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ACTIONS ON PRODUCTS OF CAT(−1) SPACES

TERESA GARCÍA AND JOAN PORTI

Abstract. We show that for X a proper CAT(−1) space there is a
maximal open subset of the horofunction compactification of X × X,
with respect to the maximum metric, that compactifies the diagonal
action of an infinite quasi-convex group of the isometries of X. We
also consider the product action of two quasi-convex representations
of an infinite hyperbolic group on the product of two different proper
CAT(−1) spaces.

1. Introduction

The action of a discrete group of isometries Γ on the ideal boundary of a
proper CAT(−1) space X has a dynamical decomposition ∂∞X = ΩΓ ⊔ΛΓ,
where ΛΓ is the limit set and ΩΓ is the domain of discontinuity [6]. In
addition, if Γ is quasi-convex, then the action on X ∪ ΩΓ is also properly
discontinuous and cocompact, so ΩΓ compactifies the action of Γ on X [18].

This dynamical decomposition of the visual boundary may not hold for
CAT(0) spaces: there may be no uniqueness of maximal discontinuity do-
mains, or there may be no discontinuity domain at all, even if the limit set is
proper. We mention the work of Papasoglu and Swenson [17], or Kapovich,
Leeb, and Porti [12], in the context of symmetric spaces. In this paper we
consider the case of the product of two proper CAT(−1) spaces, which is a
CAT(0) space, see the work on products by Geninska [10] and by Link [14].

As a motivating example, consider a cocompact fuchsian group Γ <
Isom(H2) acting diagonally on H2 × H2. The ideal boundary of H2 is
∂∞H2 ∼= S1, so the visual boundary of the product is the spherical join
of two circles, ∂∞(H2 ×H2) ∼= S1 × S1 × [0, π/2]/∼, where ∼ is the relation
that collapses each subset {∗}×S1×{0} or S1×{∗}×{π/2} to a point. The
diagonal action on the ideal boundary preserves the sets S1 × S1 × {θ} for
each θ ∈ [0, π/2], so finding a domain of discontinuity amounts to find a do-
main of discontinuity for the diagonal action on S1×S1. This is not possible
because the action on S1 × S1 has a dense orbit [15, Thm. 3.6.1], hence it
has empty domain of discontinuity (even if the limit set is S1×S1×{π/4}).
Notice that the visual compactification of H2 ×H2 is the horofunction com-
pactification with respect to the product metric, or ℓ2 metric. Instead, here
we work with the ℓ∞ or maximum metric, which happens to be better suited
for those compactifications.
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For X1 and X2 two proper CAT(−1) spaces, we denote the ideal or Gro-
mov boundary of X1×X2 with respect to the max metric by ∂max

∞ (X1×X2).
In Proposition 3.13 we show that ∂max

∞ (X1 × X2) is homeomorphic to the
join of the boundaries of each factor. In particular, the ideal boundaries for
both metrics ℓ2 and ℓ∞ are homeomorphic, but their compactifications are
not equivalent, since the identity does not extend continuously to the com-
pactifications. The max compactification is adapted to diagonal actions, as
it allows to find an ideal subset where the diagonal action is properly dis-
continuous and which compactifies the action. The main theorem of this
paper is:

Theorem 1.1. Let X be a proper CAT(−1) space and Γ an infinite quasi-
convex group of isometries of X. There exists an open set Ωmax

Γ ⊂ ∂max
∞ (X×

X) such that:

(a) The diagonal action of Γ on X×X ∪Ωmax
Γ is properly discontinuous

and cocompact.
(b) Ωmax

Γ is the largest open subset of ∂max
∞ (X ×X) where the diagonal

action is properly discontinuous.

When Γ acts cocompactly on X, the theorem has been proved in [9]. To
prove Theorem 1.1 we show that the nearest point projection from X ×X
to the diagonal extends continuously to a map on ∂max

∞ (X ×X) with image
in the visual compactification of the diagonal.

The ideal boundary ∂max
∞ (X1 × X2) decomposes in two parts defined in

Section 3, regular and singular. The regular part ∂max
∞ (X1×X2)reg consist of

points that correspond to the maximum of two Busemann functions, one on
each factor, and it is homeomorphic to ∂∞X1×∂∞X2×R (Proposition 3.10).
The singular part ∂max

∞ (X1 ×X2)sing consists of points that are Busemann
functions in one of the factors and it is homeomorphic to the disjoint union
∂∞X1 ⊔ ∂∞X2 (Proposition 3.9).

In a CAT(0) space the limit set ΛΓ is the set of accumulation points in the
ideal boundary of an orbit and it is independent of the choice of the orbit.
In our setting, since the max metric is not CAT(0), the set of accumulation
points of an orbit depends on the orbit, so we consider the large limit set,
consisting of accumulation points of any orbit. For a diagonal action it turns
out that the large limit set is contained in the regular part of the boundary
and that Ωmax

Γ is the complement of the closure of the large limit set. In the
particular case in which Γ is a cocompact group, the set Ωmax

Γ is naturally
homeomorphic to the set of parameterized geodesics in one factor, as shown
in [9].

This max metric is a Finsler metric. Bordifications through Finsler met-
rics of symmetric spaces have been used by Kapovich and Leeb [11] to ob-
tain a characterization of Anosov representations. In a product of CAT(−1)
spaces, this corresponds to the ℓ1 metric.

The max compactification is very convenient for diagonal actions, but
it would be interesting to see in what other situations it is useful. For
Γ an infinite hyperbolic group, we consider ρ1 and ρ2 two quasi-convex
representations in the respective group of isometries of CAT(−1) spaces X1

and X2, and their product action ρ1 × ρ2 on X1 × X2: an element γ in Γ
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maps (x1, x2) ∈ X1 × X2 to (ρ1(γ)x1, ρ2(γ)x2). Since the max metric on
X1×X2 is not CAT(0), the accumulation set of an orbit may depend on the
orbit. The union of all possible accumulation sets is called the large limit set
and it is denoted by Λρ1×ρ2 ⊂ ∂max

∞ (X1 ×X2). In analogy to the diagonal
case, it is reasonable to ask under what conditions the large limit set Λρ1×ρ2

of the product action also remains inside the regular part of the boundary.

Proposition 1.2. Let X1 and X2 be proper CAT(−1) spaces, Γ an infinite
hyperbolic group, and ρ1 : Γ → Isom(X1), ρ2 : Γ → Isom(X2) two quasi-
convex representations. The following are equivalent:

(a) Λρ1×ρ2 ⊂ ∂max
∞ (X1 ×X2)reg.

(b) There exists C > 0 depending on o ∈ X1 and o′ ∈ X2 such that

|d1(ρ1(γ)o, ρ1(γ′)o)− d2(ρ2(γ)o
′, ρ2(γ

′)o′)| < C, for all γ ∈ Γ.

(c) The length spectrun is the same: τ(ρ1(γ)) = τ(ρ2(γ)) for all γ ∈ Γ,
where τ(ρi(γ)) denotes the translation length of ρi(γ).

When item (b) holds we say that ρ1 and ρ2 are coarsely equivalent. If
both representations ρ1 and ρ2 are coarsely equivalent and cocompact, then
the spaces X1 and X2 are almost-isometric. This means that there exists
an almost-isometry between the spaces, which is a quasi-isometry with mul-
tiplicative constant one. This almost-isometry allows to construct a coarse
equivariant map between the regular parts of the ideal boundaries ofX1×X1

andX1×X2, so that the open set in ∂max
∞ (X1×X1) of Theorem 1.1 is mapped

to an open set Ωmax
Γ ⊂ ∂max

∞ (X1 ×X2) with good properties:

Theorem 1.3. Let X1 and X2 be proper CAT(−1) spaces, Γ a hyperbolic
group, and ρ1 : Γ → Isom(X1), ρ2 : Γ → Isom(X2) two cocompact discrete
representations. If ρ1 and ρ2 are coarsely equivalent, then there exists an
open subset Ωmax

Γ ⊂ ∂max
∞ (X1 × X2) such that the product action of Γ on

X1 ×X2 ∪ Ωmax
Γ is properly discontinuous and cocompact.

2. Preliminaries

A metric space is said to be proper if all its closed balls are compact, and
geodesic if any two points can be joined by a geodesic segment.

A CAT(−1) space X is a geodesic metric space where triangles are thinner
than comparison triangles in the hyperbolic plane. Similarly, a CAT(0)
space satisfies the same condition placing the comparison triangles in the
Euclidean plane. In particular, CAT(−1) spaces are also CAT(0) spaces. A
reference for these spaces is for instace [4].

Two rays c(t) and c′(t) in a metric space are said to be asymptotic if there
exists C < ∞ such that d(c(t), c′(t)) ≤ C for any t ≥ 0. The visual boundary
∂∞X of a metric space X is the set of equivalent classes of asymptotic rays.
In a proper CAT(0) space X = X ∪ ∂∞X can be given a topology (the cone
topology, see [4]) such that both X and ∂∞X are compact. The space X is
denoted the visual compactification.

