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The ZpZp2 -additive codes are subgroups of Zα1
p × Zα2

p2 , and 
can be seen as linear codes over Zp when α2 = 0, Zp2 -additive 
codes when α1 = 0, or Z2Z4-additive codes when p = 2. A 
ZpZp2 -linear generalized Hadamard (GH) code is a GH code 
over Zp which is the Gray map image of a ZpZp2 -additive 
code. Recursive constructions of ZpZp2 -additive GH codes of 
type (α1, α2; t1, t2) with t1, t2 ≥ 1 are known. In this paper, we 
generalize some known results for ZpZp2 -linear GH codes with 
p = 2 to any p ≥ 3 prime when α1 �= 0, and then we compare 
them with the ones obtained when α1 = 0. First, we show 
for which types the corresponding ZpZp2 -linear GH codes 
are nonlinear over Zp. Then, for these codes, we compute 
the kernel and its dimension, which allow us to classify them 
completely. Moreover, by computing the rank of some of these 
codes, we show that, unlike Z4-linear Hadamard codes, the 
Zp2 -linear GH codes are not included in the family of ZpZp2 -
linear GH codes with α1 �= 0 when p ≥ 3 prime. Indeed, 
there are some families with infinite nonlinear ZpZp2 -linear 
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GH codes, where the codes are not equivalent to any Zps -
linear GH code with s ≥ 2.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let Zps be the ring of integers modulo ps, where p is a prime. Let Zn
ps denote the set 

of all n-tuples over Zps . In this paper, the elements of Zn
ps will also be called vectors of 

length n. A code over Zp of length n is a nonempty subset of Zn
p , and it is linear if it 

is a subspace of Zn
p . Similarly, a nonempty subset of Zn

ps is a Zps -additive code if it is a 
subgroup of Zn

ps . A ZpZp2-additive code is a subgroup of Zα1
p ×Zα2

p2 . Note that a ZpZp2-
additive code is a linear code over Zp when α2 = 0, a Zp2-additive code when α1 = 0, or 
a Z2Z4-additive code when p = 2. The order of a vector u ∈ Zn

ps , denoted by o(u), is the 
smallest positive integer m such that mu = (0, . . . , 0). Also, the order of u ∈ Zα1

p ×Zα2
p2 , 

denoted by o(u), is the smallest positive integer m such that mu = (0, . . . , 0 | 0, . . . , 0).
Two codes C1 and C2 over Zp of length n are said to be monomially equivalent (or 

just equivalent) provided there is a monomial matrix M such that C2 = {cM : c ∈ C1}. 
Recall that a monomial matrix is a square matrix with exactly one nonzero entry in 
each row and column. Both codes are said to be permutation equivalent if there is a 
permutation matrix P such that C2 = {cP : c ∈ C1}. Recall that a permutation matrix 
is a square matrix with exactly one 1 in each row and column and zeros elsewhere.

The Hamming weight of a vector u ∈ Zn
p , denoted by wtH(u), is the number of nonzero 

coordinates of u. The Hamming distance of two vectors u, v ∈ Zn
p , denoted by dH(u, v), 

is the number of coordinates in which they differ. Note that dH(u, v) = wtH(u − v). The 
minimum distance of a code C over Zp is d(C) = min{dH(u, v) : u, v ∈ C, u �= v}.

In [3], a Gray map from Z4 to Z2
2 is defined as φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1)

and φ(3) = (1, 0). There exist different generalizations of this Gray map, which go from 
Z2s to Z2s−1

2 [4–8]. The one given in [7] can be defined in terms of the elements of a 
Hadamard code [8], and Carlet’s Gray map [4] is a particular case of the one given in 
[8] satisfying 

∑
λiφ(2i) = φ(

∑
λi2i) [9]. In this paper, we focus on a generalization of 

Carlet’s Gray map from Zps to Zps−1

p , also denoted by φ, which is a particular case of 
the one given in [10]. Let Φ : Zn

ps → Znps−1

p be the extension of the Gray map φ given 
by Φ(y′) = (φ(y′1), . . . , φ(y′n)), for any y′ = (y′1, . . . , y′n) ∈ Zn

ps . We also denote by Φ the 
extension Φ : Zα1

p × Zα2
p2 → Zα1+pα2

p , given by

Φ((y | y′)) = (y, φ(y′1), . . . , φ(y′α2
)),

for any y ∈ Zα1
p and y′ = (y′1, . . . , y′α2

) ∈ Zα2
p2 .

Let C ⊆ Zn
ps be a Zps-additive code. We say that its Gray map image C = Φ(C) is 

a Zps-linear code of length nps−1. Since C is a subgroup of Zn
ps , it is isomorphic to an 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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abelian structure Zt1
ps ×Zt2

ps−1 × · · · ×Zts
p , and we say that C, or equivalently C = Φ(C), 

is of type (n; t1, . . . , ts). Note that |C| = pst1p(s−1)t2 · · · pts . Similarly, if C ⊆ Zα1
p × Zα2

p2

is a ZpZp2-additive code, we say that its Gray map image C = Φ(C) is a ZpZp2-linear 
code of length α1 +pα2. Since C can be seen as a subgroup of Zα1+α2

p2 , it is isomorphic to 
Zt1

p2 × Zt2
p , and we say that C, or equivalently C = Φ(C), is of type (α1, α2; t1, t2). Note 

that |C| = p2t1+t2 . Note that a Zp2-linear code of type (n; t1, t2) can also be seen as a 
ZpZp2-linear code of type (0, n; t1, t2). Unlike linear codes over finite fields, linear codes 
over rings do not have a basis, but there exist generator matrices for these codes having 
minimum number of rows.

Two structural properties of codes over Zp are the rank and dimension of the kernel. 
The rank of a code C over Zp is simply the dimension of the linear span, 〈C〉, of C. The 
kernel of a code C over Zp is defined as K(C) = {x ∈ Zn

p : x + C = C} [11,12]. If the 
all-zero vector belongs to C, then K(C) is a linear subcode of C. Note also that if C is 
linear, then K(C) = C = 〈C〉. We denote the rank of C as rank(C) and the dimension of 
the kernel as ker(C). These parameters can be used to distinguish between nonequivalent 
codes, since equivalent ones have the same rank and dimension of the kernel.

A generalized Hadamard (GH) matrix H(p, λ) = (hij) of order N = pλ over Zp is a 
pλ ×pλ matrix with entries from Zp with the property that for every i, j, 1 ≤ i < j ≤ pλ, 
each of the multisets {his − hjs : 1 ≤ s ≤ pλ} contains every element of Zp exactly λ
times [13]. For μ ≥ 1, an ordinary Hadamard matrix of order 4μ corresponds to a GH 
matrix H(2, λ) over Z2, where λ = 2μ [14]. Two GH matrices H1 and H2 of order N
are said to be equivalent if one can be obtained from the other by a permutation of the 
rows and columns and adding the same element of Zp to all the coordinates in a row 
or in a column. Then, we can always change the first row and column of a GH matrix 
into zeros and we obtain an equivalent GH matrix which is called normalized. From a 
normalized GH matrix H, we denote by FH the code consisting of the rows of H. We 
define CH = ∪α∈Zp

(FH + α1), where FH + α1 = {h + α1 : h ∈ FH} and 1 denotes the 
all-one vector. The code CH over Zp is called generalized Hadamard (GH) code [15]. 
Note that CH is generally a nonlinear code over Zp. Moreover, if it is of length N , it has 
pN codewords and d(CH) = N(p − 1)/p.

The Zps-additive (resp. ZpZp2-additive) codes such that after the Gray map Φ give 
GH codes are called Zps-additive (resp. ZpZp2-additive) GH codes and the corresponding 
images are called Zps-linear (resp. ZpZp2-linear) GH codes. The classification of Z2Z4-
linear Hadamard codes of length 2t with α1 = 0 and α1 �= 0 is given in [16,17], showing 
that there are �(t − 1)/2� and �t/2� such nonequivalent codes, respectively. Moreover, 
in [18], it is shown that each Z2Z4-linear Hadamard code with α1 = 0 is equivalent to a 
Z2Z4-linear Hadamard code with α1 �= 0, so indeed there are only �t/2� nonequivalent 
Z2Z4-linear Hadamard codes of length 2t. Later, in [19,9,20,21], an iterative construction 
for Zps-linear GH codes is described, the linearity is established, and a partial classifi-
cation is obtained, giving the exact amount of nonequivalent nonlinear such codes for 
some parameters. The Zps-additive codes have also been studied in [22,23] as two-weight 
codes over Zps by considering the homogeneous weight.
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This paper is focused mainly on ZpZp2-linear GH codes with α1 �= 0 and p ≥ 3 prime, 
generalizing some results given for p = 2 in [17] related to the linearity, kernel, rank and 
classification of such codes. These codes are also compared with the Zps-linear GH codes 
studied in [19]. This paper is organized as follows. In Section 2, we recall the definition 
of the Gray map considered in this paper and some of its properties. Then, we recall the 
constructions of ZpZp2-additive GH codes of type (α1, α2; t1, t2) with α1 �= 0 and p prime 
and some results related to that. In Sections 3 and 4, we establish for which types these 
codes are linear, and we give the kernel and its dimension whenever they are nonlinear. 
We also show that the dimension of the kernel is enough to classify completely the ZpZp2-
linear GH codes with α1 �= 0 of a given length, providing the number of nonequivalent 
such codes, like it was proved for Z2Z4-linear Hadamard codes in [17]. In Section 5, we 
compute the rank of some families of ZpZp2-linear GH codes with α1 �= 0. Finally, in 
Section 6, we show that, unlike Z4-linear Hadamard codes, the Zp2-linear GH codes are 
not included in the family of ZpZp2-linear GH codes with α1 �= 0 when p ≥ 3 prime. 
Indeed, we prove that there are some families of ZpZp2-linear GH codes, where the codes 
are not equivalent to any Zps-linear GH code with s ≥ 2.

2. Preliminary results

In this section, we first give the definition of the Gray map considered in this paper 
for elements of Zps and some of its properties used in the paper. Then, we recall the 
constructions of ZpZp2-additive GH codes of type (α1, α2; t1, t2) with p prime when 
α1 �= 0 and some results related to that.

We consider the following Gray map φ, given in [4,24]:

φ : Zps −→ Zps−1

p

u → (us−1, . . . , us−1) + (u0, . . . , us−2)Ys−1,
(1)

where u ∈ Zps , [u0, u1, . . . , us−1]p is the p-ary expansion of u, that is, u =
∑s−1

i=0 piui

(ui ∈ Zp), and Ys−1 is a matrix of size (s − 1) × ps−1 whose columns are the elements 
of Zs−1

p . Without loss of generality, we assume that the columns of Ys−1 are ordered 
in ascending order, by considering the elements of Zs−1

p as the p-ary expansions of the 
elements of Zps−1 .

