UAB
 Universitat Autònoma de Barcelona

This is the accepted version of the journal article:
Bhunia, Dipak Kumar; Fernández Córdoba, Cristina; Villanueva, M. «On recursive constructions of Z2Z4Z8-linear Hadamard codes». Advances in Mathematics of Communications, (November 2023). DOI 10.3934/amc. 2023047

This version is available at https://ddd.uab.cat/record/285314
under the terms of the © ${ }_{\text {COPYRIGHt }}^{\mathbb{N}}$ license

ON RECURSIVE CONSTRUCTIONS OF $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-LINEAR HADAMARD CODES

DIPAK K. BHUNIA, CRISTINA FERNÁNDEZ-CÓRDOBA, MERCÈ VILLANUEVA

Abstract

The $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive codes are subgroups of $\mathbb{Z}_{2}^{\alpha_{1}} \times \mathbb{Z}_{4}^{\alpha_{2}} \times$ $\mathbb{Z}_{8}^{\alpha_{3}} . \mathrm{A} \mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard code is a Hadamard code, which is the Gray map image of a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive code. In this paper, we generalize some known results for $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard codes to $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes with $\alpha_{1} \neq 0, \alpha_{2} \neq 0$, and $\alpha_{3} \neq 0$. First, we give a recursive construction of $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive Hadamard codes of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, t_{2}, t_{3}\right)$ with $t_{1} \geq 1, t_{2} \geq 0$, and $t_{3} \geq 1$. It is known that each \mathbb{Z}_{4}-linear Hadamard code is equivalent to a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard code with $\alpha_{1} \neq 0$ and $\alpha_{2} \neq 0$. Unlike $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard codes, in general, this family of $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes does not include the family of \mathbb{Z}_{4}-linear or \mathbb{Z}_{8}-linear Hadamard codes. We show that, for example, for length 2^{11}, the constructed nonlinear $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes are not equivalent to each other, nor to any $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard, nor to any previously constructed $\mathbb{Z}_{2^{s}}$-Hadamard code, with $s \geq 2$. Finally, we also present other recursive constructions of $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8^{-}}$ additive Hadamard codes having the same type, and we show that, after applying the Gray map, the codes obtained are equivalent to the previous ones.

1. Introduction

Let $\mathbb{Z}_{2^{s}}$ be the ring of integers modulo 2^{s} with $s \geq 1$. The set of n-tuples over $\mathbb{Z}_{2^{s}}$ is denoted by $\mathbb{Z}_{2^{s}}^{n}$. In this paper, the elements of $\mathbb{Z}_{2^{s}}^{n}$ are also called vectors. A code over \mathbb{Z}_{2} of length n is a nonempty subset of \mathbb{Z}_{2}^{n}, and it is linear if it is a subspace of \mathbb{Z}_{2}^{n}. Similarly, a nonempty subset of $\mathbb{Z}_{2^{s}}^{n}$ is a $\mathbb{Z}_{2^{s} \text {-additive code }}$ if it is a subgroup of $\mathbb{Z}_{2^{s}}^{n}$. $\mathrm{A} \mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8^{-}}$-additive code is a subgroup of $\mathbb{Z}_{2}^{\alpha_{1}} \times \mathbb{Z}_{4}^{\alpha_{2}} \times \mathbb{Z}_{8}^{\alpha_{3}}$. Note that a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive code is a linear code over \mathbb{Z}_{2} when $\alpha_{2}=\alpha_{3}=0$, a \mathbb{Z}_{4}-additive or \mathbb{Z}_{8}-additive code when $\alpha_{1}=\alpha_{3}=0$ or $\alpha_{1}=\alpha_{2}=0$, respectively, and a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code when $\alpha_{3}=0$. The order of a vector $u \in \mathbb{Z}_{2^{s}}^{n}$, denoted by $o(u)$, is the smallest positive integer m such that $m u=(0, \ldots, 0)$. Also, the order of a vector

[^0]$\mathbf{u} \in \mathbb{Z}_{2}^{\alpha_{1}} \times \mathbb{Z}_{4}^{\alpha_{2}} \times \mathbb{Z}_{8}^{\alpha_{3}}$, denoted by $o(\mathbf{u})$, is the smallest positive integer m such that $m \mathbf{u}=(0, \ldots, 0|0, \ldots, 0| 0, \ldots, 0)$.

The Hamming weight of a vector $u \in \mathbb{Z}_{2}^{n}$, denoted by $\mathrm{wt}_{H}(u)$, is the number of nonzero coordinates of u. The Hamming distance of two vectors $u, v \in \mathbb{Z}_{2}^{n}$, denoted by $d_{H}(u, v)$, is the number of coordinates in which they differ. Note that $d_{H}(u, v)=\mathrm{wt}_{H}(u-v)$. The minimum distance of a code C over \mathbb{Z}_{2} is $d(C)=\min \left\{d_{H}(u, v): u, v \in C, u \neq v\right\}$.

In [19], a Gray map from \mathbb{Z}_{4} to \mathbb{Z}_{2}^{2} is defined as $\phi(0)=(0,0), \phi(1)=(0,1)$, $\phi(2)=(1,1)$ and $\phi(3)=(1,0)$. There exist different generalizations of this Gray map, which go from $\mathbb{Z}_{2^{s}}$ to $\mathbb{Z}_{2}^{2^{s-1}}$ [14, 12, 15, 20, 24]. The one given in [20] can be defined in terms of the elements of a Hadamard code [24], and Carlet's Gray map [14] is a particular case of the one given in [24] satisfying $\sum \lambda_{i} \phi\left(2^{i}\right)=\phi\left(\sum \lambda_{i} 2^{i}\right)$ [16]. In this paper, we focus on Carlet's Gray map [14], from $\mathbb{Z}_{2^{s}}$ to $\mathbb{Z}_{2}^{2^{s-1}}$, which is also a particular case of the one given in [33]. Specifically,

$$
\begin{equation*}
\phi_{s}(u)=\left(u_{s-1}, u_{s-1}, \ldots, u_{s-1}\right)+\left(u_{0}, \ldots, u_{s-2}\right) Y_{s-1}, \tag{1}
\end{equation*}
$$

where $u \in \mathbb{Z}_{2^{s}} ;\left[u_{0}, u_{1}, \ldots, u_{s-1}\right]_{2}$ is the binary expansion of u, that is, $u=\sum_{i=0}^{s-1} u_{i} 2^{i}$ with $u_{i} \in\{0,1\}$; and Y is a matrix of size $(s-1) \times 2^{s-1}$ whose columns are all the vectors in \mathbb{Z}_{2}^{s-1}. Without loss of generality, we assume that the columns of Y_{s-1} are ordered in ascending order by considering the elements of \mathbb{Z}_{2}^{s-1} as the binary expansions of the elements of $\mathbb{Z}_{2^{s-1}}$. Note that ϕ_{1} is the identity map, and

$$
\begin{array}{rlr}
\phi_{2}: & \mathbb{Z}_{4} \longrightarrow \mathbb{Z}_{2}^{2} & \phi_{3}: \\
0 & \mathbb{Z}_{8} \longrightarrow \mathbb{Z}_{2}^{4} \\
1 \mapsto(0,0) & & 0 \mapsto(0,0,0,0) \\
1 \mapsto(0,1) & & 1 \mapsto(0,1,0,1) \\
2 \mapsto(1,1) & & 2 \mapsto(0,0,1,1) \\
3 \mapsto(1,0) & 3 \mapsto(0,1,1,0) \\
& & 4 \mapsto(1,1,1,1) \\
& & 5 \mapsto(1,0,1,0) \\
& 6 \mapsto(1,1,0,0) \\
& & 7 \mapsto(1,0,0,1) .
\end{array}
$$

We define $\Phi_{s}: \mathbb{Z}_{2^{s}}^{n} \rightarrow \mathbb{Z}_{2}^{n 2^{s-1}}$ as the component-wise extended map of ϕ_{s}. We can also define a Gray map Φ from $\mathbb{Z}_{2}^{\alpha_{1}} \times \mathbb{Z}_{4}^{\alpha_{2}} \times \mathbb{Z}_{8}^{\alpha_{3}}$ to \mathbb{Z}_{2}^{n}, where $n=\alpha_{1}+2 \alpha_{2}+4 \alpha_{3}$, as follows:

$$
\Phi\left(u_{1}\left|u_{2}\right| u_{3}\right)=\left(u_{1}, \Phi_{2}\left(u_{2}\right), \Phi_{3}\left(u_{3}\right)\right),
$$

for any $u_{i} \in \mathbb{Z}_{2^{i}}^{\alpha_{i}}$, where $1 \leq i \leq 3$.
Let $\mathcal{C} \subseteq \mathbb{Z}_{2^{s}}^{n}$ be a $\mathbb{Z}_{2^{s}}$-additive code of length n. We say that the Gray
 \mathcal{C} is a subgroup of $\mathbb{Z}_{2^{s}}^{n}$, it is isomorphic to $\mathbb{Z}_{2^{s}}^{t_{1}} \times \mathbb{Z}_{2^{s-1}}^{t_{2}} \times \cdots \times \mathbb{Z}_{2}^{t_{s}}$, and we say that \mathcal{C}, or equivalently $C=\Phi_{s}(\mathcal{C})$, is of type $\left(n ; t_{1}, \ldots, t_{s}\right)$. Note that
$|\mathcal{C}|=2^{s t_{1}} 2^{(s-1) t_{2}} \cdots 2^{t_{s}}$. Similarly, if $\mathcal{C} \subseteq \mathbb{Z}_{2}^{\alpha_{1}} \times \mathbb{Z}_{4}^{\alpha_{2}} \times \mathbb{Z}_{8}^{\alpha_{3}}$ is a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8^{-}}$ additive code, we say that its Gray map image $C=\Phi(\mathcal{C})$ is a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8^{-}}$ linear code of length $\alpha_{1}+2 \alpha_{2}+4 \alpha_{3}$. Since \mathcal{C} can be seen as a subgroup of $\mathbb{Z}_{8}^{\alpha_{1}+\alpha_{2}+\alpha_{3}}$, it is isomorphic to $\mathbb{Z}_{8}^{t_{1}} \times \mathbb{Z}_{4}^{t_{2}} \times \mathbb{Z}_{2}^{t_{3}}$, and we say that \mathcal{C}, or equivalently $C=\Phi(\mathcal{C})$, is of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, t_{2}, t_{3}\right)$. We have that a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code \mathcal{C} [10, 11 can can be seen as a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear code of type $\left(\alpha_{1}, \alpha_{2}, 0 ; 0, t_{2}, t_{3}\right)$. In this case, we also write that the type of \mathcal{C} is directly $\left(\alpha_{1}, \alpha_{2} ; t_{2}, t_{3}\right)$. Unlike linear codes over finite fields, linear codes over rings do not have a basis, but a generator matrix exists for these codes with a minimum number of rows. If \mathcal{C} is a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive code of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, t_{2}, t_{3}\right)$, then $|\mathcal{C}|=8^{t_{1}} 4^{t_{2}} 2^{t_{3}}$ and there exist a generator matrix with $t_{1}+t_{2}+t_{3}$ rows.

Two structural properties of codes over \mathbb{Z}_{2} are the rank and dimension of the kernel. The rank of a code C over \mathbb{Z}_{2} is simply the dimension of the linear span of C, say $\langle C\rangle$. The kernel of a code C over \mathbb{Z}_{2} is defined as $\mathrm{K}(C)=\left\{\mathbf{x} \in \mathbb{Z}_{2}^{n}: \mathbf{x}+C=C\right\}$ [3]. If the all-zero vector belongs to C, then $\mathrm{K}(C)$ is a linear subcode of C. Note also that if C is linear, then $K(C)=C=\langle C\rangle$. We denote the rank of C as $\operatorname{rank}(C)$ and the dimension of the kernel as $\operatorname{ker}(C)$. These parameters can be used to distinguish between nonequivalent codes since equivalent ones have the same rank and dimension of the kernel.

A binary code with length $n, 2 n$ codewords, and minimum distance $n / 2$ is called a Hadamard code. Hadamard codes can be constructed from Hadamard matrices [1, 26]. Note that linear Hadamard codes are firstorder Reed-Muller codes, or equivalently, the dual of extended Hamming codes [26, Ch. $13 \S 3]$. The $\mathbb{Z}_{2^{s}}$-additive codes such that after the Gray map Φ_{s} give Hadamard codes are called $\mathbb{Z}_{2^{s}}$-additive Hadamard codes, and the corresponding images are called $\mathbb{Z}_{2^{s}}$-linear Hadamard codes. Similarly, the $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive codes such that after the Gray map Φ give Hadamard codes are called $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive Hadamard codes, and the corresponding images are called $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes.

It is well-known that \mathbb{Z}_{4}-linear Hadamard codes (that is, $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard code with $\alpha_{1}=0$) and $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard codes with $\alpha_{1} \neq 0$ can be classified by using either the rank or the dimension of the kernel [23, 28]. Moreover, in [25], it is shown that each \mathbb{Z}_{4}-linear Hadamard code is equivalent to a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard code with $\alpha_{1} \neq 0$. Later, in [16, 6, [18, 4], a recursive construction for $\mathbb{Z}_{p^{s}}$ linear Hadamard codes, with p prime, is described, the linearity is established, and a partial classification by using the dimension of the kernel is obtained, giving the exact amount of nonequivalent such codes for some parameters. In [17], a complete classification of \mathbb{Z}_{8}-linear Hadamard codes by using the rank and dimension of the kernel is provided, giving the exact amount of nonequivalent such codes. For any $t \geq 2$, the full classification of $\mathbb{Z}_{p} \mathbb{Z}_{p^{2}}$-linear Hadamard codes of length p^{t}, with $\alpha_{1} \neq 0, \alpha_{2} \neq 0$, and $p \geq 3$ prime, is given in [5, 7], by using just the dimension of the kernel.

The paper contributes to the study of codes over rings $\mathbb{Z}_{p^{s}}$, which were first studied by Blake [9] and Shankar [30] in 1975 and 1979, respectively. These codes have become more significant after the publication of [19]. It is also important to note that Hadamard codes are two weight codes, which have been widely studied in [31, 32]. On the other hand, the classification of nonlinear Hadamard codes is still an open problem. By giving an additive structure, as $\mathbb{Z}_{p^{s}}$-linear, $\mathbb{Z}_{p} \mathbb{Z}_{p^{2}}$-linear or $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear codes, to some of them, and showing whether they are equivalent or not among them, we are providing a partial classification for these codes.

From a more practical point of view, since Hadamard codes are optimal and have a high correction capability, they appear in different aspects related to the transmission of information, such as in digital communication with satellites [21], in CDMA phones to modulate the transmission of information and minimize interference with other transmissions [34] and, in general, in different OCDMA multiple access systems to allow access to multiple users asynchronously and simultaneously [22]. Other applications are found in cryptography [27] or in information hiding (steganography and watermarking) [35. See [21] for more applications in other fields.

This paper is focused specifically on $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes with $\alpha_{1} \neq 0, \alpha_{2} \neq 0$, and $\alpha_{3} \neq 0$, generalizing some results given for $\mathbb{Z}_{2} \mathbb{Z}_{4^{-}}$ linear Hadamard codes with $\alpha_{1} \neq 0$ and $\alpha_{2} \neq 0$ in [28, 29] related to a recursive construction of such codes. These codes are also compared with the \mathbb{Z}_{4}-linear, \mathbb{Z}_{8}-linear, and in general $\mathbb{Z}_{2^{s}}$-linear Hadamard codes with $s \geq 2$ considered in [16]. In general, the construction of $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8^{-}}$ linear Hadamard codes allows to construct codes which are not equivalent to \mathbb{Z}_{2} s-linear Hadamard codes, with $s \geq 2$. It is known that each \mathbb{Z}_{4}-linear Hadamard code is equivalent to a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard code with $\alpha_{1} \neq 0$ and $\alpha_{2} \neq 0$. Unlike $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard codes, in general, this family of $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadeamard codes does not include the family of \mathbb{Z}_{4}-linear or \mathbb{Z}_{8}-linear Hadamard codes, or $\mathbb{Z}_{2^{s}}$ linear Hadamard codes with $s \geq 4$. In Example 2.3, we show that all the nonlinear $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes $H^{t_{1}, t_{2}, t_{3}}$ of length 2^{11} are not equivalent to each other, nor to any $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard code, nor to any $\mathbb{Z}_{2^{s}}$-linear Hadamard code [16], with $s \geq 2$, of the same length 2^{11}. This paper is organized as follows. In Section 2, we describe a recursive construction of $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, t_{2}, t_{3}\right)$ with $\alpha_{1} \neq 0, \alpha_{2} \neq 0$, and $\alpha_{3} \neq 0$. We emphasise that, unlike $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard codes, in general, this family of $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$ linear Hadeamard codes does not include the family of \mathbb{Z}_{4}-linear or \mathbb{Z}_{8}-linear Hadamard codes. In Section 3, we present other recursive constructions and show that we obtain $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes equivalent to the previous ones. Finally, in Section 4, we give some conclusions and further research on this topic.

2. Recursive construction of $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive Hadamard codes

The description of generator matrices having a minimum number of rows for \mathbb{Z}_{4}-additive Hadamard, some families of $\mathbb{Z}_{2^{s}}$-additive Hadamard, and in general $\mathbb{Z}_{p^{s}}$-additive Hadamard codes, with $s \geq 2$ and p prime, are given in [23], [16], and [6], respectively. Similarly, generator matrices having a minimum number of rows for $\mathbb{Z}_{p} \mathbb{Z}_{p^{2}}$-additive Hadamard codes with $\alpha_{1} \neq$ $0, \alpha_{2} \neq 0$ and p prime, as long as a recursive construction of these matrices, are given in [28, 29] when $p=2$ and in [5] when $p \geq 3$. In this section, we generalize these results for $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive Hadamard codes with $\alpha_{1} \neq 0$, $\alpha_{2} \neq 0$, and $\alpha_{3} \neq 0$. Specifically, we define a recursive construction for the generator matrices of a family of these codes and establish that they generate $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive Hadamard codes.

Let $\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots, \mathbf{7}$ be the vectors having the elements $0,1,2, \ldots, 7$ repeated in each coordinate, respectively. If A is a generator matrix of a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8^{-}}$ additive code, that is, a subgroup of $\mathbb{Z}_{2}^{\alpha_{1}} \times \mathbb{Z}_{4}^{\alpha_{2}} \times \mathbb{Z}_{8}^{\alpha_{3}}$ for some integers $\alpha_{1}, \alpha_{2}, \alpha_{3} \geq 0$, then we denote by A_{1} the submatrix of A with the first α_{1} columns over \mathbb{Z}_{2}, A_{2} the submatrix with the next α_{2} columns over \mathbb{Z}_{4}, and A_{3} the submatrix with the last α_{3} columns over \mathbb{Z}_{8}. We have that $A=\left(A_{1}\left|A_{2}\right| A_{3}\right)$, where the number of columns of A_{i} is α_{i} for $i \in\{1,2,3\}$.

Let $t_{1} \geq 1, t_{2} \geq 0$, and $t_{3} \geq 1$ be integers. Now, we construct recursively matrices $A^{t_{1}, t_{2}, t_{3}}$ having t_{1} rows of order $8, t_{2}$ rows of order 4 , and t_{3} rows of order 2 as follows. First, we consider the following matrix:

$$
A^{1,0,1}=\left(\begin{array}{ll|l|l}
1 & 1 & 2 & 4 \tag{2}\\
0 & 1 & 1 & 1
\end{array}\right) .
$$

Then, we apply the following constructions. If we have a matrix $A^{\ell-1,0,1}=$ ($A_{1}\left|A_{2}\right| A_{3}$), with $\ell \geq 2$, we may construct the matrix

$$
A^{\ell, 0,1}=\left(\begin{array}{cc|ccccc|ccccc}
A_{1} & A_{1} & M_{1} & A_{2} & A_{2} & A_{2} & A_{2} & M_{2} & A_{3} & A_{3} & \cdots & A_{3} \tag{3}\\
\mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \cdots & \mathbf{7}
\end{array}\right),
$$

where $M_{1}=\left\{\mathbf{z}^{T}: \mathbf{z} \in\{2\} \times\{0,2\}^{\ell-1}\right\}$ and $M_{2}=\left\{\mathbf{z}^{T}: \mathbf{z} \in\{4\} \times\right.$ $\left.\{0,2,4,6\}^{\ell-1}\right\}$. We perform Construction (3) until $\ell=t_{1}$. If we have a matrix $A^{t_{1}, \ell-1,1}=\left(A_{1}\left|A_{2}\right| A_{3}\right)$, with $t_{1} \geq 1$ and $\ell \geq 1$, we may construct the matrix

$$
A^{t_{1}, \ell, 1}=\left(\begin{array}{cc|ccccc|cccc}
A_{1} & A_{1} & M_{1} & A_{2} & A_{2} & A_{2} & A_{2} & A_{3} & A_{3} & A_{3} & A_{3} \tag{4}\\
\mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{0} & \mathbf{2} & \mathbf{4} & \mathbf{6}
\end{array}\right),
$$

where $M_{1}=\left\{\mathbf{z}^{T}: \mathbf{z} \in\{2\} \times\{0,2\}^{t_{1}+\ell-1}\right\}$. We repeat Construction (4) until $\ell=t_{2}$. Finally, if we have a matrix $A^{t_{1}, t_{2}, \ell-1}=\left(A_{1}\left|A_{2}\right| A_{3}\right)$, with $t_{1} \geq 1$, $t_{2} \geq 0$, and $\ell \geq 2$, we may construct the matrix

$$
A^{t_{1}, t_{2}, \ell}=\left(\begin{array}{cc|cc|cc}
A_{1} & A_{1} & A_{2} & A_{2} & A_{3} & A_{3} \tag{5}\\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{2} & \mathbf{0} & \mathbf{4}
\end{array}\right) .
$$

We repeat Construction (5) until $\ell=t_{3}$. Thus, in this way, we obtain $A^{t_{1}, t_{2}, t_{3}}$.

