
Signal Processing: Image Communication 112 (2023) 116914

P
F
D

A

K
I
P
E
P

1

c
t
s
c
e
s
s
o
o
e
t
t
c
t

d
p
a
t
T
1
c
o

h
R
A
0
(

Contents lists available at ScienceDirect

Signal Processing: Image Communication

journal homepage: www.elsevier.com/locate/image

robability models for highly parallel image coding architecture
rancesc Aulí-Llinàs ∗, Joan Bartrina-Rapesta, Miguel Hernández-Cabronero
epartment of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

R T I C L E I N F O

eywords:
mage coding
arallel computing
ntropy coding
robability models

A B S T R A C T

A key aspect of image coding systems is the probability model employed to code the data. The more precise the
probability estimates inferred by the model, the higher the coding efficiency achieved. In general, probability
models adjust the estimates after coding every new symbol. The main difficulty to apply such a strategy to
a highly parallel coding engine is that many symbols are coded simultaneously, so the probability adaptation
requires a different approach. The strategy employed in previous works utilizes stationary estimates collected
a priori from a training set. Its main drawback is that statistics are dependent of the image type, so different
images require different training sets. This work introduces two probability models for a highly parallel
architecture that, similarly to conventional systems, adapt probabilities while coding data. One of the proposed
models estimates probabilities through a finite state machine, while the other employs the statistics of already
coded symbols via a sliding window. Experimental results indicate that the latter approach improves the
performance achieved by the other models, including that of JPEG2000 and High Throughput JPEG2000,
at medium and high rates with only a slight increase in computational complexity.
. Introduction

The core of most compression systems holds an entropy coder that
onverts pre-processed data into a more compact representation. Key
o achieve compression is to exploit the probabilities of the coded
ymbols. Symbols with a higher probability can be represented more
ompactly, with the limit imposed by the Shannon’s entropy. In gen-
ral, two aspects affect the efficiency of the entropy coder: the coding
cheme and the probability model. There are many different coding
chemes, ranging from Huffman coding [1], arithmetic coding [2],
r the recently introduced asymmetric numeral systems [3], among
thers. Each coding scheme imposes a computational burden and an
fficiency limit. The probability model, on the other hand, extracts rela-
ionships among the coded data in order to estimate the probabilities of
he new symbols fed to the coder. In general, this is achieved employing
ontextual information, since previous symbols with the same context
end to have similar probabilities.

In the field of image and video coding, the first compression stan-
ards such as JPEG (ISO/IEC 10918-1) and MPEG-2 (ITU H.262) em-
loyed, among others, entropy coding schemes based on Huffman. Vari-
nts of such entropy coders and their probability models were proposed
o improve coding efficiency and reduce computational costs [4–6].
he next generation of standards, including JPEG2000 (ISO/IEC 15444-
), AVC (ITU H.264), and HEVC (ITU H.265) adopted low-complexity,
ontext-adaptive binary arithmetic coders [7–9]. They were the topic
f many works in the literature too [10–14]. The latest standards

∗ Correspondence to: Escola Enginyeria, UAB, 08193 Bellaterra, Spain.
E-mail addresses: francesc.auli@uab.cat (F. Aulí-Llinàs), joan.bartrina@uab.cat (J. Bartrina-Rapesta), miguel.hernandez@uab.cat (M. Hernández-Cabronero).

such as VVC (ITU H.266) and High Throughput (HT) JPEG2000 utilize
arithmetic coding [15] and variable length coding [16], respectively.
These standards also provide parallelization opportunities that can be
adopted in implementations tailored for CPUs or GPUs, since this is the
current trend to increase the throughput of computationally intensive
applications.