A discrete group action on a topological space X is properly discontinu-
ous if every compact subset intersects finitely many of its translates. For
isometric actions on proper metric spaces, this is equivalent to the fact that
every point has an open neighborhood which intersects only finitely many
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of its translates. The action is cocompact if there exists a compact subset
K ⊂ X whose translates cover X. For Γ a discrete group of isometries of a
proper CAT(0) space, the limit set ΛΓ is defined as the set of accumulation
points of an orbit in ∂∞X and it is independent of the orbit. For a CAT(−1)
space X, the complement of ΛΓ in ∂∞X is the domain of discontinuity ΩΓ

and Γ acts properly discontinuously on ΩΓ [6].
A subset S ⊂ X is quasi-convex if an ε-neighborhood of S ∩X contains

its quasi-convex hull (the union of segments between points in S), for some
ε > 0. A group Γ of the isometries of a CAT(−1) space X is quasi-convex
if it acts properly discontinuously on X and any orbit is quasi-convex.

A map between metric spaces f : X → Y is a quasi-isometric embedding
if there are constants A ≥ 1 and C ≥ 0 satisfying that for all x1, x2 ∈ X:

1

A
dX(x1, x2)− C ≤ dY (f(x1), f(x2)) ≤ AdX(x1, x2) + C.

The map f : X → Y is a quasi-isometry if it is a quasi-isometric embedding
that is coarsely onto, namely if for each y ∈ Y there exists x ∈ X with:

dY (f(x), y) ≤ C,

for some C. An almost-isometry is a quasi-isometry with multiplicative
constant A = 1.

A quasi-convex group of isometries of a proper CAT(−1) space X is hy-
perbolic and finitely generated. Moreover, the orbit map:

Γ → X

γ 7→ γo

is a quasi-isometric embedding for any o ∈ X and it extends to an equivariant
homeomorphism (which is also Lipschitz and quasi-conformal) from ∂∞Γ to
its limit set ΛΓ [3]. The action of a quasi-convex group on X∪ΩΓ is properly
discontinuous [6] and cocompact [18].

3. The max compactification

Let (X1, d1) and (X2, d2) be two proper CAT(−1) spaces, consider the
product space X1 ×X2 equipped with the max metric dmax, or ℓ

∞ metric:

dmax((x, y), (x
′, y′)) = max{d1(x, x′), d2(y, y′)}

for any (x, y), (x′, y′) ∈ X1 ×X2. The metrics dmax and the product metric

dℓ2((x, y), (x
′, y′)) =

√
d1(x, x′)2 + d2(y, y′)2

are comparable so they induce the same topology in X1×X2. For X1 and X2

proper geodesic spaces, (X1 ×X2, dmax) is also a proper geodesic space [16,
Prop.2.6.6]. In this section we compute its horofunction compactification.

For a proper metric space X, let C∗(X) denote space of continuous func-
tions on X up to additive constants, equipped with the topology of uniform
convergence on compact subsets. The Gromov or horofunction compactifi-
cation of X is the closure in C∗(X) of the image of the map

ι : X → C∗(X)

x 7→ [d(x, ·)],
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see [2]. We denote the horofunction compactification of X by X. The ideal
boundary is the set X \ ι(X) and it is denoted by ∂∞X. For a proper metric
space both X and ∂∞X are compact and metrizable spaces.

Remark 3.1. Fixing a base point o ∈ X, the sequence [d(xn, ·)] converges to
a class of functions [f ] ∈ C∗(X) if, and only if, the sequence of correspond-
ing normalized distance functions d(xn, ·) − d(xn, o) converges to f − f(o)
uniformly on all balls B(o, r). In addition, C∗(X) is homeomorphic to the
subspace of continuous functions on X satisfying f(o) = 0.

Definition 3.2. A horofunction h is a continuous function on X such that
its class [h] belongs to ∂∞X.

Remark 3.3. A class of horofunctions is called an ideal point and it is
denoted it by ξ. The horofunction h in the class ξ satisfying h(o) = 0 is
denoted by hoξ.

Notation 3.4. When we say that a sequence (xn)n converges to an ideal
point ξ in the horofunction compactification, xn → ξ, we mean that for a
base point o ∈ X the corresponding sequence of normalized distance functions
converges uniformly on compact subsets to the horofunction hoξ.

The level sets of a horofunction are called horospheres and the sublevel
sets, horoballs. Notice that two horofunctions in the same equivalence class
differ by a constant and share the same set of horospheres and horoballs.
The horofunctions of a proper CAT(0) space are Busemann functions:

Definition 3.5 (See [1] or [2]). A Busemann function in a metric space
(X, d) is a function defined as:

z 7→ lim
t→+∞

d(c(t), z)− t

for some geodesic ray c(t) in X.

In a proper CAT(0) space X, given a point o ∈ X and an ideal point
ξ ∈ ∂∞X there is a unique ray c(t) such that c(0) = o and its associated
Busemann function is in the class ξ. This Busemann function is denoted by

βo
ξ (z) = lim

t→+∞
d(c(t), z)− t,

The horofunction compactification and the visual compactification of a proper
CAT(0) space are equivalent [4, Cor. 8.20].

Lemma 3.6 (cf. [4]). For a CAT(0) space X:

(i) If σ : [0,+∞) → X is a ray in the class ξ ∈ ∂∞X, then βo
η(σ(s))

converges to +∞ if η ̸= ξ and to −∞ if η = ξ.
(ii) For any p, q ∈ X, βp

η − βq
η is a constant function.

The Gromov or horofunction compactification of (X1 × X2, dmax) is de-
noted by X1 ×X2

max
and its ideal boundary by ∂max

∞ (X1×X2). We choose
a base point O = (o, o′) with o ∈ X1 and o′ ∈ X2. As a representative of a
class of normalized distance functions, we have the function:

dOmax((x, y), ·) = dmax((x, y), ·)− dmax((x, y), (o, o
′))

= max{d1(x, ·), d2(y, ·)} −max{d1(x, o), d2(y, o′)}.
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Then, by Remark 3.1, [dmax((xn, yn), ·)] → ξ ∈ ∂max
∞ (X1 × X2) if and only

if dOmax((xn, yn), ·) → hOξ , where hOξ is the horofunction in the class ξ that

satisfies hOξ (O) = 0.

Given a diverging sequence (xn, yn) ⊂ (X1 × X2, dmax), we distinguish
two cases, up to a subsequence:

(I) either |d1(xn, o)− d2(yn, o
′)| → ∞,

(II) or |d1(xn, o)− d2(yn, o
′)| remains bounded.

Notice that if one of d1(xn, o) or d2(yn, o
′) is bounded, then we are in the

first case, as we assume that (xn, yn) diverges.

Proposition 3.7. Let (X1, d1) and (X2, d2) be proper CAT(−1) metric
spaces. Let (xn, yn) be a diverging sequence in (X1 ×X2, dmax).

(I) If |d1(xn, o) − d2(yn, o
′)| → ∞, then, up to subsequence and up to

permuting X1 and X2, there exists ξ ∈ ∂∞X1 such that

lim
n→∞

dOmax((xn, yn), (z, z
′)) = βo

ξ (z).

(II) If |d1(xn, o)−d2(yn, o
′)| remains bounded, then, up to a subsequence,

there exist ξ ∈ ∂∞X1 and ξ′ ∈ ∂∞X2 such that

lim
n→∞

dOmax((xn, yn), (z, z
′)) = max{βo

ξ (z), β
o′
ξ′ (z

′)− C},

for some constant C ∈ R.

Proof. We prove case (II), the proof for case (I) being similar. For each n,
denote Cn = d1(xn, o)− d2(yn, o

′) and assume that Cn ≥ 0. Then

dmax((xn, yn), (o, o
′)) = d1(xn, o) = d2(yn, o

′) + Cn

and

dOmax((xn, yn), (z, z
′)) =

dmax((xn, yn), (x, y))− dmax((xn, yn), (o, o
′)) =

max{d1(xn, x)− d1(xn, o), d2(yn, y)− d2(yn, o
′)− Cn}.

Both sequences xn and yn subconverge to an ideal point, and since Cn is
bounded we are done. □

In the remaining of the section, (X1, d1) and (X2, d2) denote proper
CAT(−1) metric spaces, as in Proposition 3.7.

Definition 3.8. We define the singular part of the ideal boundary as the
subset of ideal points with a representative of the form βo

ξ (z) or βo′
ξ′ (z

′),

i.e. case (I) in Proposition 3.7. We denote it by ∂max
∞ (X1 ×X2)sing.

The regular part of the ideal boundary is its complement, namely the
subset of ideal points with a representative of the form max{βo

ξ (z), β
o′
ξ′ (z

′) +

C} with C ∈ R, i.e. case (II). We denote it by ∂max
∞ (X1 ×X2)reg.

Using that the set of Busemann functions in one factor is naturally iden-
tified to the boundary of this factor, we have:

Proposition 3.9. There is a natural homeomorphism

φsing : ∂
max
∞ (X1 ×X2)sing −→ ∂∞X1 ⊔ ∂∞X2
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that consists in associating to a Busemann function that takes values only
in the first (second) factor of X1 ×X2 the same Busemann function viewed
as a point of the first (second) summand in ∂∞X1 ⊔ ∂∞X2.

