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ACTIONS ON PRODUCTS OF CAT(-1) SPACES

TERESA GARCIA AND JOAN PORTI

ABSTRACT. We show that for X a proper CAT(—1) space there is a
maximal open subset of the horofunction compactification of X x X,
with respect to the maximum metric, that compactifies the diagonal
action of an infinite quasi-convex group of the isometries of X. We
also consider the product action of two quasi-convex representations
of an infinite hyperbolic group on the product of two different proper
CAT(—1) spaces.

1. INTRODUCTION

The action of a discrete group of isometries I' on the ideal boundary of a
proper CAT(—1) space X has a dynamical decomposition Jc X = Qr U Ar,
where Ar is the limit set and Qp is the domain of discontinuity [6]. In
addition, if I' is quasi-convex, then the action on X U Qr is also properly
discontinuous and cocompact, so Qr compactifies the action of I' on X [18].

This dynamical decomposition of the visual boundary may not hold for
CAT(0) spaces: there may be no uniqueness of maximal discontinuity do-
mains, or there may be no discontinuity domain at all, even if the limit set is
proper. We mention the work of Papasoglu and Swenson [17], or Kapovich,
Leeb, and Porti [12], in the context of symmetric spaces. In this paper we
consider the case of the product of two proper CAT(—1) spaces, which is a
CAT(0) space, see the work on products by Geninska [10] and by Link [14].

As a motivating example, consider a cocompact fuchsian group I' <
Isom(H?) acting diagonally on H? x H2. The ideal boundary of H? is
OsoH? =2 S1. 50 the visual boundary of the product is the spherical join
of two circles, Ox (H? x H?) = St x St x [0,7/2]/ ~, where ~ is the relation
that collapses each subset {*} x S* x {0} or S x {*} x {7/2} to a point. The
diagonal action on the ideal boundary preserves the sets S' x S' x {6} for
each 0 € [0,7/2], so finding a domain of discontinuity amounts to find a do-
main of discontinuity for the diagonal action on S x S'. This is not possible
because the action on S* x S! has a dense orbit [15, Thm. 3.6.1], hence it
has empty domain of discontinuity (even if the limit set is S* x St x {n/4}).
Notice that the visual compactification of H? x H? is the horofunction com-
pactification with respect to the product metric, or #? metric. Instead, here
we work with the £°° or maximum metric, which happens to be better suited
for those compactifications.
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For X; and X5 two proper CAT(—1) spaces, we denote the ideal or Gro-
mov boundary of X; x X with respect to the max metric by 9522 (X7 x X3).
In Proposition 3.13 we show that 02**(X; x X3) is homeomorphic to the
join of the boundaries of each factor. In particular, the ideal boundaries for
both metrics £2 and ¢ are homeomorphic, but their compactifications are
not equivalent, since the identity does not extend continuously to the com-
pactifications. The max compactification is adapted to diagonal actions, as
it allows to find an ideal subset where the diagonal action is properly dis-
continuous and which compactifies the action. The main theorem of this
paper is:

Theorem 1.1. Let X be a proper CAT(—1) space and I' an infinite quasi-
convex group of isometries of X. There exists an open set QR C 05 (X x
X) such that:

a) The diagonal action of I' on X x X UQR?X is properly discontinuous
r
and cocompact.
b) QEeX 4s the largest open subset of O22*(X x X) where the diagonal
r 9 0o g
action s properly discontinuous.

When I' acts cocompactly on X, the theorem has been proved in [9]. To
prove Theorem 1.1 we show that the nearest point projection from X x X
to the diagonal extends continuously to a map on 92**(X x X) with image
in the visual compactification of the diagonal.

The ideal boundary 0%22*(X; x X3) decomposes in two parts defined in
Section 3, regular and singular. The regular part 0% (X7 X X2)reg consist of
points that correspond to the maximum of two Busemann functions, one on
each factor, and it is homeomorphic t0 0so X1 X Joo X2 X R (Proposition 3.10).
The singular part 02 (X1 X X2)sing consists of points that are Busemann
functions in one of the factors and it is homeomorphic to the disjoint union
000 X1 U 05 X2 (Proposition 3.9).

In a CAT(0) space the limit set Ar is the set of accumulation points in the
ideal boundary of an orbit and it is independent of the choice of the orbit.
In our setting, since the max metric is not CAT(0), the set of accumulation
points of an orbit depends on the orbit, so we consider the large limit set,
consisting of accumulation points of any orbit. For a diagonal action it turns
out that the large limit set is contained in the regular part of the boundary
and that Qf'** is the complement of the closure of the large limit set. In the
particular case in which I' is a cocompact group, the set {'** is naturally
homeomorphic to the set of parameterized geodesics in one factor, as shown
in [9].

This max metric is a Finsler metric. Bordifications through Finsler met-
rics of symmetric spaces have been used by Kapovich and Leeb [11] to ob-
tain a characterization of Anosov representations. In a product of CAT(—1)
spaces, this corresponds to the ¢! metric.

The max compactification is very convenient for diagonal actions, but
it would be interesting to see in what other situations it is useful. For
I" an infinite hyperbolic group, we consider p; and py two quasi-convex
representations in the respective group of isometries of CAT(—1) spaces X
and Xo, and their product action p; X p2 on X; X Xo: an element ~ in I'
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maps (x1,x2) € X1 X X9 to (p1(7)z1, p2(7y)z2). Since the max metric on
X1 x X3 is not CAT(0), the accumulation set of an orbit may depend on the
orbit. The union of all possible accumulation sets is called the large limit set
and it is denoted by A, xp, C 05**(X1 X X3). In analogy to the diagonal
case, it is reasonable to ask under what conditions the large limit set A, »,,
of the product action also remains inside the regular part of the boundary.

Proposition 1.2. Let X1 and Xy be proper CAT(—1) spaces, I' an infinite
hyperbolic group, and p1: T' — Isom(X7), pa: I' — Isom(Xs) two quasi-
convex representations. The following are equivalent:

(CL) Aﬂlxm - aénoax()(l X X2>reg-

(b) There exists C > 0 depending on o € X1 and o' € Xy such that

di(p1(7)o, pr(7')0) — da(pa (7)o, p2(v')0")| < C,  for all v € T.

(c) The length spectrun is the same: T(p1(7y)) = T7(p2(7)) for all v € T,
where T(p;(7y)) denotes the translation length of p;(7y).

When item (b) holds we say that p; and ps are coarsely equivalent. If
both representations p; and py are coarsely equivalent and cocompact, then
the spaces X7 and X, are almost-isometric. This means that there exists
an almost-isometry between the spaces, which is a quasi-isometry with mul-
tiplicative constant one. This almost-isometry allows to construct a coarse
equivariant map between the regular parts of the ideal boundaries of X; x X3
and X x Xa, so that the open set in 922 (X x X1) of Theorem 1.1 is mapped
to an open set QP C 92 (X; x X3) with good properties:

Theorem 1.3. Let X; and X5 be proper CAT(—1) spaces, I' a hyperbolic
group, and p1: I' — Isom(X1), pa: I' — Isom(Xs) two cocompact discrete
representations. If p1 and ps are coarsely equivalent, then there exists an
open subset QP C 0R**(X1 x Xa) such that the product action of T' on
X1 x Xo U QP s properly discontinuous and cocompact.

2. PRELIMINARIES

A metric space is said to be proper if all its closed balls are compact, and
geodesic if any two points can be joined by a geodesic segment.

A CAT(—1) space X is a geodesic metric space where triangles are thinner
than comparison triangles in the hyperbolic plane. Similarly, a CAT(0)
space satisfies the same condition placing the comparison triangles in the
Euclidean plane. In particular, CAT(—1) spaces are also CAT(0) spaces. A
reference for these spaces is for instace [4].