Summarizing, in order to achieve $A^{t_{1}, t_{2}, t_{3}}$ from $A^{1,0,1}$, first we add $t_{1}-1$ rows of order 8 by applying Construction (3) $t_{1}-1$ times, starting from $A^{1,0,1}$ up to obtain $A^{t_{1}, 0,1}$; then we add t_{2} rows of order 4 by applying Construction (4) t_{2} times, up to generate $A^{t_{1}, t_{2}, 1}$; and, finally, we add $t_{3}-1$ rows of order 2 by applying Construction (5) $t_{3}-1$ times to achieve $A^{t_{1}, t_{2}, t_{3}}$. Note that the first row always has the row $(\mathbf{1}|\mathbf{2}| \mathbf{4})$.

Example 2.1. By using the constructions described in (3), (4), and (5), we obtain the following matrices $A^{2,0,1}, A^{1,1,1}$ and $A^{1,1,2}$, respectively, starting from $A^{1,0,1}$ given in (2):

$$
A^{2,0,1}=\left(\begin{array}{cc|cc|cc}
11 & 11 & 22 & 2222 & 4444 & 44444444 \tag{6}\\
01 & 01 & 02 & 1111 & 0246 & 11111111 \\
00 & 11 & 11 & 0123 & 1111 & 01234567
\end{array}\right)
$$

$$
\begin{gather*}
A^{1,1,1}=\left(\begin{array}{rr|rr|r}
11 & 11 & 22 & 2222 & 4444 \\
01 & 01 & 02 & 1111 & 1111 \\
00 & 11 & 11 & 0123 & 0246
\end{array}\right) \tag{7}\\
A^{1,1,2}=\left(\begin{array}{cc|cc|cc}
1111 & 1111 & 222222 & 222222 & 4444 & 4444 \\
0101 & 0101 & 021111 & 021111 & 1111 & 1111 \\
0011 & 0011 & 110123 & 110123 & 0246 & 0246 \\
0000 & 1111 & 000000 & 222222 & 0000 & 4444
\end{array}\right)
\end{gather*}
$$

In order to obtain $A^{2,1,1}$, we start with $A^{1,0,1}$, we apply Construction (3) to obtain $A^{2,0,1}=\left(A_{1}\left|A_{2}\right| A_{3}\right)$ given in (6), and then we apply (4) to obtain

$$
A^{2,1,1}=\left(\begin{array}{cc|ccccc|cccc}
A_{1} & A_{1} & \left.\begin{array}{ccccc}
2222 & & & & \\
0022 & A_{2} & A_{2} & A_{2} & A_{2} \\
A_{3} & A_{3} & A_{3} & A_{3} \\
\mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\
0202 & \mathbf{2} & \mathbf{3} & \mathbf{0} & \mathbf{2} \\
\mathbf{4} & \mathbf{6}
\end{array}\right) . . .4
\end{array}\right.
$$

The $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive code generated by $A^{t_{1}, t_{2}, t_{3}}$ is denoted by $\mathcal{H}^{t_{1}, t_{2}, t_{3}}$, and the corresponding $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear code $\Phi\left(\mathcal{H}^{t_{1}, t_{2}, t_{3}}\right)$ by $H^{t_{1}, t_{2}, t_{3}}$.
Lemma 2.1. Let $t_{1} \geq 1$ and $t_{2} \geq 0$ be integers. Let $\mathcal{H}^{t_{1}, t_{2}, 1}$ be the $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$ additive code of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, t_{2}, 1\right)$ generated by $A^{t_{1}, t_{2}, 1}$. Then, $2^{t_{1}+t_{2}}=$ $\alpha_{1}, 4^{t_{1}+t_{2}}=\alpha_{1}+2 \alpha_{2}$ and $8^{t_{1}} 4^{t_{2}}=\alpha_{1}+2 \alpha_{2}+4 \alpha_{3}$.

Proof. First, we prove this lemma for the code $\mathcal{H}^{t_{1}, 0,1}$ by induction on $t_{1} \geq 1$. Note that the lemma holds for the code $\mathcal{H}^{1,0,1}$ of type $(2,1,1 ; 1,0,1)$. Assume that the lemma holds for the code $\mathcal{H}^{t_{1}, 0,1}$ of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, 0,1\right)$, that is,

$$
\begin{equation*}
2^{t_{1}}=\alpha_{1}, 4^{t_{1}}=\alpha_{1}+2 \alpha_{2} \text { and } 8^{t_{1}}=\alpha_{1}+2 \alpha_{2}+4 \alpha_{3} \tag{8}
\end{equation*}
$$

By using Construction (3), the type of $\mathcal{H}^{t_{1}+1,0,1}$ is $\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime} ; t_{1}+1,0,1\right)$, where

$$
\begin{equation*}
\alpha_{1}^{\prime}=2 \alpha_{1}, \alpha_{2}^{\prime}=2^{t_{1}}+4 \alpha_{2} \text { and } \alpha_{3}^{\prime}=4^{t_{1}}+8 \alpha_{3} \tag{9}
\end{equation*}
$$

Thus, from (8) and (9), $2^{t_{1}+1}=2 \alpha_{1}=\alpha_{1}^{\prime}, 4^{t_{1}+1}=4 \alpha_{1}+8 \alpha_{2}=2 \alpha_{1}+$ $2 \alpha_{1}+8 \alpha_{2}=\alpha_{1}^{\prime}+2^{t_{1}+1}+8 \alpha_{2}=\alpha_{1}^{\prime}+2 \alpha_{2}^{\prime}$ and $8^{t_{1}+1}=8 \alpha_{1}+16 \alpha_{2}+32 \alpha_{3}=$ $2 \alpha_{1}+\left(2 \alpha_{1}+8 \alpha_{2}\right)+\left(4 \alpha_{1}+8 \alpha_{2}+32 \alpha_{3}\right)=2 \alpha_{1}+\left(2^{t_{1}+1}+8 \alpha_{2}\right)+\left(4^{t_{1}+1}+32 \alpha_{3}\right)=$ $\alpha_{1}^{\prime}+2 \alpha_{2}^{\prime}+4 \alpha_{3}^{\prime}$. Therefore, the lemma holds for the code $\mathcal{H}^{t_{1}, 0,1}$.

Next, we prove this lemma for the code $\mathcal{H}^{t_{1}, t_{2}, 1}$ by induction on $t_{2} \geq 0$. Assume that the lemma holds for the code $\mathcal{H}^{t_{1}, t_{2}, 1}$ of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, t_{2}, 1\right)$, that is,

$$
\begin{equation*}
2^{t_{1}+t_{2}}=\alpha_{1}, 4^{t_{1}+t_{2}}=\alpha_{1}+2 \alpha_{2}, \text { and } 8^{t_{1}} 4^{t_{2}}=\alpha_{1}+2 \alpha_{2}+4 \alpha_{3} \tag{10}
\end{equation*}
$$

By using Construction (4), the type of $\mathcal{H}^{t_{1}, t_{2}+1,1}$ is $\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime} ; t_{1}, t_{2}+1,1\right)$, where

$$
\begin{equation*}
\alpha_{1}^{\prime}=2 \alpha_{1}, \alpha_{2}^{\prime}=2^{t_{1}+t_{2}}+4 \alpha_{2} \text { and } \alpha_{3}^{\prime}=4 \alpha_{3} \tag{11}
\end{equation*}
$$

Thus, from 10) and 11, $2^{t_{1}+\left(t_{2}+1\right)}=2 \alpha_{1}=\alpha_{1}^{\prime}, 4^{t_{1}+\left(t_{2}+1\right)}=4 \alpha_{1}+8 \alpha_{2}=$ $2 \alpha_{1}+2 \alpha_{1}+8 \alpha_{2}=\alpha_{1}^{\prime}+2^{t_{1}+t_{2}+1}+8 \alpha_{2}=\alpha_{1}^{\prime}+2 \alpha_{2}^{\prime}$ and $8^{t_{1}} 4^{t_{2}+1}=4 \alpha_{1}+8 \alpha_{2}+$ $16 \alpha_{3}=2 \alpha_{1}+\left(2 \alpha_{1}+8 \alpha_{2}\right)+16 \alpha_{3}=\alpha_{1}^{\prime}+\left(2^{t_{1}+t_{2}+1}+8 \alpha_{2}\right)+4 \alpha_{3}^{\prime}=\alpha_{1}^{\prime}+2 \alpha_{2}^{\prime}+4 \alpha_{3}^{\prime}$. Therefore, the lemma holds for the code $\mathcal{H}^{t_{1}, t_{2}+1,1}$. This completes the proof.

Proposition 2.1. Let $t_{1} \geq 1, t_{2} \geq 0$, and $t_{3} \geq 1$ be integers. Let $\mathcal{H}^{t_{1}, t_{2}, t_{3}}$ be the $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive code of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, t_{2}, t_{3}\right)$ generated by $A^{t_{1}, t_{2}, t_{3}}$. Then,

$$
\begin{align*}
& \alpha_{1}=2^{t_{1}+t_{2}+t_{3}-1} \\
& \alpha_{1}+2 \alpha_{2}=4^{t_{1}+t_{2}} 2^{t_{3}-1} \tag{12}\\
& \alpha_{1}+2 \alpha_{2}+4 \alpha_{3}=8^{t_{1}} 4^{t_{2}} 2^{t_{3}-1}
\end{align*}
$$

Proof. We prove this result for the code $\mathcal{H}^{t_{1}, t_{2}, t_{3}}$ by induction on $t_{3} \geq 1$. By Lemma 2.1, the proposition holds for $t_{3}=1$, that is, for the code $\mathcal{H}^{t_{1}, t_{2}, 1}$. Assume that it holds for the code $\mathcal{H}^{t_{1}, t_{2}, t_{3}}$ of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, t_{2}, t_{3}\right)$, that is, 12 holds. By using Construction (5), the type of $\mathcal{H}^{t_{1}, t_{2}, t_{3}+1}$ is $\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime} ; t_{1}, t_{2}, t_{3}+1\right)$, where

$$
\begin{equation*}
\alpha_{1}^{\prime}=2 \alpha_{1}, \alpha_{2}^{\prime}=2 \alpha_{2}, \text { and } \alpha_{3}^{\prime}=2 \alpha_{3} \tag{13}
\end{equation*}
$$

Thus, from (12) and (13), $2^{t_{1}+t_{2}+t_{3}}=2 \alpha_{1}=\alpha_{1}^{\prime}, 4^{t_{1}+t_{2}} 2^{t_{3}}=2 \alpha_{1}+4 \alpha_{2}=$ $\alpha_{1}^{\prime}+2 \alpha_{2}^{\prime}$ and $8^{t_{1}} 4^{t_{2}} 2^{t_{3}}=2 \alpha_{1}+4 \alpha_{2}+8 \alpha_{3}=\alpha_{1}^{\prime}+2 \alpha_{2}^{\prime}+4 \alpha_{3}^{\prime}$. Therefore, the proposition is true for the code $\mathcal{H}^{t_{1}, t_{2}, t_{3}+1}$. This completes the proof.

Corollary 2.1. Let $t_{1} \geq 1, t_{2} \geq 0$, and $t_{3} \geq 1$ be integers. Let $\mathcal{H}^{t_{1}, t_{2}, t_{3}}$ be the $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive code of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, t_{2}, t_{3}\right)$ generated by $A^{t_{1}, t_{2}, t_{3}}$. Then,

$$
\begin{aligned}
& \alpha_{1}=2^{t_{1}+t_{2}+t_{3}-1} \\
& \alpha_{2}=4^{t_{1}+t_{2}} 2^{t_{3}-2}-2^{t_{1}+t_{2}+t_{3}-2} \\
& \alpha_{3}=8^{t_{1}} 4^{t_{2}-1} 2^{t_{3}-1}-4^{t_{1}+t_{2}-1} 2^{t_{3}-1}
\end{aligned}
$$

Remark 2.1. By Corollary 2.1, we have that the $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive codes $\mathcal{H}^{t_{1}, t_{2}, t_{3}}$ of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, t_{2}, t_{3}\right)$ generated by $A^{t_{1}, t_{2}, t_{3}}$, so constructed recursively from (3), (4), and (5), satisfy that $\alpha_{1} \neq 0, \alpha_{2} \neq 0$, and $\alpha_{3} \neq 0$.

Remark 2.2. The construction of the generator matrices $A^{t_{1}, t_{2}, t_{3}}$ is a generalization of the recursive construction of the generator matrices of the $\mathbb{Z}_{2} \mathbb{Z}_{4^{-}}$ additive Hadamard codes of type $\left(\alpha_{1}, \alpha_{2} ; t_{2}, t_{3}\right)$ with $\alpha_{1} \neq 0$ and $\alpha_{2} \neq 0$, given in [29]. Note that if we do not consider the coordinates over \mathbb{Z}_{8} in Constructions (3), (4), and (5), we have that (3) and (4) become

$$
A^{\ell, 1}=\left(\begin{array}{cc|ccccc}
A_{1} & A_{1} & M_{1} & A_{2} & A_{2} & A_{2} & A_{2} \tag{14}\\
\mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3}
\end{array}\right)
$$

where $A^{\ell-1,1}=\left(A_{1} \mid A_{2}\right)$ and $M_{1}=2 A_{1}=\left\{\mathbf{z}^{T}: \mathbf{z} \in\{2\} \times\{0,2\}^{\ell-1}\right\}$ (up to a column permutation); and Construction (5) become

$$
A^{t_{2}, \ell}=\left(\begin{array}{cc|cc}
A_{1} & A_{1} & A_{2} & A_{2} \tag{15}\\
\mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{2}
\end{array}\right)
$$

where $A^{t_{2}, \ell-1}=\left(A_{1} \mid A_{2}\right)$. Then, starting from the following matrix:

$$
A^{1,1}=\left(\begin{array}{ll|l}
1 & 1 & 2 \tag{16}\\
0 & 1 & 1
\end{array}\right)
$$

and applying (14) and (15) in the same way as above, we obtain the generator matrices $A^{t_{2}, t_{3}}$ of the known $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive Hadamard codes of type $\left(\alpha_{1}, \alpha_{2} ; t_{2}, t_{3}\right)$ with $\alpha_{1} \neq 0$ and $\alpha_{2} \neq 0$ [28, 29]. The $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code generated by $A^{t_{2}, t_{3}}$ is denoted by $\mathcal{H}^{t_{2}, t_{3}}$, and the corresponding $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code $\Phi\left(\mathcal{H}^{t_{2}, t_{3}}\right)$ by $H^{t_{2}, t_{3}}$.

When we include all the elements of $\mathbb{Z}_{2^{i}}$, where $1 \leq i \leq 3$, as coordinates of a vector, we place them in increasing order. For a set $S \subseteq \mathbb{Z}_{2^{i}}$ and $\lambda \in \mathbb{Z}_{2^{i}}$, where $i \in\{1,2,3\}$, we define $\lambda S=\{\lambda j: j \in S\}$ and $S+\lambda=\{j+\lambda: j \in S\}$. As before, when including all the elements in those sets as coordinates of a vector, we place them in increasing order. For example, $2 \mathbb{Z}_{8}=\{0,4,6,8\},\left(\mathbb{Z}_{4}, \mathbb{Z}_{4}\right)=(0,1,2,3,0,1,2,3) \in \mathbb{Z}_{4}^{8}$ and $\left(\mathbb{Z}_{2}\left|\mathbb{Z}_{4}\right| 2 \mathbb{Z}_{8}, 4 \mathbb{Z}_{8}\right)=(0,1|0,1,2,3| 0,2,4,6,0,4) \in \mathbb{Z}_{2}^{2} \times \mathbb{Z}_{4}^{4} \times \mathbb{Z}_{8}^{6}$.
Lemma 2.2. Let $1 \leq i \leq 3$ and $j \in\{0,1, \ldots, i-1\}$.
(1) If $\mu \in 2^{j} \mathbb{Z}_{2^{i}}$, then $2^{j} \mathbb{Z}_{2^{i}}+\mu=2^{j} \mathbb{Z}_{2^{i}}$.
(2) If $\mu \in 2^{j} \mathbb{Z}_{2^{i}}$, then $\left(2^{j} \mathbb{Z}_{2^{i}}, .^{m} ., 2^{j} \mathbb{Z}_{2^{i}}\right)+\mu \mathbf{1}$, where $m \geq 1$, is a permutation of the vector $\left(2^{j} \mathbb{Z}_{2^{i}}, \cdots, \cdot, 2^{j} \mathbb{Z}_{2^{i}}\right)$.
(3) If $\mu \in 2 \mathbb{Z}_{2^{i}}$, then $\left(\mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}}\right)+\mu=\mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}}$.
(4) If $\mu \in \mathbb{Z}_{2^{i}}$, then $\left(\mathbf{0}, \ldots, \mathbf{2}^{\mathbf{i}}-\mathbf{1}\right)+\left(\mu, \ell \cdot 2^{i}, \mu\right)$, where $\ell \geq 1$ and $\mathbf{k}=$ $(k, ., ., k)$ for $k \in \mathbb{Z}_{2^{i}}$, is a permutation of $\left(\mathbb{Z}_{2^{i}}, . . ., \mathbb{Z}_{2^{i}}\right)$.

Proof. Item 1 follows from the fact that $\mathbb{Z}_{2^{i}}$ is a ring and $2^{j} \mathbb{Z}_{2^{i}}$ is an ideal of $\mathbb{Z}_{2^{i}}$. Item 2 follows from Item 1 .

For Item 3 , it $x \in\left(\mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}}\right)+\mu$, then $x-\mu \in \mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}}$. Assume that $x \notin \mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}}$, so $x \in 2 \mathbb{Z}_{2^{i}}$. Since $2 \mathbb{Z}_{2^{i}}$ is an ideal of $\mathbb{Z}_{2^{i}}$, we have that
$x-\mu \in 2 \mathbb{Z}_{2^{i}}$, which is a contradiction. Thus, $x \in \mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}}$ and hence $\left(\mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}}\right)+\mu \subseteq \mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}}$. In the same way, $\left(\mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}}\right)-\mu \subseteq \mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}}$. Hence, $\mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}} \subseteq\left(\mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}}\right)+\mu$ and therefore $\left(\mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}}\right)+\mu=\mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}}$.

For Item 4, note that $\left(\mathbf{0}, \ldots, \mathbf{2}^{\mathbf{i}}-\mathbf{1}\right)+\left(\mu, \ell \cdot 2^{i}, \mu\right)$ is a permutation of

$$
\begin{equation*}
\left(\mathbb{Z}_{2^{i}}, \ldots, \mathbb{Z}_{2^{i}}\right)+\left(\mu, \ell \cdot 2^{i}, \mu\right) . \tag{17}
\end{equation*}
$$

Since $\left.\mathbb{Z}_{2^{i}}+\mu=\mathbb{Z}_{2^{i}}, 17\right)$ is a permutation of $\left(\mathbb{Z}_{2^{i}}, . \ell, \mathbb{Z}_{2^{i}}\right)$.
Lemma 2.3. Let $1 \leq i \leq 3, \lambda \in \mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}}$, and $u \in \mathbb{Z}_{2^{i}}^{n}$. Then,

$$
\left(u, 2^{i} ., u\right)+\lambda\left(\mathbf{0}, \ldots, \mathbf{2}^{\mathbf{i}}-\mathbf{1}\right)
$$

is a permutation of $\left(\mathbb{Z}_{2^{i}}, . n ., \mathbb{Z}_{2^{i}}\right)$.
Proof. Since $\lambda \in \mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}}, \lambda\left(\mathbf{0}, \ldots, \mathbf{2}^{\mathbf{i}}-\mathbf{1}\right)$ is a permutation of $\left(\mathbf{0}, \ldots, \mathbf{2}^{\mathbf{i}}-\mathbf{1}\right)$ and we may consider $\lambda=1$. Then, $(u, \ldots, u)+\left(\mathbf{0}, \ldots, \mathbf{2}^{\mathbf{i}}-\mathbf{1}\right)$ is a permutation of $\left(u_{1}+\mathbb{Z}_{2^{i}}, \ldots, u_{n}+\mathbb{Z}_{2^{i}}\right)=\left(\mathbb{Z}_{2^{i}}, . . n, \mathbb{Z}_{2^{i}}\right)$, where $u=\left(u_{1}, \ldots, u_{n}\right)$.
Lemma 2.4. Let $u=\left(\mu, . \stackrel{m}{.}, \mu, 2 \mathbb{Z}_{4}, . . n ., 2 \mathbb{Z}_{4}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}, . \stackrel{r}{.}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}\right) \in \mathbb{Z}_{4}^{m+2 n+2 r}$, where $m, n, r \geq 0$ and $\mu \in \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}=\{1,3\}$. Then,

$$
(u, u, u, u)+(\mathbf{0}, \mathbf{2}, \mathbf{0}, \mathbf{2})
$$

is a permutation of $\left(2 \mathbb{Z}_{4},{ }^{4 n} ., 2 \mathbb{Z}_{4}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4},{ }^{4 r+2 \cdot} \cdot \stackrel{m}{ }, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}\right)$.
Proof. By Items 1 and 3 of Lemma 2.2, $u+\mathbf{2}$ is a permutation of $(\mu+2, . m$. $\left., \mu+2,2 \mathbb{Z}_{4}, \stackrel{n}{.}, 2 \mathbb{Z}_{4}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}, . r ., \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}\right)$. Let $\mathbf{k}=(\mu, . \underline{m} ., \mu)$. Since $\mu \in$ $\{1,3\}$, we have that $(\mathbf{k}, \mathbf{k}, \mathbf{k}, \mathbf{k})+(\mathbf{0}, \mathbf{2}, \mathbf{0}, \mathbf{2})$ is a permutation of $\left(\mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4},{ }^{2 m}\right.$. , $\left.\mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}\right)$. Therefore, $(u, u, u, u)+(\mathbf{0}, \mathbf{2}, \mathbf{0}, \mathbf{2})$ is a permutation of $\left(2 \mathbb{Z}_{4},{ }^{4 n}\right.$. $\left., 2 \mathbb{Z}_{4}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4},{ }^{4 r} \cdot+.{ }^{4 m}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}\right)$.