For the regular part, notice that we can get rid of the additive constant
in Proposition 3.7 by changing the base point. Thus regular points are the

classes modulo constant of the functions max{βp
ξ (z), β

p′

ξ′ (z
′)} for all p ∈ X1,

p′ ∈ X2, ξ ∈ ∂∞X1 and ξ′ ∈ ∂∞X2.

Proposition 3.10. For each choice of base point (o, o′) ∈ X1 ×X2 there is
a natural homeomorphism

(1)
φreg : ∂

max
∞ (X1 ×X2)reg −→ ∂∞X1 × ∂∞X2 × R[

max{βp
ξ (z), β

p′

ξ′ (z
′)}

]
7→ (ξ, ξ′, βp

ξ (o)− βp′

ξ′ (o
′)).

Remark 3.11. If we fix p = o and p′ = o′, then homeomorphism (1) can
be written as:

(2)
φreg : ∂

max
∞ (X1 ×X2)reg −→ ∂∞X1 × ∂∞X2 × R

max{βo
ξ (z), β

o′
ξ′ (z

′)− C} 7→ (ξ, ξ′, C)

where C ∈ R.

Proof of Prop. 3.10. Notice that limt→+∞max{βp
ξ (c(t)), β

p′

ξ′ (c
′(t))} = −∞

if and only if c(+∞) = ξ and c′(+∞) = ξ′; otherwise this limit is +∞,
by Lemma 3.6. Thus ξ and ξ′ in the construction of φreg are uniquely
determined, and it follows easily that φreg is well defined and injective.
In addition, surjectivity of φreg and continuity of φ−1

reg follow easily from
construction and the properties of Busemann functions (Lemma 3.6).

To prove continuity of φreg, as ideal boundaries are metrizable, we use

sequences. Let max{βo
ξn
(z), βo′

ξ′n
(z′) − Cn} be a sequence that converges to

max{βo
η(z), β

o′
η′(z

′)−C}. The third coordinate of φreg in (1) is clearly contin-
uous, hence Cn → C. By compactness of ∂∞Xi, up to subsequence ξn → ξ∞
and ξ′n → ξ′∞. By injectivity of φreg, ξ∞ = η and ξ′∞ = η′ and we get conti-
nuity. □

Remark 3.12. Observe that a sequence (xn, yn) converges to (ξ, ξ′, C) if,
and only if, xn → ξ, yn → ξ′, and d1(xn, o)− d2(yn, o

′) → C.

Let Join(∂∞X1, ∂∞X2) denote the topological join of ∂∞X1 and ∂∞X2.
Propositions 3.9 and 3.10 can be improved:

Proposition 3.13. There is a natural homeomorphism

∂max
∞ (X1 ×X2) ∼= Join(∂∞X1, ∂∞X2).

Proof. In view of Propositions 3.9 and 3.10 and Remark 3.11, we have to
prove the following claim: for sequences (ξn) in ∂∞X1, (ξ

′
n) in ∂∞X2, and

(Cn) in R we have ξn → ξ, ξ′n → ξ′, and Cn → +∞ as n → ∞ if and only if
the function

(z, z′) 7→ max{βo
ξn(z), β

o′
ξ′n
(z′)− Cn}

converges to (z, z′) 7→ βo
ξ (z) uniformly on compact subsets ofX1×X2. Notice

that we do no require convergence on (ξ′n). We also need the symmetric

claim when Cn → −∞, and after replacing max{βo
ξn
(z), βo′

ξ′n
(z′) − Cn} by
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max{βo
ξn
(z)+Cn, β

o′
ξ′n
(z′)} (a different function in the same equivalence class)

but the proof is symmetric.
To prove the claim assume first that Cn → +∞. Take as compact set

the ball centered at (o, o′): B(o,R) × B(o′, R). Since Busemann functions

are 1-Lipschitz and as we chose normalizations so that βo
ξn
(o) = βo′

ξ′n
(o′) =

0, for Cn ≥ 2R we have max{βo
ξn
(z), βo′

ξ′n
(z′) − Cn} = βo

ξn
(z) for (z, z′) ∈

B(o,R) × B(o′, R). Here uniform convergence of βo
ξn

on compact subsets
follows from the horosphere compactification of X1. Next assume Cn ∈
[−R,R]. Here max{βo

ξn
(z), βo′

ξ′n
(z′) − Cn} has a converging subsequence to

max{βo
ξ (z), β

o′
ξ′ (z

′) − C}, uniformly on compact subsets. Using that the
Busemann functions have slope -1 in rays pointing to the ideal point, we
see that the limit max{βo

ξ (z), β
o′
ξ′ (z

′)−C} cannot be expressed a Busemann

function in a single factor, βo
ξ or βo′

ξ′ . □

4. Diagonal actions

Let Γ be an infinite quasi-convex group of isometries of a proper CAT(−1)
space X. In this section we consider the diagonal action of Γ on X ×X:

Γ×X ×X → X ×X

(γ, x, y) 7→ (γx, γy).

The diagonal action extends continuously to the ideal boundary of the max
compactification. The following is straightforward:

Lemma 4.1. The diagonal action on the points of ∂max
∞ (X × X) is given

by:

γ[βo
ξ ] = [βo

γξ]

γ[max{βo
ξ , β

o
ξ′ − C}] = [max{βo

γξ, β
o
γξ′ − C + βo

ξ′(γ
−1o)− βo

ξ (γ
−1o)}].

Remark 4.2. Under the identification in Remark 3.11 the diagonal action
maps a singular point ξ to γξ, and a regular point (ξ, ξ′, C), to (γξ, γξ′, C +
βo
ξ (γ

−1o)− βo
ξ′(γ

−1o)).

In this section we prove that there is an open subset Ωmax
Γ ⊂ ∂max

∞ (X×X)
where the diagonal action of Γ is properly discontinuous and cocompact. In
Subsection 4.1 we prove that the nearest point projection of X ×X to the
diagonal ∆ ⊂ X ×X extends continuously to X ×X

max
. In Subsection 4.2

we use this projection to show that there exist a proper domain of discon-
tinuity Ωmax

Γ ⊂ ∂max
∞ (X × X). Furthermore we see that the action on the

whole X × X ∪ Ωmax
Γ is properly discontinuous and cocompact, and that

Ωmax
Γ is the largest open set of the boundary that satisfies these conditions.

4.1. Extending the projection to the diagonal. The nearest point pro-
jection from X × X to the diagonal for the max distance is given by the
midpoint:

(3)
π : X ×X → ∆

(x, y) 7→ (m,m),
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where ∆ is the diagonal in X ×X:

∆ = {(x, x) | x ∈ X},
and m is the midpoint of the geodesic segment joining x and y. By con-
struction, π is continuous and equivariant.

In this section we extend it continuously to a map

π̃ : X ×X
max → ∆

max
= ∆ ∪∆∞,

where ∆
max

is the closure of ∆ in X ×X
max

, and

∆∞ = {(ξ, ξ) | ξ ∈ ∂∞X},
denotes the diagonal in ∂∞X × ∂∞X. For this purpose, we consider the
decomposition

∂max
∞ (X ×X) = ∂max

∞ (X ×X)sing ⊔ φ−1
reg(∆∞ × R) ⊔ Ωmax

where

Ωmax = φ−1
reg((∂∞X × ∂∞X \∆∞)× R) ⊂ ∂max

∞ (X ×X)reg.,

and φreg is the homeomorphism in Proposition 3.10. In [9] the projection is
extended continuously to a map

Ωmax → ∆.

Following [9], the extension uses that Ωmax is naturally homeomorphic to
the set G of parameterized geodesics in X (with the topology of uniform
convergence on compact sets) through the map:

φ : G −→ Ωmax

g 7→ lim
n→∞

(g(n), g(−n))

Via this identification, by [9] the projection extends continuously to

(4)
G → ∆
g 7→ (g(0), g(0))

Thus it remains to extend it to φreg(∆∞ × R) and to ∂max
∞ (X ×X)sing.

Definition 4.3. The extended projection

π̃ : X ×X
max → ∆

max ∼= X

is defined by (3) and (4) on X ×X ∪ Ωmax.
On φreg(∆∞ × R) it is the projection to ∆∞, and on ∂max

∞ (X ×X)sing ∼=
∂∞X ⊔ ∂∞X it is the identification ∂∞X ∼= ∆∞.

Remark 4.4. We have an equivariant homeomorphism φ′ = φreg ◦φ, given
by:

φ′ : G → ((∂∞X × ∂∞X) \∆∞)× R
g 7→ (g(+∞), g(−∞), Cg),

where:

Cg = lim
n→∞

d(g(n), o)− d(g(−n), o) = βo
g(−∞)(g(0))− βo

g(+∞)(g(0)).

Therefore, a geodesic g corresponds to a point

(g(+∞), g(−∞), Cg) ∈ ((∂∞X × ∂∞X) \∆∞)× R
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which in its turn corresponds to the regular point:

[max{βo
g(+∞), β

o
g(−∞) − Cg}] ∈ Ωmax.

To prove the continuity of π̃, we use of that the Gromov product ex-
tends continuously to the boundary of a proper CAT(−1) space [5, Propo-
sition 3.4.2]. The Gromov product of two points x, y ∈ X with respect to a
base point o ∈ X is defined as:

(x|y)o =
1

2
[d(x, o) + d(y, o)− d(x, y)] .