Let u′, v′ ∈ Zp2 and [u′
0, u

′
1]p, [v′0, v′1]p be the p-ary expansions of u′ and v′, respectively, 

i.e. u′ = u′
0 + u′

1p and v′ = v′0 + v′1p. We define the operation “�p” between elements u′

and v′ in Zp2 as u′ �p v
′ = ξ0 + ξ1p, where

ξi =
{

1 if u′
i + v′i ≥ p,

0 otherwise.

Note that the p-ary expansion of u′ �p v
′ is [ξ0, ξ1]p, where ξ0, ξ1 ∈ {0, 1}. For u, v ∈ Zp, 

we define u �p v = 1 if u + v ≥ p and 0 otherwise. We denote in the same way, “�p”, 
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the component-wise operation. For u = (u | u′), v = (v | v′) ∈ Zα1
p × Zα2

p2 , we denote 
u �p v = (u �p v | u′ �p v

′). Note that p(u �p v) = (0 | p(u′ �p v
′)).

From [19], we have the following results:

Lemma 2.1. [19] Let u ∈ Zp2 and λ ∈ Zp. Then, φ(u + λp) = φ(u) + (λ, . . . , λ).

Corollary 2.1. [19] Let λ, μ ∈ Zp. Then, φ(λμp) = λφ(μp) = λμφ(p).

Corollary 2.2. [19] Let u, v ∈ Zp2 . Then, φ(u) + φ(v) = φ(u + v − p(u �p v)).

Corollary 2.3. [19] Let u, v ∈ Zp2 . Then, φ(pu + v) = φ(pu) + φ(v).

Corollary 2.4. [19] Let u, v ∈ Zp2 and [u0, u1]p, [v0, v1]p be the p-ary expansions of u and 
v, respectively. Then, φ(u + v) = φ(u) + φ(v) + (ξ0, . . . , ξ0), where ξ0 = 1 if u0 + v0 ≥ p

and 0 otherwise.

Proposition 2.1. [4,24,19] Let u, v ∈ Zp2 . Then, dH(φ(u), φ(v)) = wtH(φ(u − v)).

By Proposition 2.1, the ZpZp2-linear codes obtained from the Gray map Φ are distance 
invariant, that is, the Hamming weight distribution is invariant under translation by a 
codeword. Therefore, their minimum distance coincides with the minimum weight.

Let 0, 1, 2, . . . , p2 − 1 be the vectors having the same element 0, 1, 2, . . . , p2 − 1 re-
peated in all its coordinates, respectively. Let

A1,1
p =

(
1 1 · · · 1 p p · · · p

0 1 · · · p− 1 1 2 · · · p− 1

)
. (2)

Any matrix At1,t2
p with t1 ≥ 1, t2 ≥ 2 or t1 ≥ 2, t2 ≥ 1 can be obtained by applying the 

following iterative constructions. First, if A is a generator matrix of a ZpZp2-additive 
code, that is, a subgroup of Zα1

p × Zα2
p2 , then we denote by A1 the submatrix of A

consisting of the first α1 columns over Zp, and A2 the submatrix consisting of the last 
α2 columns over Zp2 . We start with A1,1

p . Then, if we have a matrix A = At1,t2
p with 

t1, t2 ≥ 1, we may construct the matrices

At1,t2+1
p =

(
A1 A1 · · · A1 A2 A2 · · · A2
0 1 · · · p − 1 p · 0 p · 1 · · · p · (p − 1)

)
(3)

and

At1+1,t2
p =

(
A1 A1 · · · A1 pA1 · · · pA1 A2 A2 · · · A2
0 1 · · · p − 1 1 · · · p − 1 0 1 · · · p2 − 1

)
. (4)
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Example 2.1. Let

A1,1
3 =

(
1 1 1 3 3
0 1 2 1 2

)

be the matrix described in (2) for p = 3. By using the constructions described in (3) and 
(4), we obtain A1,2

3 and A2,1
3 , respectively, as follows:

A1,2
3 =

⎛
⎜⎝ 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3

0 1 2 0 1 2 0 1 2 1 2 1 2 1 2
0 0 0 1 1 1 2 2 2 0 0 3 3 6 6

⎞
⎟⎠ ,

A2,1
3 =

⎛
⎜⎝ 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 · · · 3 3

0 1 2 0 1 2 0 1 2 0 3 6 0 3 6 1 2 · · · 1 2
0 0 0 1 1 1 2 2 2 1 1 1 2 2 2 0 0 · · · 8 8

⎞
⎟⎠ .

We can consider that the matrices At1,t2
p are constructed recursively starting from 

A1,1
p in the following way. First, we add t1 − 1 rows of order p2 up to obtain At1,1

p , and 
then we add t2 − 1 rows of order p up to achieve At1,t2

p . Note that in the first row there 
is always the row (1 | p).

Let Ht1,t2
p be the ZpZp2-additive code of type (α1, α2; t1, t2) generated by the matrix 

At1,t2
p , with t1, t2 ≥ 1, p prime, and α1 �= 0. Let Ht1,t2

p = Φ(Ht1,t2
p ) be the corresponding 

ZpZp2-linear code. By Theorem 2.1, we have that Ht1,t2
p is a ZpZp2-linear GH code.

Theorem 2.1. [25] Let t1, t2 ≥ 1 and p prime. Then, the ZpZp2-linear code Ht1,t2
p of type 

(pt−t1 , pt−1 − pt−t1−1; t1, t2) is a GH code over Zp of length pt, with t = 2t1 + t2 − 1.

Let H be a ZpZp2-additive code of type (α1, α2; t1, t2) with p prime. Let H1 (respec-
tively, H2) be the punctured code of H by deleting the last α2 coordinates over Zp2

(respectively, the first α1 coordinates over Zp).

Remark 2.1. [25] Let H = Ht1,t2
p be a ZpZp2-additive GH code of type (α1, α2; t1, t2)

with t1, t2 ≥ 1 and p prime. Let H = Φ(Ht1,t2
p ) be the corresponding ZpZp2-linear GH 

code of length α1 + pα2. Then, since H is a GH code, its minimum weight is

(p− 1)(α1 + pα2)
p

.

Note that, by construction, H1 is a GH code over Zp of length α1 and minimum weight 
(p − 1)α1/p.

Remark 2.2. [25] Since the length of the ZpZp2-linear GH code Φ(H1,1
p ) is p2, its minimum 

weight is (p − 1)p2/p = p(p − 1) by Remark 2.1.
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Remark 2.3. [25] The above constructions (3) and (4) give always ZpZp2-linear GH codes 
with α2 �= 0 since the starting matrix A1,1

p has α2 �= 0. If α2 = 0, the ZpZp2-linear GH 
codes coincide with the codes obtained from a Sylvester GH matrix, so they are always 
linear and of type (pt2−1, 0; 0, t2) [15]. Therefore, in this paper, we only focus on the ones 
with α2 �= 0.

Finally, we give some notations and recall two results proved in [25], which are used 
in the next sections.

When we include all the elements of Zp (resp. Zp2) as coordinates of a vector, we 
place them in increasing order. We denote by Np the set {0, 1, . . . , p − 1} ⊂ Zp2 and 
N−

p = Np \ {0}. As before, when including all the elements in those sets as coordinates 
of a vector, we place them in increasing order. For a set S ⊆ Zp2 and λ ∈ Zp2 , we 
define λS = {λj : j ∈ S}. For example, N3 = {0, 1, 2} ⊂ Z9, N−

3 = {1, 2} ⊂ Z9, 
2N−

3 = {2, 4}, 3Z9 = {0, 3, 6}, (Z3, Z3) = (0, 1, 2, 0, 1, 2) ∈ Z6
3 and (Z3 | Z9, 2N−

3 ) =
(0, 1, 2 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 2, 4) ∈ Z3

3 × Z11
9 .

Lemma 2.2. [25] Let Ht1,1
p be the ZpZp2-additive code generated by the matrix At1,1

p

with t1 ≥ 2 and p prime. Let v1, v2, . . . , vt1 be the row vectors of At1,1
p of order p2. 

Let v = (v | v′) ∈ Ht1,1
p such that v =

∑t1
i=1 λivi, where λi ∈ Np and at least one 

λi �= 0. Then, v′ contains every element of pZp2 the same number of times and one of 
the following conditions is satisfied:

1. There exists λ ∈ N−
p such that v′ contains every element of λN−

p the same number 
of times and every element of Zp2 \ (pZp2 ∪ λN−

p ) zero times.
2. There exists λ ∈ N−

p such that v′ contains every element of λN−
p the same number 

of times and every element of Zp2 \ (pZp2 ∪ λN−
p ) the same number of times.

3. Every element of Zp2 \ pZp2 appears in v′ the same number of times.

Corollary 2.5. [25] Let Ht1,t2
p be the ZpZp2-additive code generated by the matrix At1,t2

p

with t1 ≥ 2, t2 ≥ 1, and p prime. Let u = (u | u′) ∈ Ht1,t2
p such that o(u) = p2. Then, u′

contains every element of pZp2 the same number of times and the remaining coordinates 
are from Zp2 \ pZp2 .

3. Linearity of ZpZp2-linear GH codes with α1 �= 0

As it is mentioned in Remark 2.3, since the ZpZp2-linear GH codes with α2 = 0 are 
linear, we only need to focus on the codes with α2 �= 0. The linearity of ZpZp2-linear 
GH codes with α1 = 0 was studied in [16,17] for p = 2 and [19] for p ≥ 3 prime. When 
α1 �= 0, they are the ones constructed from matrices At1,t2

p given in Section 2. In [17], 
it is shown that the Z2Z4-linear Hadamard codes of type (α1, α2; 1, t2) with t2 ≥ 1 are 
the only ones which are linear, when α1 �= 0. The next result shows that there are no 
ZpZp2-linear GH codes of type (α1, α2; t1, t2), with α1 �= 0, t1, t2 ≥ 1 and p ≥ 3 prime, 
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which are linear. Note that this result for p ≥ 3 does not coincide with the known result 
for p = 2 if t1 = 1.

Theorem 3.1. Let Ht1,t2
p be the ZpZp2-additive GH code of type (α1, α2; t1, t2) with α1 �=

0, t1, t2 ≥ 1 and p ≥ 3 prime. Then, Ht1,t2
p = Φ(Ht1,t2

p ) is nonlinear.