Two rays c(t) and ¢/(t) in a metric space are said to be asymptotic if there
exists C' < oo such that d(c(t),d(t)) < C for any ¢t > 0. The visual boundary
000X of a metric space X is the set of equivalent classes of asymptotic rays.
In a proper CAT(0) space X = X U0, X can be given a topology (the cone
topology, see [4]) such that both X and 95X are compact. The space X is
denoted the visual compactification.

A discrete group action on a topological space X is properly discontinu-
ous if every compact subset intersects finitely many of its translates. For
isometric actions on proper metric spaces, this is equivalent to the fact that
every point has an open neighborhood which intersects only finitely many



4 TERESA GARCIA AND JOAN PORTI

of its translates. The action is cocompact if there exists a compact subset
K C X whose translates cover X. For I' a discrete group of isometries of a
proper CAT(0) space, the limit set Ar is defined as the set of accumulation
points of an orbit in 0 X and it is independent of the orbit. For a CAT(—1)
space X, the complement of Ar in 0, X is the domain of discontinuity Qr
and I' acts properly discontinuously on Qr [6].

A subset S C X is quasi-convex if an e-neighborhood of S N X contains
its quasi-convex hull (the union of segments between points in S), for some
e > 0. A group I of the isometries of a CAT(—1) space X is quasi-convex
if it acts properly discontinuously on X and any orbit is quasi-convex.

A map between metric spaces f: X — Y is a quasi-isometric embedding
if there are constants A > 1 and C > 0 satisfying that for all 21,22 € X:

%dx(xl,xz) —-C< dy(f(xl), f(.CEQ)) < Adx(l'l,l’g) + C.

The map f: X — Y is a quasi-isometry if it is a quasi-isometric embedding
that is coarsely onto, namely if for each y € Y there exists x € X with:

dy (f(x),y) < C,

for some C. An almost-isometry is a quasi-isometry with multiplicative
constant A = 1.
A quasi-convex group of isometries of a proper CAT(—1) space X is hy-

perbolic and finitely generated. Moreover, the orbit map:

r—-X

0 A 0 20
is a quasi-isometric embedding for any o € X and it extends to an equivariant
homeomorphism (which is also Lipschitz and quasi-conformal) from 05" to

its limit set Ar [3]. The action of a quasi-convex group on X UQr is properly
discontinuous [6] and cocompact [18].

3. THE MAX COMPACTIFICATION

Let (X1,d1) and (X2,d2) be two proper CAT(—1) spaces, consider the
product space X1 X X9 equipped with the max metric dpy.x, or £°° metric:

dmax(($a y), (xlv y/)) = max{dl (-737 CC,), do (?/, y/)}
for any (z,y), (2/,y) € X1 x X3. The metrics dpax and the product metric

dZQ ((JJ, y)a (.CL'/, y/)) = \/dl (l‘, .%'/)2 + dQ(ya y,)2
are comparable so they induce the same topology in X7 x Xs. For X7 and X,
proper geodesic spaces, (X7 X Xo, dmax) is also a proper geodesic space [16,
Prop.2.6.6]. In this section we compute its horofunction compactification.
For a proper metric space X, let C,(X) denote space of continuous func-
tions on X up to additive constants, equipped with the topology of uniform
convergence on compact subsets. The Gromov or horofunction compactifi-
cation of X is the closure in Cy(X) of the image of the map

t: X — Cu(X)
x v [d(z, )],
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see [2]. We denote the horofunction compactification of X by X. The ideal
boundary is the set X'\ ¢(X) and it is denoted by 9. X. For a proper metric
space both X and 0, X are compact and metrizable spaces.

Remark 3.1. Fizing a base point o € X, the sequence [d(xy, )] converges to
a class of functions [f] € Cx(X) if, and only if, the sequence of correspond-
ing normalized distance functions d(xy,-) — d(zn,0) converges to f — f(o)
uniformly on all balls B(o,r). In addition, C(X) is homeomorphic to the
subspace of continuous functions on X satisfying f(o) = 0.

Definition 3.2. A horofunction h is a continuous function on X such that
its class [h] belongs to 0so X .

Remark 3.3. A class of horofunctions is called an ideal point and it is
denoted it by . The horofunction h in the class & satisfying h(o) = 0 is
denoted by hg.

Notation 3.4. When we say that a sequence (), converges to an ideal
point & in the horofunction compactification, x, — &, we mean that for a
base point o € X the corresponding sequence of normalized distance functions
converges uniformly on compact subsets to the horofunction hg.

The level sets of a horofunction are called horospheres and the sublevel
sets, horoballs. Notice that two horofunctions in the same equivalence class
differ by a constant and share the same set of horospheres and horoballs.
The horofunctions of a proper CAT(0) space are Busemann functions:

Definition 3.5 (See [1] or [2]). A Busemann function in a metric space
(X,d) is a function defined as:

z lim d(c(t),z) —t

t——+00

for some geodesic ray c(t) in X.

In a proper CAT(0) space X, given a point o € X and an ideal point
€ € 0xX there is a unique ray c(t) such that ¢(0) = o and its associated
Busemann function is in the class £. This Busemann function is denoted by

FE() = lim_d(e(t).2)

The horofunction compactification and the visual compactification of a proper
CAT(0) space are equivalent [4, Cor. 8.20].

Lemma 3.6 (cf. [4]). For a CAT(0) space X :
(i) If o: [0,+00) — X is a ray in the class £ € 0 X, then Bp(o(s))
converges to +00 if n # & and to —oo if n =E&.
(ii) For any p,q € X, B — B is a constant function.

The Gromov or horofunction compactification of (X7 X Xa, dmax) is de-
noted by X7 x X5 and its ideal boundary by 02*(X; x X2). We choose
a base point O = (0,0') with 0 € X; and o' € X3. As a representative of a
class of normalized distance functions, we have the function:

dgax((xvy)”) = dmax((,9), ) = dmax((2, ), (0,0))
= max{di(z,-),ds(y, )} — max{di(x,0),ds(y,0")}.
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Then, by Remark 3.1, [dmax((Zn,Yn), )] = & € 0%¥*(X; x X3) if and only
if d9.. (20, yn),) — h?, where h? is the horofunction in the class £ that
satisfies hg(O) =0.
Given a diverging sequence (Z,,yn) C (X1 X X2, dmax), we distinguish
two cases, up to a subsequence:
(I) either |dy(zp,0) — da(yn, 0")| — oo,
(IT) or |di(xn,0) — da(yn,o)| remains bounded.
Notice that if one of di(xy,,0) or da(y,,0’) is bounded, then we are in the
first case, as we assume that (z,,y,) diverges.
Proposition 3.7. Let (Xi,d1) and (Xa,d2) be proper CAT(—1) metric
spaces. Let (zn,yn) be a diverging sequence in (X1 X Xo, dmax).
(I) If |di(2p,0) — da(yn,0')| — oo, then, up to subsequence and up to
permuting X1 and Xo, there exists £ € 0o X1 such that
lim dgax((anv yn)7 (Za Z/)) = /Bg(z)
n—oo

(I1) If |d1(xp, 0) — do(yn, 0')| remains bounded, then, up to a subsequence,
there exist € € 0o X1 and &' € Oso X2 such that

Tim (@, ), (24 ) = max{82(:), 82 () - C,
for some constant C € R.

Proof. We prove case (II), the proof for case (I) being similar. For each n,
denote C,, = di(xy,0) — da(yn,0’) and assume that C,, > 0. Then

dmax((xn, yn)a (07 O/)) = dl(xnv 0) = d2(yn7 0,) + Cn

and

dglax((xnayn)7 (27Z/)) =
dmax((xm yn)? (xa y)) - dmax((‘rm yn)v (07 Ol)) =
max{dl(xn,ﬂf) - dl(xmo)’ dQ(yna y) - dQ(yn’O/) - Cn}

Both sequences z, and ¥y, subconverge to an ideal point, and since C), is
bounded we are done. (]

In the remaining of the section, (Xi,d;) and (Xs,d2) denote proper
CAT(—1) metric spaces, as in Proposition 3.7.