Given ξ and ξ′ two points in the visual boundary of a proper CAT(−1), the
Gromov product is defined as:

lim
i,j

(xi|yj)o = (ξ|ξ′)o,

for any sequences xi → ξ, yj → ξ′.
Let g be a geodesic in X, the Gromov product of the ideal points g(+∞)

and g(−∞) with respect to a base point o, can be written in terms of
Busemann functions as:

(g(+∞)|g(−∞))o =
1

2

[
β
g(0)
g(+∞)(o) + β

g(0)
g(−∞)(o)

]
.

The Gromov product for ideal points satisfies:

(ξ|ξ′)o = +∞ if and only if ξ = ξ′,

see [5]. Similarly two sequences xi, yj have the same limit iff:

(xi|yj)o = +∞.

Theorem 4.5. The map π̃ : X ×X
max → X is continuous and equivariant.

Proof. The equivariance follows from naturality. To prove the continuity,
we have also shown in [9] that π̃ restricted to X ×X ∪ Ωmax is continuous,
but it remains to be proved in ∂max

∞ (X ×X) \ Ωmax. We have to check two
cases. (I) Firstly, we shall see that the image of a sequence of points (xn, yn)
in X ×X that converges to an ideal point, either in the singular part or in
the diagonal of the regular part of the boundary, converges to the image of
this ideal point. (II) Secondly, we shall check that the image of a sequence
of ideal points that converges to an ideal point either in the diagonal of the
regular part or in the singular part of the boundary, converges to the image
of the ideal point. Along this proof, mn denotes the midpoint of the segment
joining xn and yn.

Case (I). Consider a sequence (xn, yn) in X ×X converging to an ideal
point. We distinguish two subcases: either (a) the limit of the sequence is a
singular point, or (b) the limit is a point in the diagonal of the regular part.

Subcase (a). Suppose, up to permuting factors, that the sequence con-
verges to a singular point in the boundary of the first factor: (xn, yn) → [βo

ξ ].

Therefore, xn → ξ and d(xn, o) − d(yn, o) → +∞. By the triangle inequal-
ity: d(mn, o) ≥ d(mn, yn)− d(yn, o), and using the definition of the Gromov
product, we have:

(xn|mn)o ≥
1

2
[d(xn, o)− d(yn, o)] .
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Henceforth (xn|mn)o → +∞, and by the properties of the Gromov product,
xn and mn have the same limit.

Subcase (b). Now suppose that the sequence converges to a diagonal point
in the regular part of the boundary: (xn, yn) → [max{βo

ξ , β
o
ξ + C}]. In this

case xn → ξ, yn → ξ and d(xn, o)− d(yn, o) → −C.
Using the definition of the Gromov product again and reorganizing terms,

we have:

(5) 2(xn|mn)o = (xn|yn)o + d(mn, o) +
1

2
[d(xn, o)− d(yn, o)] .

Notice that 1
2 [d(xn, o)− d(yn, o)] is uniformly bounded and that (xn|yn)o →

+∞, since both xn and yn converge to the same point. From (5) we deduce
that (xn|mn)o → +∞, which implies that mn → ξ.

Case (II). Next we deal with a sequence of regular ideal points of the
form [max{βo

ξn
, βo

ξ′n
+Cn}] in ∂max

∞ (X ×X) with limit either a regular point

in the diagonal, subcase (a), or a singular point, subcase (b). From now on,
gn denotes the geodesic corresponding to a point [max{βo

ξn
, βo

ξ′n
+Cn}] under

the identification Ωmax ∼= G.
Subcase (a). Suppose that the sequence converges to a regular diagonal

point: [max{βo
ξn
, βo

ξ′n
+ Cn}] → [max{βo

ξ , β
o
ξ + C}]. In this case ξn → ξ,

ξ′n → ξ and Cn → C. For each n, we consider a sequence of points xk in
X such that xk → ξn. Using the fact that the Gromov product extends
continuously to the boundary of a CAT(−1) space, and the definition of
Busemann function, we write:

(gn(0)|ξn)o = lim
k→∞

(gn(0)|xk)o = lim
k→∞

1

2
[d(gn(0), o) + d(xk, o)

−d(gn(0), xk)] =
1

2

[
d(gn(0), o) + β

gn(0)
ξn

(o)
]
.

Similarly, taking a sequence yk in X for each n, with yk → ξ′n:

(gn(0)|ξ′n)o =
1

2

[
d(gn(0), o) + β

gn(0)
ξ′n

(o)
]
.

Adding both equalities above we obtain:

(6) (gn(0)|ξn)o + (gn(0)|ξ′n)o = d(gn(0), o) +
1

2
β
gn(0)
ξn

(o) +
1

2
β
gn(0)
ξ′n

(o)

= d(gn(0), o) + (ξn|ξ′n)o.

By compactness of X, after passing to a subsequence we may assume that
gn(0) → η ∈ X. Then, since (ξn|ξ′n)o → (ξ|ξ)o = +∞, by (6) we have that
(η|ξ)o = +∞. So ξ = η and gn(0) → ξ.

Subcase (b). Next we suppose that the sequence converges to a singular
point, a Busemann function in the second factor (up to permutation of
factors): [max{βo

ξn
, βo

ξ′n
+Cn}] → [βo

ξ′ ] with ξn → ξ, ξ′n → ξ′ and since βo
ξ′ is

a Busemann function in the second factor, Cn → +∞.
Similarly to the preceding case, for each n:

(gn(0)|ξ′n)o =
1

2

[
d(gn(0), o)− βo

ξ′n
(gn(0))

]
,
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(gn(0)|ξn)o =
1

2

[
d(gn(0), o)− βo

ξn(gn(0))
]
,

and we can combine both equalities to get:

(gn(0)|ξ′n)o =
1

2
d(gn(0), o)−

1

2
βo
ξ′n
(gn(0))

= (gn(0)|ξn)o +
1

2
βo
ξn(gn(0))−

1

2
βo
ξ′n
(gn(0))

= (gn(0)|ξn)o +
1

2
Cn.

Here we have used that Cn = βo
ξn
(gn(0))− βo

ξ′n
(gn(0)) by Remark 4.4. Now,

since (gn(0)|ξn)o ≥ 0 and Cn → +∞ we have that (gn(0)|ξ′n)o → +∞ and
gn(0) → ξ′. □

4.2. The ideal domain Ωmax
Γ . Let Γ be an infinite quasi-convex group

of isometries of X. We denote by ΛΓ its limit set, which is the set of
accumulation points of any orbit in ∂∞X, and by ΩΓ = ∂∞X \ΛΓ its domain
of discontinuity. The action of Γ on X ∪ ΩΓ is properly discontinuous and
cocompact [6,18]. Next we show that the diagonal action of Γ on the inverse
image under the projection π̃ of X ∪ ΩΓ is also properly discontinuous and
cocompact:

Theorem 4.6. Let X be a proper CAT(−1) space and let Γ ⊂ Isom(X) be
an infinite quasi-convex group. The diagonal action of Γ on π̃−1(X ∪ΩΓ) is
properly discontinuous and cocompact.

Proof. Besides being continuous and equivariant, π̃ : X ×X
max → X is

proper, since it is a continuous map from a compact to a Hausdorff space.
In [18] it is shown that for a Dirichlet domain D ⊂ X its closure in D ⊂ X

is a compact set that satisfies:

(i) D ⊂ X ∪ ΩΓ,
(ii)

⋃
γ∈Γ γD = X ∪ ΩΓ, and

(iii) for every compact K ⊂ X ∪ ΩΓ, |{γ ∈ Γ | γK ∩K ̸= ∅}| < ∞.

Therefore π̃−1(D) satisfies the corresponding properties for the action on
π̃−1(X ∪ ΩΓ). This proves the theorem. □

Now, let Ωmax
Γ be the intersection of π̃−1(X∪ΩΓ) with the ideal boundary

of X ×X
max

:

Ωmax
Γ = π̃−1(X ∪ ΩΓ) ∩ ∂max

∞ (X ×X),

and let ∆Γ be the subset of the diagonal in ∂∞X × ∂∞X that corresponds
to the limit points of the action of Γ on X:

∆Γ = {(ξ, ξ) ∈ ∂∞X × ∂∞X with ξ ∈ ΛΓ}.

Remark 4.7. Via the homeomorphism in Proposition 3.13 that identifies
∂max
∞ (X ×X) with Join(∂∞X, ∂∞X):

Ωmax
Γ

∼= ((∂∞X × ∂∞X) \∆Γ)× R ∪ Ω1
Γ ∪ Ω2

Γ,

where Ωi
Γ denotes ΩΓ viewed in the factor ∂∞Xi, for each i = 1, 2. Observe

that when Γ is a cocompact group Ωmax
Γ is just the set Ωmax of the previous

subsection.
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In Proposition 4.10 we shall show that Ωmax
Γ is the largest open set of the

boundary where the diagonal action is properly discontinuous. But first, let
us study the limit set of this action on ∂max

∞ (X ×X). Since (X ×X, dmax)
is not CAT(0), the accumulation set of each orbit depends on the orbit.
We define the large limit set of the diagonal action as the union of all the
accumulation sets of orbits on ∂max

∞ (X ×X):

Λ =
⋃

(x,y)∈X×X

Γ(x, y) ∩ ∂max
∞ (X ×X)

Lemma 4.8. For Λ and ∆Γ as above,

φreg(Λ) = ∆Γ × R.