In the same vein as these latest standards, Bitplane Image Coding
with Parallel Coefficient Processing (BPC-PaCo) [17] is a wavelet-based
image coding engine with features similar to those of the JPEG2000
standard. Its main difference is the bitplane and entropy coding engine,
which provides more opportunities to exploit fine-grain parallelism
in highly parallel architectures such as those of GPUs. Contrarily to
most image codecs that process image coefficients one by one, BPC-
PaCo codes 32 coefficients in parallel. The probability model employed
by the original BPC-PaCo [17] is based on stationary probabilities
generated with a training set of images [12]. This model was adopted
due to its low computational complexity, since probability estimates are
obtained by simply accessing a lookup table (LUT). The main drawback
is that it needs to be trained with a set of images similar to that coded,
which may not be feasible in some scenarios, and that the LUT must be
(possibly transmitted and) specified in the encoder and the decoder. To
use adaptive probabilities like most conventional image coding systems
poses a challenge in the highly parallelized engine of BPC-PaCo because
probability estimates need to be synchronized and shared among all
threads of execution.
ttps://doi.org/10.1016/j.image.2022.116914
eceived 12 July 2022; Received in revised form 25 November 2022; Accepted 7 D
vailable online 30 December 2022
923-5965/© 2022 The Author(s). Published by Elsevier B.V. This is an open acce
http://creativecommons.org/licenses/by-nc-nd/4.0/).
ecember 2022

ss article under the CC BY-NC-ND license

https://doi.org/10.1016/j.image.2022.116914
https://www.elsevier.com/locate/image
http://www.elsevier.com/locate/image
http://crossmark.crossref.org/dialog/?doi=10.1016/j.image.2022.116914&domain=pdf
mailto:francesc.auli@uab.cat
mailto:joan.bartrina@uab.cat
mailto:miguel.hernandez@uab.cat
https://doi.org/10.1016/j.image.2022.116914
http://creativecommons.org/licenses/by-nc-nd/4.0/


F. Aulí-Llinàs, J. Bartrina-Rapesta and M. Hernández-Cabronero Signal Processing: Image Communication 112 (2023) 116914
This paper approaches this challenge with the study of two prob-
ability models that use adaptive probabilities. This study is carried
out mostly from the point of view of coding performance. The first
model employs a finite state machine that predicts the probability of
future symbols. This strategy is similar to that employed in JPEG2000
and other standards such as HEVC and VVC. The second model is
based on a sliding window mechanism that adjusts probability esti-
mates through statistics of already coded symbols. This latter approach
achieves high performance regardless of the image type, improving the
results achieved by the remaining models and also by JPEG2000.

The rest of the paper is structured as follows. Section 2 reviews BPC-
PaCo. Section 3 describes the original probability model employed in
BPC-PaCo and introduces the two new models proposed in this paper.
Section 4 provides extensive experimental results with four different
corpora, assessing coding performance and computational complexity.
The final section concludes with a brief summary and some remarks.

2. Bitplane coding with Parallel Coefficient Processing

BPC-PaCo is a coding engine tailored for wavelet-based image cod-
ing systems. The first stage of such codecs commonly entails one or
various transforms, including the discrete wavelet transform, to remove
spatial, spectral, and/or temporal redundancy. The resulting wavelet
coefficients are quantized and coded via bitplane and entropy coding,
which is the stage that accounts for more than 80% of the compu-
tational workload [18]. There are many bitplane coding engines in
the literature, e.g., SPIHT [19], SPECK [20], EBCOT [21], JPEG2000’s
tier-1 [22], or BPC-PaCo [17]. To allow coarse-grain parallelism, the
wavelet coefficients are typically partitioned in small sets, referred to
as codeblocks, that are coded independently, producing a bitstream for
each. These bitstreams are possibly (truncated and) re-organized to fit
a target rate, or to form layers of quality, in the last stage of the coding
pipeline.

The main idea behind bitplane coding is to code all data within the
codeblock bit by bit, beginning from the highest magnitude bit of all
quantized coefficients and finishing with the lowest. If [𝑏𝑀−1, 𝑏𝑀−2,… ,
𝑏1, 𝑏0] with 𝑏𝑖 ∈ {0, 1} being the binary representation of the absolute
value of 𝜐 obtained when wavelet coefficient 𝜔 is quantized, bitplane 𝑗
is defined as the set of bits 𝑏𝑗 from all coefficients. The coding engine
codes all bits from bitplane 𝑀−1 to bitplane 0, assuming that all indices
𝜐 are lower than 2𝑀 .