Definition 3.8. We define the singular part of the ideal boundary as the
subset of ideal points with a representative of the form Bg(z) or Bg,/(z'),
i.e. case (1) in Proposition 3.7. We denote it by 05 (X1 X X2)sing-

The regular part of the ideal boundary is its complement, namely the
subset of ideal points with a representative of the form max{ﬁg(z), Bg:(z’) +
C} with C € R, i.e. case (II). We denote it by 052 (X1 X X2)reg-

Using that the set of Busemann functions in one factor is naturally iden-
tified to the boundary of this factor, we have:

Proposition 3.9. There is a natural homeomorphism

Psing - 8<r>noax(X1 X X2)sing — 800X1 L 600X2
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that consists in associating to a Busemann function that takes values only
in the first (second) factor of X1 x Xo the same Busemann function viewed
as a point of the first (second) summand in OsoX1 Ll One Xs.

For the regular part, notice that we can get rid of the additive constant
in Proposition 3.7 by changing the base point. Thus regular points are the
classes modulo constant of the functions max{S{ (2), g (2')} for all p € Xy,
p’ € Xo, f € 050 X1 and f/ € JsoXo.

Proposition 3.10. For each choice of base point (0,0") € X1 x Xo there is
a natural homeomorphism

) Pregt OB(X1 X X)rog — Do X1 X 0 X X R
@) max{B2(=), A ()}] = (€, €, 82(0) — BE (o).

Remark 3.11. If we fiz p = o and p' = o, then homeomorphism (1) can

be written as:

(2) Preg - aénoaX(X} X X2)reg — 8OOX1 X 8OOX2 x R
max{f¢(2), B¢ (2') — C} = (&,€,C)

where C' € R.

Proof of Prop. 3.10. Notice that lim;, o max{S¢(c(t)), g,,(c’(t))} = —0
if and only if ¢(4+00) = £ and ¢(+00) = ¢; otherwise this limit is +oo,
by Lemma 3.6. Thus ¢ and & in the construction of (e are uniquely
determined, and it follows easily that ¢reg is well defined and injective.
In addition, surjectivity of ¢res and continuity of ‘Pr_% follow easily from
construction and the properties of Busemann functions (Lemma 3.6).

To prove continuity of ¢,eg, as ideal boundaries are metrizable, we use
sequences. Let max{fg (), [32’; (') — Cy} be a sequence that converges to
max{fp(z), 53; (2/)—=C}. The third coordinate of e in (1) is clearly contin-
uous, hence C,, — C'. By compactness of 0, X;, up to subsequence &, — &
and &, — &.. By injectivity of ¢req, oo = 1 and & =1’ and we get conti-
nuity. U

Remark 3.12. Observe that a sequence (xy,yn) converges to (§,&',C) if,
and only if, Ty, — &, yn — &', and di(xy,0) — da(yn,0') = C.

Let Join(0xX1, 00 X2) denote the topological join of 05 X1 and 0 Xo.
Propositions 3.9 and 3.10 can be improved:

Proposition 3.13. There is a natural homeomorphism
8énOaX(X1 X XQ) = Join(@ooXl, 8OOX2)

Proof. In view of Propositions 3.9 and 3.10 and Remark 3.11, we have to
prove the following claim: for sequences (&) in 0,X1, (£,) in Js X2, and
(Cp) in R we have &, — &, &, — &', and C), — 400 as n — oo if and only if
the function
(2,2') = max{B (2), 8% (') — Cu}

converges to (z,2') = (5¢(z) uniformly on compact subsets of X1 x X». Notice
that we do no require convergence on (£,). We also need the symmetric
claim when C,, — —oo0, and after replacing max{¢ (2), 524: (') = Cn} by
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max{¢ (2)+Cn, Bg; (")} (a different function in the same equivalence class)
but the proof is symmetric.

To prove the claim assume first that C,, — +o0o. Take as compact set
the ball centered at (0,0'): B(o,R) x B(d', R). Since Busemann functions
are 1-Lipschitz and as we chose normalizations so that ¢ (o) = 52{1 (o) =
0, for C,, > 2R we have max{ﬂgn(z),ﬁgé(z’) — Cn} = B (2) for (2,7) €
B(o,R) x B(d', R). Here uniform convergence of 3¢ on compact subsets
follows from the horosphere compactification of X;. Next assume C, €
[—R, R]. Here max{f (z), Bgl(z’ ) — Cp} has a converging subsequence to
max{/y’g(z), Bg,/(z' ) — C}, uniformly on compact subsets. Using that the
Busemann functions have slope -1 in rays pointing to the ideal point, we
see that the limit max{fg(2), Bg,/ (') = C} cannot be expressed a Busemann

function in a single factor, Bg or Bg,/ . (|

4. DIAGONAL ACTIONS

Let T" be an infinite quasi-convex group of isometries of a proper CAT(—1)
space X. In this section we consider the diagonal action of I' on X x X:

I'x X x X —=XxX
(v, 2, y) = (v, 7Y).

The diagonal action extends continuously to the ideal boundary of the max
compactification. The following is straightforward:

Lemma 4.1. The diagonal action on the points of 0% (X x X) is given
by:

VIP¢] = [67]
y[max{8g, 8¢ — C}) = [max{f5, B — C + B2 (y~"0) — B¢(v"0)}].

Remark 4.2. Under the identification in Remark 3.11 the diagonal action
maps a singular point & to v§, and a regular point (£,£',C), to (v&,~¢',C +
Be(vo) = Ba(v o).

In this section we prove that there is an open subset Qf'** C 95 (X x X)
where the diagonal action of I' is properly discontinuous and cocompact. In
Subsection 4.1 we prove that the nearest point projection of X x X to the
diagonal A C X x X extends continuously to X x X . In Subsection 4.2
we use this projection to show that there exist a proper domain of discon-
tinuity QP C 0% (X x X). Furthermore we see that the action on the
whole X x X U Qf®* is properly discontinuous and cocompact, and that
QF** is the largest open set of the boundary that satisfies these conditions.

4.1. Extending the projection to the diagonal. The nearest point pro-
jection from X x X to the diagonal for the max distance is given by the
midpoint:

(3) mXxX —= A

(z,y) = (m,m),
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where A is the diagonal in X x X:
A={(z,z)|zeX},

and m is the midpoint of the geodesic segment joining z and y. By con-
struction, 7 is continuous and equivariant.
In this section we extend it continuously to a map

T X X X S5 A = AU Ay,
where A" is the closure of A in X x X -, and

Ase ={(£,€) | § € 0 X},

denotes the diagonal in 0, X X 0, X. For this purpose, we consider the
decomposition

ODA(X x X) = O2%(X x X )sing U @%(Aoo x R) L Qmax
where
Qmax _ @;eé((aoox X 0o X \ Aoo) X R) C OZ(X X X)reg-s

and @reg is the homeomorphism in Proposition 3.10. In [9] the projection is
extended continuously to a map

QU 5 AL

Following [9], the extension uses that Q™** is naturally homeomorphic to
the set G of parameterized geodesics in X (with the topology of uniform
convergence on compact sets) through the map:

p: G — QM
g lim (g(n), g(=n))
Via this identification, by [9] the projection extends continuously to
(4) G —- A
g = (9(0),9(0))
Thus it remains to extend it to preg(Aso X R) and to 052 (X X X)sing-
Definition 4.3. The extended projection
XXX S AT X
is defined by (3) and (4) on X x X U Qmax,

On @reg(Aosc X R) it is the projection to Ao, and on 05 (X x X )ging =
Ooo X U 05X it is the identification 0xoX = Ax.

Remark 4.4. We have an equivariant homeomorphism ¢’ = preg 0 @, given

by:
0 G = (00X X 00 X))\ Ax) X R
g (g(—i—OO),g(—OO),Cg),
where:
Cy = lim d(g(n),0) = d(g(—n),0) = B _.)(9(0)) = By 1o (9(0)).