Proof. First, observe that the limit of any sequence (γnx, γny) that converges
to the ideal boundary is contained in ∆Γ × R. Indeed, by the triangle
inequality, |d(γnx, o) − d(γny, o)| ≤ d(x, y), so the limit is a regular point.
Furthermore, if γnx → ξ then γny → ξ since d(γnx, γny) = d(x, y), i.e. the
sequences γnx and γny stay within a bounded distance. Therefore the limit
point lies in ∆Γ × R.

Finally we show that any point (ξ, ξ, C) for ξ ∈ ΛΓ belongs to the limit
set. Take any sequence γn such that γno → ξ. Let ξ′ be an accumulation
point for γ−1

n o and x, y ∈ X satisfying βo
ξ′(y)− βo

ξ′(x) = C. Then it follows

easily that (ξ, ξ, C) is the limit of the sequence (γnx, γny). □

Remark 4.9. The large limit set Λ is not closed but notice that the com-
plement of Ωmax

Γ is its closure Λ.

From this remark we easily deduce:

Proposition 4.10. The set Ωmax
Γ is the largest open subset of ∂max

∞ (X×X)
such that the action of Γ on X ×X ∪ Ωmax

Γ is properly discontinuous.

5. Examples

In this section we consider some examples for the max compactification
of diagonal actions. The first one is the diagonal action of a cocompact
group of isometries of a riemannian manifold. The second one is the action
of convex cocompact Kleinian groups on Hn × Hn. Finally we describe an
example of the max compactification of a diagonal action on the product of
two trees. This is also an example where the nearest point projection to the
diagonal is not a fibration.

5.1. Compact riemannian manifolds. As in the previous section, let
π : X ×X → ∆ denote the nearest point projection to the diagonal for the
max distance. By (3), the fibre π−1(a, a) is the set of pairs (x, y) ∈ X ×X
such that a is the midpoint of the segment joining x and y. If X = H2, then
the fibre Fa = π−1(a, a) is:

Fa = {(x, sax) | x ∈ H2}
where sax is the symmetric point of x with respect to a. Then Fa

∼= H2 for
any a. The boundary at infinity of the fibre Fa is the set of parameterized
geodesics with g(0) = a, so:

∂max
∞ Fa = {g | g(0) = a} ∼= (TaH2)1
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For S = H2/Γ a compact hyperbolic surface, the max compactification of
(H2 ×H2)/Γ is the fibration by closed disks of S = H2/Γ, so:

(H2 ×H2)/Γ
max ∼= US,

where US = {(x, v) ∈ TS | |v| ≤ 1}.
The same is true for a Cartan-Hadamard manifold X of dimension n and

sectional curvature ≤ −1: ∂∞Fx is identified with the unit tangent sphere at
x, (TxX)1 ∼= Sn−1, and the fibre over each point of the diagonal is a closed
disk. If M = X/Γ is a compact manifold, then the compactification of
(X×X)/Γ with respect to the max metric is homeomorphic to the fibration
by closed disks of M = X/Γ:

(X ×X)/Γ
max ∼= UM,

where UM = {(x, v) ∈ TM | |v| ≤ 1}.

5.2. Convex cocompact Kleinian groups. Let Γ < Isom+(Hn) be a
discrete torsion free subgroup, that is convex cocompact. Assume that M =
Hn/Γ is not compact, then it has finitely many ends and its compactification
consists in adding a compact conformal (n − 1) manifold Nn−1

i = Ωi/Γi,
where Ωi is a connected component of the discontinuity domain Ω = ∂∞Hn\
ΛΓ.

The compactification (Hn ×Hn)/Γ
max

is the union of the fibration by
compact balls on M and a finite collection of products of the conformal ideal
manifolds with intervals, Nn−1

i × R, where R = R ∪ {−∞,+∞} ∼= [0, 1].

To understand how these products Nn−1
i × [0, 1] are attached, we consider

a diverging geodesic ray in r : [0,+∞) → M , corresponding or a point in
∂∞M . For each t ∈ [0,+∞), the fibre π−1(r(t)) is a compactified hyperbolic
space Hn, we aim to understand how they fit with a compactified R when
t → ∞. Assume that r is a ray in Hn. Points in π−1(r(t)) are of the form
(expr(t)(v), expr(t)(−v)), for some v ∈ Tr(t)Hn. To compare different fibers,

let V be a parallel vector field along r that is unitary. Let θ ∈ [0, 2π) be the
angle between r′(t) and V (t), which is constant by parallelism. Then every
point of π−1(r(t)) is written as

(expr(t)(s V (t)), expr(t)(−s V (t)))

for some V as above and s ∈ R≥0.

Proposition 5.1. Given V as above and s ∈ R≥0,

lim
t→+∞

(expr(t)(s V (t)), expr(t)(−s V (t))) = max{βr(0)
r(+∞), β

r(0)
r(+∞) − 2d}

where d ∈ R is defined by the relation

(7) tanh d = cos θ tanh s

and θ is the (constant) angle between r′ and V .

The relation (7) means that d is the signed distance from r(t) to the
orthogonal projection of expr(t)(s V (t)) to the ray r, see Figure 1. This

proposition explains how the Hn in the fibre are attached to a segment in
the limit: the whole Hn is projected orthogonally to the geodesic containing
r, and, by continuous extension, Hn is projected to R = R ∪ {−∞,+∞}.
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r(t)

d

r

θ

s

expr(t)(s V (t))

Figure 1. The triangle for Equality (7) in Proposition 5.1

Proof. As the distance from expr(t)(±s V (t)) to r(t) is s, we know that the

limit is a maximum of Busemann functions centered at r(+∞). Therefore
we only have to compute the limit

lim
t→+∞

d(expr(t)(s V (t)), r(0))− d(expr(t)(−s V (t)), r(0)).

Set d±(t) = d(expr(t)(±s V (t)), r(0)). By the hyperbolic cosine formula:

cosh d+(t) = cosh s cosh t− cos θ sinh s sinh t,

cosh d−(t) = cosh s cosh t+ cos θ sinh s sinh t.

Hence

lim
t→+∞

ed+(t)−d−(t) = lim
t→+∞

cosh d+(t)

cosh d−(t)
=

cosh s− cos θ sinh s

cosh s+ cos θ sinh s

By taking logarithms:

lim
t→+∞

d+(t)− d−(t) = log
1− cos θ tanh s

1 + cos θ tanh s
= log

1− tanh d

1 + tanh d
= −2d. □

5.3. Constant valence trees. Let T be the tree of valence 4 and edges of
unit length, it is the Cayley graph of F2, the free group on two generators.
Let ∆ ⊂ T × T denote the diagonal. If we consider the nearest point
projection to the diagonal, then the fibres over different points of ∆ might
be different. In fact, given (a, a) ∈ ∆ there are three possible fibres, which
are topologically not equivalent, depending on whether a ∈ T is a vertex, a
midpoint of an edge or a generic point in an edge.

Theorem 5.2. For T the tree of valence four and edges of unit length, the
fibres over ∆ are of one of the following mutually exclusive types:

(1) Generic fibres. For a ∈ T a generic point in an edge, the fibre over
(a, a) is a tree of valence 4. The metric in the fibre depends on the
distance from a to its nearest vertex in T , L with 0 < L < 1/2.
Along any path through (a, a), the length of consecutive edges alter-
nate between 2L and L′ = 1 − 2L. The point (a, a) is the midpoint
of an edge of length 2L.

(2) Midpoint fibres. For a ∈ T a midpoint of an edge, the fibre over
(a, a) is a tree of constant valence 10. All edges have length 1 and
the point (a, a) is the midpoint of an edge. This is the limit of the
previous case when L → 1/2.
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Figure 2. Case 1

Figure 3. Case 2

(3) Vertex fibres. For a ∈ T a vertex, the fibre over (a, a) is a tree of
constant valence 10, except in the point (a, a), which is a valence
12 vertex. All edges have length 1. This is the limit of the generic
case when L → 0, taking into account that there are four fibres
approaching to the base point, one for each edge in T incident to a.

Figure 4. Case 3

Proof. The fibre of (a, a) is the set of pairs (x, y) ∈ T×T so that the midpoint
of the segment xy is a. To reach all such a pairs, we start from a and consider
pairs of paths obtained by moving at speed one along T and pointing away
from a. The first requirement is that we start in different directions, ie for
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small times the points (x, y) of the pair are already different. When one
of the points reach a vertex, we consider all possible continuations along
different edges.

This construction provides a graph structure on the fibre: when x and
y move along an edge this yields an edge of the fibre, when at least one of
them reaches a vertex of T , this yields a vertex of the fibre. This fibre is in
fact a tree, because we can orient each edge of the initial tree T so that it
points in the direction opposite to a (when a lies in the interior of an edge,
we split this edge along a). This yields an orientation of the edges of the
fibre, so that each edge points away from (a, a). In addition, at every vertex
only edge points to this vertex, the other edges point away, hence it is a
tree.

