Mencuccini et al., 2019; Y. S. Lin et al., 2015). Further, opti-
mality models including hydraulically enabled ones do not easily identify responses to vapor pressure and soil 
moisture deficits (Sabot et al., 2022).

These challenges motivate approaches to model T independently from photosynthesis (i.e., without carbon 
coupling) using information solely about the environmental state. These carbon-uncoupled (CU) approaches 
may be differentiated primarily by whether aerodynamic forcing and/or canopy conductance (Gc) is explicitly 
represented (C. Lin et al., 2018). The modeling of Gc may in turn be differentiated by whether known physical 
phenomena are represented mechanistically (e.g. (Launiainen et al., 2016; Leuning et al., 2008), or empirically 
(e.g. (Jarvis et al., 1976),). CU modeling approaches that neither explicitly consider aerodynamic forcing nor Gc 
embrace the concept that a defined transpiration rate under a given atmospheric demand and unlimited moisture 
supply or potential transpiration (Tp) is reduced to T according to the state of the environment and the limits 
it imposes. Such limits are often manifested in these simpler CU models as multiplicative response functions 
to individual factors, assumed to be independent of each other. Although the number and type may vary, most 
embrace the concept of a soil moisture stress factor (Barton, 1979) or reduction function (Feddes & Raats, 2004) 
that quantifies the effect of soil water stress on plant water uptake (Miralles et al., 2011; Wu et al., 2021).

Carbon-uncoupled modeling approaches require many simplifications relative to those founded on principles 
of water-use efficiency, optimality theory, and hydraulic transport. While CU models are arguably more useful 
for large-scale application particularly those embracing the “big leaf” concept (Deardorff, 1978; K. Wang and 
Dickinson, 2012) there remains a large knowledge gap surrounding their optimal complexity; that is, the balance 
between gains in accuracy and large-scale applicability. CU models are often evaluated as a whole (Ershadi 
et al., 2014; McCabe et al., 2016; Miralles et al., 2016), with few efforts invested toward understanding the merits 
of the fundamental components underlying them. As one example, methods to apportion energy available (A) for 
E into that driving T differ widely and may be based either on leaf area index (Launiainen et al., 2016; Leuning 
et al., 2008) or fractional vegetation coverage (Miralles et al., 2011; Mu et al., 2011) and further, may or may 
not consider whether any share of A is directed toward the evaporation of canopy intercepted moisture (Fisher 
et al., 2008; Mu et al., 2011). The impact of these methodological differences on predictive performance remains 
unclear. As another example, the value that various individual environmental constraints provide to a global 
model is also unclear. For instance, it has been posited that soil moisture (SM) supply may be less containing than 
atmospheric moisture demand in many biomes (Flo et al., 2021; Lu et al., 2022; Novick et al., 2016), suggesting 
that a constraint based on atmospheric demand (i.e., as vapor pressure deficit (VPD)) may be more effective than 
one based on SM for a model that is to be applied at the global scale. Complicating model evaluation further are 
the different ways of representing key behavior for the same individual stress (or constraint) functions, particu-
larly for SM supply (Verhoef & Egea, 2014) and atmospheric moisture demand (C. Lin et al., 2018).

Here, our primary objective is to evaluate CU-based approaches for modeling T at the daily time step that are 
scalable globally using readily available input data sourced from satellite remote sensing, numerical weather 
forecasting, or climate model reanalysis streams and which do not require local calibration. We focus on forested 
ecosystems since these comprise the largest share of Earth's vegetated surface area (Potapov et al., 2022) and 
since climate warming-driven increases to atmospheric moisture demand will likely result in greater impacts on 
forests (Novick et al., 2016). Rather than evaluate specific off-the-shelf models as a whole, we embrace a modular 
approach that allows us to isolate some of their more distinguishing features and systematically evaluate their 
merits. This modular approach is particularly well-suited to evaluate the more empirically based CU modeling 
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approaches employing multiplicative factors since, by construct, these are meant to be independent of each other 
and, as such, should be evaluated on their skill to capture alone or in combination all the driving processes and 
constraints.