Therefore, a geodesic g corresponds to a point
(g(400), g(—0),Cy) € ((OncX X 05cX) \ Asg) X R
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which in its turn corresponds to the regular point:
[max{,ﬁ;’(+oo), ﬁg(—oo) - Cg}] € Qmax'

To prove the continuity of 7, we use of that the Gromov product ex-
tends continuously to the boundary of a proper CAT(—1) space [5, Propo-
sition 3.4.2]. The Gromov product of two points x,y € X with respect to a
base point o € X is defined as:

(ely)o = 5 [d(,0) +d(y,0) ~ d(z, ).

Given ¢ and &’ two points in the visual boundary of a proper CAT(—1), the
Gromov product is defined as:

li’r}n(xﬂyj)o = (¢|€")o,

for any sequences x; — &, y; — &'

Let g be a geodesic in X, the Gromov product of the ideal points g(+400)
and g(—oo) with respect to a base point o, can be written in terms of
Busemann functions as:

(g(+00)lg(~00))o = 5 [B40 (@) + B 0)]

The Gromov product for ideal points satisfies:
(€|€"), = 400 if and only if & = ¢/,
see [5]. Similarly two sequences x;, y; have the same limit iff:
(ilyj)o = +o00.
Theorem 4.5. The map 7: X X X — X is continuous and equivariant.

Proof. The equivariance follows from naturality. To prove the continuity,
we have also shown in [9] that 7 restricted to X x X U Q™ is continuous,
but it remains to be proved in 92**(X x X))\ Q™. We have to check two
cases. (I) Firstly, we shall see that the image of a sequence of points (z,, yn)
in X x X that converges to an ideal point, either in the singular part or in
the diagonal of the regular part of the boundary, converges to the image of
this ideal point. (II) Secondly, we shall check that the image of a sequence
of ideal points that converges to an ideal point either in the diagonal of the
regular part or in the singular part of the boundary, converges to the image
of the ideal point. Along this proof, m,, denotes the midpoint of the segment
joining x, and y,.

Case (I). Consider a sequence (z,,¥yy) in X x X converging to an ideal
point. We distinguish two subcases: either (a) the limit of the sequence is a
singular point, or (b) the limit is a point in the diagonal of the regular part.

Subcase (a). Suppose, up to permuting factors, that the sequence con-
verges to a singular point in the boundary of the first factor: (x,,y,) — [ﬁg]
Therefore, x,, — ¢ and d(zy,0) — d(yn,0) — +00. By the triangle inequal-
ity: d(my,0) > d(my,yn) — d(yn,0), and using the definition of the Gromov
product, we have:

[d(1, 0) — d(yn,0)] .-

DO | =

(xn|mn)o >
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Henceforth (x,,|m,), — 400, and by the properties of the Gromov product,
T, and m,, have the same limit.

Subcase (b). Now suppose that the sequence converges to a diagonal point
in the regular part of the boundary: (zn,yn) — [max{S¢, 3¢ + C}|. In this
case Tp, = &, yp — € and d(xy,,0) — d(yn,0) - —C.

Using the definition of the Gromov product again and reorganizing terms,
we have:

() 2ealma)o = (Ealun)o + dma,0) + 5 d(za; 0) — d(yn, o))

Notice that 3 [d(zn,0) — d(yn, 0)] is uniformly bounded and that (z,|yn)o —
+00, since both z,, and y,, converge to the same point. From (5) we deduce
that (z,,|my), — 400, which implies that m,, — &.

Case (II). Next we deal with a sequence of regular ideal points of the
form [max{f¢ , 8¢ + Cn}] in O™ (X x X) with limit either a regular point
in the diagonal, subcase (a), or a singular point, subcase (b). From now on,
gn denotes the geodesic corresponding to a point [max{f¢ , Be +C, }] under
the identification Q™?* = @G.

Subcase (a). Suppose that the sequence converges to a regular diagonal
point: [max{Bgn,ﬁ& + Cn}] — [max{Bg, 8¢ + C}]. In this case {, — &,
¢ — ¢ and C,, — C. For each n, we consider a sequence of points xj in
X such that zp — &,. Using the fact that the Gromov product extends
continuously to the boundary of a CAT(—1) space, and the definition of
Busemann function, we write:

(91(0)|n)o = Jim (9a(0)[x)o = Jim 7 [d(gn(0),0) + d(. 0

~d(gn(0), 20)] = 5 [d(ga(0),0) + 82 (0)].

Similarly, taking a sequence y; in X for each n, with yr — &/ :

(n(0)IEh)o = 5 [d(9n(0),0) + 5% (0)]

Adding both equalities above we obtain:

(6) (gn(0)|£n)o + (gn(0)|€;)o = d(gn(O), 0) 4 %IBQZ(O) (0) + %,@52(0) (O)
= d(gn(0),0) + (&ul&))o-

By compactness of Y, after passing to a subsequence we may assume that
gn(0) — n € X. Then, since (£,/€))o — (£|€)o = +00, by (6) we have that
(77|§)0 = 400. So { =n and gn(o) —¢&.

Subcase (b). Next we suppose that the sequence converges to a singular
point, a Busemann function in the second factor (up to permutation of
factors): [max{fg ,Bg + Cn}] — [B2] with & — &, &, — & and since g is
a Busemann function in the second factor, C,, — +ooc.

Similarly to the preceding case, for each n:

(n(0)IEh)o = 5 [d(90(0),0) — 58, (9. (0))]
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(90(0)1n)o = 5 [d(ga(0).0) ~ 32, (90(0))]

and we can combine both equalities to get:

(n(O)IE)s = 5d(9a(0),0) — 55, (9n(0))

= (G000 + 352, (90(0)) ~ 352, (9a(0))

1
= (9n(0)|&n)o + §Cn'

Here we have used that C,, = B¢ (9n(0)) — B¢ (9n(0)) by Remark 4.4. Now,
since (9n(0)|¢n)0 > 0 and C,, — +00 we have that (g,(0)[£),), — +oo and
gn(0) = & O

4.2. The ideal domain **. Let I' be an infinite quasi-convex group
of isometries of X. We denote by Ar its limit set, which is the set of
accumulation points of any orbit in 0, X, and by Qr = 05X \ Ar its domain
of discontinuity. The action of I' on X U Qr is properly discontinuous and
cocompact [6,18]. Next we show that the diagonal action of I' on the inverse
image under the projection 7 of X U Qr is also properly discontinuous and
cocompact:

Theorem 4.6. Let X be a proper CAT(—1) space and let T' C Isom(X) be
an infinite quasi-convex group. The diagonal action of T' on #~1(X UQr) is
properly discontinuous and cocompact.

Proof. Besides being continuous and equivariant, 7: X x X — X is

proper, since it is a continuous map from a compact to a Hausdorff space.
In [18] it is shown that for a Dirichlet domain D C X its closure in D C X
is a compact set that satisfies:
(i) DcC XE Qr,
(i) UyervD = X UQr, and
(iii) for every compact K C X UQp, [{y €T |yKNK # 0}| < oo.
Therefore 7~!(D) satisfies the corresponding properties for the action on
#1(X U Qr). This proves the theorem. O

Now, let 2% he the intersection of 7~ 1(X U€Qr) with the ideal boundary
of X x X%
Qrax — 771X UQr) Nom>(X x X),
and let Ar be the subset of the diagonal in J,X X 0sX that corresponds
to the limit points of the action of I' on X:

Ar = {(f,f) € 050X X 050X with £ € AF}

Remark 4.7. Via the homeomorphism in Proposition 3.13 that identifies
O (X x X)) with Join(0ee X, OsX):

QP 22 (0 X X 050X) \ Ar) x RUQRUQE,

where QU denotes Qr viewed in the factor O X;, for each i =1,2. Observe
that when I' is a cocompact group Q™ is just the set Q1™ of the previous
subsection.
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In Proposition 4.10 we shall show that '** is the largest open set of the
boundary where the diagonal action is properly discontinuous. But first, let
us study the limit set of this action on 02**(X x X). Since (X X X, dmax)
is not CAT(0), the accumulation set of each orbit depends on the orbit.
We define the large limit set of the diagonal action as the union of all the
accumulation sets of orbits on 92 (X x X):

A= | Ty nom™X xX)
(z,y)eX x X
Lemma 4.8. For A and Ar as above,
(preg(A) = AF x R.