Lemma 2.5. Let $u=\left(\mu^{\prime}, m^{\prime} ., \mu^{\prime}, \mu^{\prime \prime}, m^{\prime} ., \mu^{\prime \prime}, 2 \mathbb{Z}_{8}, .^{n^{\prime}} ., 2 \mathbb{Z}_{8}, \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}, r^{r^{\prime}} ., \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}\right) \in$ $\mathbb{Z}_{8}^{2 m^{\prime}+4 n^{\prime}+4 r^{\prime}}$, where $m^{\prime}, n^{\prime}, r^{\prime} \geq 0$ and $\mu, \mu^{\prime} \in \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}=\{1,3,5,7\}$. Then,
(1) $(u, u, u, u)+(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$ is a permutation of $\left(2 \mathbb{Z}_{8},{ }^{4 n^{\prime}}, 2 \mathbb{Z}_{8}, \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8},{ }^{4 r^{\prime}+. .2 m^{\prime}}\right.$, $\left.\mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}\right)$;
(2) $(u, u, u, u)+(\mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4})$ is a permutation of $\left(\mu^{\prime}, \stackrel{4 m^{\prime}}{ }, \mu^{\prime}, \mu^{\prime}+4, \stackrel{4 m^{\prime}}{ }, \mu^{\prime}+\right.$ $\left.4,2 \mathbb{Z}_{8},{ }^{4 n^{\prime}}, 2 \mathbb{Z}_{8}, \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8},{ }^{4 r^{\prime}} ., \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}\right)$ if $\mu^{\prime}=\mu^{\prime \prime}$ or $\mu^{\prime}=\mu^{\prime \prime}+4$, or a permutation of $\left(2 \mathbb{Z}_{8},{ }^{4 n^{\prime}}, 2 \mathbb{Z}_{8}, \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8},{ }^{4 r^{\prime} .+2 m^{\prime}}, \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}\right)$ otherwise.

Proof. For Item 1, by Items 1 and 3 of Lemma 2.2 , if $j \in\{0,2,4,6\}$, then $u+\mathbf{j}$ is a permutation of $\left(\mu^{\prime}+j, m^{\prime} \cdot, \mu^{\prime}+j, \mu^{\prime \prime}+j, m^{\prime} ., \mu^{\prime \prime}+j, 2 \mathbb{Z}_{8}, .^{\prime} ., 2 \mathbb{Z}_{8}, \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}, r^{\prime}\right.$. , $\left.\mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}\right)$. Let $\mathbf{k}^{\prime}=\left(\mu^{\prime}, m^{\prime} \cdot, \mu^{\prime}, \mu^{\prime \prime} m^{\prime} \cdot, \mu^{\prime \prime}\right)$. Since $\mu^{\prime}, \mu^{\prime \prime} \in\{1,3,5,7\}$, we have that $\left(\mathbf{k}^{\prime}, .4 ., \mathbf{k}^{\prime}\right)+(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$ is a permutation of $\left(\mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8},{ }^{2 m^{\prime} .}, \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}\right)$ and hence $(u, u, u, u)+(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$ is a permutation of $\left(2 \mathbb{Z}_{8},{ }^{4 n^{\prime}}, 2 \mathbb{Z}_{8}, \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}, 4 r^{\prime} .+2 m^{\prime}\right.$, $\left.\mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}\right)$.

For item 2, we have $\left(\mathbf{k}^{\prime}, .{ }^{4} ., \mathbf{k}^{\prime}\right)+(\mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4})$ is a permutation of $\left(\mu^{\prime},{ }^{4}{ }^{\prime}\right.$. , $\left.\mu^{\prime}, \mu^{\prime}+4,4 m^{\prime}, \mu^{\prime}+4\right)$ if $\mu^{\prime}=\mu^{\prime \prime}$ or $\mu^{\prime}=\mu^{\prime \prime}+4$, or a permutation of $\left(\mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8},{ }^{2 m^{\prime}}, \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}\right)$ otherwise. Therefore, $(u, u, u, u)+(\mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4})$ is a permutation of $\left(\mu^{\prime}, \stackrel{4 m^{\prime}}{\cdot}, \mu^{\prime}, \mu^{\prime}+4, \stackrel{4 m^{\prime}}{ }, \mu^{\prime}+4,2 \mathbb{Z}_{8}, \stackrel{4 n^{\prime}}{ }, 2 \mathbb{Z}_{8}, \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}, \stackrel{4 r^{\prime}}{ } ., \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}\right)$
if $\mu^{\prime}=\mu^{\prime \prime}$ or $\mu^{\prime}=\mu^{\prime \prime}+4$, or a permutation of $\left(2 \mathbb{Z}_{8},{ }^{4 n n^{\prime}}, 2 \mathbb{Z}_{8}, \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8},{ }^{4} r^{\prime} .+2 m^{\prime}\right.$, $\left.\mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}\right)$ otherwise.

Lemma 2.6. Let $u=\left(\mu, . \stackrel{m}{.}, \mu, 4 \mathbb{Z}_{8}, . . n ., 4 \mathbb{Z}_{8}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}, . \stackrel{r}{.}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}\right) \in \mathbb{Z}_{8}^{m+2 n+2 r}$, where $m, n, r \geq 0$ and $\mu \in 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}=\{2,6\}$. Then,
(1) $(u, u, u, u)+(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$ is a permutation of $\left(2 \mathbb{Z}_{8},{ }^{2 r+2 n+m}, 2 \mathbb{Z}_{8}\right)$;
(2) $(u, u, u, u)+(\mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4})$ is a permutation of $\left(4 \mathbb{Z}_{8},{ }^{4 n}, 4 \mathbb{Z}_{8}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8},{ }^{4 r+. .{ }^{m}}\right.$, $\left.2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}\right)$.

Proof. By Item 1 of Lemma 2.2 , if $j \in\{0,4\}$, then $u+\mathbf{j}$ is a permutation of $\left(\mu+j, . . \stackrel{m}{.}, \mu+j, 4 \mathbb{Z}_{8}, . n ., 4 \mathbb{Z}_{8}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}, . ? ., 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}\right)$. Similarly, if $j \in\{2,6\}$, then $u+\mathbf{j}$ is a permutation of $\left(\mu+j, \ldots \stackrel{m}{.}, \mu+j, 4 \mathbb{Z}_{8}, \stackrel{r}{.}, 4 \mathbb{Z}_{8}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}, \ldots n\right.$. , $\left.2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}\right)$. Let $\mathbf{k}=\left(\mu, .^{\prime} ., \mu\right)$.

For Item 1 , since $\mu \in\{2,6\}$, we have that $\left(\mathbf{k}, .^{4}, \mathbf{k}\right)+(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$ is a permutation of $\left(2 \mathbb{Z}_{8}, \stackrel{m}{.}^{2}, 2 \mathbb{Z}_{8}\right)$, and hence $(u, u, u, u)+(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$ is a permutation of $\left(2 \mathbb{Z}_{8},{ }^{2 r+2 n++m}, 2 \mathbb{Z}_{8}\right)$.

For Item 2 , we have $(\mathbf{k}, .4 ., \mathbf{k})+(\mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4})$ is a permutation of $\left(2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8},{ }^{2 m}\right.$. , $\left.2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}\right)$. Therefore, $(u, u, u, u)+(\mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4})$ is a permutation of $\left(4 \mathbb{Z}_{8},{ }^{4 n}\right.$. $\left., 4 \mathbb{Z}_{8}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8},{ }^{4 r++2 m}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}\right)$.

Let $t_{1} \geq 1, t_{2} \geq 0$, and $t_{3} \geq 1$ be integers. Let $\mathcal{G}^{t_{1}, t_{2}, t_{3}}$ be the set of all codewords of the code generated by the matrix obtained from $A^{t_{1}, t_{2}, t_{3}}$ after removing the row $(\mathbf{1}|\mathbf{2}| \mathbf{4})$.
Lemma 2.7. Let $t_{1} \geq 1$ be an integer. Let

$$
\mathbf{z}=\left(u_{1}, u_{1}\left|x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right| x_{2}, u_{3}, . .8, u_{3}\right) \in \mathcal{G}^{t_{1}+1,0,1}
$$

where $\mathbf{u}=\left(u_{1}\left|u_{2}\right| u_{3}\right) \in \mathcal{G}^{t_{1}, 0,1}$ and $x_{i-1} \in\left(2 \mathbb{Z}_{2^{i}}\right)^{2^{(i-1) t_{1}}}$ for $i \in\{2,3\}$. Then,
(1) if $o(\mathbf{z})=8$, then x_{i-1} is a permutation of $\left(2 \mathbb{Z}_{2^{i}},{ }^{2^{(i-1)\left(t_{1}-1\right)}}, 2 \mathbb{Z}_{2^{i}}\right)$ for $i \in\{2,3\}$.
(2) if $o(\mathbf{z})=4$, then $x_{1}=\mathbf{0}$ and x_{2} is a permutation of $\left(4 \mathbb{Z}_{8}, \stackrel{2 \cdot 4_{1}-1}{\cdots}, 4 \mathbb{Z}_{8}\right)$.
(3) if $o(\mathbf{z})=2$, then $x_{1}=\mathbf{0}$ and $x_{2}=\mathbf{0}$.

Proof. Let \mathbf{w}_{j}, where $j \in\left\{1, \ldots, t_{1}+2\right\}$, be the j th row of $A^{t_{1}+1,0,1}$. Note that $\mathbf{w}_{1}=(\mathbf{1}|\mathbf{2}| \mathbf{4})$, and $\mathbf{w}_{2}, \ldots, \mathbf{w}_{t_{1}+2}$ are the rows of order 8, where $\mathbf{w}_{t_{1}+2}=(\mathbf{0}, \mathbf{1}|\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}| \mathbf{1}, \mathbf{0}, \ldots, \mathbf{7})$. Since any element of $\mathcal{G}^{t_{1}+1,0,1}$ can be written as $\mathbf{z}+\lambda \mathbf{w}_{t_{1}+2}$, where $\lambda \in \mathbb{Z}_{8}$, then $\mathbf{z}=\sum_{j=2}^{t_{1}+1} r_{j} \mathbf{w}_{j}=\left(u_{1}, u_{1} \mid\right.$ $\left.x_{1}, u_{2}, u_{2}, u_{2}, u_{2} \mid x_{2}, u_{3}, .8 ., u_{3}\right)$, where $r_{j} \in \mathbb{Z}_{8}$. By construction, x_{1} and x_{2} are generated by the rows of $M_{1}^{\prime}=\left\{\mathbf{z}^{T}: \mathbf{z} \in\{0,2\}^{t_{1}}\right\}$ and $M_{2}^{\prime}=\left\{\mathbf{z}^{T}\right.$: $\left.\mathbf{z} \in\{0,2,4,6\}^{t_{1}}\right\}$, respectively. Thus, $x_{1}=\mathbf{0}$ or x_{1} is a permutation of $\left(2 \mathbb{Z}_{4},{ }^{2_{1}-1} \stackrel{\sim}{\sim}, 2 \mathbb{Z}_{4}\right)$, and $x_{2}=\mathbf{0}$ or x_{2} is a permutation of $\left(2 \mathbb{Z}_{8}, \stackrel{4^{t_{1}-1}}{\sim}, 2 \mathbb{Z}_{8}\right)$ or $\left(4 \mathbb{Z}_{8}, \stackrel{2 \cdot 4^{t_{1}-1} \cdots}{\cdots}, 4 \mathbb{Z}_{8}\right)$.

For Item 1, there exists at least one $j \in\left\{2, \ldots, t_{1}+1\right\}$ such that $r_{j} \in$ $\{1,3,5,7\}$. Therefore, by Item 1 of Lemma 2.2, x_{i-1} is a permutation of $\left(2 \mathbb{Z}_{2^{i}},{ }^{2^{(i-1)\left(t_{1}-1\right)}}, 2 \mathbb{Z}_{2^{i}}\right)$ for $i \in\{2,3\}$.

For Item 2, we have that $r_{j} \in 2 \mathbb{Z}_{8}$ for all $j \in\left\{2, \ldots, t_{1}+1\right\}$ and there exist at least one $j \in\left\{2, \ldots, t_{1}+1\right\}$ such that $r_{j} \in\{2,6\}$. Therefore, $x_{1}=\mathbf{0}$ and, by Item 1 of Lemma $2.2, x_{2}$ is a permutation of $\left(4 \mathbb{Z}_{8},{ }^{2 \cdot 4{ }^{t_{1}-1}}, 4 \mathbb{Z}_{8}\right)$.

For Item 3 , we have that $r_{j} \in 4 \mathbb{Z}_{8}$ for all $j \in\left\{2, \ldots, t_{1}+1\right\}$ and there exist at least one $j \in\left\{2, \ldots, t_{1}+1\right\}$ such that $r_{j}=4$. Therefore, $x_{1}=\mathbf{0}$ and $x_{2}=\mathbf{0}$.
Lemma 2.8. Let $t_{1} \geq 1$ and $t_{2} \geq 0$ be integers. Let

$$
\mathbf{z}=\left(u_{1}, u_{1}\left|x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right| u_{3}, u_{3}, u_{3}, u_{3}\right) \in \mathcal{G}^{t_{1}, t_{2}+1,1}
$$

where $\mathbf{u}=\left(u_{1}\left|u_{2}\right| u_{3}\right) \in \mathcal{G}^{t_{1}, t_{2}, 1}$ and $x_{1} \in\left(2 \mathbb{Z}_{4}\right)^{2^{t_{1}+t_{2}}}$. Then,
(1) if $o(\mathbf{z})=8$, then x_{1} is a permutation of $\left(2 \mathbb{Z}_{4},{ }^{2^{t_{1}+t_{2}-1}}, 2 \mathbb{Z}_{4}\right)$.
(2) if $o(\mathbf{z})=4$, then $x_{1}=\mathbf{0}$ if $u_{1}=\mathbf{0}$, and x_{1} is a permutation of $\left(2 \mathbb{Z}_{4},,^{2_{1}+t_{2}-1}, 2 \mathbb{Z}_{4}\right)$ otherwise.
(3) if $o(\mathbf{z})=2$, then $x_{1}=\mathbf{0}$.

Proof. Let \mathbf{w}_{i}, where $i \in\left\{1, \ldots, t_{1}+t_{2}+2\right\}$, be the i th row of $A^{t_{1}, t_{2}+1,1}$. Note that $\mathbf{w}_{1}=(\mathbf{1}|\mathbf{2}| \mathbf{4}), \mathbf{w}_{2}, \ldots, \mathbf{w}_{t_{1}+1}$ are the rows of order 8 , and $\mathbf{w}_{t_{1}+2}, \ldots, \mathbf{w}_{t_{1}+t_{2}+2}$ are the rows of order 4 , where $\mathbf{w}_{t_{1}+t_{2}+2}=(\mathbf{0}, \mathbf{1}|\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}|$ $\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$. Since any element of $\mathcal{G}^{t_{1}, t_{2}+1,1}$ can be written as $\mathbf{z}+\lambda \mathbf{w}_{t_{1}+t_{2}+2}$, where $\lambda \in\{0,1,2,3\}$, then $\mathbf{z}=\sum_{i=2}^{t_{1}+t_{2}+1} r_{i} \mathbf{w}_{i}=\left(u_{1}, u_{1}\left|x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right|\right.$ $u_{3}, u_{3}, u_{3}, u_{3}$), where $r_{i} \in \mathbb{Z}_{8}$ for $i \in\left\{2, \ldots, t_{1}+1\right\}$ and $r_{i} \in\{0,1,2,3\}$ for $i \in\left\{t_{1}+2, \ldots, t_{1}+t_{2}+1\right\}$. By construction, x_{1} is generated by the rows of $M_{1}^{\prime}=\left\{\mathbf{z}^{T}: \mathbf{z} \in\{0,2\}^{t_{1}+t_{2}}\right\}$. Thus, $x_{1}=\mathbf{0}$ or x_{1} is a permutation of $\left(2 \mathbb{Z}_{4},{ }^{2^{t_{1}+t_{2}-1}}, 2 \mathbb{Z}_{4}\right)$.

For Item 1, there exists at least one $i \in\left\{2, \ldots, t_{1}+1\right\}$ such that $r_{i} \in$ $\{1,3,5,7\}$. Therefore, since x_{1} is of order at most two, $x_{1} \neq \mathbf{0}$.

For Item 2, we have that $r_{i} \in 2 \mathbb{Z}_{8}$ for all $i \in\left\{2, \ldots, t_{1}+1\right\}$ and $r_{i} \in$ $\{0,1,2,3\}$ for all $i \in\left\{t_{1}+2, \ldots, t_{1}+t_{2}+1\right\}$. Note that, since x_{1} and u_{1} are of order at most two, $x_{1} \neq \mathbf{0}$ if and only if there exists at least one i for $i \in\left\{t_{1}+2, \ldots, t_{1}+t_{2}+1\right\}$ such that $r_{i} \in\{1,3\}$, or equivalently, if and only if $u_{1} \neq \mathbf{0}$.

For Item 2, we have that $r_{i} \in 4 \mathbb{Z}_{8}=\{0,4\}$ for all $i \in\left\{2, \ldots, t_{1}+1\right\}$ and $r_{i} \in\{0,2\}$ for all $i \in\left\{t_{1}+2, \ldots, t_{1}+t_{2}+1\right\}$. Therefore, since x_{1} is of order at most two, $x_{1}=\mathbf{0}$.

Lemma 2.9. Let $t_{1} \geq 1$ be an integer. Let $\mathcal{H}^{t_{1}, 0,1}$ be the $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive code of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, 0,1\right)$ generated by $A^{t_{1}, 0,1}$. Let $\mathbf{u}=\left(u_{1}\left|u_{2}\right|\right.$ $\left.u_{3}\right) \in \mathcal{G}^{t_{1}, 0,1}$. Then,
(1) if $o(\mathbf{u})=8$, then u_{1} contains every element of \mathbb{Z}_{2} the same number of times, u_{2} is a permutation of $\left(\mu, . \stackrel{m}{.}, \mu, 2 \mathbb{Z}_{4}, . \stackrel{n}{n}, 2 \mathbb{Z}_{4}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}, . r\right.$. , $\mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}$) for some integers $m, n, r \geq 0$ and $\mu \in\{1,3\}$, and u_{3} is a permutation of $\left(\mu^{\prime}, . m^{\prime} \cdot, \mu^{\prime}, \mu^{\prime \prime}, . m^{\prime} \cdot, \mu^{\prime \prime}, 2 \mathbb{Z}_{8}, .^{\prime} \cdot, 2 \mathbb{Z}_{8}, \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}, . r^{\prime} ., \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}\right)$ for some integers $m^{\prime}, n^{\prime}, r^{\prime} \geq 0$ and $\mu, \mu^{\prime} \in\{1,3,5,7\}$.
(2) if $o(\mathbf{u})=4$, then $u_{1}=\mathbf{0}, u_{2}$ contains the element in $2 \mathbb{Z}_{4} \backslash\{0\}=$ $\{2\}$ exactly $\frac{1}{2}\left(\frac{\alpha_{1}}{2}+\alpha_{2}\right)=4^{t_{1}-1}$ times and $\frac{\alpha_{2}}{2}-\frac{\alpha_{1}}{4}=4^{t_{1}-1}-2^{t_{1}-1}$
times the element 0 , and u_{3} is a permutation of $\left(\mu, .^{m}, \mu, 4 \mathbb{Z}_{8}, . n\right.$. $\left., 4 \mathbb{Z}_{8}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}, . \stackrel{r}{.}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}\right)$ for some integers $m, n, r \geq 0$ and $\mu \in$ $\{2,6\}$.
(3) if $o(\mathbf{u})=2$, then $u_{1}=\mathbf{0}, u_{2}=\mathbf{0}$, and u_{3} contains the element in $4 \mathbb{Z}_{8} \backslash\{0\}=\{4\}$ exactly $\frac{1}{4}\left(\frac{\alpha_{1}}{2}+\alpha_{2}+2 \alpha_{3}\right)=8^{t_{1}-1}$ times and $\frac{\alpha_{3}}{2}-$ $\frac{1}{4}\left(\frac{\alpha_{1}}{2}+\alpha_{2}\right)=8^{t_{1}-1}-4^{t_{1}-1}$ times the element 0 .