2. Methods and Data
2.1. Method Short Summary

We assess the predictive performance of 256 unique configurations of a model based on the Priestley and 
Taylor  (1972) framework (henceforth PT), 256 unique configurations of a model based on the Milly and 
Dunne (2016) framework (henceforth MD), and 48 configurations each of two variants of the radiatively uncou-
pled Penman-Montieth framework (McColl, 2020; Monteith, 1965) in total 608 unique “big leaf” models of daily 
T, none of which are dependent on calibrated parameters. Our assessment relies on independent estimates of T 
obtained from collocated sap flow and eddy-covariance measurement systems, employed to estimate two model 
performance metrics based on the triple collocation (TC) technique (Gruber et al., 2016; McColl et al., 2014; 
Stoffelen, 1998) used in conjunction thereafter for model ranking. The advantage of TC is that it does not require 
a single reference data set to be considered as truth and thereby limits the effect of random and systematic errors 
of the two reference datasets (Gruber et al., 2020).

2.2. The Modular Approach

We configure model components or “modules” based on their intended purpose or functionality. For the PT and 
MD models, these modules include: (a) an empirical coefficient (α) either the ratio of potential to equilibrium 
evaporation (for PT) or the evaporative fraction (for MD); (b) transpiration apportioned A function(s); and (c) 
environmental stress/constraint function(s), where the latter includes an atmosphere moisture demand constraint 
(fVPD), a soil moisture supply constraint (fSM), a plant greenness constraint (fG), and a plant temperature constraint 
(fT). As for (a), adopted values are either the original universal values or the PFT-dependent values reported in 
Table 2 of Maes et al. (2019) (n = 2 configurations). As for (b), the fraction of A apportioned to T or 𝐴𝐴 𝐴𝐴𝐴𝐴𝑝𝑝∕𝐴𝐴 is 
determined either as a function of canopy structure alone or both canopy structure and canopy dryness (n = 2 
configs.). As for (c), total environmental stress is determined as the product of either none or one of three fSM 
functions, none or one of three fVPD functions, none or one function for fG, and none or one function for fT (n = 64 
configs.).

For the two PM models, the modules include: (a) transpiration apportioned A function(s); (b) a Gc model; and 
(c) a soil moisture supply constraint. As for (a), 𝐴𝐴 𝐴𝐴𝐴𝐴𝑝𝑝∕𝐴𝐴 is determined either as a function of canopy structure or 
green canopy structure, or both (green) canopy structure and canopy dryness (n = 4 configs.). As for (b), one of 
three carbon-uncoupled Gc models are applied. As for (c), either zero or one of three fSM functions are applied 
(n = 4 configs.).

Please refer to Sections S1 and S2 in Supporting Information S1 for full model details including details surround-
ing the Gc models, 𝐴𝐴 𝐴𝐴𝐴𝐴𝑝𝑝∕𝐴𝐴 functions, and all environmental stress/constraint functions. Key PFT-dependent 
parameters required as input to the constraint functions or Gc models (Table S2 in Supporting Information S1) are 
sourced from the comprehensive review by Hoshika et al. (2018).

2.3. Eddy-Covariance Data

We employ a LAI-based method to partition E into T given LAI's high power in explaining variation of T/E 
in time and space for a wide range of plant functional types and biomes (Burchard-Levine et al., 2021; Lian 
et al., 2018; L. Wang et al., 2014).