Proof. First, observe that the limit of any sequence (v,x, ¥,y) that converges
to the ideal boundary is contained in Ap x R. Indeed, by the triangle
inequality, |d(ynz,0) — d(Yny,0)| < d(x,y), so the limit is a regular point.
Furthermore, if v,z — £ then v,y — £ since d(vn,x, vny) = d(z,y), i.e. the
sequences Y& and v,y stay within a bounded distance. Therefore the limit
point lies in Ap x R.

Finally we show that any point (&,&,C) for £ € Ar belongs to the limit
set. Take any sequence 7, such that v,0 — £. Let £ be an accumulation
point for 4, 1o and z,y € X satisfying B (y) — B (x) = C. Then it follows
easily that (§,&,C) is the limit of the sequence (v,x,vny). O

Remark 4.9. The large limit set A is not closed but notice that the com-
plement of QR is its closure A.

From this remark we easily deduce:

Proposition 4.10. The set QN is the largest open subset of O (X x X)
such that the action of I' on X x X U Q™ is properly discontinuous.

5. EXAMPLES

In this section we consider some examples for the max compactification
of diagonal actions. The first one is the diagonal action of a cocompact
group of isometries of a riemannian manifold. The second one is the action
of convex cocompact Kleinian groups on H" x H". Finally we describe an
example of the max compactification of a diagonal action on the product of
two trees. This is also an example where the nearest point projection to the
diagonal is not a fibration.

5.1. Compact riemannian manifolds. As in the previous section, let
m: X x X — A denote the nearest point projection to the diagonal for the
max distance. By (3), the fibre 771(a, a) is the set of pairs (z,9) € X x X
such that @ is the midpoint of the segment joining = and y. If X = H?, then
the fibre F, = 7~ !(a, a) is:

F, = {(x,s.z) | x € H?}

where s,z is the symmetric point of « with respect to a. Then F, = H? for
any a. The boundary at infinity of the fibre F is the set of parameterized
geodesics with g(0) = a, so:

O™ Fa={g | 9(0) = a} = (T,H?)"
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For S = H2/T a compact hyperbolic surface, the max compactification of
(H? x H?)/T is the fibration by closed disks of S = H?/T, so:

(H2 x H2)/T"™ > Us,

where US = {(z,v) € T'S | |v| < 1}.

The same is true for a Cartan-Hadamard manifold X of dimension n and
sectional curvature < —1: 0 F} is identified with the unit tangent sphere at
z, (T, X)! =2 8771 and the fibre over each point of the diagonal is a closed
disk. If M = X/I' is a compact manifold, then the compactification of
(X x X)/I' with respect to the max metric is homeomorphic to the fibration
by closed disks of M = X/I:

(X x X)/T" > UM,
where UM = {(z,v) € TM | |v| < 1}.

5.2. Convex cocompact Kleinian groups. Let I' < Isom™ (H") be a
discrete torsion free subgroup, that is convex cocompact. Assume that M =
H™ /T is not compact, then it has finitely many ends and its compactification
consists in adding a compact conformal (n — 1) manifold N*! = Q;/T},
where €; is a connected component of the discontinuity domain = 9, H"™\
Ar.

The compactification (H? x H?)/T" is the union of the fibration by
compact balls on M and a finite collection of products of the conformal ideal
manifolds with intervals, N/'~! x R, where R = R U {—o00, +00} = [0, 1].

To understand how these products Nj*~! x [0, 1] are attached, we consider
a diverging geodesic ray in r: [0,+00) — M, corresponding or a point in
Oso M. For each t € [0, +00), the fibre 7=1(r(t)) is a compactified hyperbolic
space H", we aim to understand how they fit with a compactified R when
t — co. Assume that r is a ray in H". Points in 7=!(r(¢)) are of the form
(expy(4)(v), expy(p)(—v)), for some v € T, )H". To compare different fibers,
let V be a parallel vector field along r that is unitary. Let 6 € [0,27) be the
angle between r/(t) and V(t), which is constant by parallelism. Then every
point of 7=1(r(¢)) is written as

(exp,(1) (s V (1)), exp) (=5 V(1))
for some V' as above and s € R>q.
Proposition 5.1. Given V as above and s € R>q,
. B B 7(0) O
tl}eroo(eXpr(t)(S V(t), expy ) (=s V(1)) = max{B, [ ), B, o) — 2d}
where d € R is defined by the relation
(7) tanh d = cos 6 tanh s

and 0 is the (constant) angle between v’ and V.

The relation (7) means that d is the signed distance from r(¢) to the
orthogonal projection of exp, (s V(t)) to the ray r, see Figure 1. This
proposition explains how the H" in the fibre are attached to a segment in
the limit: the whole H" is projected orthogonally to the geodesic containing
r, and, by continuous extension, H" is projected to R = R U {—o00, +00}.
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expy(y) (s V(1))

[>7d

r(t)
FIGURE 1. The triangle for Equality (7) in Proposition 5.1

Proof. As the distance from exp, ;) (+sV(?)) to r(?) is s, we know that the
limit is a maximum of Busemann functions centered at r(4o00). Therefore
we only have to compute the limit

t—ligloo d(eXpr(t) (8 V(t))v T(O)) - d(expr(t) (_S V(t)), 7’(0))
Set dy.(t) = d(exp,(;)(£s V(t)),7(0)). By the hyperbolic cosine formula:

coshd (t) = cosh scosht — cos 6 sinh ssinh ¢,
coshd_(t) = cosh scosht + cos 6 sinh s sinh ¢.

Hence
lim e == — iy coshd(t) _ cosh s — cosfsinh s
t—-o0 t—+oo coshd_(t)  coshs+ cos@sinhs
By taking logarithms:
1 — cosftanh s 1 —tanhd
lim di(t)—d_(t)=1 =1 =-2d. O
P +(0) ®) Og1+cos9tanhs Og1+tanhd

5.3. Constant valence trees. Let T be the tree of valence 4 and edges of
unit length, it is the Cayley graph of Fy, the free group on two generators.
Let A € T x T denote the diagonal. If we consider the nearest point
projection to the diagonal, then the fibres over different points of A might
be different. In fact, given (a,a) € A there are three possible fibres, which
are topologically not equivalent, depending on whether a € T is a vertex, a
midpoint of an edge or a generic point in an edge.

Theorem 5.2. For T the tree of valence four and edges of unit length, the
fibres over A are of one of the following mutually exclusive types:

(1) Generic fibres. For a € T a generic point in an edge, the fibre over
(a,a) is a tree of valence 4. The metric in the fibre depends on the
distance from a to its nearest vertex in T, L with 0 < L < 1/2.
Along any path through (a,a), the length of consecutive edges alter-
nate between 2L and L' =1 — 2L. The point (a,a) is the midpoint
of an edge of length 2L.

(2) Midpoint fibres. For a € T a midpoint of an edge, the fibre over
(a,a) is a tree of constant valence 10. All edges have length 1 and
the point (a,a) is the midpoint of an edge. This is the limit of the
previous case when L — 1/2.
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(a,2)

FIGURE 2. Case 1

(a,2)

FIGURE 3. Case 2

(3) Vertex fibres. For a € T a vertez, the fibre over (a,a) is a tree of
constant valence 10, except in the point (a,a), which is a valence
12 wvertex. All edges have length 1. This is the limit of the generic
case when L — 0, taking into account that there are four fibres
approaching to the base point, one for each edge in T incident to a.

(a, 8)

FIGURE 4. Case 3

Proof. The fibre of (a, a) is the set of pairs (z,y) € T'xT so that the midpoint
of the segment Zy is a. To reach all such a pairs, we start from a and consider
pairs of paths obtained by moving at speed one along 1" and pointing away
from a. The first requirement is that we start in different directions, ie for
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small times the points (x,y) of the pair are already different. When one
of the points reach a vertex, we consider all possible continuations along
different edges.