Proof. We perform a proof by induction on $t_{1} \geq 1$. If $t_{1}=1$, then by Lemma 2.1, $\alpha_{1}=2, \alpha_{2}=1, \alpha_{3}=1$, and $\mathcal{G}^{1,0,1}=\langle(0,1|1| 1)\rangle$. Let $\mathbf{u}=\left(u_{1}\left|u_{2}\right| u_{3}\right) \in \mathcal{G}^{1,0,1}$. Then, $\mathbf{u}=\lambda(0,1|1| 1)$, where $\lambda \in \mathbb{Z}_{8}$. Thus, we have that $u_{1}=\lambda(0,1), u_{2}=(\lambda)$, and $u_{3}=(\lambda)$. If $o(\mathbf{u})=8$, then $\lambda \in \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}$. Therefore, \mathbf{u} satisfies Property 1 . If $o(\mathbf{u})=4$, then $\lambda \in\{2,6\}$. In this case, $u_{1}=(0,0), u_{2}=(2)$ contains the element in $2 \mathbb{Z}_{4} \backslash\{0\}=\{2\}$ exactly $1=\frac{1}{2}\left(\frac{\alpha_{1}}{2}+\alpha_{2}\right)$ time and $0=\frac{\alpha_{2}}{2}-\frac{\alpha_{1}}{4}$ times the element 0 , and $u_{3}=(\lambda)$. Thus, \mathbf{u} satisfies Property 2. If $o(\mathbf{u})=2$, then $\lambda=4$. In this case, $u_{1}=(0,0), u_{2}=(0)$, and $u_{3}=(4)$ contains the element in $4 \mathbb{Z}_{8} \backslash\{0\}=\{4\}$ exactly $1=\frac{1}{4}\left(\frac{\alpha_{1}}{2}+\alpha_{2}+2 \alpha_{3}\right)$ time and $0=\frac{\alpha_{3}}{2}-\frac{1}{4}\left(\frac{\alpha_{1}}{2}+\alpha_{2}\right)$ times the element 0 . Thus, u satisfies Property 3. Therefore, the lemma holds for $t_{1}=1$.

Assume now that the lemma holds for the code $\mathcal{H}^{t_{1}, 0,1}$ of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, 0,1\right)$ with $t_{1} \geq 1$. By Lemma 2.1, we have that

$$
\begin{equation*}
2^{t_{1}}=\alpha_{1}, 4^{t_{1}}=\alpha_{1}+2 \alpha_{2}, \text { and } 8^{t_{1}}=\alpha_{1}+2 \alpha_{2}+4 \alpha_{3} \tag{18}
\end{equation*}
$$

We must show that the lemma is also true for the code $\mathcal{H}^{t_{1}+1,0,1}$.
Let $\mathbf{v}=\left(v_{1}\left|v_{2}\right| v_{3}\right) \in \mathcal{G}^{t_{1}+1,0,1}$. We can write

$$
\mathbf{v}=\mathbf{z}+\lambda \mathbf{w}
$$

where $\mathbf{z}=\left(u_{1}, u_{1}\left|x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right| x_{2}, u_{3}, .{ }_{.} ., u_{3}\right), \mathbf{w}=(\mathbf{0}, \mathbf{1}|\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}|$ $\mathbf{1}, \mathbf{0}, \ldots, \mathbf{7}), \mathbf{u}=\left(u_{1}\left|u_{2}\right| u_{3}\right) \in \mathcal{G}^{t_{1}, 0,1}, \lambda \in \mathbb{Z}_{8}, x_{1} \in\left(2 \mathbb{Z}_{4}\right)^{2^{t_{1}}}$ such that either $x_{1}=\mathbf{0}$ or x_{1} is a permutation of $\left(2 \mathbb{Z}_{4},{ }^{2}{ }^{t_{1}-1}, 2 \mathbb{Z}_{4}\right)$, and $x_{2} \in\left(2 \mathbb{Z}_{8}\right)^{4^{t_{1}}}$ such that either $x_{2}=\mathbf{0}$ or x_{2} is a permutation of $\left(2 \mathbb{Z}_{8},{ }^{4}{ }^{t_{1}-1}, 2 \mathbb{Z}_{8}\right)$ or $\left(4 \mathbb{Z}_{8},{ }^{2 \cdot 4^{t_{1}-1}}{ }^{1}\right.$, $\left.4 \mathbb{Z}_{8}\right)$. Then, $v_{1}=\left(u_{1}, u_{1}\right)+\lambda(\mathbf{0}, \mathbf{1})$ and, for $i \in\{2,3\}$,

$$
\begin{equation*}
v_{i}=\left(x_{i-1}, u_{i}, .^{i} ., u_{i}\right)+\lambda\left(\mathbf{1}, \mathbf{0}, \ldots, \mathbf{2}^{\mathbf{i}}-\mathbf{1}\right) \tag{19}
\end{equation*}
$$

If $\mathbf{z}=\mathbf{0}$, then $\mathbf{v}=\lambda \mathbf{w}$ and it is easy to see that \mathbf{v} satisfies Property 1 if $\lambda \in \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}=\{1,3,5,7\}$, Property 2 if $\lambda \in\{2,6\}$, and Property 3 if $\lambda=4$. Therefore, we focus on the case when $\mathbf{z} \neq \mathbf{0}$.

Case 1: Assume that $o(\mathbf{v})=8$. We have two subcases: when $o(\mathbf{z})$ is arbitrary and $\lambda \in \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}$, and when $o(\mathbf{z})=8$ and $\lambda \in 2 \mathbb{Z}_{8}$. In both subcases, note that v_{1} contains every element of \mathbb{Z}_{2} the same number of times. For the first subcase, we have that $\left(u_{i}, .^{i} ., u_{i}\right)+\lambda\left(\mathbf{0}, \ldots, \mathbf{2}^{\mathbf{i}}-\mathbf{1}\right)$, for $i \in\{2,3\}$, is a permutation of $\left(\mathbb{Z}_{2^{i}},{ }^{\alpha_{i}}, \mathbb{Z}_{2^{i}}\right)$ by Lemma 2.3. Thus, from (19), v_{i} is a permutation of $\left(x_{i-1}+\lambda \mathbf{1}, \mathbb{Z}_{2^{i}}, \ldots .{ }^{\alpha_{i}}, \mathbb{Z}_{2^{i}}\right)$. Since either $x_{i-1}+\lambda \mathbf{1}=\lambda \mathbf{1}$, or $x_{i-1}+\lambda \mathbf{1}$ is a permutation of $\left(\mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}},{ }^{2^{(i-1)\left(t_{1}-1\right)}}, \mathbb{Z}_{2^{i}} \backslash 2 \mathbb{Z}_{2^{i}}\right)$, \mathbf{v} satisfies Property 1 .

For the second subcase when $o(\mathbf{v})=8$, that is, when $o(\mathbf{z})=8$ and $\lambda \in 2 \mathbb{Z}_{8}$, we have that $o(\mathbf{u})=8$ and, by Item 1 of Lemma 2.7, x_{i-1} is a permutation of $\left(2 \mathbb{Z}_{2^{i}},,^{(i-1)\left(t_{1}-1\right)}, 2 \mathbb{Z}_{2^{i}}\right)$ for $i \in\{2,3\}$. By induction hypothesis, \mathbf{u} satisfies Property 1 and then u_{2} is a permutation of

$$
\left(\mu, . \underline{m} ., \mu, 2 \mathbb{Z}_{4}, . . n ., 2 \mathbb{Z}_{4}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}, . \stackrel{r}{.}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}\right),
$$

where $m, n, r \geq 0$ and $\mu \in\{1,3\}$, and u_{3} is a permutation of

$$
\left(\mu^{\prime}, \underline{m}^{\prime} ., \mu^{\prime}, \mu^{\prime \prime}, \varphi^{\prime} ., \mu^{\prime \prime}, 2 \mathbb{Z}_{8}, .^{n^{\prime}} ., 2 \mathbb{Z}_{8}, \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}, r^{r^{\prime}} ., \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}\right),
$$

where $m^{\prime}, n^{\prime}, r^{\prime} \geq 0$ and $\mu^{\prime}, \mu^{\prime \prime} \in\{1,3,5,7\}$. From (19), $v_{2}=\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)+$ $\lambda(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3})$. If $\lambda \in\{0,4\}$, then $v_{2}=\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)$ in \mathbf{v} satisfies the same property as u_{2} in \mathbf{u}; that is, Property 1. If $\lambda \in\{2,6\}$, then $v_{2}=\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)+(\mathbf{2}, \mathbf{0}, \mathbf{2}, \mathbf{0}, \mathbf{2})$. By Item 1 of Lemma 2.2, we have that $x_{1}+\mathbf{2}$ is a permutation of $\left(2 \mathbb{Z}_{4}, \stackrel{2^{t_{1}-1}}{\sim}, 2 \mathbb{Z}_{4}\right)$. Thus, by Lemma 2.4, v_{2} is a permutation of

$$
\left(2 \mathbb{Z}_{4},{ }^{4 n+2^{t_{1}-1}}, 2 \mathbb{Z}_{4}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4},{ }^{4 r+.+2 m}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}\right) .
$$

Therefore, for $\lambda \in 2 \mathbb{Z}_{8}, v_{2}$ satisfies Property 1. Now, we consider the coordinates in v_{3}. From 19$), v_{3}=\left(x_{2}, u_{3}, .{ }_{8}, u_{3}\right)+\lambda(\mathbf{1}, \mathbf{0}, \ldots, \boldsymbol{7})$. By Item 1 of Lemma 2.2, we have that, for $\lambda \in 2 \mathbb{Z}_{8}, x_{2}+\lambda \mathbf{1}$ is a permutation of $\left(2 \mathbb{Z}_{8},{ }^{t_{1}-1}, \cdots, 2 \mathbb{Z}_{8}\right)$. If $\lambda=0$, it is easy to see that v_{3} satisfies Property 1 . Note that $\lambda(\mathbf{0}, \ldots, \mathbf{7})$ is a permutation of $(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6}, \mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$ if $\lambda \in\{2,6\}$, and a permutation of $(\mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4})$ if $\lambda=4$. Thus, by Lemma 2.5, v_{3} satisfies Property 1. Therefore, if $o(\mathbf{v})=8$, then \mathbf{v} satisfies Property 1 .

Case 2: Assume that $o(\mathbf{v})=4$. We have two subcases: when $o(\mathbf{z})=4$ and $\lambda \in 2 \mathbb{Z}_{8}$, and when $o(\mathbf{z})=2$ and $\lambda \in\{2,6\}$. For the first subcase, since $o(\mathbf{z})=4$, we have that $o(\mathbf{u})=4$. Moreover, $x_{1}=\mathbf{0}$ and x_{2} is a permutation of $\left(4 \mathbb{Z}_{8}, \stackrel{2 \cdot 4^{t_{1}-1}}{\perp}, 4 \mathbb{Z}_{8}\right)$ by Item 2 of Lemma 2.7. By induction hypothesis, \mathbf{u} satisfies Property 2. Then, $u_{1}=\mathbf{0}, u_{2}$ contains the element in $2 \mathbb{Z}_{4} \backslash\{0\}=\{2\}$ exactly $4^{t_{1}-1}$ times and $4^{t_{1}-1}-2^{t_{1}-1}$ times the element 0 , and u_{3} is a permutation of

$$
\left(\mu, . \stackrel{m}{\cdot}, \mu, 4 \mathbb{Z}_{8}, . \stackrel{n}{.}, 4 \mathbb{Z}_{8}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}, . \stackrel{r}{.}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}\right)
$$

for some integers $m, n, r \geq 0$ and $\mu \in\{2,6\}$. Since $v_{1}=\left(u_{1}, u_{1}\right)+$ $\lambda(\mathbf{0}, \mathbf{1}), u_{1}=\mathbf{0}$, and $\lambda \in 2 \mathbb{Z}_{8}$, we have that $v_{1}=\mathbf{0}$. From (19), $v_{2}=$ $\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)+\lambda(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3})$. If $\lambda \in\{0,4\}$, then $v_{2}=\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)$. Since $x_{1}=\mathbf{0}$ is of length $2^{t_{1}}$, it is easy to see that v_{2} in \mathbf{v} satisfies the same property as u_{2} in \mathbf{u}; that is, Property 2. If $\lambda \in\{2,6\}$, then $v_{2}=$ $\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)+(\mathbf{2}, \mathbf{0}, \mathbf{2}, \mathbf{0}, \mathbf{2})$, where $x_{1}=\mathbf{0}$ is of length $2^{t_{1}}$. Note that $u_{2}+\mathbf{2}$ contains the element in $2 \mathbb{Z}_{4} \backslash\{0\}=\{2\}$ as many times as u_{2} contains the element 0 , and the element 0 as many times as u_{2} contains the element 2. Thus, v_{2} contains the element in $2 \mathbb{Z}_{4} \backslash\{0\}=\{2\}$ exactly $2^{t_{1}}+2\left(4^{t_{1}-1}\right)+$ $2\left(4^{t_{1}-1}-2^{t_{1}-1}\right)=4^{t_{1}}$ times and $2\left(4^{t_{1}-1}\right)+2\left(4^{t_{1}-1}-2^{t_{1}-1}\right)=4^{t_{1}}-2^{t_{1}}$ times the element 0 . Therefore, for $\lambda \in 2 \mathbb{Z}_{8}, v_{2}$ satisfies Property 2. Now, we consider the coordinates in v_{3}. From (19), $v_{3}=\left(x_{2}, u_{3}, . .8, u_{3}\right)+\lambda(\mathbf{1}, \mathbf{0}, \ldots, \mathbf{7})$.

If $\lambda=0$, it is easy to see that v_{3} satisfies Property 2. For $\lambda=4, x_{2}+\lambda \mathbf{1}$ is a permutation of $\left(4 \mathbb{Z}_{8}, \stackrel{2 \cdot 4^{t_{1}-1}}{\sim}, 4 \mathbb{Z}_{8}\right)$, and for $\lambda \in\{2,6\}$, it is a permutation of

$$
\left(2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}, \stackrel{2 \cdot 4^{t_{1}-1} \cdots}{\cdots}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}\right) .
$$

Note that $\lambda(\mathbf{0}, \ldots, \mathbf{7})$ is a permutation of $(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6}, \mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$ if $\lambda \in\{2,6\}$, and a permutation of $(\mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4})$ if $\lambda=4$. Hence, by Lemma 2.6 , v_{3} also satisfies Property 2, and so does \mathbf{v}.

Now, we consider the second subcase, when $o(\mathbf{z})=2$ and $\lambda \in\{2,6\}$. Since $o(\mathbf{z})=2$, we have that $o(\mathbf{u})=2$. Then, by Item 3 of Lemma 2.7, $x_{1}=\mathbf{0}$ and $x_{2}=\mathbf{0}$. By induction hypothesis, \mathbf{u} satisfies Property 3, so $u_{1}=\mathbf{0}, u_{2}=\mathbf{0}$, and u_{3} contains the element in $4 \mathbb{Z}_{8} \backslash\{0\}=\{4\}$ exactly $m=8^{t_{1}-1}$ times and $m^{\prime}=8^{t_{1}-1}-4^{t_{1}-1}$ times the element 0 . Since $v_{1}=$ $\left(u_{1}, u_{1}\right)+\lambda(\mathbf{0}, \mathbf{1}), u_{1}=\mathbf{0}$, and $\lambda \in\{2,6\}$, we have that $v_{1}=\mathbf{0}$. From (19), $v_{2}=\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)+(\mathbf{2}, \mathbf{0}, \mathbf{2}, \mathbf{0}, \mathbf{2})$. Since $x_{1}=\mathbf{0}$ and $u_{2}=\mathbf{0}$, of length α_{1} and α_{2}, respectively, we have that $v_{2}=(\mathbf{2}, \mathbf{0}, \mathbf{2}, \mathbf{0}, \mathbf{2})$. Therefore, v_{2} contains the element in $2 \mathbb{Z}_{4} \backslash\{0\}=\{2\}$ exactly $\alpha_{1}+2 \alpha_{2}=4^{t_{1}}$ times and $2 \alpha_{2}=4^{t_{1}}-2^{t_{1}}$ times the element 0 , by (18). Therefore, v_{2} satisfies Property 2. Now, we consider the coordinates in v_{3}. From (19), $v_{3}=\left(x_{2}, u_{3}, .8\right.$. ,$\left.u_{3}\right)+\lambda(\mathbf{1}, \mathbf{0}, \ldots, \mathbf{7})$. Since $x_{2}=\mathbf{0}, x_{2}+\lambda \mathbf{1}=\left(\lambda, 4^{t_{1}}, \lambda\right)$. Note that u_{3} is a permutation of

$$
\left(4, \stackrel{m-m^{\prime}}{\cdot}, 4,4 \mathbb{Z}_{8}, \underline{m}^{\prime} \cdot, 4 \mathbb{Z}_{8}\right) .
$$

Moreover, since $\lambda \in\{2,6\}, \lambda(\mathbf{0}, \ldots, \mathbf{7})$ is a permutation of $(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6}, \mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$. Thus, by Item 1 of Lemma $2.2,\left(u_{3}, .8, u_{3}\right)+(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6}, \mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$ is a permutation of

$$
\left(2 \mathbb{Z}_{8},{ }^{2\left(m-m^{\prime}\right)}{ }^{+4 m^{\prime}}, 2 \mathbb{Z}_{8}\right) .
$$

Thus, v_{3} is a permutation of $\left(\lambda, 4^{t_{1}} ., \lambda, 2 \mathbb{Z}_{8},{ }^{2\left(m-m^{\prime}\right)}+4 m^{\prime}, 2 \mathbb{Z}_{8}\right)$ with $\lambda \in\{2,6\}$, and hence v_{3} also satisfies Property 2 and so does \mathbf{v}. Therefore, if $o(\mathbf{v})=4$, then \mathbf{v} satisfies Property 2 .

Case 3: Assume that $o(\mathbf{v})=2$. Then, $o(\mathbf{z})=2$ and $\lambda \in\{0,4\}$. Since $o(\mathbf{z})=2$, then $o(\mathbf{u})=2$. Moreover, $x_{1}=\mathbf{0}$ and $x_{2}=\mathbf{0}$ by Item 3 of Lemma 2.7. By induction hypothesis, \mathbf{u} satisfies Property 3, and then $u_{1}=\mathbf{0}, u_{2}=$ $\mathbf{0}$, and u_{3} contains the element in $4 \mathbb{Z}_{8} \backslash\{0\}=\{4\}$ exactly $8^{t_{1}-1}$ times and $8^{t_{1}-1}-4^{t_{1}-1}$ times the element 0 . Since $v_{1}=\left(u_{1}, u_{1}\right)+\lambda(\mathbf{0}, \mathbf{1}), v_{1}=\mathbf{0}$. From (19), $v_{2}=\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)+\lambda(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3})$, where $x_{1}=\mathbf{0}$ and $u_{2}=\mathbf{0}$, so $v_{2}=\mathbf{0}$. From (19), $v_{3}=\left(x_{2}, u_{3}, .8 ., u_{3}\right)+\lambda(\mathbf{1}, \mathbf{0}, \ldots, \mathbf{7})$, where $x_{2}=\mathbf{0}$ is of length $4^{t_{1}}$. If $\lambda=0$, it is easy to see that v_{3} satisfies Property 3 . If $\lambda=4$, $v_{3}=\left(x_{2}, u_{3}, . \frac{8}{.}, u_{3}\right)+(\mathbf{4}, \mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4})$. Note that $u_{3}+\mathbf{4}$ contains the element in $4 \mathbb{Z}_{8} \backslash\{0\}=\{4\}$ as many times as u_{3} contains the element 0 , and the element 0 as many times as u_{3} contains the element 4. Then, v_{3} contains the element 4 exactly $4^{t_{1}}+4\left(8^{t_{1}-1}\right)+4\left(8^{t_{1}-1}-4^{t_{1}-1}\right)=8^{t_{1}}$ times and $4\left(8^{t_{1}-1}\right)+4\left(8^{t_{1}-1}-4^{t_{1}-1}\right)=8^{t_{1}}-4^{t_{1}}$ the element 0 . Therefore, v satisfies Property 3. This completes the proof.

Lemma 2.10. Let $t_{1} \geq 1$ and $t_{2} \geq 0$ be integers. Let $\mathcal{H}^{t_{1}, t_{2}, 1}$ be the $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$ additive code of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, t_{2}, 1\right)$ generated by $A^{t_{1}, t_{2}, 1}$. Let $\mathbf{u}=\left(u_{1} \mid\right.$ $\left.u_{2} \mid u_{3}\right) \in \mathcal{G}^{t_{1}, t_{2}, 1}$.
(1) If $o(\mathbf{u})=8$, then \mathbf{u} has the following property:
(a) u_{1} contains every element of \mathbb{Z}_{2} the same number of times, u_{2} is a permutation of $\left(\mu, . \stackrel{m}{.}, \mu, 2 \mathbb{Z}_{4}, . \stackrel{n}{.}, 2 \mathbb{Z}_{4}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}, . \stackrel{r}{r}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}\right)$ for some integers $m, n, r \geq 0$ and $\mu \in\{1,3\}$, and u_{3} is a permutation of $\left(\mu^{\prime}, . m^{\prime} ., \mu^{\prime}, \mu^{\prime \prime},!^{\prime} ., \mu^{\prime \prime}, 2 \mathbb{Z}_{8}, .^{\prime} ., 2 \mathbb{Z}_{8}, \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}, . r^{\prime} ., \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}\right)$ for some integers $m^{\prime}, n^{\prime}, r^{\prime} \geq 0$ and $\mu, \mu^{\prime} \in\{1,3,5,7\}$.
(2) If $o(\mathbf{u})=4$, then \mathbf{u} has one of the following properties:
(a) $u_{1}=\mathbf{0}, u_{2}$ contains the element in $2 \mathbb{Z}_{4} \backslash\{0\}=\{2\}$ exactly $\frac{1}{2}\left(\frac{\alpha_{1}}{2}+\alpha_{2}\right)=4^{t_{1}+t_{2}-1}$ times and $\frac{\alpha_{2}}{2}-\frac{\alpha_{1}}{4}=4^{t_{1}+t_{2}-1}-2^{t_{1}+t_{2}-1}$ times the element 0 , and u_{3} is a permutation of $\left(\mu, . m, \mu, 4 \mathbb{Z}_{8}, . n\right.$. $\left., 4 \mathbb{Z}_{8}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8},{ }^{r} ., 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}\right)$ for some integers $m, n, r \geq 0$ and $\mu \in\{2,6\}$.
(b) u_{1} contains every element of \mathbb{Z}_{2} the same number of times, u_{2} is a permutation of $\left(\mu, . .^{m}, \mu, 2 \mathbb{Z}_{4}, . \stackrel{n}{.}, 2 \mathbb{Z}_{4}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}, . r ., \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}\right)$ for some integers $m, n, r \geq 0$ and $\mu \in\{1,3\}$, and u_{3} is a permutation of $\left(4 \mathbb{Z}_{8}, . t ., 4 \mathbb{Z}_{8}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}, . .^{\prime} ., 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}\right)$ for some integers $t, t^{\prime} \geq 0$.
(3) If $o(\mathbf{u})=2$, then \mathbf{u} has one of the following properties:
(a) $u_{1}=\mathbf{0}, u_{2}=\mathbf{0}$, and u_{3} contains the element in $4 \mathbb{Z}_{8} \backslash\{0\}=\{4\}$ exactly $\frac{1}{4}\left(\frac{\alpha_{1}}{2}+\alpha_{2}+2 \alpha_{3}\right)=8^{t_{1}-1} 4^{t_{2}}$ times and $\frac{\alpha_{3}}{2}-\frac{1}{4}\left(\frac{\alpha_{1}}{2}+\alpha_{2}\right)=$ $8^{t_{1}-1} 4^{t_{2}}-4^{t_{1}+t_{2}-1}$ times the element 0.
(b) $u_{1}=\mathbf{0}, u_{2}$ contains the element in $2 \mathbb{Z}_{4} \backslash\{0\}=\{2\}$ exactly $\frac{1}{2}\left(\frac{\alpha_{1}}{2}+\alpha_{2}\right)=4^{t_{1}+t_{2}-1}$ times and $\frac{\alpha_{2}}{2}-\frac{\alpha_{1}}{4}=4^{t_{1}+t_{2}-1}-2^{t_{1}+t_{2}-1}$ times the element 0 , and u_{3} is a permutation of $\left(4 \mathbb{Z}_{8}, .^{m} ., 4 \mathbb{Z}_{8}\right)$ for some $m \geq 0$.