We describe the tree for the fibre of a vertex in T , case 3, the other two
cases are a follow from similar arguments. Let a be a vertex and denote by
(x, y) a point in the fibre over (a, a). For each x in a edge incident to a, there
are three possibilities for y, such that a is the midpoint of x and y, one from
each of the three remaining edges. In total there are 4 edges incident to a, so
there are 4 ·3 = 12 edges incident to (a, a). Next we follow x and y along two
edges, always satisfying d(x, a) = d(y, a), until both x and y are two vertices
v and v′. Then, for x there are three new possibilities, one for each new edge
incident to v, and if we follow the path along one of the edges there are three
possibilities for y, such that d(x, a) = d(y, a), one for each new edge incident
to the vertex v′. So there are 3 · 3 + 1 = 10 edges incident to (v, v′). This
pattern repeats, given rise to a tree with valence 10 in all vertices except the
base point. The distance between two consecutive vertices, for instance (a, a)
and (v, v′), is dmax((a, a), (v, v

′)) = max{d(a, v), d(a, v′)} = d(a, v) = 1, so
the edges have length 1. □

Remark 5.3. Let T be again the tree of valence 4, also the Cayley graph of
F2. The projection T×T → ∆ ∼= T induces a map from (T×T )/F2 to T/F2,
which is a wedge of two circles. The fibres are trees, as in Theorem 5.2, and
the tree depends on the point on the wedge T/F2: Case 3 for the vertex
of the wedge, Case 2 for the midpoints of the edges, and Case 1 for the
remaining (generic) points. The ideal boundary of each fibre in the max
compactification is its boundary at infinity as a tree, which is a Cantor set
in any case.

The previous considerations of course apply to free groups of rank n and
their Cayley graphs.

6. Product actions

Let (X1, d1) and (X2, d2) be two proper CAT(−1) spaces and let Γ be an
infinite hyperbolic group with ρ1 : Γ → Isom(X1), ρ2 : Γ → Isom(X2) two
quasi-convex representations (by ρi quasi-convex we mean that it has finite
kernel and that ρi(Γ) is a discrete quasiconvex group). In this section we
study under what conditions the large limit set Λρ1×ρ2 of the product action

Γ×X1 ×X2 → X1 ×X2

(γ, x, y) 7→ (ρ1(γ)x, ρ2(γ)y)
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lies inside the regular part of the boundary. We shall see that asking the
large limit set to lie in the regular part of the boundary is in fact a very
restrictive condition, which is related to the marked length spectrum con-
jecture. Indeed, in Subsection 6.1 we prove the following proposition:

Proposition 6.1. Let X1, X2 be proper CAT(−1) spaces and X1 ×X2
max

the horofunction compactification with respect to dmax. Let Γ be an infinite
hyperbolic group and ρ1 : Γ → Isom(X1), ρ2 : Γ → Isom(X2) two quasi-
convex representations. The following are equivalent:

(a) Λρ1×ρ2 ⊂ ∂max
∞ (X1 ×X2)reg .

(b) ρ1 ≃C.E. ρ2.
(c) τ(ρ1(γ)) = τ(ρ2(γ)) for all γ ∈ Γ.

Here τ denotes the translation length of an isometry, see Definition 6.6
below, so condition (c) means that both representations have the same trans-
lation lengths. Condition (b) requires the following definition:

Definition 6.2. The representations ρ1, ρ2 are said to be coarsely equiva-
lent if there exists C > 0 such that:

|d1(ρ1(γ)o, ρ1(γ′)o)− d2(ρ2(γ)o
′, ρ2(γ

′)o′)| ≤ C

for some o ∈ X1 and o′ ∈ X2, and for all γ, γ′ ∈ Γ. When ρ1 and ρ1 are
coarsely equivalent, we write written ρ1 ≃C.E. ρ2

If the representations are coarsely equivalent for some base-points o ∈ X1

and o′ ∈ X2 then they are coarsely equivalent for any choice of base-points
in X1 and X2. We see later in Lemma 6.12 how the bound depends on the
choice of base-points.

Definition 6.3. A K-almost-isometry between two metric spaces is a map
f : X1 → X2 such that

|d(x, y)− d(f(x), f(y))| ≤ K, ∀x, y ∈ K,

and X2 lies in the K-neighborhood of f(X1).

If ρ1 and ρ2 are coarsely equivalent and cocompact, then the spaces X1

and X2 are equivariantly almost-isometric. In this case it is possible to find
a subset Ωmax

Γ of ∂max
∞ (X1 ×X2) where the product action is properly dis-

continuous and cocompact. In Subsection 6.2 we use the existence of this
almost-isometry between X1 and X2 and its extension to the ideal bound-
aries of the spaces to prove the following theorem:

Theorem 6.4. Let X1, X2 be proper CAT(−1) spaces and X1 ×X2
max

the
horofunction compactification with respect to dmax. Let Γ be a hyperbolic
group and ρ1 : Γ → Isom(X1), ρ2 : Γ → Isom(X2) two cocompact discrete
representations with finite kernel. If ρ1 and ρ2 are coarsely equivalent, then
there exists a subset Ωmax

Γ ⊂ ∂max
∞ (X1 ×X2) where the product action of Γ

is properly discontinuous and cocompact.

6.1. Regular limit sets and coarsely equivalent representations. Let
Γ be a group acting on a space X with two metrics d1 and d2 that are Γ-
invariant.
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Definition 6.5. Two metrics d1 and d2 on a space X are coarsely equivalent
if there exists a constant C ≥ 0 such that for all x, y ∈ X,

|d1(x, y)− d2(x, y)| ≤ C.

Definition 6.6. The metrics d1, d2 have the same marked length spectrum
with respect to the action of Γ if τ1(γ) = τ2(γ) for all γ ∈ Γ, where τi(γ) is
the translation length of γ for di defined by

τi(γ) = lim
n→∞

di(x, γ
n(x))

n

for any x ∈ X.

The equivalence of both definitions for hyperbolic groups follows from
results of Furman [8] and Krat [13].

Theorem 6.7. (Furman, Krat) Let Γ be a hyperbolic group acting on itself
with two left invariant metrics d1, d2 which are quasi-isometric to a word
metric by the identity map. Then d1 and d2 are coarsely equivalent if and
only if d1 and d2 have the same marked length spectrum.

We are interested in a hyperbolic group acting on two proper CAT(-1)
spaces (X1, d1), (X2, d2) via quasi-convex representations ρ1, ρ2 into their
respective groups of isometries. A hyperbolic group Γ acts on itself by left
translations. Moreover, fixing oi ∈ Xi, each representation ρi induces an
orbit map from Γ to the target space Xi for i = 1, 2:

Oi : Γ → Xi

γ 7→ ρi(γ)oi

These orbit maps induce left invariant metrics dΓi in Γ by:

dΓi(γ, γ
′) = di(ρi(γ)oi, ρi(γ

′)oi)

so that for i = 1, 2 (Γ, dΓi) are Γ invariant metric spaces. Moreover, since
(Xi, di) are proper CAT(−1) spaces and the representations are quasi-convex,
these metrics are quasi-isometric to a word metric by the identity map,
see [3].

Remark 6.8. The metrics dΓ1 and dΓ2 are coarsely equivalent if and only
if ρ1 ≃C.E. ρ2. Indeed, in both cases the condition to be satisfied is that there
exists a constant C such that

|d1(ρ1(γ)o1, ρ1(γ′)o1)− d2(ρ2(γ)o2, ρ2(γ
′)o2)| ≤ C

for some o1 ∈ X1, o2 ∈ X2 and for all γ, γ′ ∈ Γ.

Using Remark 6.8, Theorem 6.7 yields:

Proposition 6.9. Let X1, X2 be proper CAT(−1) spaces. Let Γ be an
infinite hyperbolic group and ρ1 : Γ → Isom(X1), ρ2 : Γ → Isom(X2) two
quasi-convex representations. Then:

ρ1 ≃C.E. ρ2 ⇔ τ(ρ1(γ)) = τ(ρ2(γ))

for all γ ∈ Γ.
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Next we prove the equivalence (a) ⇔ (b) in Proposition 6.1. Recall that
the large limit set of the product action ρ1 × ρ2 is the union of accumulation
sets of all orbits on ∂max

∞ (X1 ×X2):

Λρ1×ρ2 =
⋃

(x,y)∈X1×X2

{(ρ1(γ)x, ρ2(γ)y) | γ ∈ Γ} ∩ ∂max
∞ (X1 ×X2).

Recall also that the regular part of the ideal boundary can be identified with
the product of the ideal boundaries of each factor and R:

∂∞(X1 ×X2)reg ∼= ∂X1 × ∂X2 × R.
Fixing a base point (o, o′) ∈ X1 × X2, a sequence (xn, yn) ⊂ X1 × X2

converges to a point (ξ, ξ′, C) in the regular part if:

xn → ξ ∈ ∂X1,

yn → ξ′ ∈ ∂X2, and

d1(xn, o)− d2(yn, o
′) → C ∈ R.

Proposition 6.10. If Λρ1×ρ2 ⊂ ∂max
∞ (X1 ×X2)reg then ρ1 ≃C.E. ρ2.