The empirical functions of Wei et al. (2017) are applied to obtain a second independent estimate of T or TEC as:

𝑇𝑇EC =
(

𝜆𝜆𝜆𝜆EC𝑎𝑎LAI
𝑏𝑏

𝜆𝜆𝐸𝐸

)

CF−1 (1)

where 𝐴𝐴 𝐴𝐴𝐴𝐴EC is the daily mean EC-derived ecosystem evaporation flux, CF is a factor (=28.4) converting the 
daily latent heat flux (in W m −2) into a moisture flux (in mm d −1), LAI is a daily leaf area index, and a and b are 
PFT-dependent parameters. See Section S5 in Supporting Information S1 for data and method details surround-
ing the daily LAI input data set.
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2.4. Sap Flow Data

Our third independent estimate of daily T is based on the upscaling of whole-tree sap flow in the SAPFLUXNET 
(SFN) database (Poyatos et al., 2021) to the stand level. First, sap flow from uncalibrated heat dissipation sensors 
is multiplied by 1.405 to account for known sap flow underestimation (Flo et al., 2019). Hourly whole-tree sap 
flow is first normalized per unit tree basal area, then averaged for each species at each site. Species-level sap 
flow per unit ground area is then estimated as the product of the species mean value of basal area-normalized 
sap flow and the total basal area occupied by that species in the stand. Then, species-level sap flow estimates are 
summed for all species, and the obtained value is rescaled to account for the basal area within the stand belonging 
to species whose sap flow was not measured. Finally, hourly stand-level sap flow is summed across all hours of 
the day to yield the daily sum, notated mathematically as:

�SF ≈ SF = BA
∑�=�

�=1 BA�

∑24

ℎ=1

∑�=�

�=1
BA�

1
�

∑�=�

�=1

SFℎ,�,�

BA�,�
 (2)

where the transpiration flux (TSF) is approximated as a positive sap flow (SF), BA is the basal area of the stand 
(m 2), BAS is the basal area of species where sap flow is measured (m 2), T is the total number of trees where sap 
flow is measured, S is the total number of species, and h, s, and t are hour, species, and tree indices for measured 
trees, respectively.

2.5. Evaluation Sites

All sites in the SFN database where good spatial agreement exists between EC sites contained in the two synthe-
ses datasets “FLUXNET15 version Feb. 2020” (Pastorello et al., 2020) and “ICOS Drought 18” (Drought 2018 
Team and ICOS Ecosystem Thematic Centre, 2020) are selected for model evaluation. We limit the candidate 
EC sites only to those found in these two syntheses datasets since these data are well documented, have been 
processed using the same gap filling and energy balance correction methods, and have undergone numerous 
quality checks and vetting by the scientific community (Pastorello et al., 2020).

Only FLUXNET sites with tower locations <100 m away from sites in SFN are included in the analysis, resulting 
in 21 sites spanning five plant functional types, three biomes, nine climate zones, and an aridity index (P/Ep) range 
of 0.63–1.8 (see Table S3 in Supporting Information S1). For sites that are found in both the FLUXNET15 and 
ICOS Drought 18 datasets, records are merged, and priority is given to the ICOS Drought 18 data for instances 
where overlap exists in the daily record between the two datasets. EC data falling outside the range defined by the 
temporal extent of the SFN record are discarded.

2.6. Model Evaluation via Triple Collocation

In total, 608 unique models are evaluated in the study, run (forced) with daily meteorological inputs sourced from 
the EC data set. For the latent heat flux (𝐴𝐴 𝐴𝐴𝐴𝐴EC ) and for all requisite independent (model input) variables, days for 
which less than 80% of the sub-daily record are flagged as “measured” or “good quality gap-filled” are discarded. 
Given the diversity in model complexity and thus the span in the number of required model inputs additional 
filtering is carried out to ensure that model performance evaluation is not biased by discrepancies in the input 
record. In other words, for any given site, the non-discarded meteorological input record of the most complex 
model defines the daily record for which all models are subsequently applied. Model predictions yielding nega-
tive λT values (owed to negative Rn−G) are converted to zero. The resulting temporally synchronized and quality 
filtered EC-SFN record contains a total of 15,144 days.