Proof. We prove this lemma by induction on $t_{2} \geq 0$. The lemma holds for the code $\mathcal{H}^{t_{1}, 0,1}$ by Lemma 2.9. Assume that the lemma holds for the code $\mathcal{H}^{t_{1}, t_{2}, 1}$ of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, t_{2}, 1\right)$ with $t_{1} \geq 1$ and $t_{2} \geq 0$. By Lemma 2.1, we have that

$$
\begin{equation*}
2^{t_{1}+t_{2}}=\alpha_{1}, 4^{t_{1}+t_{2}}=\alpha_{1}+2 \alpha_{2}, \text { and } 8^{t_{1}} 4^{t_{2}}=\alpha_{1}+2 \alpha_{2}+4 \alpha_{3} \tag{20}
\end{equation*}
$$

We must show that the lemma is also true for the code $\mathcal{H}^{t_{1}, t_{2}+1,1}$.
Let $\mathbf{v}=\left(v_{1}\left|v_{2}\right| v_{3}\right) \in \mathcal{G}^{t_{1}, t_{2}+1,1}$. We can write

$$
\mathbf{v}=\mathbf{z}+\lambda \mathbf{w}
$$

where $\mathbf{z}=\left(u_{1}, u_{1}\left|x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right| u_{3}, u_{3}, u_{3}, u_{3}\right), \mathbf{w}=(\mathbf{0}, \mathbf{1}|\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}|$ $\mathbf{0}, \mathbf{2}, \mathbf{4}, \boldsymbol{6}), \mathbf{u}=\left(u_{1}\left|u_{2}\right| u_{3}\right) \in \mathcal{G}^{t_{1}, t_{2}, 1}, \lambda \in\{0,1,2,3\}$, and $x_{1} \in\left(2 \mathbb{Z}_{4}\right)^{2^{t_{1}+t_{2}}}$
such that either $x_{1}=\mathbf{0}$ or a permutation of $\left(2 \mathbb{Z}_{4},{ }^{2 t_{1}+t_{2}-1}, 2 \mathbb{Z}_{4}\right)$. Then,

$$
\begin{aligned}
& v_{1}=\left(u_{1}, u_{1}\right)+\lambda(\mathbf{0}, \mathbf{1}), \\
& v_{2}=\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)+\lambda(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}), \\
& v_{3}=\left(u_{3}, u_{3}, u_{3}, u_{3}\right)+\lambda(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6}) .
\end{aligned}
$$

If $\mathbf{z}=\mathbf{0}$, then $\mathbf{v}=\lambda \mathbf{w}$. It is easy to see that \mathbf{v} satisfies Property 2b if $\lambda \in\{1,3\}$ and Property 3b if $\lambda=2$. Therefore, we focus on the case when $\mathbf{z} \neq \mathbf{0}$.

Case 1: Assume that $o(\mathbf{v})=8$. Then, $o(\mathbf{z})=8$ and $\lambda \in\{0,1,2,3\}$. We have that $o(\mathbf{u})=8$ and, by Item 1 of Lemma 2.8, x_{1} is a permutation of $\left(2 \mathbb{Z}_{4},{ }^{2_{1}+t_{2}-1}, 2 \mathbb{Z}_{4}\right)$. By induction hypothesis, \mathbf{u} satisfies Property 1 a Then, u_{1} contains every element of \mathbb{Z}_{2} the same number of times, u_{2} is a permutation of

$$
\left(\mu, . \underline{m} ., \mu, 2 \mathbb{Z}_{4}, . . n, 2 \mathbb{Z}_{4}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}, . \stackrel{r}{.}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}\right)
$$

where $m, n, r \geq 0$ and $\mu \in\{1,3\}$, and u_{3} is a permutation of

$$
\left(\mu^{\prime}, m^{\prime} ., \mu^{\prime}, \mu^{\prime \prime},!^{\prime} \cdot, \mu^{\prime \prime}, 2 \mathbb{Z}_{8}, .^{\prime} \cdot, 2 \mathbb{Z}_{8}, \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}, r^{r^{\prime}} ., \mathbb{Z}_{8} \backslash 2 \mathbb{Z}_{8}\right),
$$

where $m^{\prime}, n^{\prime}, r^{\prime} \geq 0$ and $\mu^{\prime}, \mu^{\prime \prime} \in\{1,3,5,7\}$. First, since $v_{1}=\left(u_{1}, u_{1}\right)+$ $\lambda(\mathbf{0}, \mathbf{1}), v_{1}$ contains every element of \mathbb{Z}_{2} the same number of times, for any $\lambda \in\{0,1,2,3\}$. Second, from (21), $v_{2}=\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)+\lambda(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3})$. If $\lambda=0$, then v_{2} clearly satisfies 1 a. If $\lambda \in\{1,3\}$, then we have that $\left(u_{2}, u_{2}, u_{2}, u_{2}\right)+\lambda(\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3})$ is a permutation of $\left(\mathbb{Z}_{4},{ }^{\alpha_{2}}, \mathbb{Z}_{4}\right)$ by Lemma 2.3 . For $\lambda \in\{1,3\}$, since $x_{1}+\lambda \mathbf{1}$ is a permutation of $\left(\mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4},{ }^{2^{t_{1}+t_{2}-1}}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}\right)$ by Item 3 of Lemma 2.2 , we have that v_{2} satisfies Property 1a. If $\lambda=2$, $v_{2}=\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)+(\mathbf{2}, \mathbf{0}, \mathbf{2}, \mathbf{0}, \mathbf{2})$. By Item 1 of Lemma 2.2 , we have that $x_{1}+\mathbf{2}$ is a permutation of $\left(2 \mathbb{Z}_{4},,^{t_{1}+t_{2}-1}, 2 \mathbb{Z}_{4}\right)$. Therefore, by Lemma 2.4, v_{2} is a permutation of $\left(2 \mathbb{Z}_{4},{ }^{4 n+2^{t_{1}+t_{2}-1}}, 2 \mathbb{Z}_{4}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4},{ }^{4 r+\ldots 2 m}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}\right)$ and then v_{2} satisfies Property 1a. Finally, we consider the coordinates in v_{3}. From (21), $v_{3}=\left(u_{3}, u_{3}, u_{3}, u_{3}\right)+\lambda(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$. If $\lambda=0$, then v_{3} clearly satisfies 1a. Note that $\lambda(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})=(\mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4})$ if $\lambda=2$ and $\lambda(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$ is a permutation of $(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$ if $\lambda \in\{1,3\}$. Therefore, by Lemma 2.5, v_{3} satisfies Property 1a, and so does \mathbf{v}.

Case 2: Assume that $o(\mathbf{v})=4$. We have two subcases: when $o(\mathbf{z})=4$ and $\lambda \in\{0,1,2,3\}$, and when $o(\mathbf{z})=2$ and $\lambda \in\{1,3\}$. For the first subcase, since $o(\mathbf{z})=4, o(\mathbf{u})=4$. By induction hypothesis, \mathbf{u} satisfies Property 2 a or 2b. Assume that \mathbf{u} satisfies Property 2a. Then, $u_{1}=\mathbf{0}, u_{2}$ contains the element in $2 \mathbb{Z}_{4} \backslash\{0\}=\{2\}$ exactly $4^{t_{1}+t_{2}-1}$ times and $4^{t_{1}+t_{2}-1}-2^{t_{1}+t_{2}-1}$ times the element 0 , and u_{3} is a permutation of

$$
\left(\mu, .{ }^{m}, \mu, 4 \mathbb{Z}_{8}, . \stackrel{n}{.}, 4 \mathbb{Z}_{8}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}, \ldots ., 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}\right)
$$

for some integers $m, n, r \geq 0$ and $\mu \in\{2,6\}$. Note that, in this case, $x_{1}=\mathbf{0}$ by Item 2 of Lemma 2.8. If $\lambda=0$, then it is easy to see that \mathbf{v} satisfies Property 2a. If $\lambda=2$, we show that \mathbf{v} satisfies Property 2a, Since $v_{1}=\left(u_{1}, u_{1}\right)+\lambda(\mathbf{0}, \mathbf{1}), u_{1}=\mathbf{0}$, and $\lambda=2$, we have that $v_{1}=\mathbf{0}$.

From (21), $v_{2}=\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)+(\mathbf{2}, \mathbf{0}, \mathbf{2}, \mathbf{0}, \mathbf{2})$, where $x_{1}=\mathbf{0}$ is of length $2^{t_{1}+t_{2}}$. Note that $u_{2}+\mathbf{2}$ contains the element in $2 \mathbb{Z}_{4} \backslash\{0\}=\{2\}$ as many times as u_{2} contains the element 0 , and the element 0 as many times as u_{2} contains the element 2 . Thus, v_{2} contains the element in $2 \mathbb{Z}_{4} \backslash\{0\}=$ $\{2\}$ exactly $2^{t_{1}+t_{2}}+2\left(4^{t_{1}+t_{2}-1}\right)+2\left(4^{t_{1}+t_{2}-1}-2^{t_{1}+t_{2}-1}\right)=4^{t_{1}+t_{2}}$ times and $2\left(4^{t_{1}+t_{2}-1}\right)+2\left(4^{t_{1}+t_{2}-1}-2^{t_{1}+t_{2}-1}\right)=4^{t_{1}+t_{2}}-2^{t_{1}+t_{2}}$ times the element 0 , so v_{2} satisfies Property 2a. From (21), $v_{3}=\left(u_{3}, u_{3}, u_{3}, u_{3}\right)+(\mathbf{0}, \mathbf{4}, \mathbf{0}, 4)$. By Item 2 of Lemma 2.6, v_{3} is a permutation of

$$
\left(4 \mathbb{Z}_{8},{ }^{4 n}, 4 \mathbb{Z}_{8}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8},{ }^{4 r+?^{2}}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}\right)
$$

Therefore, for $\lambda=2, \mathbf{v}$ satisfies Property 2a. Finally, if $\lambda \in\{1,3\}$, we show that \mathbf{v} satisfies Property 2b. Since $v_{1}=\left(u_{1}, u_{1}\right)+\lambda(\mathbf{0}, \mathbf{1}), u_{1}=\mathbf{0}$, and $\lambda \in\{1,3\}$, we have that v_{1} contains every element of \mathbb{Z}_{2} the same number of times. From (21), $v_{2}=\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)+\lambda(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3})$, where $x_{1}=\mathbf{0}$ is of length $2^{t_{1}+t_{2}}$. Since $\lambda \in\{1,3\}$, by Lemma 2.3 , we have that v_{2} is a permutation of $\left(\lambda,{ }^{2^{t_{1}+t_{2}} \cdots}, \lambda, \mathbb{Z}_{4}, \stackrel{\alpha_{2}}{.}, \mathbb{Z}_{4}\right)$. From 21$), v_{3}=\left(u_{3}, u_{3}, u_{3}, u_{3}\right)+\lambda(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$. Note that, for $\lambda \in\{1,3\}, \lambda(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$ is a permutation of $(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$. Thus, by Item 1 of Lemma 2.6, v_{3} satisfies Property 2b, and so does v. Therefore, if $o(\mathbf{u})=4$ and \mathbf{u} satisfies Property 2 a , we have that \mathbf{v} satisfies either Property 2a or 2b.

We continue with the first subcase, when $o(\mathbf{z})=4$ and $\lambda \in\{0,1,2,3\}$. Again, we have that $o(\mathbf{u})=4$. Now, we assume that \mathbf{u} satisfies Property 2 b . Then, u_{1} contains every element of \mathbb{Z}_{2} the same number of times, u_{2} is a permutation of

$$
\left(\mu, . . \cdot,, \mu, 2 \mathbb{Z}_{4}, . . n, 2 \mathbb{Z}_{4}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}, . \stackrel{r}{.}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}\right)
$$

for some integers $m, n, r \geq 0$ and $\mu \in\{1,3\}$, and u_{3} is a permutation of $\left(4 \mathbb{Z}_{8}, . t ., 4 \mathbb{Z}_{8}, 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}, .^{\prime} ., 2 \mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}\right)$ for some integers $t, t^{\prime} \geq 0$. Note that, in this case, x_{1} is a permutation of $\left(2 \mathbb{Z}_{4},{ }^{2^{t_{1}+t_{2}-1}} .2 \mathbb{Z}_{4}\right)$ by Item 2 of Lemma 2.8. Now, we show that \mathbf{v} satisfies Property 2 b . Since $v_{1}=\left(u_{1}, u_{1}\right)+\lambda(\mathbf{0}, \mathbf{1})$ and u_{1} contains every element of \mathbb{Z}_{2} the same number of times, we have that v_{1} contains every element of \mathbb{Z}_{2} the same number of times, for any $\lambda \in\{0,1,2,3\}$. From (21), $v_{2}=\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)+\lambda(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3})$. If $\lambda=0$, it is clear that v_{2} satisfies Property 2 b . Note that $x_{1}+\lambda \mathbf{1}$ is a permutation of $\left(2 \mathbb{Z}_{4},{ }^{2^{t_{1}+t_{2}-1}} \cdots \mathbb{Z}_{4}\right)$ if $\lambda=2$, and a permutation of $\left(\mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4},{ }^{2^{t_{1}+t_{2}-1}}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}\right)$ if $\lambda \in\{1,3\}$. If $\lambda=2$, then by Lemma 2.4, $\left(u_{2}, u_{2}, u_{2}, u_{2}\right)+(\mathbf{0}, \mathbf{2}, \mathbf{0}, \mathbf{2})$ is a permutation of

$$
\left(2 \mathbb{Z}_{4}, .^{4 n} ., 2 \mathbb{Z}_{4}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4},{ }^{4 r+{ }^{+} \cdot m}, \mathbb{Z}_{4} \backslash 2 \mathbb{Z}_{4}\right) .
$$

If $\lambda \in\{1,3\}$, then by Lemma 2.3 . $\left(u_{2}, u_{2}, u_{2}, u_{2}\right)+\lambda(\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3})$ is a permutation of $\left(\mathbb{Z}_{4}, ._{2} ., \mathbb{Z}_{4}\right)$. Therefore, v_{2} satisfies Property 2b. From (21), $v_{3}=\left(u_{3}, u_{3}, u_{3}, u_{3}\right)+\lambda(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$. If $\lambda=0$, it is clear that v_{3} satisfies Property 2 b . Note that $\lambda(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$ is a permutation of $(\mathbf{0}, \mathbf{2}, \mathbf{4}, \boldsymbol{6})$ if $\lambda \in\{1,3\}$, and $\lambda(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})=(\mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4})$ if $\lambda=2$. Therefore, by Lemma 2.6, v_{3} satisfies Property 2b, and so does \mathbf{v}.

Now, we consider the second subcase when $o(\mathbf{v})=4$, that is, when $o(\mathbf{z})=$ 2 and $\lambda \in\{1,3\}$. Since $o(\mathbf{z})=2, o(\mathbf{u})=2$. By induction hypothesis, \mathbf{u} satisfies Property 3a or 3b. Assume that u satisfies Property 3a. Then, $u_{1}=\mathbf{0}, u_{2}=\mathbf{0}$, and u_{3} contains the element in $4 \mathbb{Z}_{8} \backslash\{0\}=\{4\}$ exactly $m=8^{t_{1}-1} 4^{t_{2}}$ times and $m^{\prime}=8^{t_{1}-1} 4^{t_{2}}-4^{t_{1}+t_{2}-1}$ times the element 0 . By Item 3 of Lemma 2.8, we have that $x_{1}=\mathbf{0}$. Since $v_{1}=\left(u_{1}, u_{1}\right)+\lambda(\mathbf{0}, \mathbf{1})$, $u_{1}=\mathbf{0}$, and $\lambda \in\{1,3\}$, we have that v_{1} contains every element of \mathbb{Z}_{2} the same number of times. From (21), $v_{2}=\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)+\lambda(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3})$, where $x_{1}=\mathbf{0}$ is of length $2^{t_{1}+t_{2}}$. By Lemma 2.3, we have that v_{2} is a permutation of

$$
\left(\lambda, 2^{2^{t_{1}+t_{2}} \cdots}, \lambda, \mathbb{Z}_{4}, \cdots^{\alpha_{2}}, \mathbb{Z}_{4}\right),
$$

where $\lambda \in\{1,3\}$. From (21), $v_{3}=\left(u_{3}, u_{3}, u_{3}, u_{3}\right)+\lambda(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$. Note that u_{3} is a permutation of $\left(4, \stackrel{m-m^{\prime}}{\cdot}, 4,4 \mathbb{Z}_{8}, \cdot^{m^{\prime}}, 4 \mathbb{Z}_{8}\right)$ and, since $\lambda \in\{1,3\}$, $\lambda(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$ is a permutation of $(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$. Thus, by Item 1 of Lemma 2.2 , $v_{3}=\left(u_{3}, u_{3}, u_{3}, u_{3}\right)+(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$ is a permutation of $\left(2 \mathbb{Z}_{8}, \stackrel{m+\oplus^{\prime}}{m^{\prime}}, 2 \mathbb{Z}_{8}\right)$, so v_{3} satisfies Property 2b, and so does \mathbf{v}. Therefore, if $o(\mathbf{u})=2$ and \mathbf{u} satisfies Property 3a, we have that v satisfies Property 2b.

We continue with the second subcase, when $o(\mathbf{z})=2$ and $\lambda \in\{1,3\}$. Again, we have that $o(\mathbf{u})=2$. Now, we assume that \mathbf{u} satisfies Property 3 b . Then, $u_{1}=\mathbf{0}, u_{2}$ contains the element in $2 \mathbb{Z}_{4} \backslash\{0\}=\{2\}$ exactly $4^{t_{1}+t_{2}-1}$ times and $4^{t_{1}+t_{2}-1}-2^{t_{1}+t_{2}-1}$ times the element 0 , and u_{3} is a permutation of $\left(4 \mathbb{Z}_{8}, .{ }^{m} ., 4 \mathbb{Z}_{8}\right)$ for some $m \geq 0$. By Item 3 of Lemma 2.8 , we have that $x_{1}=\mathbf{0}$. Since $v_{1}=\left(u_{1}, u_{1}\right)+\lambda(\mathbf{0}, \mathbf{1}), u_{1}=\mathbf{0}$, and $\lambda \in\{1,3\}$, we have that v_{1} contains every element of \mathbb{Z}_{2} the same number of times. From (21), $v_{2}=\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)+\lambda(\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3})$, where $x_{1}=\mathbf{0}$ is of length $2^{t_{1}+t_{2}}$. By Lemma 2.3, we have that v_{2} is a permutation of

$$
\left(\lambda,{ }^{2^{t_{1}+t_{2}} \ldots}, \lambda, \mathbb{Z}_{4}, \cdots \stackrel{\alpha_{2}}{ }, \mathbb{Z}_{4}\right),
$$

where $\lambda \in\{1,3\}$. From (21), $v_{3}=\left(u_{3}, u_{3}, u_{3}, u_{3}\right)+\lambda(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$. Since $\lambda \in\{1,3\}, \lambda(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$ is a permutation of $(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$. Thus, by Item 1 of Lemma 2.2. $v_{3}=\left(u_{3}, u_{3}, u_{3}, u_{3}\right)+(\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6})$ is a permutation of $\left(2 \mathbb{Z}_{8},{ }^{2 m}\right.$. , $\left.2 \mathbb{Z}_{8}\right)$. Therefore, v_{3} satisfies Property 2 b , and so does \mathbf{v}.