Proof. First, we prove that H1,1
p is nonlinear. Since u = (0, 1, . . . , p −1 | 1, 2, . . . , p −1) ∈

H1,1
p , then (p −1)u = (0, (p −1) ·1, . . . , (p −1) ·(p −1) | (p −1) ·1, (p −1) ·2, . . . , (p −1) ·(p −

1)) ∈ H1,1
p . Next, we see that Φ(u) +Φ((p −1)u) /∈ H1,1

p . Since φ(1) +φ(p −1) = 0 by the 
definition of φ, then the first 2p coordinates of the vector Φ(u) +Φ((p −1)u) of length p2

are zero. Therefore, wtH(Φ(u) +Φ((p −1)u)) ≤ p2 −2p = p(p −2) < p(p −1). Moreover, 
it is easy to see that Φ(u) + Φ((p − 1)u) �= 0. Hence, Φ(u) + Φ((p − 1)u) /∈ H1,1

p , since 
the minimum weight of H1,1

p is p(p − 1) by Remark 2.2. Therefore, H1,1
p is nonlinear.

Second, we prove that if Ht1−1,t2
p is nonlinear for t1 ≥ 2, t2 ≥ 1, then Ht1,t2

p is also 
nonlinear. Assume that Ht1,t2

p is linear. Then, by the iterative construction defined in 
(4), for any u = (u | u′), v = (v | v′) ∈ Ht1−1,t2

p , we have that ū, v̄ ∈ Ht1,t2
p , where

ū = (u, p. . ., u | pu, p−1. . . , pu, u′, p2
. . ., u′),

v̄ = (v, p. . ., v | pv, p−1. . . , pv, v′, p2
. . ., v′).

Moreover, since Ht1,t2
p is linear, Φ(ū) + Φ(v̄) ∈ Ht1,t2

p . Again, by construction (4), 
we have that Φ(ū) + Φ(v̄) = Φ((a, p. . ., a | pa, p−1. . . , pa, a′, p

2
. . ., a′) + λ(0, 1, . . . , p − 1 |

1, 2, . . . , p − 1, 0, 1, . . . , p2 − 1)) ∈ Ht1,t2
p , for some a = (a | a′) ∈ Ht1−1,t2

p and 
λ ∈ Zp2 . Considering the coordinates in positions 1 and 2p of ū and v̄, we have that 
Φ(u) + Φ(v) = Φ(a) ∈ Ht1−1,t2

p , and then Ht1−1,t2
p is linear, which is a contradiction.

Finally, if Ht1,t2−1
p is nonlinear, then as above we can show that Ht1,t2

p is also nonlinear, 
and hence the result follows. �
Example 3.1. Let H1,1

3 be the Z3Z9-additive GH code of type (3, 2; 1, 1) generated by 
A1,1

3 given in Example 2.1. We have that

Φ(0, 1, 2 | 1, 2) + Φ(0, 2, 1 | 2, 4) = (0, 1, 2, 0, 1, 2, 0, 2, 1) + (0, 2, 1, 0, 2, 1, 1, 2, 0)

= (0, 0, 0, 0, 0, 0, 1, 1, 1) /∈ H1,1
3 = Φ(H1,1

3 ),

since H1,1
3 has minimum weight 6 by Remark 2.2. Therefore, H1,1

3 is nonlinear.

Example 3.2. Considering all the integer solutions with t1, t2 ≥ 1 of the equation 6 =
2t1 + t2 − 1, we have that the ZpZp2-linear GH codes with α1 �= 0 of length p6, p ≥ 3
prime, are the following: H1,5

p , H2,3
p and H3,1

p . By Theorem 3.1, all of them are nonlinear. 
The types of these codes for p = 3 and p = 5 can be found in the row corresponding to 
t = 6 in Tables 1 and 2, respectively.
D.K. Bhunia et al. / Finite Fields and Their Applications 86 (2023) 102140
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Table 1
Type and parameters (r, k) of Z9-linear and Z3Z9-linear 
GH codes.

t Z9-linear Z3Z9-linear
(n; t1, t2) (r, k) (α1, α2; t1, t2) (r, k)

2 (3;1,1) (3,3) (9, 0; 0, 3) (3,3)
(3, 2; 1, 1) (4,2)

3 (9; 1, 2) (4,4) (27, 0; 0, 4) (4,4)
(9; 2, 0) (5,2) (9, 6; 1, 2) (5,3)

4 (27; 1, 3) (5,5) (81, 0; 0, 5) (5,5)
(27; 2, 1) (6,3) (27, 18; 1, 3) (6,4)

(9, 24; 2, 1) (10,3)
5 (81; 1, 4) (6,6) (243, 0; 0, 6) (6,6)

(81; 2, 2) (7,4) (81, 54; 1, 4) (7,5)
(81; 3, 0) (11,3) (27, 72; 2, 2) (11,4)

6 (243; 1, 5) (7,7) (729, 0; 0, 7) (7,7)
(243; 2, 3) (8,5) (243, 162; 1, 5) (8,6)
(243; 3, 1) (12,4) (81, 216; 2, 3) (12,5)

(27, 234; 3, 1) (20,4)
7 (729; 1, 6) (8,8) (2187, 0; 0, 8) (8,8)

(729; 2, 4) (9,6) (729, 486; 1, 6) (9,7)
(729; 3, 2) (13,5) (243, 648; 2, 4) (13,6)
(729; 4, 0) (21,4) (81, 702; 3, 2) (21,5)

8 (2187; 1, 7) (9,9) (6561, 0; 0, 9) (9,9)
(2187; 2, 5) (10,7) (2187, 1458; 1, 7) (10,8)
(2187; 3, 3) (14,6) (729, 1944; 2, 5) (14,7)
(2187; 4, 1) (22,5) (243, 2106; 3, 3) (22,6)

(81, 2160; 4, 1) (35,5)

Table 2
Type and parameters (r, k) of Z25-linear and Z5Z25-linear 
GH codes.

t Z25-linear Z5Z25-linear
(n; t1, t2) (r, k) (α1, α2; t1, t2) (r, k)

2 (5;1,1) (3, 3) (25, 0; 0, 3) (3,3)
(5,4;1,1) (5, 2)

3 (25; 1, 2) (4, 4) (125, 0; 0, 4) (4, 4)
(25; 2, 0) (7, 2) (25, 20; 1, 2) (6, 3)

4 (125; 1, 3) (5, 5) (625, 0; 0, 5) (5, 5)
(125; 2, 1) (8, 3) (125, 100; 1, 3) (7, 4)

(25, 120; 2, 1) (18,3)
5 (625; 1, 4) (6, 6) (3125, 0; 0, 6) (6, 6)

(625; 2, 2) (9, 4) (625, 500; 1, 4) (8, 5)
(625; 3, 0) (22, 3) (125, 600; 2, 2) (19, 4)

6 (3125; 1, 5) (7, 7) (15625, 0; 0, 7) (7, 7)
(3125; 2, 3) (10, 5) (3125, 2500; 1, 5) (9, 6)
(3125; 3, 1) (23, 4) (625, 3000; 2, 3) (20, 5)

(125, 3100; 3, 1) (50,4)
7 (15625; 1, 6) (8, 8) (78125, 0; 0, 8) (8, 8)

(15625; 2, 4) (11, 6) (15625, 12500; 1, 6) (10, 7)
(15625; 3, 2) (24, 5) (3125, 15000; 2, 4) (21, 6)
(15625; 4, 0) (57, 4) (625, 15500; 3, 2) (51, 5)

8 (78125; 1, 7) (9,9) (390625, 0; 0, 9) (9,9)
(78125; 2, 5) (12,7) (78125, 62500; 1, 7) (11,8)
(78125; 3, 3) (25,6) (15625, 75000; 2, 5) (22,7)
(78125; 4, 1) (58,5) (3125, 77500; 3, 3) (52,6)

(625, 78000; 4, 1) (?,5)
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4. Kernel of ZpZp2-linear GH codes with α1 �= 0

Again, we focus on ZpZp2-linear GH codes with α2 �= 0, because otherwise the codes 
are linear. The kernel of ZpZp2-linear GH codes with α1 = 0 and its dimension was 
studied in [16,17] for p = 2 and [19] for p ≥ 3 prime. The kernel of Z2Z4-linear Hadamard 
codes with α1 �= 0 and its dimension are given in [17]. In this section, we generalize these 
results for ZpZp2-linear GH codes with α1 �= 0 and p ≥ 3 prime. First, we determine the 
kernel, and then we establish a basis of the kernel, which gives us its dimension.

Specifically, we prove that the dimension of the kernel of a ZpZp2-linear GH code of 
type (α1, α2; t1, t2), with α1 �= 0, t1, t2 ≥ 1 and p ≥ 3 prime, is t1 + t2. Again, note that 
this result for p ≥ 3 does not coincide with the known result for p = 2 when t1 = 1, since 
in this last case the codes are linear, so the dimension of kernel is 2t1 + t2.

Theorem 4.1. Let Ht1,t2
p be the ZpZp2-additive GH code of type (α1, α2; t1, t2) with α1 �=

0, t1, t2 ≥ 1 and p ≥ 3 prime. Let Hp be the subcode of Ht1,t2
p which contains all the 

codewords of order at most p. Then, K(Φ(Ht1,t2
p )) = Φ(Hp).

Proof. Let H = Ht1,t2
p and H = Φ(H). By Corollary 2.3, for all b = (b | b′) ∈ Hp and 

u = (u | u′) ∈ H, we have that Φ(b) +Φ(u) = (b +u, Φ(b′) +Φ(u′)) = (b +u, Φ(b′+u′)) ∈ H

and, therefore, Φ(Hp) ⊆ K(H).
Now, let Φ(u) ∈ K(H), where u = (u | u′) ∈ H \ {0}. We prove that o(u) = p and 

thus K(H) ⊆ Φ(Hp). Assume that o(u) = p2, and consider two cases: when t1 = 1
and t1 ≥ 2. In both cases, to obtain a contradiction, we just need to find an element 
ũ ∈ H such that Φ(u) + Φ(ũ) /∈ H. First, let t1 = 1. In this case, H = H1,t2

p . Recall that 
N−

p = {1, . . . , p − 1} ⊂ Zp2 . By construction, the row vector of At1,t2
p of order p2 is

v = (Zp,
α1/p. . . ,Zp | N−

p , α2/(p−1). . . , N−
p ).