Proof. Suppose that ρ1 and ρ2 are not coarsely equivalent. This means that
there is a sequence γn in Γ such that |d1(o, ρ1(γn)o)− d2(o

′, ρ2(γn)o
′)| is un-

bounded. By definition of singular point, this means that (ρ1(γn)o, ρ2(γn)o
′)

accumulates in the singular part, which is a contradiction. □

For the implication (b) ⇒ (a) we need a couple of lemmas. The first one
is a direct consequence of the triangle inequality:

Lemma 6.11. Let x, y, z and t be four points in a metric space (X, d).
Then:

|d(x, y)− d(z, t)| ≤ d(x, z) + d(y, t).

Lemma 6.12. If ρ1 ≃C.E. ρ2 then for any x ∈ X1, y ∈ X2:

|d1(ρ1(γ)x, ρ1(γ′)x)− d2(ρ2(γ)y, ρ2(γ
′)y)| ≤ C + 2(d1(x, o) + d2(y, o

′))

for all γ, γ′ in Γ and for a C depending only on o and o′.

Proof. We add and subtract d1(ρ1(γ)o, ρ1(γ
′)o) and d2(ρ2(γ)o

′, ρ2(γ
′)o′) and

apply the triangle inequality:

|d1(ρ1(γ)x, ρ1(γ′)x)− d2(ρ2(γ)y, ρ2(γ
′)y)|

≤ |d1(ρ1(γ)x, ρ1(γ′)x)− d1(ρ1(γ)o, ρ1(γ
′)o)|

+ |d1(ρ1(γ)o, ρ1(γ′)o)− d2(ρ2(γ)o
′, ρ2(γ

′)o′)|
+ |d2(ρ2(γ)o′, ρ2(γ′)o′)− d2(ρ2(γ)y, ρ2(γ

′)y)|
Next we find a bound for each summand of the right-hand side. By Lemma 6.11:

|d1(ρ1(γ)x, ρ1(γ′)x)− d1(ρ1(γ)o, ρ1(γ
′)o)|

≤ d1(ρ1(γ)x, ρ1(γ)o) + d1(ρ1(γ
′)x, ρ1(γ

′)o) = 2d1(x, o)

and

|d2(ρ2(γ)o′, ρ2(γ′)o′)− d2(ρ2(γ)y, ρ2(γ
′)y)|

≤ d2(ρ2(γ)o
′, ρ2(γ)y)) + d2(ρ2(γ

′)o′, ρ2(γ
′)y) = 2d2(y, o

′).
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In addition, by assumption we have:

|d1(ρ1(γ)o, ρ1(γ′)o)− d2(ρ2(γ)o
′, ρ2(γ

′)o′)| ≤ C,

so the result follows. □

Remark 6.13. Observe that Lemma 6.12 implies that the definition of
coarse equivalence does not depend on the orbit.

Proposition 6.14. If ρ1 ≃C.E. ρ2 then Λρ1×ρ2 ⊂ ∂max
∞ (X1 ×X2)reg.

Proof. We want to show that sequences of the form (ρ1(γn)x, ρ2(γn)y) ac-
cumulate in the regular part; equivalently |d1(ρ1(γn)x, o) − d2(ρ2(γn)y, o

′)|
is bounded, so every accumulation point of the sequence is in the regular
part. Applying Lemma 6.12 with x = o, y = o′, γ = γn and γ′ = Id we get
that |d1(ρ1(γn)o, o)−d2(ρ2(γn)o

′, o′)| ≤ C. Then, it follows from the triangle
inequality that |d1(ρ1(γn)x, o)−d2(ρ2(γn)y, o

′)| ≤ d1(x, o)+d2(y, o
′)+C. □

6.2. Compactification of product actions. In this section we consider
ρ1 : Γ → Isom(X1), ρ2 : Γ → Isom(X2) two discrete cocompact coarsely
equivalent representations. We shall show that, as in the diagonal case, there
exists an open subset Ω ⊂ ∂max

∞ (X1 ×X2) of the ideal boundary such that
the product action on X1×X2∪Ω is properly discontinuous and cocompact.

Lemma 6.15. If ρ1 : Γ → Isom(X1), ρ2 : Γ → Isom(X2) are coarsely equiv-
alent cocompact representations, then there exists an equivariant almost-
isometry f : X1 → X2.

Proof. Since the action is cocompact on both spacesX1 andX2, each of these
spaces is equivariantly almost-isometric to any orbit of Γ. The condition
of coarse equivalence implies that the orbits of Γ in X1 are equivariantly
almost-isometric to the orbits of Γ in X2. □

Remark 6.16. The almost-isometry f is not unique.

To find Ω ⊂ ∂max
∞ (X1×X2) such that Γ acts properly discontinuously and

cocompactly on X1 ×X2 ∪ Ω, consider f : X1 → X2 the almost-isometry of
Lemma 6.15 and use the map

Id× f : X1 ×X1 → X1 ×X2

to translate the properties of the diagonal action ρ1 × ρ1 on X1 ×X1 to the
product action ρ1 × ρ2 on X1 ×X2.

The almost-isometry f of Lemma 6.15 has an almost-inverse f−1 : X2 →
X1 such that:

d1(f
−1(f(x1)), x1) ≤ K and d2(f(f

−1(x2)), x2) ≤ K,

for all x1 ∈ X1 and x2 ∈ X2. Since quasi-isometries between CAT(−1)
spaces extend to homeomorphisms of the boundaries, f extends to an equi-
variant homeomorphism:

f∞ : ∂∞X1 → ∂∞X2,

whose inverse is the extension of the almost-isometry f−1.

Remark 6.17. All the choices of almost-isometries f : X1 → X2 extend to
the same map f∞ : ∂∞X1 → ∂∞X2.
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For i = 1, 2, let

φi : (∂
max
∞ (X1 ×Xi))reg → ∂∞X1 × ∂∞Xi × R

z 7→ (ξi(z), ηi(z), hi(z))

be the homeomorphism of Proposition 3.10. Choose o ∈ X1 and f(o) ∈ X2

as base points to compute h1 and h2 as in Proposition 3.10:

h1([(x, x
′) 7→ max{β(x), β′(x′)}] = β(o)− β′(o),

h2([(x, x
′) 7→ max{β(x), β′′(x′′)}] = β(o)− β′′(f(o))),

where β and β′ are Busemann functions on X1 and β′′ on X2.
The domain of discontinuity of the diagonal action is

Ω1 = φ−1
1 ((∂∞X1 × ∂∞X1 \∆∞)× R),

where ∆∞ denotes the diagonal of ∂∞X1. For the action on X1 ×X2 define

Ω2 = φ−1
2 ((∂∞X1 × ∂∞X2 \∆f∞)× R),

where ∆f∞ is graph of f∞:

∆f∞ = {(ξ, η) ∈ ∂∞X1 × ∂∞X2 | η = f∞(ξ)}.

By Remark 4.9, Ω1 = ∂max
∞ (X1 × X1) \ Λ1, where Λ1 denotes the large

limit set of the diagonal action. For Ω2 we also have:

Remark 6.18. Let Λ2 denote the large limit set of the (ρ1 × ρ2)-action.
Then Ω2 = ∂max

∞ (X1 ×X2) \ Λ2.

As Remark 4.9, this remark follows from the fact that Λ2
∼= ∆f∞ ×R (the

proof of this equality is similar to Lemma 4.8).
We next prove that Ω2 is the set Ωmax

Γ in the statement of Theorem 6.4.
For this purpose we consider a map F : Ω1 → Ω2 defined as follows. Every
z ∈ Ω1 can be written as

z = lim
n→+∞

(g(−n), g(n)),

for a unique geodesic g in X1. This construction yields a homeomorphism
between the set of bi-infinite geodesics in X1 and Ω1. Next, if φ1(z) =
(ξ(z), η(z), h1(z)), then define F (z) by

φ2(F (z)) =
(
ξ(z), f∞(η(z)), h2(F (z))

)
,

where
h2(F (z)) = lim sup

n→+∞

(
d1(g(n), o)− d2(f(g(−n)), f(o))

)
.

Thus, for any bi-infinite geodesic g in X1,

F
(

lim
n→+∞

(g(−n), g(n))
)
= lim

k→+∞
(g(−nk), f(g(nk)))

for some diverging subsequence (nk)k. Notice that the map F : Ω1 → Ω2

may be non continuous and depends on the choice of f .

Lemma 6.19. Let K be the constant of almost isometry of f . Then:

(i) |h2(F (z))− h1(z)| ≤ K, ∀z ∈ Ω1.
(ii) For i = 1, 2, if z, z′ ∈ Ωi satisfy ξi(z) = ξi(z

′) and ηi(z) = ηi(z
′),

then, ∀γ ∈ Γ,

hi(γz)− hi(γz
′) = hi(z)− hi(z

′).
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(iii) |h2(F (γz))− h2(γF (z))| ≤ 4K, ∀z ∈ Ω1, ∀γ ∈ Γ.

Proof. (i) Write z ∈ Ω1 as the limit z = limn→+∞(g(−n), g(n)) for a
(unique) geodesic g in Ω1. Then

h1(z) = lim
n→+∞

d(g(−n), o)− d(g(n), o),

h2(F (z)) = lim sup
n→+∞

d
(
g(−n), o)− d(f(g(n)), f(o)

)
.