Case 3: Assume that $o(\mathbf{v})=2$. Then, $o(\mathbf{z})=2$ and $\lambda \in\{0,2\}$. Since $o(\mathbf{z})=2$, we have that $o(\mathbf{u})=2$ and, by Item 3 of Lemma 2.8, $x_{1}=\mathbf{0}$. By induction hypothesis, u satisfies Property 3a or 3b. Assume that u satisfies Property 3a. Then, $u_{1}=\mathbf{0}, u_{2}=\mathbf{0}$, and u_{3} contains the element in $4 \mathbb{Z}_{8} \backslash\{0\}=\{4\}$ exactly $m=8^{t_{1}-1} 4^{t_{2}}$ times and $m^{\prime}=8^{t_{1}-1} 4^{t_{2}}-4^{t_{1}+t_{2}-1}$ times the element 0 . If $\lambda=0$, then $\mathbf{v}=\left(\mathbf{0}|\mathbf{0}| v_{3}\right)$ satisfies Property 3a, since v_{3} contains $4 m$ times the element 4 and $4 m^{\prime}$ the element 0 . Now, we assume that $\lambda=2$. Since $v_{1}=\left(u_{1}, u_{1}\right)+\lambda(\mathbf{0}, \mathbf{1}), u_{1}=\mathbf{0}$, and $\lambda=2$, we have that $v_{1}=\mathbf{0}$. From (21), $v_{2}=\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)+(\mathbf{2}, \mathbf{0}, \mathbf{2}, \mathbf{0}, \mathbf{2})$, where $x_{1}=\mathbf{0}$ is of length $2^{t_{1}+t_{2}}$ and $u_{2}=\mathbf{0}$. Therefore, v_{2} contains the element in $2 \mathbb{Z}_{4} \backslash\{0\}=\{2\}$ exactly $\alpha_{1}+2 \alpha_{2}=4^{t_{1}+t_{2}}$ times and $2 \alpha_{2}=4^{t_{1}+t_{2}}-2^{t_{1}+t_{2}}$ times the element 0 , by (20). From (21), $v_{3}=\left(u_{3}, u_{3}, u_{3}, u_{3}\right)+(\mathbf{0}, \mathbf{4}, \mathbf{0}, 4)$.

Note that u_{3} is a permutation of

$$
\left(4, \stackrel{m-m^{\prime}}{-}, 4,4 \mathbb{Z}_{8}, \underline{m}^{\prime}, 4 \mathbb{Z}_{8}\right)
$$

Thus, by Item 1 of Lemma 2.2, v_{3} is a permutation of $\left(4 \mathbb{Z}_{8},{ }^{2 m+.} \cdot 2 m^{\prime}, 4 \mathbb{Z}_{8}\right)$, so v_{3} satisfies Property 3b, and so does \mathbf{v}. Therefore, if $o(\mathbf{u})=2$ and \mathbf{u} satisfies Property 3a, we have that v satisfies Property 3b,

We continue with the case when $o(\mathbf{z})=2$ and $\lambda \in\{0,2\}$. Again, we have that $o(\mathbf{u})=2$ and $x_{1}=\mathbf{0}$. Now, we assume that \mathbf{u} satisfies Property 3b. Then, $u_{1}=\mathbf{0}, u_{2}$ contains the element in $2 \mathbb{Z}_{4} \backslash\{0\}=\{2\}$ exactly $4^{t_{1}+t_{2}-1}$ times and $4^{t_{1}+t_{2}-1}-2^{t_{1}+t_{2}-1}$ times the element 0 , and u_{3} is a permutation of $\left(4 \mathbb{Z}_{8}, \stackrel{m}{.}^{2}, 4 \mathbb{Z}_{8}\right)$ for some $m \geq 0$. If $\lambda=0$, then it is easy to see that \mathbf{v} satisfies Property 3 b , Now, we assume that $\lambda=2$. Since $v_{1}=\left(u_{1}, u_{1}\right)+\lambda(\mathbf{0}, \mathbf{1}), u_{1}=\mathbf{0}$, and $\lambda=2$, we have that $v_{1}=\mathbf{0}$. From (21), $v_{2}=\left(x_{1}, u_{2}, u_{2}, u_{2}, u_{2}\right)+(\mathbf{2}, \mathbf{0}, \mathbf{2}, \mathbf{0}, \mathbf{2})$, where $x_{1}=\mathbf{0}$ is of length $2^{t_{1}+t_{2}}$. Note that $u_{2}+\mathbf{2}$ contains the element in $2 \mathbb{Z}_{4} \backslash\{0\}=\{2\}$ as many times as u_{2} contains the element 0 , and the element 0 as many times as u_{2} contains the element 2 . Therefore, v_{2} contains the element in $2 \mathbb{Z}_{4} \backslash\{0\}=$ $\{2\}$ exactly $2^{t_{1}+t_{2}}+2\left(4^{t_{1}+t_{2}-1}\right)+2\left(4^{t_{1}+t_{2}-1}-2^{t_{1}+t_{2}-1}\right)=4^{t_{1}+t_{2}}$ times and $2\left(4^{t_{1}+t_{2}-1}\right)+2\left(4^{t_{1}+t_{2}-1}-2^{t_{1}+t_{2}-1}\right)=4^{t_{1}+t_{2}}-2^{t_{1}+t_{2}}$ times the element 0. From (21), $v_{3}=\left(u_{3}, u_{3}, u_{3}, u_{3}\right)+(\mathbf{0}, \mathbf{4}, \mathbf{0}, \mathbf{4})$. By Item 1 of Lemma 2.2, v_{3} is a permutation of $\left(4 \mathbb{Z}_{8}, 4 m, 4 \mathbb{Z}_{8}\right)$. Therefore, v_{3} satisfies Property 3 b , and so does \mathbf{v}. This completes the proof.

From [6, related to the generalized Gray map (11) considered in this paper, we have the following results:

Lemma 2.11. [6] Let $\lambda, \mu \in \mathbb{Z}_{2}$. Then, $\phi_{s}\left(\lambda \mu 2^{s-1}\right)=\lambda \phi_{s}\left(\mu 2^{s-1}\right)=$ $\lambda \mu \phi_{s}\left(2^{s-1}\right)$.
Lemma 2.12. 6] Let $u, v \in \mathbb{Z}_{2^{s}}$. Then, $\phi_{s}\left(2^{s-1} u+v\right)=\phi_{s}\left(2^{s-1} u\right)+\phi_{s}(v)$.
Proposition 2.2. [14, 6] Let $u, v \in \mathbb{Z}_{2^{s}}$. Then,

$$
d_{H}\left(\phi_{s}(u), \phi_{s}(v)\right)=\mathrm{wt}_{H}\left(\phi_{s}(u-v)\right) .
$$

By Proposition 2.2 , the $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear codes obtained from the Gray map Φ are distance invariant, that is, the Hamming weight distribution is invariant under translation by a codeword. Therefore, their minimum distance coincides with the minimum weight.

Proposition 2.3. Let $t_{1} \geq 1$ and $t_{2} \geq 0$ be integers. The $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive code $\mathcal{H}^{t_{1}, t_{2}, 1}$, generated by $A^{t_{1}, t_{2}, 1}$, is a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive Hadamard code.

Proof. Let $\mathcal{H}^{t_{1}, t_{2}, 1}$ be the $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive code of type ($\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, t_{2}, 1$) and $H^{t_{1}, t_{2}, 1}$ be the corresponding $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear code of length N. We have that $N=\alpha_{1}+2 \alpha_{2}+4 \alpha_{3}$. The cardinality of $H^{t_{1}, t_{2}, 1}$ is $8^{t_{1}} \cdot 4^{t_{2}} \cdot 2=$ $2\left(\alpha_{1}+2 \alpha_{2}+4 \alpha_{3}\right)=2 N$ by Lemma 2.1. By Proposition 2.2, the minimum distance of $H^{t_{1}, t_{2}, 1}$ is equal to the minimum weight of $H^{t_{1}, t_{2}, 1}$. Therefore, we need to prove that the minimum weight of $H^{t_{1}, t_{2}, 1}$ is $N / 2$.

We can write that $\mathcal{H}^{t_{1}, t_{2}, 1}=\mathcal{G}^{t_{1}, t_{2}, 1} \cup\left(\mathcal{G}^{t_{1}, t_{2}, 1}+(\mathbf{1}|\mathbf{2}| \mathbf{4})\right)$. By Lemma 2.12. $H^{t_{1}, t_{2}, 1}=\Phi\left(\mathcal{G}^{t_{1}, t_{2}, 1}\right) \cup\left(\Phi\left(\mathcal{G}^{t_{1}, t_{2}, 1}\right)+\mathbf{1}\right)$. Let $\mathbf{u}=\left(u_{1}\left|u_{2}\right| u_{3}\right) \in$ $\mathcal{H}^{t_{1}, t_{2}, 1} \backslash\{\mathbf{0},(\mathbf{1}|\mathbf{2}| \mathbf{4})\}$. We show that $\mathrm{wt}_{H}(\Phi(\mathbf{u}))=N / 2$. First, consider $\mathbf{u} \in \mathcal{G}^{t_{1}, t_{2}, 1} \backslash\{\mathbf{0}\}$. If $o(\mathbf{u})=8$, then by Lemma 2.10, u_{1} contains every element of \mathbb{Z}_{2} the same number of times, and for $i \in\{2,3\}, u_{i}$ contains every element of $2^{i-1} \mathbb{Z}_{2^{i}}$ exactly s_{i} times, $s_{i} \geq 0$, and the remaining $\alpha_{i}-2 s_{i}$ coordinates of u_{i} are from $\mathbb{Z}_{2^{i}} \backslash 2^{i-1} \mathbb{Z}_{2^{i}}$. Thus, from the definition of Φ, we have that $\mathrm{wt}_{H}(\Phi(\mathbf{u}))=\alpha_{1} / 2+2 s_{2}+\left(\alpha_{2}-2 s_{2}\right) \cdot 1+4 s_{3}+\left(\alpha_{3}-2 s_{3}\right) \cdot 2=$ $\alpha_{1} / 2+\alpha_{2}+2 \alpha_{3}=N / 2$. If $o(\mathbf{u})=4$, then \mathbf{u} satisfies Property 2a or 2b given in Lemma 2.10. If \mathbf{u} satisfies Property 2a, then u_{3} contains every element of $4 \mathbb{Z}_{8}$ exactly m times, $m \geq 0$, and the remaining coordinates of u_{3} are from $\mathbb{Z}_{8} \backslash 4 \mathbb{Z}_{8}$. Thus, $\operatorname{wt}_{H}(\Phi(\mathbf{u}))=\alpha_{1} / 2+\alpha_{2}+4 m+\left(\alpha_{3}-2 m\right) \cdot 2=\alpha_{1} / 2+$ $\alpha_{2}+2 \alpha_{3}=N / 2$. Otherwise, if \mathbf{u} satisfies Property 2 b , then $\mathrm{wt}_{H}(\Phi(\mathbf{u}))=$ $\alpha_{1} / 2+2 n+\left(\alpha_{2}-2 n\right) \cdot 1+4 t+\left(\alpha_{3}-2 t\right) \cdot 2=N / 2$. If $o(\mathbf{u})=2$, then \mathbf{u} satisfies Property 3a or 3b given in Lemma 2.10. If u satisfies Property 3a, then $\operatorname{wt}_{H}(\Phi(\mathbf{u}))=\frac{1}{4}\left(\alpha_{1} / 2+\alpha_{2}+2 \alpha_{3}\right) \cdot 4=N / 2$. Otherwise, if \mathbf{u} satisfies Property 3 b , then $\backslash=2 \cdot \frac{1}{2}\left(\alpha_{1} / 2+\alpha_{2}\right)+4 m+\left(\alpha_{3}-2 m\right) \cdot 2=N / 2$.

Finally, note that $\operatorname{wt}_{H}(\Phi(\mathbf{u})+\mathbf{1})=N / 2$. Therefore, we have that the weight of every element of $H^{t_{1}, t_{2}, 1} \backslash\{\mathbf{0}, \mathbf{1}\}$ is $N / 2$, that is, the minimum weight of $H^{t_{1}, t_{2}, 1}$ is $N / 2$.
Proposition 2.4. Let $t_{1} \geq 1, t_{2} \geq 0$, and $t_{3} \geq 1$ be integers. If $\mathcal{H}^{t_{1}, t_{2}, t_{3}}$ is a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive Hadamard code of type ($\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, t_{2}, t_{3}$), then, by applying Construction (5), $\mathcal{H}^{t_{1}, t_{2}, t_{3}+1}$ is a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive Hadamard code of type $\left(2 \alpha_{1}, 2 \alpha_{2}, 2 \alpha_{3} ; t_{1}, t_{2}, t_{3}+1\right)$.
Proof. By Construction (5), $\mathcal{H}^{t_{1}, t_{2}, t_{3}+1}$ is a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive code of type $\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \alpha_{3}^{\prime} ; t_{1}, t_{2}, t_{3}+1\right)$, where $\alpha_{1}^{\prime}=2 \alpha_{1}, \alpha_{2}^{\prime}=2 \alpha_{2}$, and $\alpha_{3}^{\prime}=2 \alpha_{3}$.

Since $H^{t_{1}, t_{2}, t_{3}}$ is a Hadamard code of length $N=\alpha_{1}+2 \alpha_{2}+4 \alpha_{3}$, then its minimum distance is $N / 2$ and $\left|H^{t_{1}, t_{2}, t_{3}}\right|=2 N$. Note that $H^{t_{1}, t_{2}, t_{3}+1}$ is a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear code of length $N^{\prime}=\alpha_{1}^{\prime}+2 \alpha_{2}^{\prime}+4 \alpha_{3}^{\prime}=2 N$ and $\left|H^{t_{1}, t_{2}, t_{3}+1}\right|=$ $8^{t_{1}} 4^{t_{2}} 2^{t_{3}+1}=2\left|H^{t_{1}, t_{2}, t_{3}}\right|=2 \cdot 2 N=2 N^{\prime}$. By Proposition 2.2, the minimum distance of $H^{t_{1}, t_{2}, t_{3}+1}$ is equal to the minimum weight of $H^{t_{1}, t_{2}, t_{3}+1}$. We only have to prove that the minimum weight of $H^{t_{1}, t_{2}, t_{3}+1}$ is $N^{\prime} / 2$. Let $\mathcal{H}^{t_{1}, t_{2}, t_{3}}=\left(\mathcal{H}_{1}\left|\mathcal{H}_{2}\right| \mathcal{H}_{3}\right)$. Note that

$$
\mathcal{H}^{t_{1}, t_{2}, t_{3}+1}=\bigcup_{\lambda \in\{0,1\}}\left(\left(\mathcal{H}_{1}, \mathcal{H}_{1}\left|\mathcal{H}_{2}, \mathcal{H}_{2}\right| \mathcal{H}_{3}, \mathcal{H}_{3}\right)+\lambda(\mathbf{0}, \mathbf{1}|\mathbf{0}, \mathbf{2}| \mathbf{0}, \mathbf{4})\right) .
$$

By Lemmas 2.11 and 2.12 ,

$$
\begin{align*}
H^{t_{1}, t_{2}, t_{3}+1} & =\bigcup_{\lambda \in\{0,1\}}\left(\Phi\left(\mathcal{H}_{1}, \mathcal{H}_{1}\left|\mathcal{H}_{2}, \mathcal{H}_{2}\right| \mathcal{H}_{3}, \mathcal{H}_{3}\right)+\lambda(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1})\right) \\
& =A_{0} \cup A_{1}, \tag{22}
\end{align*}
$$

where $A_{\lambda}=\Phi\left(\mathcal{H}_{1}, \mathcal{H}_{1}\left|\mathcal{H}_{2}, \mathcal{H}_{2}\right| \mathcal{H}_{3}, \mathcal{H}_{3}\right)+\lambda(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1}), \lambda \in\{0,1\}$. Next, we show that the minimum weight of A_{λ} is $N^{\prime} / 2$. Any element in A_{λ} is of the form $\Phi\left(u_{1}, u_{1}\left|u_{2}, u_{2}\right| u_{3}, u_{3}\right)+\lambda(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1})$, for $\mathbf{u}=\left(u_{1}\left|u_{2}\right|\right.$
$\left.u_{3}\right) \in\left(\mathcal{H}_{1}\left|\mathcal{H}_{2}\right| \mathcal{H}_{3}\right)$. Let $\mathbf{u}=\left(u_{1}\left|u_{2}\right| u_{3}\right) \in\left(\mathcal{H}_{1}\left|\mathcal{H}_{2}\right| \mathcal{H}_{3}\right) \backslash\{\mathbf{0}\}$. When $\lambda=0$, we have that $\operatorname{wt}_{H}\left(\Phi\left(u_{1}, u_{1}\left|u_{2}, u_{2}\right| u_{3}, u_{3}\right)\right)=2 \mathrm{wt}_{H}(\Phi(\mathbf{u}))$. Thus, the minimum weight of A_{0} is $2 \cdot N / 2=N^{\prime} / 2$. Otherwise, when $\lambda=1$, we have that $\mathrm{wt}_{H}\left(\Phi\left(u_{1}, u_{1}\left|u_{2}, u_{2}\right| u_{3}, u_{3}\right)+(\mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{0}, \mathbf{1})\right)=\mathrm{wt}_{H}(\Phi(\mathbf{u}))+$ $\alpha_{1}-\mathrm{wt}_{H}\left(u_{1}\right)+2 \alpha_{2}-\mathrm{wt}_{H}\left(\Phi_{2}\left(u_{2}\right)\right)+4 \alpha_{3}-\mathrm{wt}_{H}\left(\Phi_{3}\left(u_{3}\right)\right)=\mathrm{wt}_{H}(\Phi(\mathbf{u}))+\alpha_{1}+$ $2 \alpha_{2}+4 \alpha_{3}-\mathrm{wt}_{H}(\Phi(\mathbf{u}))=N=N^{\prime} / 2$. Thus, the minimum weight of A_{1} is $N^{\prime} / 2$. Therefore, from 22 , the minimum weight of $H^{t_{1}, t_{2}, t_{3}+1}$ is $N^{\prime} / 2$.

Next, from Proposition 2.3 and Proposition 2.4, one can derive the result below.

Theorem 2.1. Let $t_{1} \geq 1, t_{2} \geq 0$, and $t_{3} \geq 1$ be integers. The $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$ additive code $\mathcal{H}^{t_{1}, t_{2}, t_{3}}$, generated by $A^{t_{1}, t_{2}, t_{3}}$, is a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive Hadamard code.

To illustrate, we present an example.
Example 2.2. The $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive code $\mathcal{H}^{1,0,1}$ generated by $A^{1,0,1}$, given in (2), is a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive Hadamard code of type $(2,1,1 ; 1,0,1)$. We can write $\mathcal{H}^{1,0,1}=\bigcup_{\alpha \in \mathbb{Z}_{2}}(\mathcal{A}+\alpha \mathbf{1})$, where $\mathcal{A}=\left\{\lambda(0,1|1| 1): \lambda \in \mathbb{Z}_{8}\right\}$. Thus, $H^{1,0,1}=\Phi\left(\mathcal{H}^{1,0,1}\right)=\bigcup_{\alpha \in \mathbb{Z}_{2}}(\Phi(\mathcal{A})+\alpha \mathbf{1})$, where $\Phi(\mathcal{A})$ consists of all the rows of the Hadamard matrix

$$
H(2,4)=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Note that $\Phi(\mathcal{A})$ is linear and the minimum distance of $\Phi(\mathcal{A})$ is 4 , so $H^{1,0,1}$ is a binary linear Hadamard code of length 8.

Proposition 2.5. Let $t_{1} \geq 1, t_{2} \geq 0$, and $t_{3} \geq 1$ be integers. Let $H^{t_{1}, t_{2}, t_{3}}$ be a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard code of length 2^{t}. Then, $t+1=3 t_{1}+2 t_{2}+t_{3}$.
Proof. Since $H^{t_{1}, t_{2}, t_{3}}$ is a binary Hadamard code of length 2^{t}, we have that $\left|H^{t_{1}, t_{2}, t_{3}}\right|=2 \cdot 2^{t}=2^{t+1}$. Note that $\left|H^{t_{1}, t_{2}, t_{3}}\right|=2^{3 t_{1}+2 t_{2}+t_{3}}$, and hence $t+1=3 t_{1}+2 t_{2}+t_{3}$.

Now, we recall Theorem 2.2 in order to compare the $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes $H^{t_{1}, t_{2}, t_{3}}$ (with $\alpha_{1} \neq 0, \alpha_{2} \neq 0$ and $\alpha_{3} \neq 0$) with the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard codes (with $\alpha_{1} \neq 0, \alpha_{2} \neq 0$) of the same length. Also recall that the type of a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code can be given as $\left(\alpha_{1}, \alpha_{2}, 0 ; 0, t_{2}, t_{3}\right)$ if we see the code as a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear code with $\alpha_{3}=0$, or directly $\left(\alpha_{1}, \alpha_{2} ; t_{2}, t_{3}\right)$. Note that there are no $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes neither with only $\alpha_{1}=0$ nor with only $\alpha_{2}=0[24,33]$.