Since o(u) = p2, u can be expressed as u = λv+w, where λ ∈ N−
p and w is a codeword 

of order at most p. Note that for λ ∈ N−
p , {λj mod p : j ∈ N−

p } = N−
p . Therefore, we 

also have that λv = v1+w1, where v1 = (0 | v′), v′ contains every element of N−
p exactly 

α2/(p −1) times, and w1 is a vector of order at most p. By Corollary 2.3, Φ(u) = Φ(v1) +
Φ(w1+w). Now, by Corollaries 2.2 and 2.3, Φ(u) +Φ(λv) = Φ(λv+λv+w−p(v1�pv1)). 
If we prove that p(v1 �p v1) /∈ H, then Φ(u) + Φ(λv) /∈ H since λv, w ∈ H. Note that, 
from the definition of �p, for a ∈ Zp2 , p(a �p a) = 0 if and only if a mod p < p/2. Since 
v′ contains an element a such that a mod p ≥ p/2, p(v′ �p v

′) �= 0, so p(v1 �p v1) �= 0. 
We have that the number of ones in v′ is α2/(p − 1). Since φ(p(1 �p 1)) = (0, p. . ., 0), 
wtH(Φ(p(v1 �p v1))) = wtH(Φ(p(v′ �p v′))) ≤ α2p − α2p/(p − 1) < (p − 1)α2. By 
Remark 2.1, the minimum weight of Φ(H) is d = (p − 1)/p(α1 + pα2). Since α1/p ≥ 1, 
(p − 1)α2 < d, and thus p(v1 �p v1) /∈ H. Therefore, we have that Φ(u) /∈ K(H), which 
is a contradiction, so o(u) = p.

Second, let t1 ≥ 2. Since o(u) = p2, u can be expressed as u = v + w, where 
v = (v, . . . , v | v′, . . . , v′) ∈ H, (v | v′) ∈ Ht1,1

p , and w ∈ H is of order at most p. 
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By Corollary 2.3, Φ(u) = Φ(v) + Φ(w). Now, Φ(u) + Φ(v) = Φ(w) + Φ(v) + Φ(v) =
Φ(w) + Φ(v + v− p(v�p v)) = Φ(v + v + w− p(v�p v)) by Corollaries 2.2 and 2.3. If 
we prove that p(v �p v) /∈ H, then Φ(u) + Φ(v) /∈ H since v, w ∈ H. By Lemma 2.2, 
there exist λ ∈ N−

p such that v′ contains every element of λN−
p the same number 

of times. Note that {λj mod p : j ∈ N−
p } = N−

p , and hence λN−
p always contains 

an element a such that a mod p > p/2. Therefore, we have that p(v′ �p v′) �= 0, so 
p(v �p v) �= 0. Now, by Corollary 2.5, v̄′ = (v′, . . . , v′) contains every element of pZp2

exactly m times, m > 0, and the remaining α2 − pm coordinates are from Zp2 \ pZp2 . 
Thus, wtH(Φ(p(v �p v))) = wtH(Φ(p(v̄′ �p v̄

′))) ≤ (α2 − pm)(p − 1) < α2(p − 1), and 
hence p(v �p v) /∈ H by Remark 2.1. Therefore, we have that Φ(u) /∈ K(H), which is a 
contradiction, so o(u) = p. �
Corollary 4.1. Let Ht1,t2

p be the ZpZp2-additive GH code of type (α1, α2; t1, t2) with 
α1 �= 0, t1, t2 ≥ 1 and p ≥ 3 prime. Let wk be the kth row of At1,t2

p and Q =
{(o(wk)/p)wk}t1+t2

k=1 . Then, Φ(Q) is a basis of K(Φ(Ht1,t2
p )) and

ker(Φ(Ht1,t2
p )) = t1 + t2.

Example 4.1. Let H1,2
3 be the Z3Z9-additive GH code of type (9, 6; 1, 2) generated by 

A1,2
3 given in Example 2.1. By Corollary 4.1, we have that ker(H1,2

3 ) = 1 + 2 = 3. Also 
by Corollary 4.1, we can construct K(H1,2

3 ) from a basis. We have that Q = {(1 | 3), (0 |
3, 6, 3, 6, 3, 6), (0, 0, 0, 1, 1, 1, 2, 2, 2 | 0, 0, 3, 3, 6, 6)}. Thus,

K(H1,2
3 ) = 〈Φ(1 | 3),Φ(0 | 3, 6, 3, 6, 3, 6),Φ(0, 0, 0, 1, 1, 1, 2, 2, 2 | 0, 0, 3, 3, 6, 6)〉.

More generally, if H1,2
p is the ZpZp2-additive GH code generated by A1,2

p with p ≥ 3
prime, then we have that

K(H1,2
p ) = 〈Φ(1 | p),Φ(0 | u′),Φ(v | v′)〉,

where u′ is the p-fold replication of (p, 2p, . . . , (p − 1)p), v = (0, 1, . . . , p − 1) with i =
(i, p. . ., i) for i ∈ Zp, and v′ = (0, p · 1, . . . , p · (p − 1)) with j = (j, p−1. . . , j) for j ∈ Np. 
Therefore, ker(H1,2

p ) = 3. Note that ker(H1,2
2 ) = 4, since H1,2

2 is linear [17].

Example 4.2. Let H2,1
3 be the Z3Z9-additive GH code of type (9, 24; 2, 1) generated by 

A2,1
3 given in Example 2.1. By Corollary 4.1, we have that ker(H2,1

3 ) = 1 + 2 = 3. Also 
by Corollary 4.1, we can construct K(H2,1

3 ) from a basis. We have that Q = {(1 | 3), (0 |
0, 0, 0, 0, 0, 0, u), (0 | 3, 3, 3, 6, 6, 6, v)}, where u is a 9-fold replication of (3, 6) and v is a 
3-fold replication of (0, 0, 3, 3, 6, 6). Thus,

K(H2,1
3 ) = 〈Φ(1 | 3),Φ((0 | 0, 0, 0, 0, 0, 0, u)),Φ((0 | 3, 3, 3, 6, 6, 6, v))〉.

More generally, if H2,1
p is the ZpZp2-additive GH code generated by A2,1

p with p ≥ 3
prime, then we have that
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K(H2,1
p ) = 〈Φ(1 | p),Φ(0 | 0, p2−p. . . , 0, u),Φ(0 | w, v)〉,

where u is the p2-fold replication of (p, 2p, . . . , (p − 1)p), w = (p · 1, p · 2, . . . , p · (p − 1))
with i = (i, p. . ., i) for i ∈ N−

p , and v = (p · 0, p · 1, . . . , p · (p2 − 1)) with j = (j, p−1. . . , j) for 
j ∈ Zp2 . Therefore, ker(H2,1

p ) = 3. Note that, in this case, it is also true for p = 2, since 
ker(H2,1

2 ) = 3 as shown in [17].

The dimension of the kernel is an invariant for the equivalence relation of codes over 
Zp, which allows us to give a complete classification of the ZpZp2-linear GH codes with 
α1 �= 0 of length pt, as shown in the next result.

Corollary 4.2. For any t ≥ 2 and p ≥ 3 prime, there are exactly �t/2� nonequivalent 
nonlinear ZpZp2-linear GH codes with α1 �= 0 of length pt by using the recursive con-
structions given in (3) and (4).

Proof. Considering all the integer solutions (t1, t2) with t1, t2 ≥ 1 of the equation t +1 =
2t1+t2, we have that all the nonlinear ZpZp2-linear GH codes of length pt are Ht1,t−2t1+1

p , 
where 1 ≤ t1 ≤ �t/2�, by Theorem 3.1. Then, by Corollary 4.1, ker(Ht1,t−2t1+1

p ) =
t − t1 + 1, which gives different values for distinct values of t1. Therefore, they are all 
pairwise nonequivalent codes. Therefore, the result follows. �

Note that Corollary 4.2 is also true for the ZpZp2-linear GH codes obtained from 
more general recursive constructions given in [25], since all of them are equivalent to the 
constructions given in (3) and (4).

Example 4.3. Let t = 6 and p = 3. All the nonlinear Z3Z9-linear GH codes with α1 �= 0 of 
length 36 are H1,5

3 , H2,3
3 and H3,1

3 having a kernel of dimension 6, 5 and 4, respectively, as 
it is also shown in Table 1. Since these values are all different, all these codes are pairwise 
nonequivalent. We have only one linear Z3Z9-linear GH code of length 36, which is of 
type (36, 0; 0, 7). Therefore, there are exactly �6/2� + 1 = 4 nonequivalent Z3Z9-linear 
GH codes of length 36.

5. Rank of some families of ZpZp2-linear GH codes

In this section, we establish some results about the rank of some families of ZpZp2-
linear GH codes with α1 �= 0. These results are used in Section 6 to show that these 
codes are not equivalent to the ZpZp2-linear GH codes with α1 = 0 (also called just 
Zp2-linear GH codes) constructed in [19]. First, we prove some technical lemmas.

Lemma 5.1. Let v = (Zp | N−
p ) ∈ Zp

p × Zp−1
p2 . Then, Φ(λv) + Φ((p − λ)v) = Φ(pv) +

(p − 1)(0, 1, 1, . . . , 1) for any λ ∈ {1, 2, . . . , (p − 1)/2}.
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Proof. For the first p coordinates over Zp, it is clearly true, since the Gray map Φ
is the identity. For λ ∈ {1, 2, . . . , (p − 1)/2} and i ∈ N−

p , we can write that iλ =
u0 + pu1 ∈ Zp2 , where u0, u1 ∈ Np. Then, i(p − λ) = (p − u0) + p(i − u1 − 1). By 
Corollary 2.4, φ(iλ) +φ(i(p −λ)) = φ(ip) − (1, 1, . . . , 1) since u0 + p −u0 ≥ p. Therefore, 
Φ(λv) + Φ((p − λ)v) = Φ(pv) + (p − 1)(0, 1, 1, . . . , 1). �
Lemma 5.2. Let v = (Zp | N−

p ) ∈ Zp
p × Zp−1

p2 . Then, Φ(λv) + Φ((p − λ)v) =
(0, 0, 1, 2, . . . , p − 2) for any λ ∈ {1, 2, . . . , (p − 1)/2}.

Proof. Straightforward from Lemmas 2.1 and 5.1. �
Lemma 5.3. Let p ≥ 3 prime and a ∈ {1, . . . , p − 1}. Then,

|
{
ia mod p ≤ a : i ∈ {1, . . . , (p− 1)/2}

}
| = �(a− 1)/2� + 1.

Proof. Let A =
{
ia mod p : i ∈ {1, . . . , (p − 1)/2}

}
and B =

{
ia mod p ≤ a : i ∈

{1, . . . , (p − 1)/2}
}
. Note that, for p = 3, A = {a} = B, and hence the lemma holds. 