From these expressions we get

|h2(F (z))− h1(z)| ≤ lim sup
n→+∞

|d(f(g(n)), f(o))− d(g(n), o)| ≤ K.

(ii) We prove it for i = 2, as the proof for i = 1 is analogous. By
Lemma 4.1:

h2(γz)− h2(z) = βo
ξ2(z)

(γ−1o)− β
f(o)
η2(z)

(γ−1f(o)).

As we assume ξ2(z) = ξ2(z
′) and η2(z) = η2(z

′), assertion (ii) is proved.
(iii) We write:

h2(F (γz))− h2(γF (z)) =
(
h2(F (γz))− h1(γz)

)
+
(
h1(γz)− h1(z)

)
+
(
h1(z)− h2(F (z))

)
+
(
h2(F (z))− h2(γF (z))

)
= (I) + (II) + (III) + (IV ).

The terms (I) and (III) are bounded in absolute value by K by item (i).
By Lemma 4.1:

(II) = h1(γz)− h1(z) = βo
ξ+(γ

−1o)− βo
ξ−(γ

−1o),

(IV ) = h2(F (z))− h2(γF (z)) = −βo
ξ+(γ

−1o) + β
f(o)
f∞(ξ−)(γ

−1f(o)).

Hence

(8) (II) + (IV ) = β
f(o)
f∞(ξ−)(f(γ

−1o))− βo
ξ−(γ

−1o).

For r : [0,+∞) → X1 the geodesic ray with r(0) = o that converges to ξ−:

(9) βo
ξ−(γ

−1o) = lim
t→+∞

d1(r(t), γ
−1o)− d1(r(t), o).

On the other hand, f ◦r : [0,+∞) → X2 is a quasi-geodesic that converges to
f∞(ξ−). Since the visual compactification and the compactification by ho-
rofunctions are the same for a CAT(−1)-space, there is a diverging sequence
(tk) → +∞ such that

(10) β
f(o)
f∞(ξ−)(f(γ

−1o)) = lim
k→+∞

d2(f(r(tk)), f(γ
−1o))− d1(f(r(tk)), f(o)).

Since f is a K-almost isometry, it follows from (8), (9) and (10) that |(II)+
(IV )| ≤ 2K. □

Lemma 6.20. Let z ∈ Ω1 and y ∈ Ω2 be such that ξ1(z) = ξ2(y), f∞(η1(z)) =
η2(y), and h1(z) = h2(y). Then

|h1(γz)− h2(γy)| ≤ 6K, ∀γ ∈ Γ.



24 TERESA GARCÍA AND JOAN PORTI

Proof. It is a consequence of the following three inequalities:

|h1(γz)− h2(F (γz))| ≤ K,

|h2(F (γz))− h2(γF (z))| ≤ 4K,

|h2(γF (z))− h2(γy)| = |h2(F (z))− h2(y)| = |h2(F (z))− h1(z)| ≤ K.

Here we have used Lemma 6.19, item (i) for the first line, item (iii) for the
second, and items (ii) and (i) for the last one. □

Proposition 6.21. The action of Γ on Ω2 is properly discontinuous and
cocompact.

Proof. We prove proper discontinuity by showing that no two points in Ω2

are dynamically related. Recall that two points x, y in a metric space Z are
dynamically related by Γ if there exist a sequences (zn)n in Z and (γn)n in
Γ such that zn → x, γn → ∞, and γnzn → y, see [7]. Proper discontinuity
is equivalent to the property that any two points (possibly equal) are not
dynamically related.

By contradiction, we assume y∞ and y′∞ in Ω2 are dynamically related,
and we shall show that two points in Ω1 are dynamically related. Namely,
assume that there exists a sequence (yn)n in Ω2 and a diverging sequence
(γn)n in Γ such that yn → y∞ ∈ Ω2 and γnyn → y′∞ ∈ Ω2. For each n ∈
N let zn ∈ Ω1 be such that ξ1(zn) = ξ2(yn), f∞(η1(zn)) = η2(yn), and
h1(zn) = h2(yn) (we have defined φi = (ξi, ηi, hi)). Since ϕ1 and ϕ2 are
homeomorphisms, zn → z∞ ∈ Ω1. On the other hand, the coordinates
ξ1(γnzn) and η1(γnzn) also converge and it remains to bound |h1(γnzn)|: by
Lemma 6.20 |h1(γnzn)− h2(γnyn)| ≤ 6K and h2(γnyn) → h2(y

′
∞).

Next we prove cocompactness. Let (yn)n be a sequence in Ω2. For every
n ∈ N we consider zn ∈ Ω1 as above: ξ1(zn) = ξ2(yn), η1(zn) = f∞(η2(yn)),
and h1(zn) = h2(yn). As the action is cocompact in Ω1, there exists a
sequence γn in Γ such that γnzn converges, and all we need to prove is that
|h2(γnyn)| is bounded. This is a consequence of the inequality |h2(γnyn) −
h1(γnzn)| ≤ 6K (by Lemma 6.20) and that h1(γnzn) converges. □

Now we consider the action on the whole X1 ×X2 ∪ Ω2. We require the
following lemma:

Lemma 6.22. Let (xn, yn)n be a diverging sequence in X1×X1. The accu-
mulation set of (xn, yn)n is contained in Ω1 if and only if the accumulation
set of (xn, f(yn))n is contained in Ω2.

Proof. First assume that (xn, yn)n converges to a point in Ω1. Namely xn →
ξ ∈ ∂∞X1, yn → η ̸= ξ ∈ ∂∞X1 and |d1(xn, o) − d1(yn, o)| is bounded.
Thus, as xn → ξ and f(yn) → f∞(η) ̸= f∞(ξ), the assertion follows from
the estimate

|d1(xn, o)− d2(f(yn), fn(o))|
≤ |d1(xn, o)− d1(yn, o)|+ |d1(yn, o)− d2(f(yn), fn(o))|,

that is bounded because f is K-almost isometry.



ACTIONS ON PRODUCTS OF CAT(−1) SPACES 25

For the converse, assuming that |d1(xn, o)− d2(yn, f(o))| is bounded, we
write:

|d1(xn, o)− d1(f
−1(yn), o)|

≤ |d1(xn, o)− d2(yn, f(o))|+ |d2(yn, f(o))− d1(f
−1(yn), o)|,

that is bounded because:

|d2(yn, f(o))− d1(f
−1(yn), o)| ≤ |d2(yn, f(o))− d1(f

−1(yn), f
−1(f(o)))|

+ |d1(f−1(yn), f
−1(f(o)))− d1(f

−1(yn), o)|
≤ |d2(yn, f(o))− d1(f

−1(yn), f
−1(f(o)))|+ d1(f

−1(f(o)), o) ≤ 2K. □

Theorem 6.23. The action of Γ on X1×X2∪Ω2 is properly discontinuous
and cocompact.

Proof. For proper discontinuity we will prove that no two points inX1×X2∪
Ω2 are dynamically related, as in the proof of Proposition 6.21. Since the ac-
tion is properly discontinuous on both X1×X2 and Ω2, it is enough to check
that if (xn, yn) is a sequence in X1 ×X2 that converges to a point z ∈ Ω2,
then there is no divergent sequence (γn)n ⊂ Γ such that (ρ1(γn)xn, ρ2(γn)yn)
accumulates in X1×X2∪Ω2. By contradiction, assume that such sequences
exist. If (ρ1(γn)xn, ρ2(γn)yn) converges to a point (x, y) ∈ X1 ×X2, then

dmax((ρ1(γ
−1
n )(x), ρ2(γ

−1
n )(y)), (xn, yn))

is uniformly bounded and (ρ1(γ
−1
n )(x), ρ2(γ

−1
n )(y))n converges to the same

point as (xn, yn)n. Hence z ∈ Ω2 is the accumulation point of an orbit
and we get a contradiction with Remark 6.18. Therefore, we assume that
(ρ1(γn)xn, ρ2(γn)yn) accumulates in Ω2. By Lemma 6.22, both sequences
(xn, f

−1(yn)) and (ρ1(γn)xn, ρ1(γn)f
−1(yn)) accumulate in Ω1, which con-

tradicts that Γ acts properly discontinuously on X1 ×X1 ∪ Ω1.
To prove cocompactness and using Proposition 6.21, consider a sequence

(xn, yn) in X1 × X2. There exists a sequence γn of elements in Γ such
that (ρ1(γn)(xn), ρ1(γn)(f

−1(yn))) accumulates in X1 ×X1 ∪ Ω1. Again by
Lemma 6.22 (ρ1(γn)(xn), ρ2(γn)(yn)) accumulates in X1 ×X2 ∪ Ω2. □
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References

[1] Werner Ballmann. Lectures on spaces of nonpositive curvature, volume 25 of DMV
Seminar. Birkhäuser Verlag, Basel, 1995. With an appendix by Misha Brin.

[2] Werner Ballmann, Mikhael Gromov, and Viktor Schroeder. Manifolds of nonpositive
curvature, volume 61 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston,
MA, 1985.

[3] Marc Bourdon. Structure conforme au bord et flot géodésique d’un CAT(−1)-espace.
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