Theorem 2.2. [28] Let $t \geq 3$ and $t_{2} \in\{0, \ldots,\lfloor t / 2\rfloor\}$. Let $H^{t_{2}, t_{3}}$ be the nonlinear $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard code of length 2^{t} and type ($\alpha_{1}, \alpha_{2} ; t_{2}, t_{3}$), where $\alpha_{1}=2^{t-t_{2}}, \alpha_{2}=2^{t-1}-2^{t-t_{2}-1}$, and $t_{3}=t+1-2 t_{2}$. Then,

$$
\operatorname{rank}\left(H^{t_{2}, t_{3}}\right)=t_{3}+2 t_{2}+\binom{t_{2}}{2} \quad \text { and } \quad \operatorname{ker}\left(H^{t_{2}, t_{3}}\right)=t_{2}+t_{3} .
$$

We also recall the construction of the $\mathbb{Z}_{2^{s}}$-linear Hadamard codes with $s \geq$ 2 studied in [16], and Theorem 2.3 given in [18], in order to compare these codes with the $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes $H^{t_{1}, t_{2}, t_{3}}$ (with $\alpha_{1} \neq 0, \alpha_{2} \neq 0$, and $\alpha_{3} \neq 0$) of the same length. Let $T_{i}=\left\{j \cdot 2^{i-1}: j \in\left\{0,1, \ldots, 2^{s-i+1}-1\right\}\right\}$ for all $i \in\{1, \ldots, s\}$. Note that $T_{1}=\left\{0, \ldots, 2^{s}-1\right\}$. Let $t_{1}, t_{2}, \ldots, t_{s}$ be nonnegative integers with $t_{1} \geq 1$. Consider the matrix $\bar{A}^{t_{1}, \ldots, t_{s}}$ whose columns are exactly all the vectors of the form $\mathbf{z}^{T}, \mathbf{z} \in\{1\} \times T_{1}^{t_{1}-1} \times T_{2}^{t_{2}} \times \cdots \times T_{s}^{t_{s}}$. Let $\overline{\mathcal{H}}^{t_{1}, \ldots, t_{s}}$ be the $\mathbb{Z}_{2^{s}}$-additive code of type $\left(n ; t_{1}, \ldots, t_{s}\right)$ generated by $\bar{A}^{t_{1}, \ldots, t_{s}}$. Let $\bar{H}^{t_{1}, \ldots, t_{s}}=\Phi_{s}\left(\overline{\mathcal{H}}^{t_{1}, \ldots, t_{s}}\right)$ be the corresponding $\mathbb{Z}_{2^{s}}$-linear Hadamard code.

Theorem 2.3. [18] Let $\bar{H}^{t_{1}, \ldots, t_{s}}$ be the $\mathbb{Z}_{2^{s}}$-linear Hadamard code, with $s \geq 2$ and $t_{s} \geq 1$. Then, for all $\ell \in\left\{1, \ldots, t_{s}\right\}, \bar{H}^{t_{1}, \ldots, t_{s}}$ is permutation equivalent to the $\mathbb{Z}_{2^{s+\ell}}$-linear Hadamard code $\bar{H}^{1,0^{\ell-1}, t_{1}-1, t_{2}, \ldots, t_{s-1}, t_{s}-\ell}$.

For $5 \leq t \leq 11$, Tables 1 and 3 given in [16] show all possible values of $\left(t_{1}, \ldots, t_{s}\right)$ corresponding to nonlinear $\mathbb{Z}_{2^{s}}$-linear Hadamard codes, with $s \geq 2$, of length 2^{t}. For each of them, the values (r, k) are shown, where r is the rank, and k is the dimension of the kernel. Note that if two codes have different values (r, k), they are not equivalent. The following example shows that all the nonlinear $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes $H^{t_{1}, t_{2}, t_{3}}$ of length 2^{11} are not equivalent to each other, nor to any $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard code, nor to any $\mathbb{Z}_{2^{s}}$-linear Hadamard code [16], with $s \geq 2$, of the same length 2^{11}.

Example 2.3. Consider $t=11$. By solving equation $t+1=3 t_{1}+2 t_{2}+$ t_{3} given in Proposition 2.5, all $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes $H^{t_{1}, t_{2}, t_{3}}$ of length 2^{11} are the ones in
$T=\left\{H^{1,0,9}, H^{1,1,7}, H^{1,2,5}, H^{1,3,3}, H^{1,4,1}, H^{2,0,6}, H^{2,1,4}, H^{2,2,2}, H^{3,0,3}, H^{3,1,1}\right\}$.
By using the computer algebra system Magma [13], their corresponding values of (r, k), where r is the rank and k is the dimension of the kernel, are $(12,12),(14,9),(17,8),(21,7),(26,6),(17,8),(22,7),(28,6),(28,6)$, and $(37,5)$, respectively. The code $H^{1,0,9}$ is the only linear code in T since $r=k=12$. Using Magma, we can check that the following codes in each pair are nonequivalent to each other: $\left(H^{1,2,5}, H^{2,0,6}\right),\left(H^{2,2,2}, H^{3,0,3}\right)$. Therefore, the codes in T are not equivalent to each other.

Let $\bar{T}=T \backslash\left\{H^{1,0,9}\right\}$. Similarly, by solving equation $t+1=2 t_{2}+t_{3}$ given in Theorem 2.2, all nonlinear $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard codes of length 2^{11} are $H^{2,8}, H^{3,6}, H^{4,4}$ and $H^{5,2}$, and by Theorem [2.2, their corresponding values of (r, k) are $(13,10),(15,9),(18,8)$, and $(22,7)$, respectively. Using MAGMA, we can check that $H^{2,1,4}$ and $H^{5,2}$ are nonequivalent. Therefore,
all the codes in \bar{T} are nonequivalent to any $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard code of length 2^{11}.

Finally, note that all the codes in \bar{T}, except $H^{1,1,7}$ and $H^{2,1,4}$, are not equivalent to any $\mathbb{Z}_{2^{s}}$-linear Hadamard code, with $s \geq 2$, of length 2^{11}, since they have different values of (r, k). The $\mathbb{Z}_{2^{s}}$-linear Hadamard codes of length 2^{11}, having the same values $(r, k)=(14,9)$ as $H^{1,1,7}$, are $\bar{H}^{2,0,6}$, $\bar{H}^{1,1,0,5}$, $\bar{H}^{1,0,1,0,4}, \bar{H}^{1,0,0,0,1,0,2}$, and $\bar{H}^{1,0,0,0,0,0,1,0,0}$, which are equivalent to each other by Theorem 2.3. The \mathbb{Z}_{4}-linear Hadamard code $\bar{H}^{6,0}$ is the only $\mathbb{Z}_{2^{\text {s }}}$-linear Hadamard code of length 2^{11}, having the same values $(r, k)=(22,7)$ as $H^{2,1,4}$. However, using MAGMA, we can check that the following codes in each pair are nonequivalent to each other: $\left(H^{1,1,7}, \bar{H}^{2,0,6}\right)$, $\left(H^{2,1,4}, \bar{H}^{6,0}\right)$.

Therefore, all the nonlinear $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes $H^{t_{1}, t_{2}, t_{3}}$ of length 2^{11} are not equivalent to each other, nor to any $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard code, nor to any $\mathbb{Z}_{2^{s}}$-linear Hadamard code [16], with $s \geq 2$, of the same length 2^{11}.

Finally, the following example shows that other $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes can not be constructed by Construction (3). However, in the next section, we also show that other constructions of these codes do generate equivalent codes.

Example 2.4. Consider the matrix

$$
B=\left(\begin{array}{ll|ll|ll}
11 & 11 & 22 & 2222 & 4444 & 44444444 \\
01 & 01 & 02 & 1111 & 0646 & 11113333 \\
00 & 11 & 31 & 0123 & 1771 & 01234725
\end{array}\right)
$$

Using MAGMA, we can check that the code generated by B is a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard code of type $(4,6,12 ; 2,0,1)$, and it is nonequivalent to the code $H^{2,0,1}$ generated by $A^{2,0,1}$ given in (6).

3. Same type equivalent $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-LInear Hadamard codes

In this section, we see that if we consider other specific starting matrices, instead of the matrix $A^{1,0,1}$ given in (2), and apply the same recursive Construction (3), (4) and (5), or new constructions more general than (3) and (4), and the same Construction (5), we also obtain $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive Hadamard codes with $\alpha_{1} \neq 0, \alpha_{2} \neq 0$ and $\alpha_{3} \neq 0$. Indeed, the corresponding $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes, after applying the Gray map Φ, are equivalent to the codes $\Phi\left(\mathcal{H}^{t_{1}, t_{2}, t_{3}}\right)$ of the same type constructed in Section 2.

Let $\mathbb{Z}_{2^{i}}^{*}$ be the group of units of $\mathbb{Z}_{2^{i}}$ for $i \in\{2,3\}$. Then, $\mathbb{Z}_{4}^{*}=\{1,3\}$ and $\mathbb{Z}_{8}^{*}=\{1,3,5,7\}$.
Proposition 3.1. Let $\bar{a}_{1}=\left(a_{1}\right)$ and $\bar{b}_{1}=\left(b_{1}\right)$, where $a_{1} \in \mathbb{Z}_{4}^{*}$ and $b_{1} \in \mathbb{Z}_{8}^{*}$. Then, the code generated by

$$
\hat{A}_{\bar{a}_{1}, b_{1}}^{1,0,1}=\left(\begin{array}{cc|c|c}
1 & 1 & 2 & 4 \tag{23}\\
0 & 1 & a_{1} & b_{1}
\end{array}\right)
$$

denoted by $\hat{\mathcal{H}}_{\bar{a}_{1}, \bar{b}_{1}}^{1,0,1}$, is a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive Hadamard code of type $(2,1,1 ; 1,0,1)$. Moreover, the corresponding $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard code $\Phi\left(\hat{\mathcal{H}}_{\bar{a}_{1}, \bar{b}_{1}}^{1,0,1}\right)$ is permutation equivalent to $\Phi\left(\mathcal{H}^{1,0,1}\right)$.

Proof. Let $\bar{A}_{\bar{a}_{1}, \bar{b}_{1}}^{1,0,1}$ be the matrix obtained from $\hat{A}_{\bar{a}_{1}, \bar{b}_{1}}^{1,0,1}$ by applying the row operation described in Table 1 , depending on the values of $a_{1} \in \mathbb{Z}_{4}^{*}$ and $b_{1} \in$ \mathbb{Z}_{8}^{*}. Note that $\bar{A}_{\bar{a}_{1}, \bar{b}_{1}}^{1,0,1}$ is also a generator matrix of $\hat{\mathcal{H}}_{\bar{a}_{1}, \bar{b}_{1}}^{1,0,1}$. After permuting the first two columns of $\bar{A}_{\bar{a}_{1}, \bar{b}_{1}}^{1,0,1}$, if necessary, we obtain $A^{1,0,1}$. Thus, $\hat{\mathcal{H}}_{\bar{a}_{1}, \bar{b}_{1}}^{1,0,1}$ and $\mathcal{H}^{1,0,1}$ are permutation equivalent, and so are the $\operatorname{codes} \Phi\left(\hat{\mathcal{H}}_{\bar{a}_{1}, \bar{b}_{1}}^{1,0,1}\right)$ and $\Phi\left(\mathcal{H}^{1,0,1}\right)$.

Theorem 3.1. Let $\ell \geq 1$. Let $\bar{a}_{\ell}=\left(a_{1}, \ldots, a_{\ell}\right) \in\left(\mathbb{Z}_{4}^{*}\right)^{\ell}$, $\bar{b}_{\ell}=\left(b_{1}, \ldots, b_{\ell}\right) \in$ $\left(\mathbb{Z}_{8}^{*}\right)^{\ell}, \mathbf{a}_{i}=\left(a_{i},{ }^{2}{ }_{\cdots}^{i-1}, a_{i}\right)$, and $\mathbf{b}_{i}=\left(b_{i},{ }_{\cdots}^{4^{i-1}}, b_{i}\right), 1 \leq i \leq \ell$. Let $\hat{A}_{\bar{a}_{t_{1}}, \bar{b}_{t_{1}}}^{t_{1}, 0,1}$, with $t_{1} \geq 1$, be the matrix obtained by using the following construction (instead of Construction (3). We start with $\hat{A}_{\bar{a}_{1}, \bar{b}_{1}}^{1,0,1}$ given in (23). If we have $\hat{A}_{\bar{a}_{\ell-1}, \bar{b}_{\ell-1}}^{\ell-1,0,1}=\left(\hat{A}_{1}\left|\hat{A}_{2}\right| \hat{A}_{3}\right)$, with $\ell \geq 2$, we may construct

$$
\hat{A}_{\bar{a}_{\ell}, b_{\ell}}^{\ell, 0,1}=\left(\begin{array}{cc|ccccc|ccccc}
\hat{A}_{1} & \hat{A}_{1} & \hat{M}_{1} & \hat{A}_{2} & \hat{A}_{2} & \hat{A}_{2} & \hat{A}_{2} & \hat{M}_{2} & \hat{A}_{3} & \hat{A}_{3} & \cdots & \hat{A}_{3} \tag{24}\\
\mathbf{0} & \mathbf{1} & \mathbf{a}_{\ell} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{b} & \mathbf{0} & \mathbf{1} & \cdots & \mathbf{7}
\end{array}\right),
$$

where $\hat{M}_{1}=\left\{\mathbf{z}^{T}: \mathbf{z} \in\{2\} \times\{0,2\}^{\ell-1}\right\}, \hat{M}_{2}=\left\{\mathbf{z}^{T}: \mathbf{z} \in\{4\} \times\{0,2,4,6\}^{\ell-1}\right\}$. We repeat Construction (24) until $\ell=t_{1}$. Then, the code generated by $\hat{A}_{\bar{a}_{t_{1}}, \bar{b}_{t_{1}}}^{t_{1}, 0,1}$, denoted by $\hat{\mathcal{H}}_{\bar{a}_{t_{1}}, \bar{b}_{t_{1}}}^{t_{1}, 0,1}$, is a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8^{\prime}}$-additive Hadamard code of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, 0,1\right)$ with $\alpha_{1} \neq 0, \alpha_{2} \neq 0$ and $\alpha_{3} \neq 0$. Moreover, the corresponding $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard code $\Phi\left(\hat{\mathcal{H}}_{\bar{a}_{t_{1}}, \bar{b}_{t_{1}}}^{t_{1}, 0,1}\right)$ is permutation equivalent to $\Phi\left(\mathcal{H}^{t_{1}, 0,1}\right)$.

Proof. It is enough to show that $\hat{\mathcal{H}}_{\bar{a}_{t_{1}}, \bar{b}_{t_{1}}}^{t_{1}, 0,1}$ and $\mathcal{H}^{t_{1}, 0,1}$ are permutation equivalent. We prove this by induction on $t_{1} \geq 1$. By Proposition 3.1, this is true for $t_{1}=1$. Assume that $\hat{\mathcal{H}}_{\bar{a}_{t_{1}}, \bar{b}_{t_{1}}}^{t_{1}, 0,1}$ and $\mathcal{H}^{t_{1}, 0,1}$ are permutation equivalent. Let $\hat{A}_{\bar{a}_{t_{1}}, \bar{b}_{t_{1}}}^{t_{1}, 0,1}=\left(\hat{A}_{1}\left|\hat{A}_{2}\right| \hat{A}_{3}\right)$ and $A^{t_{1}, 0,1}=\left(A_{1}\left|A_{2}\right| A_{3}\right)$. By Construction $\sqrt[24]{ }$, we have
$\hat{A}_{\bar{a}_{t_{1}+1}, \bar{b}_{t_{1}+1}}^{t_{1}+1,0,1}=\left(\begin{array}{cc|ccccc|ccccc}\hat{A}_{1} & \hat{A}_{1} & \hat{M}_{1} & \hat{A}_{2} & \hat{A}_{2} & \hat{A}_{2} & \hat{A}_{2} & \hat{M}_{2} & \hat{A}_{3} & \hat{A}_{3} & \ldots & \hat{A}_{3} \\ \mathbf{0} & \mathbf{1} & \mathbf{a}_{t_{1}+1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{b}_{t_{1}+1} & \mathbf{0} & \mathbf{1} & \cdots & \mathbf{7}\end{array}\right)$,
where $\hat{M}_{1}=\left\{\mathbf{z}^{T}: \mathbf{z} \in\{2\} \times\{0,2\}^{t_{1}}\right\}, \hat{M}_{2}=\left\{\mathbf{z}^{T}: \mathbf{z} \in\{4\} \times\{0,2,4,6\}^{t_{1}}\right\}$, $\mathbf{a}_{t_{1}+1}=\left(a_{t_{1}+1},{ }^{2_{1}} . ., a_{t_{1}+1}\right)$, and $\mathbf{b}_{t_{1}+1}=\left(b_{t_{1}+1}, 4^{t_{1}} ., b_{t_{1}+1}\right)$. By Construction (3), we have

$$
A^{t_{1}+1,0,1}=\left(\begin{array}{cc|ccccc|ccccc}
A_{1} & A_{1} & M_{1} & A_{2} & A_{2} & A_{2} & A_{2} & M_{2} & A_{3} & A_{3} & \cdots & A_{3} \\
\mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \cdots & \mathbf{7}
\end{array}\right)
$$

where $M_{1}=\left\{\mathbf{z}^{T}: \mathbf{z} \in\{2\} \times\{0,2\}^{t_{1}}\right\}, M_{2}=\left\{\mathbf{z}^{T}: \mathbf{z} \in\{4\} \times\{0,2,4,6\}^{t_{1}}\right\}$. Let $\hat{\mathcal{H}}_{\bar{a}_{t_{1}+1}, b_{t_{1}+1}}^{t_{1}+1,0,1}$ and $\mathcal{H}^{t_{1}+1,0,1}$ be the codes generated by $\hat{A}_{\bar{a}_{t_{1}+1}, b_{t_{1}+1}}^{t_{1}+1,0,1}$ and $A^{t_{1}+1,0,1}$, respectively.

Since $\hat{\mathcal{H}}_{\bar{t}_{t_{1}}, b_{t_{1}}}^{t_{1}, 0,1}$ and $\mathcal{H}^{t_{1}, 0,1}$ are permutation equivalent, there exist some row operations and column permutations so that after applying these operations on ($\hat{A}_{1}\left|\hat{A}_{2}\right| \hat{A}_{3}$), we obtain $\left(A_{1}\left|A_{2}\right| A_{3}\right)$. First, we apply the same row operations to $\hat{A}_{\bar{a}_{t_{1}+1}, b_{t_{1}+1}}^{t_{1}+1,0,1}$ and the corresponding column permutations to each submatrix

$$
\binom{\hat{A}_{i}}{\mathbf{k}_{\mathbf{i}}},
$$

for $i \in\{1,2,3\}, k_{i} \in \mathbb{Z}_{2^{2}}$. Thus, for $i \in\{1,2,3\}, \hat{A}_{i}$ becomes A_{i}. Then, we change the last row by applying the row operation described in Table 1. depending on the values of $a_{t_{1}+1} \in \mathbb{Z}_{4}^{*}$ and $b_{t_{1}+1} \in \mathbb{Z}_{8}^{*}$. After that, we permute the blocks of the form

$$
\binom{A_{1}}{\mathbf{k}_{1}},\binom{A_{2}}{\mathbf{k}_{2}} \text { and }\binom{A_{3}}{\mathbf{k}_{3}},
$$

for $k_{i} \in \mathbb{Z}_{2^{i}}$, so that we obtain the submatrices

$$
\left(\begin{array}{cc}
A_{1} & A_{1} \\
\mathbf{0} & \mathbf{1}
\end{array}\right),\left(\begin{array}{cccc}
A_{2} & A_{2} & A_{2} & A_{2} \\
\mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3}
\end{array}\right) \text { and }\left(\begin{array}{cccc}
A_{3} & A_{3} & \cdots & A_{3} \\
\mathbf{0} & \mathbf{1} & \cdots & \mathbf{7}
\end{array}\right),
$$

respectively. Let $\bar{A}_{\bar{a}_{t_{1}+1}, b_{t_{1}+1}}^{t_{1}+1,0,1}$ be the matrix obtain from $\hat{A}_{\bar{a}_{t_{1}+1,}, b_{t_{1}+1}}^{t_{1}+1,01}$ after applying all these operations. Let M_{1}^{\prime} and M_{2}^{\prime} be the matrices \hat{M}_{1} and \hat{M}_{2}, respectively, after all these operations. Finally, after a suitable permutation of the columns corresponding to the blocks of the form

$$
\binom{M_{1}^{\prime}}{\mathbf{1}} \text { and }\binom{M_{2}^{\prime}}{\mathbf{1}}
$$

in $\bar{A}_{\bar{a}_{t_{1}+1}, \bar{b}_{t_{1}+1}}^{t_{1}+1,0,1}$, we obtain $A^{t_{1}+1,0,1}$. Thus, the codes $\hat{\mathcal{H}}_{\bar{a}_{t_{1}+1}, b_{t_{1}+1}}^{t_{1}+1,0,1}$ and $\mathcal{H}^{t_{1}+1,0,1}$ are permutation equivalent, and so are the corresponding $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear codes. This completes the proof.

Example 3.1. Let $\bar{a}_{2}=(1,3)$ and $\bar{b}_{2}=(3,5)$. Then,

$$
\begin{aligned}
\hat{A}_{\bar{a}_{2}, \bar{b}_{2}}^{2,0,1} & =\left(\begin{array}{cc|cc|cc}
11 & 11 & 22 & 2222 & 4444 & 44444444 \\
01 & 01 & 02 & \mathbf{a}_{1} & 0246 & \mathbf{b}_{1} \\
00 & 11 & \mathbf{a}_{2} & 0123 & \mathbf{b}_{2} & 01234567
\end{array}\right) \\
& =\left(\begin{array}{cc|cc|cc|}
11 & 11 & 22 & 2222 & 4444 & 44444444 \\
01 & 01 & 02 & 1111 & 0246 & 33333333 \\
00 & 11 & 33 & 0123 & 5555 & 01234567
\end{array}\right),
\end{aligned}
$$

which is obtained by using Construction (24), starting with the matrix $\hat{A}_{\bar{a}_{1}, \bar{b}_{1}}^{1,0,1}$ given in (23).

a_{i}	b_{i}	row operation
1	1	$r_{i+1} \leftarrow r_{i+1}$
1	3	$r_{i+1} \leftarrow r_{1}-r_{i+1}$
1	7	$r_{i+1} \leftarrow 5 r_{1}-5 r_{i+1}$
1	5	$r_{i+1} \leftarrow 5 r_{i+1}$
3	1	$r_{i+1} \leftarrow r_{1}-3 r_{i+1}$
3	3	$r_{i+1} \leftarrow 3 r_{i+1}$
3	5	$r_{i+1} \leftarrow r_{1}+r_{i+1}$
3	7	$r_{i+1} \leftarrow 7 r_{i+1}$

TABLE 1. Row operations depending on the values of $a_{i} \in \mathbb{Z}_{4}^{*}$ and $b_{i} \in \mathbb{Z}_{8}^{*}$.