Now, we assume that p > 3 prime, and consider two cases: when a ≤ 2 and when a > 2. 
First, if a ≤ 2, then A = {a, 2a, . . . , (p −1)a/2} and B = {a}, so the lemma holds. Second, 
assume a > 2. Let β be the biggest integer such that (p−1)a

2 > βp, so β =
⌊ (p−1)a

2p
⌋
. Note 

that (p−1)a
2 < (β + 1)p. In this case, we consider a partition of A into disjoints subsets, 

A = ∪β
b=0Ab, where

Ab =
{
ia mod p : i ∈ {1, . . . , (p− 1)/2}, bp < ia ≤ (b + 1)p

}
for b ∈ {0, . . . , β}. Note that β ≥ 1 since a > 2. Then, we have that

Ab = {
(⌊bp

a

⌋
+ 1

)
a− bp,

(⌊bp
a

⌋
+ 2

)
a− bp, . . . ,

⌊ (b + 1)p
a

⌋
a− bp},

for b ∈ {0, 1, . . . , β − 1}, and

Aβ = {
(⌊βp

a

⌋
+ 1

)
a− βp,

(⌊βp
a

⌋
+ 2

)
a− βp, . . . ,

(p− 1)a
2 − βp}.

Note that B = A ∩ B = ∪β
b=0(Ab ∩ B). For b ∈ {0, . . . , β}, we have that every 

element in Ab is smaller than p by definition, and we see that |Ab ∩ B| = 1. First, it 
is easy to see that A0 ∩ B = {a}. Next, for all b ∈ {1, 2, . . . , β − 1}, we see that, for 
j ∈ {1, . . . , 

⌊ (b+1)p
a

⌋
−
⌊
bp
a

⌋
}, (

⌊
bp
a

⌋
+ j)a − bp ≤ a if and only if j = 1. We can write bp =

ka +r, where k = � bp
a � and 0 ≤ r < a. Then, (

⌊
bp
a

⌋
+j)a −bp = ka +ja −ka −r = ja −r. 

Since j ≥ 1 and 0 < a − r ≤ a, we have that ja − r ≤ a if and only if j = 1 and hence 
|Ab ∩B| = 1. Similarly, for j ∈ {1, . . . , (p−1)

2 −
⌊
βp
a

⌋
}, we have that (

⌊
βp
a

⌋
+ j)a −βp ≤ a

if and only if j = 1, and hence |Aβ ∩B| = 1
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Finally, since B = ∪β
b=0(Ab ∩ B), we have that |B| =

∑β
b=0 |Ab ∩ B| = β + 1 =⌊ (p−1)a

2p
⌋

+ 1. Now, note that a − 1 < (p−1)a
p < a, so a−1

2 < (p−1)a
2p < a

2 , and hence ⌊ (p−1)a
2p

⌋
=

⌊
a−1
2

⌋
. Therefore, |B| =

⌊
a−1
2

⌋
+ 1. �

Lemma 5.4. Let p ≥ 3 prime and a ∈ {1, . . . , p − 1}. Then,

|
{
a + (ia mod p) ≥ p : i ∈ {1, . . . , (p− 1)/2}

}
| = �a/2�.

Proof. Note that |
{
ia mod p : i ∈ {1, . . . , p − 1}

}
| = p − 1, and so

|
{
ia mod p ≥ p− a : i ∈ {1, . . . , p− 1}

}
| = a. (5)

Let i, a ∈ {1, 2 . . . , (p − 1)/2}. We can write that ia = u0 + pu1 ∈ Zp2 , where u0, u1 ∈
Np. Then, (p − i)a = (p − u0) + p(a − u1 − 1) since i < p. We have that u0 ≤ a if 
and only if p − u0 ≥ p − a and, hence, ia mod p ≤ a if and only if (p − i)a mod p ≥
p − a. Therefore, |

{
ia mod p ≥ p − a : i ∈ {(p + 1)/2, . . . , p − 1}

}
| = |

{
ia mod p ≤ a :

i ∈ {(1, . . . , (p − 1)/2)}
}
| = �a−1

2 � + 1 by Lemma 5.3. Finally, from (5), we have that 
|
{
ia mod p ≥ p − a : i ∈ {1, . . . , (p − 1)/2}

}
| = a − (�a−1

2 � + 1) = �a
2 �, which completes 

the proof. �
Proposition 5.1. Let H1,1

p be the ZpZp2-additive GH code of type (p, p − 1; 1, 1) with 
p ≥ 3 prime, and H1,1

p = Φ(H1,1
p ) be the corresponding ZpZp2-linear GH code of length 

p2. Then, rank(H1,1
p ) = 3 + (p − 1)/2.

Proof. Let u = (1, p. . ., 1 | p, p−1. . . , p) and v = (Zp | N−
p ) ∈ Zp

p × Zp−1
p2 . If x ∈ H1,1

p , 
then x can be expressed as x = λv + μu, where λ ∈ Zp2 and μ ∈ Np ⊂ Zp2 . By 
Corollary 2.3, we have that Φ(x) = Φ(λv) +Φ(μu) and also Φ(λv) = Φ(λ0v) +Φ(λ1pv), 
where λ = λ0 + λ1p, and λ0, λ1 ∈ Np. By Corollary 2.1, Φ(λ1pv) = λ1Φ(pv) and 
Φ(μu) = μΦ(u). Therefore, Φ(x) = Φ(λ0v) + λ1Φ(pv) + μΦ(u).

By Corollary 2.4, for all i ∈ {1, . . . , (p − 1)/2}, we have that

Φ((i + 1)v) = Φ(v) + Φ(iv) + vi, (6)

where vi = (0, vi,1, vi,2, . . . , vi,p−1), vi,a ∈ {0, 1} for a ∈ {1, . . . , p − 1}, and 0, 1 are of 
length p. Consider the vector v(p−1)/2. It is easy to see that

p− 1
2 a mod p =

{
p−a
2 if a is odd,

p− a
2 if a is even.

Then, if a is odd, a +(p −a)/2 = (p +a)/2 < p; and if a is even, a +p −a/2 = p +a/2 ≥ p. 
Therefore, v(p−1)/2 = (0, 0, 1, 0, 1, . . . , 0, 1).
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Next, we show that Φ(λ0v), for λ0 ∈ Np, is a linear combination of Φ(v) and 
{vi}1≤i≤(p−1)/2. First, for λ0 ∈ {2, 3, . . . , (p + 1)/2}, Φ(λ0v) = λ0Φ(v) +

∑λ0−1
i=1 vi by 

applying recursively (6). Second, from Lemma 5.4,

(p−1)/2∑
i=1

vi = (0,0,1,1,2,2, . . . , p − 1
2 − 1, p − 1

2 − 1, p − 1
2 ), (7)

so (0, 0, 1, 2, . . . , p − 2) = 2(
∑(p−1)/2

i=1 vi) − v(p−1)/2 since we have that v(p−1)/2 =
(0, 0, 1, . . . , 0, 1). Then, for λ0 ∈ {(p + 1)/2 + 1, . . . , p − 1}, Φ(λ0v) is a linear com-
bination of Φ(v) and {vi}1≤i≤(p−1)/2 by Lemma 5.2. Therefore, Φ(x) is generated by 
Φ(u), Φ(v), Φ(pv) and {vi}1≤i≤(p−1)/2. In other words, we can take a matrix G whose 
row vectors are Φ(u), Φ(v), Φ(pv) and {vi}1≤i≤(p−1)/2, as a generator matrix of 〈H1,1

p 〉.
The vectors Φ(u), Φ(v) and Φ(pv) are clearly linearly independent over Zp. We 

consider the vectors vi, i ∈ {1, . . . , (p − 1)/2}, as the rows of a matrix V . Let Sa, 
a ∈ {1, . . . , p − 1}, be the set of p coordinate positions of v1,a in v1. There exists 
a set of (p − 1)/2 linearly independent columns of V by taking one column of each 
Sa with a ∈ {2, 4, . . . , p − 1}, since the number of ones in each one of these columns 
is different by (7). Therefore, the vectors {vi}1≤i≤(p−1)/2 are linearly independent. 
In fact, it is easy to see that all the rows of G are linearly independent. Therefore, 
rank(H1,1

p ) = 3 + (p − 1)/2. �
Example 5.1. Let H1,1

7 be the Z7Z49-additive GH code of type (7, 6; 1, 1) and H1,1
7 =

Φ(H1,1
7 ) be the corresponding Z7Z49-linear GH code of length 49. Let u = (1, 1, 1, 1, 1, 1,

1 | 7, 7, 7, 7, 7, 7) and v = (0, 1, . . . , 7 | 1, 2, . . . , 7). By the proof of Proposition 5.1, 〈H1,1
7 〉

can be generated by Φ(u), Φ(v), Φ(7v), and {vi}1≤i≤3, where

v1 = (0,0,0,0,1,1,1),

v2 = (0,0,0,1,0,1,1),

v3 = (0,0,1,0,1,0,1),

and the vectors 0 and 1 are of length 7. Since these vectors are linearly independent, we 
have that rank(H1,1

7 ) = 6.

Example 5.2. Let H1,1
11 be the Z11Z121-additive GH code of type (11, 10; 1, 1) and 

H1,1
11 = Φ(H1,1

11 ) be the corresponding Z11Z121-linear GH code of length 121. Let 
u = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | 11, 11, 11, 11, 11, 11, 11, 11, 11, 11) and v = (0, 1, . . . , 10 |
1, 2, . . . , 10). By the proof of Proposition 5.1, 〈H1,1

11 〉 can be generated by Φ(u), Φ(v),
Φ(11v), and {vi}1≤i≤5, where
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v1 = (0,0,0,0,0,0,1,1,1,1,1),

v2 = (0,0,0,0,1,1,0,0,1,1,1),

v3 = (0,0,0,1,0,0,1,1,0,1,1),

v4 = (0,0,0,0,0,1,0,1,1,1,1),

v5 = (0,0,1,0,1,0,1,0,1,0,1),

and the vectors 0 and 1 are of length 11. Since these vectors are linearly independent, 
we have that rank(H1,1

11 ) = 8.

Let H be a ZpZp2-additive code of type (α1, α2; t1, t2) with p prime. Recall that H1
(respectively, H2) is the punctured code of H by deleting the last α2 coordinates over Zp2

(respectively, the first α1 coordinates over Zp). Then, we can write that H = (H1 | H2). 
Let (Hi, . . . , Hi) be the code having the following set of codewords {(hi, . . . , hi) : hi ∈
Hi} for i ∈ {1, 2}.

Theorem 5.1. Let H1,t−1
p be the ZpZp2-additive GH code of type (pt−1, (p −1)pt−2; 1, t −1)

with t ≥ 2 and p ≥ 3 prime, and H1,t−1
p = Φ(H1,t−1

p ) be the corresponding ZpZp2-linear 
GH code of length pt. Then,

rank(H1,t−1
p ) = 1 + t + (p− 1)/2.