We compute a TC-based root mean squared error (RMSE) and a squared correlation coefficient (𝐴𝐴 𝐴𝐴2 ) following 
the method of McColl et al. (2014), the latter of which informs about the correspondence between the model 
prediction and the two reference measurement system signals, and the degree to which they are in phase with each 
other. RMSE and 𝐴𝐴 𝐴𝐴2 are computed for the full data set and six stratifications according to: (a) dryness based on a 
daily zapi threshold (see section S3 in Supporting Information S1; “Dry” = days with zapi < −0.5; “Wet” = days 
with zapi ≥ −0.5); (b) phenology based on the leaf phenology of the dominant tree species at any given site 
(“EF” = evergreen forest; “DF” = deciduous forest); and (c) LAI based on the site maximum growing season 
LAI (i.e., LAImax; “Low LAI” = all days for sites with LAImax < 2.5 m 2 m −2; “High LAI” = all days for sites with 
LAImax ≥ 2.5 m 2 m −2).
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A good model should have both high 𝐴𝐴 𝐴𝐴2 and low RMSE. For each subset and for the full dataset, we identify the 
“best” model configuration for each model root scheme (i.e., PT, MD, PM1, and PM2) as that which yields the 
lowest sum of absolute differences between the minimum RMSE and maximum 𝐴𝐴 𝐴𝐴2 realized after feature scaling 
(unity-based normalization).

3. Results
3.1. Performance of Best Model Configurations

Figure 1 presents RMSE and 𝐴𝐴 𝐴𝐴2 values for the best configuration of each model group for the six subsets and for 
the full data set, while Figure 2 provides the configuration details. In terms of RMSE (Figure 1a), the best MD 
and PT models notably outperformed the best PM models for the full data set and for the “Dry”, “Wet”, “DF”, and 
“High LAI” subsets, whereas for the “EF” subset RMSEs were similar across models. Only for the “Low LAI” 
subset did the two PM models outperform the MD and PT models. A deeper investigation into the latter revealed 
that the aerodynamic forcing during the shoulder seasons tended to increase in importance relative to the radiative 

Figure 1. Performance metrics for the best model configuration by model type and data subset: (a) root mean squared error (RMSE); (b) 𝐴𝐴 𝐴𝐴2 . Smaller subpanels at right 
show the best configurations (colored lines) in relation to all configurations (light gray lines).
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Figure 2. Best model configurations for the full data set (a) and for each subset (b–g).
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forcing during peak growing season at the lower LAI sites, the former of which being better-captured by the PM 
models. Errors of the best MD and PT configurations were mostly similar across subsets with the exception of 
the “Wet”, “DF”, and “High LAI” subsets, where RMSEs of the best PT configurations were approximately 60%, 
55%, and 14% lower than the best MD configurations, respectively (Figure 1a, blue vs. red). Over the full data 
set (Figure 1a, “All”) and considering a reference data set mean T of 1.04 mm d −1, RMSEs for the best PT, MD, 
PM1, and PM2 configurations were 0.21 (20%), 0.22 (21%), 0.31 (30%), and 0.32 (31%) mm d −1, respectively.

As for 𝐴𝐴 𝐴𝐴2 (Figure 1b) or the signal-to-noise ratio (Gruber et al., 2020), the best PT and MD configurations yielded 
notably higher values than the best PM configurations across all subsets, with the exception of the “DF” subset 
where values for the two best PMs approximately equaled that of the best MD. Highest 𝐴𝐴 𝐴𝐴2 values for all model 
groups were found at this subset, whereas the lowest values for all model groups were found at the “Low LAI” 
subset. Like RMSE, the best PT and MD configurations excelled at the “Wet” subset yielding 𝐴𝐴 𝐴𝐴2 values as high 
as 0.96 and 0.97, respectively, though the highest 𝐴𝐴 𝐴𝐴2 value seen of 0.98 emerged from the best PT configuration 
at the “DF” subset. Over the full dataset (Figure 1b, “All”), the best PT and MD configurations explained ∼16% 
greater variance than the best PM configurations.