First, note that we have

$$
\hat{A}_{\bar{a}_{1}, \bar{b}_{1}}^{1,0,1}=\left(\begin{array}{ll|l|l}
1 & 1 & 2 & 4 \\
0 & 1 & 1 & 3
\end{array}\right) \text { and } A^{1,0,1}=\left(\begin{array}{ll|l|l}
1 & 1 & 2 & 4 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

Therefore, by using Table 1, $A^{1,0,1}=\left(A_{1}\left|A_{2}\right| A_{3}\right)$ can be obtained from $\hat{A}_{\bar{a}_{1}, \bar{b}_{1}}^{1,0,1}=\left(\hat{A}_{1}\left|\hat{A}_{2}\right| \hat{A}_{3}\right)$ by applying the row operation $r_{2} \leftarrow r_{1}-r_{2}$ and the column permutation $(1,2)$. No column permutation is performed on the submatrices \hat{A}_{2} and \hat{A}_{3}. Then, we apply the same row operation $r_{2} \leftarrow r_{1}-r_{2}$ to $\hat{A}_{\bar{a}_{2}, \bar{b}_{2}}^{2,0,1}$ and the column permutation $(1,2)$ to each submatrix $\binom{\hat{A}_{1}}{\mathbf{k}_{\mathbf{1}}}$, for $k_{1} \in \mathbb{Z}_{2}$. Thus, for $i \in\{1,2,3\}$, \hat{A}_{i} becomes A_{i}. Then, we apply $r_{3} \leftarrow r_{1}+r_{3}$, described in Table 1, so we obtain

$$
\left(\begin{array}{cc|cc|cc}
11 & 11 & 22 & 2222 & 4444 & 44444444 \\
01 & 01 & 20 & 1111 & 4206 & 11111111 \\
11 & 00 & 11 & 2301 & 1111 & 45670123
\end{array}\right)
$$

After that, we permute the blocks of the form $\binom{A_{i}}{\mathbf{k}_{\mathbf{i}}}$, for $k_{i} \in \mathbb{Z}_{2^{i}}$ and $i \in\{1,2,3\}$, so that we obtain

$$
\bar{A}_{\bar{a}_{2}, \bar{b}_{2}}^{2,0,1}=\left(\begin{array}{cc|cc|cc}
11 & 11 & 22 & 2222 & 4444 & 44444444 \\
10 & 10 & 20 & 1111 & 4206 & 11111111 \\
00 & 11 & 11 & 0123 & 1111 & 01234567
\end{array}\right)
$$

Finally, after applying a suitable column permutation to the submatrices,

$$
\left(\begin{array}{l}
22 \\
20 \\
11
\end{array}\right) \text { and }\left(\begin{array}{l}
4444 \\
4206 \\
1111
\end{array}\right)
$$

in $\bar{A}_{\bar{a}_{2}, \bar{b}_{2}}^{2,0,1}$, we can obtain $A^{2,0,1}$. Thus, the codes $\hat{\mathcal{H}}_{\bar{a}_{2}, \bar{b}_{2}}^{2,0,1}$ and $\mathcal{H}^{2,0,1}$ are permutation equivalent, which is equivalent to say that the codes $\Phi\left(\hat{\mathcal{H}}_{\bar{a}_{2}, b_{2}}^{2,0,1}\right)$ and $\Phi\left(\mathcal{H}^{2,0,1}\right)$ are permutation equivalent.

Theorem 3.2. Let $t_{1} \geq 1, t_{2} \geq 0$ and $\ell \geq 0$. Let $\bar{a}_{t_{1}+\ell}=\left(a_{1}, \ldots, a_{t_{1}+\ell}\right) \in$ $\left(\mathbb{Z}_{4}^{*}\right)^{t_{1}+\ell}, \bar{b}_{t_{1}}=\left(b_{1}, \ldots, b_{t_{1}}\right) \in\left(\mathbb{Z}_{8}^{*}\right)^{t_{1}}$, and $\mathbf{a}_{t_{1}+i}=\left(a_{t_{1}+i},{ }^{2^{t_{1}+i-1}} \cdots, a_{t_{1}+i}\right)$ for $0 \leq i \leq \ell$. Let $\hat{A}_{\bar{a}_{t_{1}+t_{2}}, \bar{b}_{t_{1}}}^{t_{1}, t_{2}, 1}$ be the matrix obtained by using the following construction (instead of Construction (4)), starting with $\hat{A}_{\bar{a}_{1}, \bar{b}_{1}}^{1,0,1}$ given in (23). If we have $\hat{A}_{\bar{a}_{t_{1}+\ell-1}, \bar{b}_{t_{1}}}^{t_{1}, \ell-1,1}=\left(\hat{A}_{1}\left|\hat{A}_{2}\right| \hat{A}_{3}\right)$, with $\ell \geq 1$, we may construct

$$
\hat{A}_{\bar{a}_{t_{1}+\ell, \ell, 1}^{t_{1}, \bar{b}_{1}}}=\left(\begin{array}{cc|ccccc|cccc}
\hat{A}_{1} & \hat{A}_{1} & \hat{M}_{1} & \hat{A}_{2} & \hat{A}_{2} & \hat{A}_{2} & \hat{A}_{2} & \hat{A}_{3} & \hat{A}_{3} & \hat{A}_{3} & \hat{A}_{3} \tag{25}\\
\mathbf{0} & \mathbf{1} & \mathbf{a}_{t_{1}+\ell} & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{0} & \mathbf{2} & \mathbf{4} & \mathbf{6}
\end{array}\right),
$$

where $\hat{M}_{1}=\left\{\mathbf{z}^{T}: \mathbf{z} \in\{2\} \times\{0,2\}^{t_{1}+\ell-1}\right\}$. We repeat Construction (25) until $\ell=t_{2}$. Then, the code generated by $\hat{A}_{\bar{a}_{t_{1}+t_{2}}, \bar{b}_{t_{1}}}^{t_{1}, t_{2}, 1}{ }^{\text {, denoted by }} \hat{\mathcal{H}}_{\bar{a}_{t_{1}+t_{2}}, \bar{b}_{t_{1}}}^{t_{1}, t_{2},}$, is a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive Hadamard code of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, t_{2}, 1\right)$ with $\alpha_{1} \neq 0$, $\alpha_{2} \neq 0$ and $\alpha_{3} \neq 0$. Moreover, the corresponding $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard code $\Phi\left(\hat{\mathcal{H}}_{\bar{a}_{t_{1}+t_{2}}, \bar{b}_{t_{1}}}^{t_{1}, t_{2}, 1}\right)$ is permutation equivalent to $\Phi\left(\mathcal{H}^{t_{1}, t_{2}, 1}\right)$.

Proof. It is enough to show that $\hat{\mathcal{H}}_{\bar{a}_{t_{1}+t_{2}}, \bar{b}_{t_{1}}}^{t_{1}, t_{2}, 1}$ and $\mathcal{H}^{t_{1}, t_{2}, 1}$ are permutation equivalent. We prove this by induction on $t_{2} \geq 0$. By Theorem 3.1, $\hat{\mathcal{H}}_{\bar{a}_{t_{1}}, \bar{b}_{t_{1}}}^{t_{1}, 0,1}$ and $\mathcal{H}^{t_{1}, 0,1}$ are permutation equivalent. Assume that $\hat{\mathcal{H}}_{\bar{a}_{t_{1}+t_{2}}, \bar{b}_{t_{1}}}^{t_{1}, t_{2}, 1}$ and $\mathcal{H}^{t_{1}, t_{2}, 1}$, generated by $\hat{A}_{\bar{a}_{t_{1}+t_{2}}, \bar{b}_{t_{1}}}^{t_{1}, t_{2}, 1}$ and $A^{t_{1}, t_{2}, 1}$, respectively, are permutation equivalent. We have that $a_{t_{1}+t_{2}+1} \in \mathbb{Z}_{4}^{*}=\{1,3\}$. Let $\hat{\mathcal{H}}_{\bar{a}_{t_{1}+t_{2}+1}, \bar{b}_{t}}^{t_{1}} t_{2}+1,1$ and $\mathcal{H}^{t_{1}, t_{2}+1,1}$ be the codes generated by $\hat{A}_{\bar{t}_{t_{1}+t_{2}+1}, \bar{b}_{t_{1}}}^{t_{1}, t_{2}+1,1}$ using Construction 25 and $A^{t_{1}, t_{2}+1,1}$ using Construction (4), respectively. Then, by the same arguments as in the proof of Theorem 3.1 and applying the row operation $r_{t_{1}+t_{2}+1} \leftarrow-r_{t_{1}+t_{2}+1}$ if $a_{t_{1}+t_{2}+1}=3$, the codes $\hat{\mathcal{H}}_{\bar{a}_{t_{1}+t_{2}+1}, \bar{b}_{t_{1}}}^{t_{1}, t_{2}+1,}$ and $\mathcal{H}^{t_{1}, t_{2}+1,1}$ are permutation equivalent, and so are the corresponding $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear codes. This completes the proof.

Theorem 3.3. $t_{1} \geq 1, t_{2} \geq 0$ and $t_{3} \geq 1$. Let $\bar{a}_{t_{1}+t_{2}}=\left(a_{1}, \ldots, a_{t_{1}+t_{2}}\right) \in$ $\left(\mathbb{Z}_{4}^{*}\right)^{t_{1}+t_{2}}, \bar{b}_{t_{1}}=\left(b_{1}, \ldots, b_{t_{1}}\right) \in\left(\mathbb{Z}_{8}^{*}\right)^{t_{1}}$. Let $\hat{A}_{\bar{a}_{t_{1}+t_{2}}, \bar{b}_{t_{1}}}^{t_{1}, t_{2}, t_{3}}$ be the matrix obtained by using Construction (5) in the following way, starting with $\hat{A}_{\bar{a}_{1}, \bar{b}_{1}}^{1,0,1}$ given in 231). If we have $\hat{A}_{\bar{a}_{t_{1}+t_{2}}, \bar{b}_{t_{1}}}^{t_{1}, t_{2}, \bar{L}^{\prime}}, \ell \geq 2$, we may construct $\hat{A}_{\bar{a}_{t_{1}+t_{2}}, \bar{b}_{t_{1}}}^{t_{1}, t_{2} \ell}$ by Construction (5). We repeat Construction (5) until $\ell=t_{3}$. Then, the code generated by $\hat{A}_{\bar{a}_{t_{1}+t_{2}}, \bar{b}_{t_{1}}}^{t_{1}, t_{2}, t_{3}}$, denoted by $\hat{\mathcal{H}}_{\bar{a}_{t_{1}+t_{2}}, \bar{b}_{t_{1}}}^{t_{1}, t_{2}, t_{3}}$, is a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive Hadamard code of type $\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; t_{1}, t_{2}, t_{3}\right)$ with $\alpha_{1} \neq 0, \alpha_{2} \neq 0$ and $\alpha_{3} \neq 0$. Moreover, the corresponding $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard code $\Phi\left(\hat{\mathcal{H}}_{\bar{a}_{t_{1}+t_{2}}, \bar{b}_{t_{1}}}^{t_{1}, t_{2}, t_{3}}\right)$ is permutation equivalent to $\Phi\left(\mathcal{H}^{t_{1}, t_{2}, t_{3}}\right)$.

Proof. We have that that $\hat{\mathcal{H}}_{\bar{a}_{t_{1}+t_{2}}, \bar{b}_{t_{1}}}^{t_{1}, t_{2}, 1}$ and $\mathcal{H}^{t_{1}, t_{2}, 1}$ are permutation equivalent by Theorem 3.2. Then, by the same arguments as in the proof of Theorem
3.1. the codes $\hat{\mathcal{H}}_{\bar{a}_{t_{1}+t_{2}}, \bar{b}_{t_{1}}}^{t_{1}, t_{2}, t_{3}+1}$ and $\mathcal{H}^{t_{1}, t_{2}, t_{3}+1}$ are permutation equivalent and the result follows.

4. Conclusions and further research

In this paper, we give several recursive constructions of $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes with $\alpha_{1} \neq 0, \alpha_{2} \neq 0$, and $\alpha_{3} \neq 0$. We show that they all allow us to construct the same family of codes since they generate permutation equivalent codes. Moreover, from Example 2.3, we see that all the nonlinear $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes $H^{t_{1}, t_{2}, t_{3}}$ of length 2^{11} are not equivalent to each other, nor to any $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard code, nor to any $\mathbb{Z}_{2^{s}}$ linear Hadamard code [16], with $s \geq 2$, of the same length 2^{11}. Therefore, we have that some nonlinear Hadamard codes, without any known structure, now can be seen as the Gray map image of a $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes with $\alpha_{1} \neq 0, \alpha_{2} \neq 0$, and $\alpha_{3} \neq 0$. As further research, it would be interesting to generalize this result, given only for 2^{11}, to any length 2^{t}.

Another further research could be to generalize the given construction of $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes to $\mathbb{Z}_{2} \mathbb{Z}_{4} \ldots \mathbb{Z}_{2^{s}}$-linear Hadamard codes with $\alpha_{1}, \ldots, \alpha_{s}$ different to zero, or even to $\mathbb{Z}_{p} \mathbb{Z}_{p^{2}} \ldots \mathbb{Z}_{p^{s}}$-linear generalized Hadamard codes with p prime. The study of $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear Hadamard codes may represent an important step to study the general case, and other papers [2, 36] have also focused on this particular case. However, the generalizations are not feasible using the same techniques employed in this paper.

References

[1] Edvard F Assmus and Jennifer D Key, Designs and their codes, Cambridge University Press, 1994.
[2] I. Aydogdu and F. Gursoy, $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive codes, J. Appl. Math. Comput. 60 (2019), 327-341.
[3] Heiko Bauer, Bernhard Ganter, and Ferdinand Hergert, Algebraic techniques for nonlinear codes, Combinatorica 3 (1983), no. 1, 21-33.
[4] Dipak Kumar Bhunia, Cristina Fernández-Córdoba, Carlos Vela, and Mercè Villanueva, Equivalences among $\mathbb{Z}_{p^{s}}$-linear generalized Hadamard codes, preprint arxiv:2203.15407 (2022).
[5] Dipak Kumar Bhunia, Cristina Fernández-Córdoba, and Mercè Villanueva, On the constructions of $\mathbb{Z}_{p} \mathbb{Z}_{p^{2}}$-linear generalized Hadamard codes, Finite Fields and Their Applications 83 (2022), 102093.
[6] , On the linearity and classification of $\mathbb{Z}_{p^{s}}$-linear generalized Hadamard codes, Designs, Codes and Cryptography 90 (2022), 1037-1058.
[7] , Linearity and classification of $\mathbb{Z}_{p} \mathbb{Z}_{p^{2}}$-linear generalized Hadamard codes, Finite Fields and Their Applications 86 (2023), 102140.
[8] , On $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive Hadamard codes, Proc. of IEEE International Symposium on Information Theory (ISIT 2023), 25-30 June 2023, IEEE, 2023, pp. 276-281.
[9] Ian F Blake, Codes over integer residue rings, Information and Control 29 (1975), no. 4, 295-300.
[10] Joaquim Borges, Cristina Fernández-Córdoba, Jaume Pujol, Josep Rifà, and Mercè Villanueva, $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes: generator matrices and duality, Designs, Codes and Cryptography 54 (2010), no. 2, 167-179.
[11] Joaquim Borges, Cristina Fernández-Córdoba, Jaume Pujol, Josep Rifà, and Mercè Villanueva, $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes, Springer, 2022.
[12] Joaquim Borges, Cristina Fernández-Córdoba, and Josep Rifà, Every $\mathbb{Z}_{2^{k} \text {-code }}$ is a binary propelinear code, Electronic Notes in Discrete Mathematics 10 (2001), 100102.
[13] Wieb Bosma, John J Cannon, C Fieker, and A Steel, Handbook of Magma functions, Edition 2.25 (2020).
[14] Claude Carlet, $\mathbb{Z}_{2^{k}}$-linear codes, IEEE Transactions on Information Theory 44 (1998), no. 4, 1543-1547.
[15] Steven T Dougherty and Cristina Fernández-Córdoba, Codes over $\mathbb{Z}_{2^{k}}$, Gray map and self-dual codes, Advances in Mathematics of Communications 5 (2011), no. 4, 571-588.
[16] Cristina Fernández-Córdoba, Carlos Vela, and Mercè Villanueva, On $\mathbb{Z}_{2^{s}}$-linear Hadamard codes: kernel and partial classification, Designs, Codes and Cryptography 87 (2019), no. 2-3, 417-435.
[17] _, On \mathbb{Z}_{8}-linear Hadamard codes: rank and classification, IEEE Transactions on Information Theory 66 (2019), no. 2, 970-982.
[18] , Equivalences among $\mathbb{Z}_{2^{s} \text {-linear Hadamard codes, Discrete Mathematics } 343}$ (2020), no. 3, 111721.
[19] A Roger Hammons, P Vijay Kumar, A Robert Calderbank, Neil JA Sloane, and Patrick Solé, The \mathbb{Z}_{4}-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Transactions on Information Theory 40 (1994), no. 2, 301-319.
[20] Th. Honold and Aleksandr Aleksandrovich Nechaev, Weighted modules and representations of codes, Probl. Inf. Transm. 35 (1999), no. 3, 205-223.
[21] K. J. Horadam, Hadamard matrices and their applications, Princeton University Press (2007).
[22] J. F. Huang, C. C. Yang, and S. P. Tseng, Complementary Walsh-Hadamard coded optical CDMA coder/decoders structured over arrayed-waveguide grating routers, Opt. Commun. 229 (2004), 241-248.
[23] Denis S Krotov, \mathbb{Z}_{4}-linear Hadamard and extended perfect codes, Electronic Notes in Discrete Mathematics 6 (2001), 107-112.
[24] _, On $\mathbb{Z}_{2^{k} \text {-dual binary codes, IEEE Transactions on Information Theory } 53}$ (2007), no. 4, 1532-1537.
[25] Denis S Krotov and Mercè Villanueva, Classification of the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Hadamard codes and their automorphism groups, IEEE Transactions on Information Theory 61 (2015), no. 2, 887-894.
[26] Florence Jessie MacWilliams and Neil James Alexander Sloane, The theory of errorcorrecting codes, Elsevier, 1977.
[27] K. Nyberg, Perfect nonlinear S-boxes, EUROCRYPT-91 LNCS 547 (1991), 378-385.
[28] Kevin T Phelps, Joseph Rifà, and Mercè Villanueva, On the additive (\mathbb{Z}_{4}-linear and non- \mathbb{Z}_{4}-linear) Hadamard codes: rank and kernel, IEEE transactions on information theory 52 (2006), no. 1, 316-319.
[29] Josep Rifà, Faina Ivanovna Solov'eva, and Mercè Villanueva, On the intersection of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive perfect codes, IEEE transactions on information theory 54 (2008), no. 3, 1346-1356.
[30] Priti Shankar, On BCH codes over arbitrary integer rings, IEEE Transactions on Information Theory 25 (1979), no. 4, 480-483.
[31] Minjia Shi, Thomas Honold, Patrick Solé, Yunzhen Qiu, Rongsheng Wu, and Zahra Sepasdar, The geometry of two-weight codes over $\mathbb{Z}_{p^{m}}$, IEEE Transactions on Information Theory 67 (2021), no. 12, 7769-7781.
[32] Minjia Shi, Zahra Sepasdar, Adel Alahmadi, and Patrick Solé, On two-weight $\mathbb{Z}_{2^{k}-}$ codes, Designs, Codes and Cryptography 86 (2018), no. 6, 1201-1209.
[33] Minjia Shi, Rongsheng Wu, and Denis S Krotov, On $\mathbb{Z}_{p} \mathbb{Z}_{p^{k}}$-additive codes and their duality, IEEE Transactions on Information Theory 65 (2019), no. 6, 3841-3847.
[34] E. D. J. Smith, R. J. Blaikie, and Taylor D. P., Performance enhancement of spectralamplitude coding optical cdma using pulse-position modulation, IEEE Transactions on Communications 46 (1998), 1176-1185.
[35] G. J. Yu, C. S. Lu, and H. Y. Liao, A message-based cocktail watermarking system, Pattern Recognition 36 (2003), 957-968.
[36] Basri Çalnşkan and Kemal Balıkçi, Counting $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-additive codes, European Journal of Pure and Applied Mathematics 12 (2019), no. 2, 668-679.

Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.

Email address: Dipak.Bhunia@uab.cat
Email address: Cristina.Fernandez@uab.cat
Email address: Merce.Villanueva@uab.cat

[^0]: 2020 Mathematics Subject Classification. 94B25, 94B60.
 Key words and phrases. Hadamard code, Gray map, $\mathbb{Z}_{2} \mathbb{Z}_{4} \mathbb{Z}_{8}$-linear code.
 This work has been partially supported by the Spanish Ministerio de Ciencia e Innovación under grants PID2019-104664GB-I00, PID2022-137924NB-I00, and RED2022-134306-T (AEI / 10.13039/501100011033); and by the Catalan AGAUR under scholarship 2020 FI SDUR 00475 and grant 2021 SGR 00643.

 The material in this paper was presented in part at the IEEE International Symposium on Information Theory (ISIT 2023), 25-30 June 2023 [8].