This construction provides a graph structure on the fibre: when z and
y move along an edge this yields an edge of the fibre, when at least one of
them reaches a vertex of T, this yields a vertex of the fibre. This fibre is in
fact a tree, because we can orient each edge of the initial tree T so that it
points in the direction opposite to a (when a lies in the interior of an edge,
we split this edge along a). This yields an orientation of the edges of the
fibre, so that each edge points away from (a, a). In addition, at every vertex
only edge points to this vertex, the other edges point away, hence it is a
tree.

We describe the tree for the fibre of a vertex in T, case 3, the other two
cases are a follow from similar arguments. Let a be a vertex and denote by
(z,y) a point in the fibre over (a,a). For each x in a edge incident to a, there
are three possibilities for y, such that a is the midpoint of z and y, one from
each of the three remaining edges. In total there are 4 edges incident to a, so
there are 4-3 = 12 edges incident to (a,a). Next we follow = and y along two
edges, always satisfying d(x, a) = d(y, a), until both z and y are two vertices
v and v’. Then, for x there are three new possibilities, one for each new edge
incident to v, and if we follow the path along one of the edges there are three
possibilities for y, such that d(x,a) = d(y, a), one for each new edge incident
to the vertex v’. So there are 3-3 + 1 = 10 edges incident to (v,v’). This
pattern repeats, given rise to a tree with valence 10 in all vertices except the
base point. The distance between two consecutive vertices, for instance (a, a)
and (v,v"), is dmax((a,a), (v,v")) = max{d(a,v),d(a,v")} = d(a,v) =1, so
the edges have length 1. O

Remark 5.3. Let T be again the tree of valence 4, also the Cayley graph of
Fy. The projection T xT — A = T induces a map from (T xT')/Fy to T /Fo,
which is a wedge of two circles. The fibres are trees, as in Theorem 5.2, and
the tree depends on the point on the wedge T'/Fo: Case 3 for the vertex
of the wedge, Case 2 for the midpoints of the edges, and Case 1 for the
remaining (generic) points. The ideal boundary of each fibre in the max
compactification is its boundary at infinity as a tree, which is a Cantor set
m any case.

The previous considerations of course apply to free groups of rank n and
their Cayley graphs.

6. PRODUCT ACTIONS

Let (X1,d1) and (X2,d2) be two proper CAT(—1) spaces and let T" be an
infinite hyperbolic group with p;: I' — Isom(X1), p2: I' — Isom(X3) two
quasi-convez representations (by p; quasi-convexr we mean that it has finite
kernel and that p;(I") is a discrete quasiconvex group). In this section we
study under what conditions the large limit set A, ,, of the product action

I'x X7 x Xo— X1 X Xo
(v, z,y) = (p1(7)z, p2(7)y)
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lies inside the regular part of the boundary. We shall see that asking the
large limit set to lie in the regular part of the boundary is in fact a very
restrictive condition, which is related to the marked length spectrum con-
jecture. Indeed, in Subsection 6.1 we prove the following proposition:

Proposition 6.1. Let X, Xy be proper CAT(—1) spaces and X1 X Xo
the horofunction compactification with respect to dyax. Let I' be an infinite
hyperbolic group and p1: I' — Isom(X;), po: I' — Isom(Xs) two quasi-
convex representations. The following are equivalent:

(CL) Ap1><p2 C aongax()(l X X2)reg .

(b) p1 ~c.E. p2.
(c) T(p1(7)) = 7(p2(v)) for all y € T.

Here 7 denotes the translation length of an isometry, see Definition 6.6
below, so condition (c¢) means that both representations have the same trans-
lation lengths. Condition (b) requires the following definition:

Definition 6.2. The representations p1, pa are said to be coarsely equiva-
lent if there exists C' > 0 such that:

|d1(p1 ()0, p1(7')0) — da(p2(7)0, pa(v')d)| < C

for some 0o € X1 and o € Xs, and for all v,~ € I'. When p1 and p1 are
coarsely equivalent, we write written p1 ~c.g. p2

If the representations are coarsely equivalent for some base-points 0 € X3
and o’ € X5 then they are coarsely equivalent for any choice of base-points
in X7 and Xo. We see later in Lemma 6.12 how the bound depends on the
choice of base-points.

Definition 6.3. A K-almost-isometry between two metric spaces is a map
f: X1 — X5 such that

|d(z,y) —d(f(z), fW)| < K, Va,y€K,
and Xo lies in the K-neighborhood of f(X7).

If p1 and po are coarsely equivalent and cocompact, then the spaces X3
and Xy are equivariantly almost-isometric. In this case it is possible to find
a subset QP of 952 (X x X3) where the product action is properly dis-
continuous and cocompact. In Subsection 6.2 we use the existence of this
almost-isometry between X; and X9 and its extension to the ideal bound-
aries of the spaces to prove the following theorem:

max

Theorem 6.4. Let X1, Xy be proper CAT(—1) spaces and X1 x Xy the
horofunction compactification with respect to dmax. Let I' be a hyperbolic
group and p1: T’ — Isom(Xy), p2: I' — Isom(X2) two cocompact discrete
representations with finite kernel. If p1 and ps are coarsely equivalent, then
there exists a subset Q™ C 0% (X1 x X2) where the product action of T
s properly discontinuous and cocompact.

6.1. Regular limit sets and coarsely equivalent representations. Let
I" be a group acting on a space X with two metrics d; and ds that are I'-
invariant.
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Definition 6.5. Two metrics di and do on a space X are coarsely equivalent
if there exists a constant C > 0 such that for all x, y € X,

|d1(l’,y) - d2($,y)| S C.

Definition 6.6. The metrics di, do have the same marked length spectrum
with respect to the action of T' if T1(7y) = 12(7y) for all v € T, where 7;(7y) is
the translation length of v for d; defined by

)= i (@)
n—o0 n
forany x € X.

The equivalence of both definitions for hyperbolic groups follows from
results of Furman [8] and Krat [13].

Theorem 6.7. (Furman, Krat) Let I be a hyperbolic group acting on itself
with two left invariant metrics dy, do which are quasi-isometric to a word
metric by the identity map. Then di and dy are coarsely equivalent if and
only if di and ds have the same marked length spectrum.

We are interested in a hyperbolic group acting on two proper CAT(-1)
spaces (X1,d1), (Xo,d2) via quasi-convex representations pj, p2 into their
respective groups of isometries. A hyperbolic group I' acts on itself by left
translations. Moreover, fixing o; € X;, each representation p; induces an
orbit map from I'" to the target space X; for i = 1,2:

Oi: I — Xi
v = pi(7)o;
These orbit maps induce left invariant metrics dr, in I' by:
dr,(v,7') = di(pi(v)oi, pi(7')0i)

so that for ¢ = 1,2 (I',dr,) are I' invariant metric spaces. Moreover, since
(X, d;) are proper CAT(—1) spaces and the representations are quasi-convex,
these metrics are quasi-isometric to a word metric by the identity map,
see [3].

Remark 6.8. The metrics dr, and dr, are coarsely equivalent if and only
if p1 ~c.g. p2. Indeed, in both cases the condition to be satisfied is that there
exists a constant C such that

|d1(p1(7)01, p1(7)01) — da(pa(7)02, p2(7')o2)| < C
for some 01 € X1, 0o € Xo and for all v, €T.
Using Remark 6.8, Theorem 6.7 yields:

Proposition 6.9. Let X;, Xo be proper CAT(—1) spaces. Let T' be an
infinite hyperbolic group and p1: I' — Isom(X7), p2: I' — Isom(Xy) two
quasi-convex representations. Then:

p1~c.e. p2 < T(p1(7)) = 7(p2(7))
for all v eT.
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Next we prove the equivalence (a) < (b) in Proposition 6.1. Recall that
the large limit set of the product action p; X ps is the union of accumulation
sets of all orbits on 92 (X; x Xa):

MApxpe = U Loi(M, p2(0)y) [ 7 € TN O (X1 x Xo).
(a:,y)EXl X Xo

Recall also that the regular part of the ideal boundary can be identified with
the product of the ideal boundaries of each factor and R:

aoo(Xl X X2)reg = 6X1 X 8X2 x R.