3.2. Best Configuration Details

Figure  2 provides details about the configurations underlying the results presented in Section  3.1. The best 
configurations for both PM variants were found identical for the full data set and for each subset. The best MD 
and PT configurations were found identical to each other for the full data set (“All”) and for the “Dry”, “EF”, and 
“High LAI” subsets. For both the “Dry” (Figure 2b) and “EF” subsets (Figure 2e), the best MD and PT config-
urations made use of all environmental constraints apart from the soil moisture constraint (fSM), in addition to 
the PFT-dependent α values and an available energy (A) apportioning based on fIPAR alone. For these same two 
subsets, the soil moisture constraint was also absent from the best PM configurations employing the Leun-08 Gc 
model, and A apportioning was based on fAPAR (=fIPAR × fG) alone.

Contrary to the “Dry” subset, the environmental constraints were excluded from the best MD and PT configu-
rations for the “Wet” subset, with the exception of the MD configuration which included the plant temperature 
constraint (fT; Figure  2c). Here, and only here the best PM configurations employed the Hosh-18 Gc model, 
whereas for the rest of the subsets the Leun-08 Gc model emerged in the best configurations of the two PM vari-
ants. For “Wet”, the best PM configurations also apportioned A based on fIPAR which is unsurprising given that 
fG was not found to be useful here to the MD and PT models.

For the “DF” subset (Figure 2d), the best MD and PT configurations differed only by their α values, where the 
best MD configuration employed the universal value of 0.8. This appeared to be the only subset in which the 
universal α value was utilized in the best configuration of a non-conductance based model. The best MD and PT 
configurations also differed for the “Low LAI” subset (Figure 2f), where the best PT configuration made use of 
fSM based on the concave stress model (Section S2, and Equation S15 in Supporting Information S1). The best 
PM configurations for “Low LAI” also made use of fSM although here it was based on the linear stress model 
(Equation S14 in Supporting Information S1).

3.3. Local—Global Model Performance Trade-Offs

The configurations performing best over the full data set (“All”) emerged as best only for one or two subsets, 
suggesting that predictive performance under certain conditions (i.e., vegetation structure, phenology, aridity) 
is likely degraded when a global model is to be applied (Figure 2). To assess this performance degradation, we 
compared (Figure 1, sub-panels at right) performance measures for the best configurations for any given subset 
(henceforth referred to as “local”) against those of the model configuration performing best over the full data set 
(henceforth referred to as “global”).

In terms of RMSE (Figure 1a, right panels; Figure S8 in Supporting Information S1), trade-offs were gener-
ally largest for all models for the “Low LAI” subset, where the application of the best global configurations 
for PT, MD, PM1, and PM2 models led to RMSE increases of 0.06 (29%), 0.03 (13%), 0.03 (18%), and 0.03 
(18%) mm d −1, respectively, over the best local configurations. For both PMs, this increase could be attributed 
to the absence of the fSM constraint, whereas for MD the increase could be attributed to the absence of the fG 
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constraint. For PT, the increase in RMSE could be attributed to the absence of both the fG and fSM constraints. 
Trade-offs in RMSE elsewhere for the PT and MD models were mostly negligible. For the PMs, however, we 
also detected non-negligible increases in RMSE for the “Wet” subset, where increases of 0.08 (41%) and 0.08 
(39%) mm d −1 for the best global configurations of PM1 and PM2, respectively, could be attributed to use of the 
Leun-08 Gc model over the Hosh-18 Gc model, and use of fAPAR over fIPAR as 𝐴𝐴 𝐴𝐴𝐴𝐴𝑝𝑝∕𝐴𝐴 .