Proof. We prove this theorem by induction on t. First, note that the result is true for 
t = 2, by Proposition 5.1. We assume that the result is true for a given t ≥ 2. Let 
H1,t−1

p = (H1 | H2) and H1,t
p = Φ(H1,t

p ). Then, by the recursive construction (3), we can 
write

H1,t
p =

⋃
λ∈Np

((H1,
p. . .,H1 | H2,

p. . .,H2) + λ(0, . . . ,p − 1 | p · 0, . . . , p · p − 1)).

By Corollary 2.3, we have that

H1,t
p =

⋃
λ∈Np

(Φ(H1,
p. . .,H1 | H2,

p. . .,H2) + Φ(λ(0, . . . ,p − 1 | p · 0, . . . , p · p − 1))),

so rank(H1,t
p ) = 1 + rank(H1,t−1

p ). Therefore, by induction hypothesis,

rank(H1,t
p ) = 1 + (1 + t) + (p− 1)/2. �

Example 5.3. Let H1,2
7 be the Z7Z49-additive GH code of type (49, 42; 1, 2) and H1,2

7 =
Φ(H1,2

7 ) be the corresponding Z7Z49-linear GH code of length 143. Let u = (u | u′) and 
v = (v | v′) and vi = (0, v′i), 1 ≤ i ≤ 3 be the vectors given in Example 5.1. By applying 
construction (3) to A1,1

7 , we have that ū = (u, 7. . ., u | u′, 7. . ., u′), v̄ = (v, 7. . ., v | v′, 7. . ., v′)
and w̄ = (0, 1, . . . , 6 | 0, 7, . . . , 42) are the rows of the generator matrix A1,2

7 . Therefore, 
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by Example 5.1 and the proof of Theorem 5.1, we have that 〈H1,2
7 〉 can be generated by 

Φ(ū), Φ(v̄), Φ(7v̄), Φ(w̄) and {v̄i}1≤i≤3, where v̄i = (0, 7. . ., 0, v′i, 7. . ., v′i), 1 ≤ i ≤ 3. Since 
these vectors are linearly independent, we have that rank(H1,2

7 ) = 7.

Proposition 5.2. Let H2,1
p be a ZpZp2-additive GH code of type (p2, (p − 1)(p + p2); 2, 1)

with p ≥ 3 prime, and H2,1
p = Φ(H2,1

p ) be the corresponding ZpZp2-linear code of length 
p4. Then, rank(H2,1

p ) > p + 3.

Proof. Let u = (1, p2
. . ., 1 | p, p3−p. . . , p), and v, w be the rows of A2,1

p of order p2, that is,

(
v
w

)
=

(
Zp Zp · · · Zp pZp2 · · · pZp2 N−

p · · · N−
p

0 1 · · · p − 1 1 · · · p − 1 0 · · · p2 − 1

)
.

By Corollary 2.4 and the proof of Proposition 5.1, for all i ∈ {1, . . . , (p − 1)/2}, we have 
that

Φ((i + 1)w) = Φ(w) + Φ(iw) + wi,

where wi = (0, wi,1, wi,2, . . . , wi,p−1, ∗, . . . , ∗), wi,a ∈ {0, 1} for a ∈ {1, . . . , p − 1}, ∑(p−1)/2
i=1 wi = (0, 0, 1, 1, 2, 2, . . . , p−1

2 − 1, p−1
2 − 1, p−1

2 , ∗, . . . , ∗), and j = (j, p2
. . ., j) for 

j ∈ {0, 1, . . . , (p −1)/2}. The symbol ∗ in a coordinate means that it can be any element 
of Zp.

If we consider the vectors wi, i ∈ {1, . . . , (p − 1)/2}, as the rows of a matrix, then 
we have a set of (p − 1)/2 linearly independent columns by taking one column of each 
wi,a with a ∈ {2, 4, . . . , p − 1}, since the number of ones in each one of these columns is 
different. Therefore, the vectors {wi}1≤i≤(p−1)/2 are linearly independent.

Again, by Corollary 2.4 and the proof of Proposition 5.1, for all i ∈ {1, . . . , (p −1)/2}, 
we have that

Φ((i + 1)v) = Φ(v) + Φ(iv) + vi,

where vi = (0, p3
. . ., 0, ̄vi, p

2
. . ., ̄vi), v̄i = (vi,1, vi,2, . . . , vi,p−1), vi,a ∈ {0, 1} for a ∈ {1, . . . , p −

1}, 
∑(p−1)/2

i=1 vi = (0, p3
. . ., 0, ̄x, p2

. . ., ̄x), k = (k, p. . ., k) for k ∈ {0, 1, . . . , (p − 1)/2}, and 
x̄ = (0, 1, 1, 2, 2, . . . , p−1

2 − 1, p−1
2 − 1, p−1

2 ).
We consider the vectors vi, i ∈ {1, . . . , (p − 1)/2}, as the rows of a matrix V . Let Sa, 

a ∈ {1, . . . , p − 1}, be the set of coordinate positions of v1,a in the first copy of v̄1 in v1. 
There exists a set of (p −1)/2 linearly independent columns of V by taking one column of 
each Sa with a ∈ {2, 4, . . . , p − 1}, since the number of ones in each one of these columns 
is different. Therefore, the vectors {vi}1≤i≤(p−1)/2 are linearly independent.

Note that Φ(u), Φ(v), Φ(pv), Φ(w), Φ(pw), {vi}1≤i≤(p−1)/2, {wi}1≤i≤(p−1)/2 are all 
linearly independent. Therefore, rank(H2,1

p ) > p + 3. �
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Example 5.4. Let H2,1
3 be the Z3Z9-additive GH code of type (9, 24; 2, 1) and H2,1

3 =
Φ(H2,1

3 ) be the corresponding Z3Z9-linear GH code of length 81. Let u = (1 |
3), v = (0, 1, 2, 0, 1, 2, 0, 1, 2 | 0, 3, 6, 0, 3, 6, v, 9. . ., v), where v = (1, 2), and w =
(0, 0, 0, 1, 1, 1, 2, 2, 2 | 1, 1, 1, 2, 2, 2, 0, 0, . . . , 8, 8) be the rows of the generator matrix A2,1

3
given in Example 2.1.

We have that Φ(2v) = 2Φ(v) + v1 and Φ(2w) = 2Φ(w) + w1, where

v1 = (0, 27. . ., 0, v̄1, 9. . ., v̄1),

w1 = (0, 18. . ., 0, 1, 9. . ., 1, w̄1, w̄1, w̄1),

v̄1 = (0, 0, 0, 1, 1, 1) and w̄1 = (0, 12. . ., 0, 1, 6. . ., 1). We also have that Φ(3v) = (0, 27. . .
, 0, x, 9. . ., x), where x = (1, 1, 1, 2, 2, 2), and Φ(3w) = (0, 9. . ., 0, 1, 9. . ., 1, 2, 9. . ., 2, y, y, y), 
where y = (0, 6. . ., 0, 1, 6. . ., 1, 2, 6. . ., 2). Note that the set S generated by Φ(u), Φ(v), 
Φ(w), Φ(3v), Φ(3w), v1 and w1, is a subspace of 〈H2,1

3 〉. Since these vectors are linearly 
independent, we have that rank(H2,1

3 ) ≥ dim(S) = 7 > 6.

Theorem 5.2. Let H2,t−3
p be the ZpZp2-additive GH code of type (pt−2, (p − 1)(pt−3 +

pt−2); 2, t −3) with t ≥ 4 and p ≥ 3 prime, and H2,t−3
p = Φ(H2,t−3

p ) be the corresponding 
ZpZp2-linear GH code of length pt. Then,

rank(H2,t−3
p ) > p + t− 1.

Proof. We prove this theorem by induction on t. First, note that the result is true for 
t = 4, by Proposition 5.2. We assume that the result is true for a given t ≥ 4. By following 
the same argument as in the proof of Theorem 5.1, we obtain that rank(H2,t−2

p ) =
1 +rank(H2,t−3

p ). Therefore, by induction hypothesis, rank(H2,t−2
p ) > 1 +p +t −1 = p +t, 

and the result follows. �
6. Classification results

The classification of Z2Z4-linear Hadamard codes with α1 �= 0 of length 2t, for any 
t ≥ 3, using the rank or the dimension of the kernel is shown in [16,17]. For Z2Z4-linear 
Hadamard codes with α1 = 0 (that is, Z4-linear Hadamard codes), the classification is 
also shown in [16,17]. Some partial results on the classification of Z2s-linear Hadamard 
codes of length 2t, for any t ≥ 3 and s > 2, are proved in [9,21]; and in general for 
Zps-linear GH codes of length pt, for any t ≥ 2, s ≥ 2, and p ≥ 3 prime, in [19,26]. For 
any t ≥ 2, the full classification of ZpZp2-linear GH codes of length pt, with α1 �= 0 and 
p ≥ 3 prime, is given by Corollary 4.2 in Section 4, by using just the dimension of the 
kernel. In this section, we compare the ZpZp2-linear GH codes having α1 �= 0 with the 
Zps-linear GH codes.

First, we recall the construction given in [19] of Zps-linear GH codes with s ≥ 2 and 
p prime. We also recall for which types these codes are linear and what is the kernel 
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and its dimension for these codes whenever they are nonlinear. Then, we compute some 
results about the rank of some families of Zp2-linear GH codes, in order to determine 
whether these codes are equivalent or not to the ZpZp2-linear GH codes with α1 �= 0
considered in this paper. Finally, we see that, unlike for the case p = 2, the Zp2-linear 
GH codes with p ≥ 3 prime are not equivalent to the codes ZpZp2-linear GH codes with 
α1 �= 0. There are at least two infinite families of ZpZp2-linear GH codes with α1 �= 0
and p ≥ 3 prime, such that their codes are not equivalent to any Zp2-linear GH code of 
the same length pt. Indeed, we prove that they are not equivalent to any Zps-linear GH 
code with s ≥ 2 and not only for s = 2.

First, we describe the construction given in [19] of Zps-linear GH codes with s ≥ 2
and p prime. Let Ti = {j · pi−1 : j ∈ {0, 1, . . . , ps−i+1 − 1}} for all i ∈ {1, . . . , s}. 
Note that T1 = {0, . . . , ps − 1}. Let t1, t2,. . . , ts be non-negative integers with t1 ≥ 1. 
Consider the matrix Āt1,...,ts

p whose columns are exactly all the vectors of the form zT , 
z ∈ {1} × T t1−1

1 × T t2
2 × · · · × T ts

s .