Fixing a base point (0,0') € X; x Xa, a sequence (z,,y,) C X1 X Xo
converges to a point (£,£’,C) in the regular part if:

Ty — & € 0X1,
yn — & € 0X5, and
di(zp,0) — do(yn,0) — C € R.
Proposition 6.10. If A, «,, C 02 (X1 X Xa)reg then p1 ~c.E. p2.

Proof. Suppose that p; and py are not coarsely equivalent. This means that
there is a sequence 7, in I such that |dy (0, p1(7n)0) — d2(0, p2(715)0")| is un-
bounded. By definition of singular point, this means that (p1(v,)0, p2(vn)0)
accumulates in the singular part, which is a contradiction. O

For the implication (b) = (a) we need a couple of lemmas. The first one
is a direct consequence of the triangle inequality:

Lemma 6.11. Let x, y, z and t be four points in a metric space (X,d).
Then:

Lemma 6.12. If p1 ~c.g. p2 then for any x € X1, y € Xoa:

|di(p1(7)z, p1(7)2) = da(p2(71)y, p2(7)y)| < C + 2(di(,0) + da(y, 0'))
for all v, v in T and for a C depending only on o and o'.

Proof. We add and subtract dy(p1(y)o, p1(7')o) and da(p2(7)d’, p2(7')o’) and
apply the triangle inequality:
|di(pr()z, pr(Y)x) = d2(p2(7)y, p2(7)y)
< ldi(pr(7)x, p1(7")z) = da(p1 (7)o, p1(7')0)|
+ ldi(p1(7)o, p1(7')0) = da(pa(7)0', p2(7')0')]

+ ld2(p2(7)0, p2(7")0") — da(p2(7)y, p2(7)y)]
Next we find a bound for each summand of the right-hand side. By Lemma 6.11:

|d1(p1(7)z, p1(7)z) — di(p1(7)o, p1(7')o)|
< di(p1(7)z, pr(7)0) + di(p1(y)z, p1(7')0) = 2d1(x, 0)
and
|da(p2(7)0, p2(7)0") — da(p2()y, p2(7)y)]
< da(p2(7)0', p2(7)y)) + d2(p2(7)0', p2(7)y) = 2da(y, o).
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In addition, by assumption we have:

|d1(p1(7)o, p1(7")0) — da(pa(7)d', p2(v')0")| < C,
so the result follows. O

Remark 6.13. Observe that Lemma 6.12 implies that the definition of
coarse equivalence does not depend on the orbit.

Proposition 6.14. If p1 ~c.g. pa then A, xp, C 05 (X1 X X2)reg-

Proof. We want to show that sequences of the form (p1(vn)z, p2(7n)y) ac-
cumulate in the regular part; equivalently |dy(p1(Vn)z,0) — da(p2(7n)y, )]
is bounded, so every accumulation point of the sequence is in the regular
part. Applying Lemma 6.12 with x = 0, y = 0/, v = 7, and 7' = Id we get
that |d1(p1(7n)o, 0) —da(p2(yn)0’, 0')| < C. Then, it follows from the triangle
inequality that |d1(p1(yn)z, 0) —da(p2(n)y, )| < di(x,0)+d2(y,0o")+C. O

6.2. Compactification of product actions. In this section we consider
p1: ' — Isom(Xy), po: I' — Isom(X3) two discrete cocompact coarsely
equivalent representations. We shall show that, as in the diagonal case, there
exists an open subset @ C 02**(X; x X3) of the ideal boundary such that
the product action on X7 x X9 U is properly discontinuous and cocompact.

Lemma 6.15. If p;: I' — Isom(Xy), po: I' = Isom(X3) are coarsely equiv-
alent cocompact representations, then there exists an equivariant almost-
isometry f: X1 — Xo.

Proof. Since the action is cocompact on both spaces X1 and Xo, each of these
spaces is equivariantly almost-isometric to any orbit of I'. The condition
of coarse equivalence implies that the orbits of I' in X; are equivariantly
almost-isometric to the orbits of I' in X5. O

Remark 6.16. The almost-isometry f is not unique.

To find ©Q C 052%*(X; x X32) such that I' acts properly discontinuously and
cocompactly on X1 x Xo U2, consider f: X; — X5 the almost-isometry of
Lemma 6.15 and use the map

IdeZXIXX1—>X1><X2

to translate the properties of the diagonal action p; X p; on X7 X X7 to the
product action p; X p2 on X1 X Xa.

The almost-isometry f of Lemma 6.15 has an almost-inverse f~!: Xy —
X7 such that:

di(fT (f(),e) <K and  do(f(f (22)), 22) < K,

for all z; € X; and xz2 € Xo. Since quasi-isometries between CAT(—1)
spaces extend to homeomorphisms of the boundaries, f extends to an equi-
variant homeomorphism:

Joo: O X1 — O0o X2,
whose inverse is the extension of the almost-isometry f—1.

Remark 6.17. All the choices of almost-isometries f: X1 — Xo extend to
the same map foo: OooX1 — OooXa.
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Fori=1,2, let
Qi (aénoax(Xl X Xi))reg — 8OOX1 X aooXZ x R
z = (&i(2),mi(2), hi(2))
be the homeomorphism of Proposition 3.10. Choose 0 € X; and f(0) € X»
as base points to compute h; and ho as in Proposition 3.10:

hi([(z, 2") = max{B(z), B'(a")}] = B(o) — B'(0),
ha([(, 2") = max{B(z), 8" (z")}] = B(0) — B"(£(0))),

where 8 and 8’ are Busemann functions on X; and 3" on Xo.
The domain of discontinuity of the diagonal action is

Q1 = 07 (000 X1 X 0o X1\ Aso) X R),
where Ay denotes the diagonal of 0, X7. For the action on X; x X5 define
Qo = 03 (0 X1 X 0o X2 \ As) x R),
where Ay is graph of f.:
AV {(€,n) € 0o X1 X 00 X2 | N = foo(§)}

By Remark 4.9, ; = 92%(X; x X7) \ A1, where A; denotes the large
limit set of the diagonal action. For €2y we also have:

Remark 6.18. Let Ay denote the large limit set of the (p1 x pa)-action.
Then QQ = 6OrgaX(X1 X XQ) \A2

As Remark 4.9, this remark follows from the fact that Ay = Ay xR (the
proof of this equality is similar to Lemma 4.8).

We next prove that €25 is the set Qf'** in the statement of Theorem 6.4.
For this purpose we consider a map F': 03 — )y defined as follows. Every
z € )1 can be written as

z= lim (g(—n),g(n)),

n—-+4o0o

for a unique geodesic ¢ in X;. This construction yields a homeomorphism
between the set of bi-infinite geodesics in X; and ;. Next, if pi(z) =
(&(2),n(2), h1(2)), then define F(z) by

p2(F(2)) = (£(2); foo(n(2)), ha(F(2))),
where

ha(F(2)) = limsup (d1(g(n), 0) — d2(f(g(—n)), f(0)))-

n—-+o0o

Thus, for any bi-infinite geodesic g in X7,
F( I - = i —
(Jim (9(=n),g(n))) = lim (g(=ns), f(9(ni)))

for some diverging subsequence (ng)i. Notice that the map F': Q; — Qo
may be non continuous and depends on the choice of f.

Lemma 6.19. Let K be the constant of almost isometry of f. Then:
(i) |ha(F(2)) — hi1(2)| < K, Vz € Q.
(1) Fori = 1,2, if z,2" € Q; satisfy §i(2) = &(2') and ni(2) = ni(2),
then, Vv € T,

hi(vz) = hi(y2') = hi(z) = hi().
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(iii) |ho(F(vz)) — ho(vF(2))| < 4K, Vz € Qq, ¥y eT.