In terms of 𝐴𝐴 𝐴𝐴2 (Figure 1b, right panels), adverse non-negligible trade-offs (i.e., 𝐴𝐴 𝐴𝐴2 decreases) associated with 
deploying the best global over the best local configurations were mostly confined to the PM models for the “DF” 
and “Low LAI” subsets, where 𝐴𝐴 𝐴𝐴2 decreases of −0.02 (−3%) and −0.03 (−3%) at “DF” and −0.03 (−3%) and 
−0.03 (−4%) at “Low LAI” were found for the PM1 and PM2 variants, respectively. Surprisingly, employing the 
best global over best local configurations of PM1 and PM2 for the “Wet” subset led to increases in 𝐴𝐴 𝐴𝐴2 of 0.05 
(6%) for both variants. This suggests that the best local PM configurations at “Wet” emerged as different to the 
best global configurations due to their greater gains in accuracy (reductions in RMSE) relative to reductions in 𝐴𝐴 𝐴𝐴2 .

4. Discussion
4.1. Emergent Patterns

Clear patterns emerged surrounding the make-up of the best configurations (Figure 2). For the best non-conductance 
models, 13 of the 14 best configurations included the PFT-dependent α values. While our study included some 
of the same EC sites (n = 9) included in the source study (Maes et al., 2019), we do not believe this finding is 
undermined by this partial overlap as these sites only contributed to 21%, 35%, and 37% of the total number of 
days in the Maes et al. (2019) data subsets for ENF, DBF, and EBF forests, respectively (and 0% for both MF 
and SAV). An analysis of site-level results showed that many of our sites not included in the Maes et al. (2019) 
study benefitted from having PFT-dependent α values. Another clear pattern emerging was that the fVPD constraint 
appeared essential to the performance of these models, all of which were based on the VPD −0.5 model (Equation 
S13 in Supporting Information S1). Only for the “Wet” subset was the fVPD constraint found absent in the best 
non-conductance model configurations. Further, the fT constraint also emerged as vital to their performance, 
evidenced by their appearance in 13 of the 14 best configurations.

As for the conductance-based models, the Leun-08 Gc model appeared in 12 of the 14 best configurations. This 
finding appears insensitive to the method applied to apportion A which varied across subsets.

Irrespective of model family, accounting for canopy dryness (CD) when apportioning A appeared unnecessary, 
even for the “Wet” subset. The same appeared to be true also for the fSM constraint which was found beneficial to 
only 3 of the 28 total best model configurations.

4.2. Global Model Candidates

Across the full data set, the best PT and MD configurations yielded similar performance metrics that were far 
superior to the two best PM model configurations (Figure 1 “All”)). Performance trade-offs between the best 
subset and “All” data set configurations for PT and MD were mostly negligible (Figure  1, right, “local” vs. 
“global”) which supports the use of the “All” configurations in global modeling contexts. Although their global 
configurations were identical, the structure of the Ep formulation underlying the best PT model was slightly 
more complex with its use of E0 fraction (i.e., = Δ/(Δ + γ) in Equation S7 in Supporting Information S1) which 
depended on an additional meteorological input variable not required by the best MD configuration (i.e., air 
pressure in γ). On the other hand, the best global configuration of the PT model gave notably better predictions in 
terms of both RMSE and 𝐴𝐴 𝐴𝐴2 for three of six subsets, that is, under normal moisture conditions (“Wet”), in decid-
uous forests (“DF”), and in forests with high LAI (see Figure S8 in Supporting Information S1). Given this, it is 
hard to land on a single global model candidate among the two.

The best global PT and MD configurations yielded a daily RMSE of 0.21 and 0.22 mm d −1, respectively, 
which was roughly 20% and 21% of the combined mean daily T of the two reference datasets (i.e., TSF and 
TEC). Whether this is an acceptable error is challenging to discern given limited performance benchmarks for 
transpiration models reported in the literature which, arguably, is tied to the scarcity of transpiration obser-
vations. Indeed, this scarcity is a motivating factor behind the development of the SAPFLUXNET database 
(Poyatos et al., 2021) and hence its utilization in this study. While various models have been developed to 
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isolate T from EC-derived measurements of ecosystem E (Nelson et al., 2018; Perez-Priego et al., 2018; Zhou 
et al., 2016), use of such estimates in isolation as surrogate for a “true” T reference is fraught by the difficul-
ties of dealing with both random and systematic errors (Eliasson et al., 2013; Gruber et al., 2020), to which 
the deployment of a second reference estimate and the triple collocation technique can serve to overcome 
(McColl et al., 2014; Miralles et al., 2010; Stoffelen, 1998). Nevertheless, for lack of other benchmarks and 
to provide additional perspective, a normalized RMSE of ∼20% across a diversity of forested sites (n = 21) 
may be considered low when compared to those reported in Nelson et al. (2020) for individual sites based 
on comparision of TSF and T derived from three different water flux partitioning methods (cf. Section 3.2 
therein).