Example 6.1. For p = 3 and s = 2, we have the following matrices:

Ā1,1
3 =

(
1 1 1
0 3 6

)
, Ā1,2

3 =

⎛
⎜⎝ 111 111 111

036 036 036
000 333 666

⎞
⎟⎠ ,

Ā2,1
3 =

⎛
⎜⎝ 111111111 111111111 111111111

012345678 012345678 012345678
000000000 333333333 666666666

⎞
⎟⎠ .

Any matrix Āt1,...,ts
p can also be obtained by applying the following recursive con-

struction. We start with Ā1,0,...,0
p = (1). Then, if we have a matrix Ā = Āt1,...,ts

p , for any 
i ∈ {1, . . . , s}, we may construct the matrix

Āi =
(

Ā Ā · · · Ā

0 · pi−1 1 · pi−1 · · · (ps−i+1 − 1) · pi−1

)
. (8)

Finally, permuting the rows of Āi, we obtain a matrix Āt′1,...,t
′
s

p , where t′j = tj for j �= i

and t′i = ti +1. Note that any permutation of columns of Āi gives also a matrix Āt′1,...,t
′
s

p .
We consider that the matrices Āt1,...,ts

p are constructed recursively starting from 
Ā1,0,...,0

p in the following way. First, we add t1−1 rows of order ps, up to obtain Āt1,0,...,0
p ; 

then t2 rows of order ps−1 up to generate Āt1,t2,...,0
p ; and so on, until we add ts rows of 

order p to achieve Āt1,...,ts
p . See [19] for examples.

Let H̄t1,...,ts
p be the Zps-additive code of type (n; t1, . . . , ts) generated by the ma-

trix Āt1,...,ts
p , where t1, . . . , ts are non-negative integers with t1 ≥ 1 and p prime. Let 

H̄t1,...,ts
p = Φ(H̄t1,...,ts

p ) be the corresponding Zps-linear code.
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Let w(s)
i be the ith row of Āt1,...,ts

p , 1 ≤ i ≤ t1 + · · · + ts. By construction, w(s)
1 = 1

and o(w(s)
i ) ≤ o(w(s)

j ) if i > j. We define σ ∈ {1, . . . , s} as the integer such that 
o(w2) = ps+1−σ. For H̄1,0,...,0

p , we define σ = s. Note that σ = 1 if t1 > 1, and σ =
min{i : ti > 0, i ∈ {2, . . . , s}} if t1 = 1.

Theorem 6.1. [19] Let t1, . . . , ts be non-negative integers with s ≥ 2 and t1 ≥ 1. The 
Zps-linear code H̄t1,...,ts

p of type (n; t1, . . . , ts) is a GH code over Zp of length N = pt, 
with t = (

∑s
i=1(s − i + 1) · ti) − 1 and n = pt−s+1.

Theorem 6.2. [19] The Zps-linear GH codes H̄1,0,...,0,ts
p , with p ≥ 3 prime, s ≥ 2 and 

ts ≥ 0, are the only Zps-linear GH codes which are linear.

Theorem 6.3. [19] Let H̄t1,...,ts
p be the Zps-linear GH code of type (n; t1, . . . , ts) with 

p ≥ 3 prime, s ≥ 2, t1 ≥ 1, and ti ≥ 0 for i ∈ {2, . . . , s}. Then,

ker(H̄t1,...,ts
p ) = (

s∑
i=1

ti) + σ − 1.

Now, we establish some results about the rank of a family of Zp2-linear GH codes, in 
order to determine whether these codes are equivalent or not to the ZpZp2-linear GH 
codes with α1 �= 0 considered in this paper.

Proposition 6.1. Let H̄2,0
p be the Zp2-additive GH code of type (p2; 2, 0) with p ≥ 3

prime, and H̄2,0
p = Φ(H̄2,0

p ) be the corresponding Zp2-linear GH code of length p3. Then, 
rank(H̄2,0

p ) = p + 2.

Proof. Let u = (1, p2
. . ., 1) and v = (0, 1, . . . , p2 − 1) be the rows of Ā2,0

p . Let λ, μ ∈ Zp2 . 
We can write λ = λ0+λ1p and μ = μ0+μ1p, where λ0, λ1, μ0, μ1 ∈ Np. By Corollaries 2.1
and 2.3, we have that

Φ(λu + μv) = Φ(λ0u + μ0v) + λ1Φ(pu) + μ1Φ(pv). (9)

Now, we consider Φ(λ0u + μ0v) for all λ0, μ0 ∈ Np. First, if μ0 = 1, then, by Corol-
lary 2.4, we have that Φ(λ0u + v) = Φ(λ0u) + Φ(v) + vλ0 , where

vλ0 = (v̄λ0 ,
p. . ., v̄λ0), v̄λ0 = (0, p−λ0. . . ,0,1, λ0. . .,1), (10)

and the vectors 0 and 1 are of length p. Second, if μ0 ∈ {2, . . . , p − 1}, we have that 
Φ(λ0u + μ0v) = Φ(λ0u) + Φ(μ0v) + wλ0,μ0 , where

wλ0,μ0 = (w̄λ0,μ0 ,
p. . ., w̄λ0,μ0), w̄λ0,μ0 = (0, wλ0,μ0,1, . . . , wλ0,μ0,p−1),
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wλ0,μ0,a ∈ {0, 1} for a ∈ {1, . . . , p − 1}, and the vectors 0 and 1 are of length p. By 
the definition of Φ, since λ0 ∈ Np, it is easy to see that Φ(λ0u) = λ0Φ(u). For μ0 ∈
{2, . . . , p − 1}, we have that Φ(μ0v) = Φ(v) + Φ((μ0 − 1)v) + xμ0 , where

xμ0 = (x̄μ0 ,
p. . ., x̄μ0), x̄μ0 = (0, xμ0,1, . . . , xμ0,p−1),

xμ0,a ∈ {0, 1} for a ∈ {1, . . . , p − 1}, and the vectors 0 and 1 are of length p.
Note that {(0, p−i−1. . . , 0, 1, i. . ., 1)}1≤i≤p−1 is a basis of the vector space Zp−1

p . Thus, 
we have that wλ0,μ0 and xμ0 can be written as a linear combination of the vectors 
{vi}1≤i≤p−1 given in (10). Moreover, Φ(pv) = Φ((pNp, p. . ., pNp)) =

∑p−1
i=1 vi. Therefore, 

from (9), H̄2,0
p can be generated by Φ(u), Φ(pu), Φ(v) and {vi}1≤i≤p−1. Since these 

vectors are all linearly independent, we obtain that rank(H̄2,0
p ) = p + 2. �

Example 6.2. Let H̄2,0
3 be the Z9-additive GH code of type (9; 2, 0) and H̄2,0

3 =
Φ(H̄2,0

3 ) be the corresponding Z9-linear GH code of length 27. Let u = (1) and 
v = (0, 1, 2, 3, 4, 5, 6, 7, 8) be the rows of the generator matrix Ā2,0

3 . Let λ = λ0 +3λ1 and 
μ = μ0 + 3μ1, where λ0, λ1, μ0, μ1 ∈ {0, 1, 2} ⊆ Z9. Note that

Φ(λu + μv) = Φ(λ0u + μ0v) + λ1Φ(3u) + μ1Φ(3v). (11)

Now, for λ0 ∈ {1, 2}, we have that Φ(λ0u + v) = Φ(λ0u) + Φ(v) + vλ0 , where

v1 = (0,0,1,0,0,1,0,0,1),

v2 = (0,1,1,0,1,1,0,1,1),

and the vectors 0 and 1 are of length 3. Moreover, we have that

Φ(3v) = v1 + v2,

Φ(2u) = 2Φ(u),

Φ(2v) = 2Φ(v) + v1,

Φ(u + 2v) = Φ(u) + 2Φ(v) + v2,

Φ(2u + 2v) = 2Φ(u) + 2Φ(v) + v1 + v2.

(12)

Therefore, from (11) and (12), 〈H̄2,0
3 〉 can be generated by Φ(u), Φ(v), Φ(3u), v1 and 

v2. Since these vectors are linearly independent, rank(H̄2,0
3 ) = 5.

Theorem 6.4. Let H̄2,t−3
p be the Zp2-additive GH code of type (pt−1; 2, t − 3) with t ≥ 3

and p ≥ 3 prime, and H̄2,t−3
p = Φ(H̄2,t−3

p ) be the corresponding Zp2-linear GH code of 
length pt. Then,

rank(H̄2,t−3
p ) = p + t− 1.



22 D.K. Bhunia et al. / Finite Fields and Their Applications 86 (2023) 102140
Proof. We prove this theorem by induction on t. First, note that the result is true for 
t = 3, by Proposition 6.1. We assume that the result is true for a given t ≥ 3. By following 
the same argument as in the proof of Theorem 5.1, we obtain that rank(H̄2,t−2

p ) =
1 +rank(H̄2,t−3

p ). Therefore, by induction hypothesis, rank(H̄2,t−2
p ) = 1 +p +t −1 = p +t, 

and the result follows. �
Then, we present two corollaries that show that there are some families of the new 

ZpZp2-linear GH codes presented in this paper, containing an infinite number of codes, 
which are not equivalent to the Zps-linear GH codes presented in [19]. The first one uses 
just the dimension of the kernel to determine that the codes are not equivalent, and the 
second one uses both invariants, the rank and the dimension of the kernel.

Corollary 6.1. For any t ≥ 2 and p ≥ 3 prime, the ZpZp2-linear GH code H1,t−1
p of 

type (pt−1, (p − 1)pt−2; 1, t − 1) is nonequivalent to a ZpZp2-linear GH code of any other 
type, having α1 �= 0 and the same length pt. Moreover, it is also nonequivalent to any 
Zps-linear GH code with s ≥ 2 of length pt.

Proof. From the proof of Corollary 4.2, the ZpZp2-linear GH code H1,t−1
p is nonequiva-

lent to any other ZpZp2-linear GH code with α1 �= 0 of length pt, because the dimensions 
of the kernels are different.

By Corollary 4.1, we have that ker(H1,t−1
p ) = 1 + t − 1 = t. Let H̄t1,...,ts

p be the Zps-
linear GH code of length pt. By Theorem 6.3, we have that ker(H̄t1,...,ts

p ) = (
∑s

i=1 ti) +
σ−1. Now, to complete the proof, we just need to show that ker(H1,t−1

p ) �= ker(H̄t1,...,ts
p ). 