Proof. (i) Write z € Q; as the limit z = lim,—1.(g9(—n),g(n)) for a
(unique) geodesic g in Q1. Then

hi(z) = lim d(g(-n),0) —d(g(n),o),
ha(F(2)) = limsupd(g(—n),0) = d(f(g(n)), f(0)).

n—-+o0o

From these expressions we get
|ha(F(2)) = hi(2)] < fim sup |[d(f(g(n)), f(0)) —d(g(n),0)| < K.

(i) We prove it for ¢ = 2, as the proof for ¢ = 1 is analogous. By
Lemma 4.1:

ha(v2) = ha(2) = B, (v 10) = B0 (v 1(0)).
As we assume &o(2) = &(2') and 72(2) = n2(2’), assertion (ii) is proved.
(iii) We write:
ha(F(v2)) — ha(YF (2)) = (ha(F(72)) — i (72)) + (ha(v2) — ha(2))
+ (h(2) = ha(F(2))) + (ha(F (2)) = ha(vF(2)))
=)+ UD)+UI)+ V).

The terms (I) and (II]) are bounded in absolute value by K by item (i).
By Lemma 4.1:

(IT) = ha(vz) — ha(z) = B2, (v "o) — B2 (v o),
(IV) = ha(F(2)) — ha(vF(2)) = = B¢, (v""0) + BLe (™" F(0)).

Hence

(8) (I1) + (IV) = 19 (F(v™'0)) = BZ_(v"0).
For r: [0,400) — X the geodesic ray with r(0) = o that converges to {_:
(9) Be_(y'o) = lim_di(r(t),7""0) = di(r(t),0).

On the other hand, for: [0,+00) — X3 is a quasi-geodesic that converges to
foo(€~). Since the visual compactification and the compactification by ho-
rofunctions are the same for a CAT(—1)-space, there is a diverging sequence
(tx) — 400 such that

(10) A1 (F(710) = lim do(f(r(t)), F(v"0)) = da(f(r(tx)), f(0)).

k—+o00

Since f is a K-almost isometry, it follows from (8), (9) and (10) that |(I1)+
(IV)] < 2K. 0

Lemma 6.20. Let z € Oy andy € Qg be such that £1(z) = &2(y), foo(m(z)) =
n2(y), and hi(z) = ha(y). Then

|h1(vz) — ha(vy)| < 6K, vy eT.
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Proof. It is a consequence of the following three inequalities:
[h1(vz) = ha(F'(72))| < K,
|ha(F(72)) — ha(vF (2))] < 4K,
|ha(VE(2)) = ha(yy)| = |h2(F'(2)) — ha(y)] = [h2(F(2)) — hi(z)| < K.

Here we have used Lemma 6.19, item (i) for the first line, item (iii) for the
second, and items (ii) and (i) for the last one. O

2)
2)

Proposition 6.21. The action of I' on Qo is properly discontinuous and
cocompact.

Proof. We prove proper discontinuity by showing that no two points in {29
are dynamically related. Recall that two points z,y in a metric space Z are
dynamically related by I' if there exist a sequences (z,), in Z and (7v,), in
I’ such that z, — z, v, — o0, and v, 2, — y, see [7]. Proper discontinuity
is equivalent to the property that any two points (possibly equal) are not
dynamically related.

By contradiction, we assume yo, and y., in Qs are dynamically related,
and we shall show that two points in ; are dynamically related. Namely,
assume that there exists a sequence (yp), in Q2 and a diverging sequence
(Yn)n in T such that y, — Yoo € Q2 and vy, — y-, € Qo. For each n €
N let z, € Q1 be such that &1(z,) = &(yn), foo(m(zn)) = n2(yn), and
hi(zn) = ha(yn) (we have defined ¢; = (&,ni, h;)). Since ¢1 and ¢o are
homeomorphisms, z, — 2o € 1. On the other hand, the coordinates
&1(Ynzn) and 11 (yn2n) also converge and it remains to bound |hi(vnz2y)|: by
Lemma 6.20 |hi(ynzn) — ho(Ynyn)| < 6K and ha(vnyn) — ho(yl)-

Next we prove cocompactness. Let (y,), be a sequence in 9. For every
n € N we consider z, € Q; as above: &1(zn) = £2(Yn), M (2n) = foo(M2(Yn)),
and hy(z,) = ho(yn). As the action is cocompact in €, there exists a
sequence vy, in I' such that 7,2, converges, and all we need to prove is that
|ha(Ynyn)| is bounded. This is a consequence of the inequality |he(vnyn) —
hi(vnzn)| < 6K (by Lemma 6.20) and that hj(v,z2,) converges. O

Now we consider the action on the whole X; x X U Qy. We require the
following lemma;:

Lemma 6.22. Let (xy,, yn)n be a diverging sequence in X1 X X1. The accu-
mulation set of (Tpn,Yn)n is contained in Qq if and only if the accumulation
set of (Tn, f(Yn))n is contained in s.

Proof. First assume that (z,, yn)n converges to a point in ;. Namely =, —
€ € 0ocX1, Yn = 1 # & € 0o X1 and |di(zp,0) — di(yn,0)| is bounded.
Thus, as x, — £ and f(yn) — feo(n) # foo(§), the assertion follows from
the estimate

|d1(xn70) - dQ(f(yn))fTb(o))’
< |di(zn,0) = di(yn, 0)| + |di(yn, 0) = d2(f (yn), fu(0))l;

that is bounded because f is K-almost isometry.
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For the converse, assuming that |di(xy,,0) — da(yn, f(0))| is bounded, we
write:

|d1(xna O) - dl(fil(yn% O)|
< |d1($n7 0) - d2(yna f(O))| + |d2(yna f(O)) - dl(fil(yn)v 0)|’

that is bounded because:

|d2(Yns f(0)) = d1(f ™ (Yn), 0)| < |d2(yn, F(0)) = di(f " (yn), [ (f(0)))]
+1di(f 7 yn), F7H(f(0)) = di(f (yn), 0]
< |d2(yn, (0)) = di(f () fH(f(0)) + da(f 71 (f(0)),0) < 2K. O

Theorem 6.23. The action of I' on X1 x Xo Uy is properly discontinuous
and cocompact.

Proof. For proper discontinuity we will prove that no two points in X7 x XoU
Q)5 are dynamically related, as in the proof of Proposition 6.21. Since the ac-
tion is properly discontinuous on both X7 x X5 and €2, it is enough to check
that if (z,,,y,) is a sequence in X; x X that converges to a point z € (g,
then there is no divergent sequence (), C I' such that (p1(vn)zn, p2(¥n)yn)
accumulates in X7 x X9 U{y. By contradiction, assume that such sequences
exist. If (p1(Vn)Zn, p2(1n)yn) converges to a point (z,y) € X7 x Xy, then

dmax (01 (7 ) (@), p2(10 ) @) (X Yn)

is uniformly bounded and (p1(v;;')(z), p2(7;, 1) (y))n converges to the same
point as (n,yn)n. Hence z € g is the accumulation point of an orbit
and we get a contradiction with Remark 6.18. Therefore, we assume that
(p1(n)Tn, p2(Yn)yn) accumulates in 5. By Lemma 6.22, both sequences
(20, fyn)) and (p1(Yn)Zn, p1 (V) f " (yn)) accumulate in €y, which con-
tradicts that I' acts properly discontinuously on X7 x X7 U ;.

To prove cocompactness and using Proposition 6.21, consider a sequence
(n,yn) in X1 X Xo. There exists a sequence ~, of elements in I' such
that (p1(vn)(@n), p1(1) (f "1 (yn))) accumulates in X7 x X7 U Q. Again by
Lemma 6.22 (p1(7yn)(2n), p2(7n)(yn)) accumulates in X7 x Xo U Q. O
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