5. Conclusions
5.1. Summary of Key Findings

Our study revealed that simpler, non-conductance based models can perform remarkably well across a wide 
variety of forest types and conditions when adequately configured. The best MD and PT configurations greatly 
outperformed the best PM configurations in terms of both RMSE and 𝐴𝐴 𝐴𝐴2 over the full data set and at most subsets 
(Figure  1), suggesting that T in global forests can be accurately modeled without explicit representations of 
canopy and aerodynamic conductances. Given the difficulties of obtaining reliable global-scale estimates of daily 
aerodynamic conductances, the noteworthiness of this finding can be appreciated.

A second notable finding is that the best model configurations tended to exclude a soil moisture stress constraint 
(fSM) in favor of a VPD constraint irrespective of the model family (Figure 2). We hypothesized that fSM constraints 
were competing with VPD constraints, confirmed through additional examination of the relationship between fSM 
and VPD constraints below the critical soil moisture stress threshold of −0.5 𝐴𝐴 𝐴𝐴API (Section S8, Figures S6, and 
S7 in Supporting Information S1). The fact that VPD was sufficiently constraining supports findings reported 
elsewhere (Flo et al., 2021; Lu et al., 2022; Novick et al., 2016) about the relative importance of atmospheric 
moisture demand over soil moisture supply in constraining T in non-arid biomes.

A third was that there appeared to be little added benefit to the more complicated PM equation underlying 
PM2 relative to the standard formulation underlying PM1, at least when applied at the daily time step. The best 
PM1 and PM2 configurations were identical at each subset (Figure 2), and differences in performance measures 
between them were mostly negligible (Figures 1a and 1b). The purported strength of the modified PM equation of 
PM2 is that it does not break down in important limiting conditions (McColl, 2020), which may be more relevant 
at the sub-daily timescale.

5.2. Final Remarks

Over a wide range of forest ecosystems and environmental conditions, simple models of daily transpiration 
founded on a Milly & Dunne  (2016) or Priestley & Taylor  (1972) formulation of Ep yielded predictions that 
were ∼33% more accurate and explained ∼16% greater variance than more complex, physically based formu-
lations based on the Penman-Monteith expression. These models required no calibration and relied solely on 
PFT-dependent parameters and widely available input variables, making them attractive candidates for global 
application. Indeed, a PT-based formulation has already been adopted by some satellite-based evapotranspiration 
algorithms (Fisher et al., 2008; Miralles et al., 2011). It is important to note that while PM performances might 
have been improved had we elected to re-calibrate key parameters of the Gc modules using data from our sites, 
such an exercise not only would have risked overfitting to a relatively sparse data set, but in doing so, could have 
compromised the integrity of the triple collocation analysis.

Findings reported here may be used to improve transpiration schemes employed in hydrological models and 
remote sensing algorithms, thus elevating the efficacy of water resource management measures that rely on 
predictions from such tools. The result that simple models are not only good but better at ecosystem scale makes 
hydrological assessments less data-intensive and thus more computationally efficient. Future efforts should be 
directed toward additional model vetting in forest ecosystems not well-covered by our data set, particularly those 
in arid regions as new observations based on sap flow or water flux partitioning approaches (Stoy et al., 2019) 
become available.
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