Assume ker(H1,t−1
p ) = ker(H̄t1,...,ts

p ), that is, t = (
∑s

i=1 ti) + σ− 1. By Theorem 6.1, we 
have that st1 +(s −1)t2 + · · ·+2ts−1 + ts = t +1. Then, st1 +(s −1)t2 + · · ·+2ts−1 + ts =
(
∑s

i=1 ti) + σ, that is,

(s− 1)t1 + (s− 2)t2 + · · · + ts−1 = σ. (13)

From the definition of σ, we have that either σ = 1 when t1 ≥ 2, or 2 ≤ σ ≤ s when 
t1 = 1, t2 = · · · = tσ−1 = 0 and tσ ≥ 1. For the first case, we obtain a contradiction 
from (13). For the second case, (13) becomes (s − 1) + (s − σ)tσ + λ = σ, where λ =
(s − σ − 1)tσ+1 + · · · + ts−1. Thus, if σ < s, we have that tσ + 1 = 1−λ

s−σ , which is a 
contradiction, since tσ + 1 ≥ 2, λ ≥ 0, and s − σ > 0. If s = σ, s − 1 = s, which is also a 
contradiction. This completes the proof. �
Example 6.3. Let t = 6 and p = 3. By the proof of Corollary 4.2 or from Example 4.3, 
the Z3Z9-linear GH code H1,5

3 is nonequivalent to any other Z3Z9-linear GH code with 
α1 �= 0 of the same length 36.

Now, all the nonlinear Z3s-linear GH codes, with s ≥ 2, of length 36 are H̄3,1
3 , H̄2,3

3 , 
H̄1,2,0

3 , H̄2,0,1
3 , H̄1,1,2

3 , H̄1,1,0,0
3 , H̄1,0,1,1

3 , and H̄1,0,0,1,0
3 having a kernel of dimension 4, 

5, 4, 3, 5, 3, 5, and 5, respectively, as it is shown in Table 4 given in [19]. All the 
linear Z3s-linear GH codes, with s ≥ 2, of length 36 are H̄1,5

3 , H̄1,0,4
3 , H̄1,0,0,3

3 , H̄1,0,0,0,2
3 , 



D.K. Bhunia et al. / Finite Fields and Their Applications 86 (2023) 102140 23
H̄1,0,0,0,0,1
3 and H̄1,0,0,0,0,0,0

3 . Therefore, since H1,5
3 is nonlinear and ker(H1,5

3 ) = 1 +5 = 6
by Corollary 4.1, H1,5

3 is nonequivalent to any Z3s-linear GH codes, with s ≥ 2, of the 
same length 36.

Theorem 6.5. [26] Let H̄t1,...,ts
p be a Zps-linear GH code with ts ≥ 1. Then, H̄t1,...,ts

p is 
equivalent to the Zps+�-linear GH code H̄1,0,�−1... ,0,t1−1,t2,...,ts−1,ts−�

p , for all � ∈ {1, . . . , ts}.

Corollary 6.2. For any t ≥ 4 and p ≥ 3 prime, the ZpZp2-linear GH code H2,t−3
p of type 

(pt−2, (p − 1)(pt−3 + pt−2); 2, t − 3) is nonequivalent to a ZpZp2-linear GH code of any 
other type, having α1 �= 0 and the same length pt. Moreover, it is also nonequivalent to 
any Zps-linear GH code with s ≥ 2 of length pt.

Proof. From the proof of Corollary 4.2, the ZpZp2-linear GH code H2,t−3
p is nonequiva-

lent to any other ZpZp2-linear GH code with α1 �= 0 of length pt, because the dimensions 
of the kernels are different.

Let H̄t1,...,ts
p be the Zps-linear GH code of length pt. By Theorem 6.1, we have that

st1 + (s− 1)t2 + · · · + 2ts−1 + ts = t + 1. (14)

By Theorem 6.5, H̄2,t−3
p , H̄1,1,t−4

p , H̄1,0,1,t−5
p , H̄1,0,0,1,t−6

p , . . . , H̄1,0,t−4... ,0,1,0
p are all pair-

wise equivalent codes over Zp of length pt. Let

F = {H̄2,t−3
p , H̄1,1,t−4

p , H̄1,0,1,t−5
p , H̄1,0,0,1,t−6

p , . . . , H̄1,0,t−4... ,0,1,0
p }

and T = {(2, t − 3), (1, 1, t − 4), (1, 0, 1, t − 5), (1, 0, 0, 1, t − 6), . . . , (1, 0, t−4. . ., 0, 1, 0)}. By 
Theorem 6.4, rank(H̄2,t−3

p ) = p + t −1, and hence H̄2,t−3
p is nonequivalent to the ZpZp2-

linear GH code H2,t−3
p , since rank(H2,t−3

p ) > p + t − 1 by Theorem 5.2. Therefore, all 
the codes in F are nonequivalent to H2,t−3

p .
By Corollary 4.1, we have that ker(H2,t−3

p ) = 2 + t − 3 = t − 1. By Theorem 6.3, we 
have that ker(H̄t1,...,ts

p ) = (
∑s

i=1 ti) + σ − 1. Now, to complete the proof, we just need 
to show that ker(H2,t−3

p ) �= ker(H̄t1,...,ts
p ) for all H̄t1,...,ts

p /∈ F . Assume ker(H2,t−3
p ) =

ker(H̄t1,...,ts
p ), that is, t − 1 = (

∑s
i=1 ti) + σ− 1, where (t1, . . . , ts) /∈ T . Then, from (14), 

we have that st1 + (s − 1)t2 + · · ·+ 2ts−1 + ts = (
∑s

i=1 ti) + σ + 1, that is, we have that

(s− 1)t1 + (s− 2)t2 + · · · + ts−1 = σ + 1, (15)

where (t1, . . . , ts) /∈ T . From the definition of σ, we have that either σ = 1 when t1 ≥ 2, 
or 2 ≤ σ ≤ s when t1 = 1, t2 = · · · = tσ−1 = 0 and tσ ≥ 1.

For the first case, note that if t1 = 2 and s = 2, then H̄2,t−3
p is the only Zp2-linear 

GH code of type (pt−1; 2, t2) by Theorem 6.1. If t1 ≥ 2 and s > 2, or t1 > 2 and s = 2, 
we obtain a contradiction from (15).
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For the second case, if σ = s, then (15) becomes σ−1 = σ+1, which is a contradiction. 
Then, we consider that 2 ≤ σ < s. We can write (15) as (s − 1) + (s − σ)tσ + λ = σ + 1, 
where λ = (s − σ − 1)tσ+1 + · · · + ts−1. Thus,

(s− σ)(tσ + 1) = 2 − λ, (16)

where (t1, . . . , ts) /∈ T . Since 2 ≤ σ < s and tσ + 1 ≥ 2, we have that λ = 0. Then, (16)
becomes

(s− σ)(tσ + 1) = 2. (17)

Again, since tσ + 1 ≥ 2, from (17), we have that s − σ = 1. Then, tσ = ts−1 = 1, and 
from (14), we have that s + 2 + ts = t + 1, that is,

t− ts = s + 1. (18)

Now, since (t1, . . . , ts) = (1, 0, . . . , 0, 1, ts) /∈ T , we have that ts /∈ {t − 4, t − 5, . . . , 0}, 
that is, ts ≥ t − 3. Therefore, from (18), t − s − 1 ≥ t − 3, that is, s = 2, since s ≥ 2. 
Thus, σ = s − 1 = 1, and we obtain a contradiction, since 2 ≤ σ < s. This completes the 
proof. �
Example 6.4. Let t = 6 and p = 3. By the proof of Corollary 4.2 or from Example 4.3, 
the Z3Z9-linear GH code H2,3

3 is nonequivalent to any other Z3Z9-linear GH code with
α1 �= 0 of same length 36.

Now, all the linear Z3s-linear GH codes, with s ≥ 2, of length 36 are H̄1,5
3 , H̄1,0,4

3 , 
H̄1,0,0,3

3 , H̄1,0,0,0,2
3 , H̄1,0,0,0,0,1

3 and H̄1,0,0,0,0,0,0
3 . These codes are nonequivalent to H2,3

3 , 
since H2,3

3 is a nonlinear code of length 36. All the nonlinear Z3s-linear GH codes, with 
s ≥ 2, of length 36 are

H̄3,1
3 , H̄2,3

3 , H̄1,2,0
3 , H̄2,0,1

3 , H̄1,1,2
3 , H̄1,1,0,0

3 , H̄1,0,1,1
3 , and H̄1,0,0,1,0

3

having the following parameters (r, k), where r is the rank and k the dimension of the 
kernel: (12, 4), (8, 5), (12, 4), (14, 3), (8, 5), (14, 3), (8, 5) and (8, 5), respectively, as it is 
shown in Table 4 given in [19]. By Corollary 4.1, ker(H2,3

3 ) = 5. Therefore, H̄3,1
3 , H̄1,2,0

3 , 
H̄2,0,1

3 and H̄1,1,0,0
3 are nonequivalent to H2,3

3 , since they all have a kernel of dimension 
less than 5. Let F = {H̄2,3

3 , H̄1,1,2
3 , H̄1,0,1,1

3 , H̄1,0,0,1,0
3 }. Since all the codes in F have the 

same rank 8, they all are nonequivalent to H2,3
3 , since rank(H2,3

3 ) > 3 + 6 − 1 = 8 by 
Theorem 5.2.

7. Conclusions and further research

In this paper, we study the linearity of the ZpZp2-linear GH codes with α1 �= 0
constructed in Section 2, and found out that they are always nonlinear. We also determine 
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the dimension of the kernel for these nonlinear codes, and prove that this invariant can 
be used to see that they are pairwise not equivalent for any given length. This generalizes 
some results given for Z2Z4-linear Hadamard codes and Zp2-linear GH codes given in 
[17] and [19], respectively. Finally, the rank of some infinite families of codes has been
computed, and this invariant has been used to prove that, unlike for p = 2, for p ≥ 3
prime, there are Zp2-linear GH codes which are not equivalent to any ZpZp2-linear GH 
codes with α1 �= 0. Actually, there are infinite families of ZpZp2-linear GH codes with 
α1 �= 0 such that their codes are not equivalent to any Zps-linear GH codes with s ≥ 2. 
Therefore, we show that some nonlinear GH codes, without any known structure, now 
can be seen as the Gray map image of ZpZp2-additive codes.

As a further research, it would be interesting to prove that the ZpZp2-linear GH codes 
with α1 �= 0 and p ≥ 3 prime are always not equivalent to any Zp2-linear GH code of 
the same length pt, as it can be seen for p ∈ {3, 5} and 2 ≤ t ≤ 8, from Tables 1 and 2. 
More generally, it may be proved that indeed they are not equivalent to any Zps-linear 
GH codes with s ≥ 2 of same length pt, as it can be checked for p = 3 and 2 ≤ t ≤ 8 by 
looking at Tables 4 and 5 from [19].
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