The coefficients are defined as significant or non-significant. A
coefficient becomes significant at bitplane 𝑠 when the first non-zero
bit of its binary representation is found, more precisely, when 𝑏𝑠 = 1
with 𝑏𝑠′ = 0,𝑀 > 𝑠′ > 𝑠. 𝑏𝑠 is called the significant bit for that
coefficient, and 𝑏𝑟, 0 ≤ 𝑟 < 𝑠 are called refinement bits. Commonly, the
coefficients are scanned multiple times in each bitplane, first coding
the bits of non-significant coefficients in previous bitplanes because
these bits reduce most the image distortion [23]. Then, a second coding
pass emits the refinement bits of the remaining coefficients. JPEG2000
further refines this procedure employing three coding passes. The first
is called Significance Propagation Pass (SPP) and codes the bits of
non-significant coefficients that are neighbors of already significant
coefficients. The second is the magnitude refinement pass (MRP) and
codes refinement bits. The last is the Cleanup Pass (CP) and codes
the bits of the remaining coefficients. Once a coefficient becomes
significant, its sign 𝑑 ∈ {+,−} is immediately coded to allow the
decoder approximate 𝜔 as soon as possible.

The order in which the coefficients are scanned is a key difference
between JPEG2000 and BPC-PaCo. Fig. 1 illustrates both orders for
a codeblock of 16 × 16 coefficients. In JPEG2000, a single thread
consecutively scans all the coefficients within the codeblock, producing
an embedded bitstream in which each bit can only be decoded after
the previous. BPC-PaCo employs one execution thread per each pair
of columns, coding 32 coefficients simultaneously (in codeblocks of

64 columns). The scanning is repeated three times in each bitplane,

2

once per coding pass. The parallel processing of BPC-PaCo is tailored
for the highly parallel architecture of GPUs, which typically maps
parallel execution flows to vector instructions. In the following, thread
is referred to such an execution flow.

Each bit emitted by the bitplane coder is fed to the entropy coder
accompanied by its context. The context is an important aspect of the
probability model because the entropy coder obtains the probability
estimate of the incoming bit depending on its context. A comprehen-
sive study of context formation [24] concludes that simple strategies
obtain high performance. BPC-PaCo embraces this simplicity to reduce
computational costs too. Contexts are defined as follows: let the eight
adjacent neighbors of 𝜐 be denoted by 𝜐𝑘, 1 ≤ 𝑘 ≤ 8. Its significance
state in bitplane 𝑗 is referred to as 𝛷(𝜐𝑘, 𝑗), being 1 when 𝜐𝑘 has been
coded in the previous significance pass (i.e., if there is an 𝑠 > 𝑗 such
that 𝑏𝑠(𝜐𝑘) = 1), or when it is coded in the current bitplane -and
the coefficient is already visited in the current coding pass. Otherwise
𝛷(𝜐𝑘, 𝑗) = 0. The context employed for significance coding in SPP and
CP in bitplane 𝑗 is defined as the sum of the significance states of the
adjacent neighbors of 𝜐, more precisely

𝜙𝑠𝑖𝑔(𝜐, 𝑗) =
∑

𝑘=1…8
𝛷(𝜐𝑘, 𝑗) , (1)

so 𝜙𝑠𝑖𝑔(𝜐, 𝑗) ∈ [0, 8]. We note that using the significance state of these
neighbors does not create thread dependencies because all threads ad-
vance their execution at the same pace, i.e., in a lockstep synchronous
way.

The context for sign coding employs the sign of the vertical and
horizontal adjacent neighbors of coefficient 𝜔. Let 𝜒(𝜔𝑘, 𝑗) be 0, 1 or
−1 at bitplane 𝑗 when the coefficient is still not significant, significant
and positive, and significant and negative, respectively. 𝜒𝑉 and 𝜒𝐻

are defined as the sum of 𝜒(𝜔𝑘, 𝑗), respectively for the two vertical
and horizontal adjacent neighbors of 𝜔. The context for sign coding
is defined as

𝜙𝑠𝑖𝑔𝑛(𝜔, 𝑗) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

9 if (𝜒𝑉 > 0 and 𝜒𝐻 > 0) or
(𝜒𝑉 < 0 and 𝜒𝐻 < 0)

10 if 𝜒𝑉 = 0 and 𝜒𝐻 ≠ 0
11 if 𝜒𝑉 ≠ 0 and 𝜒𝐻 = 0
12 otherwise

. (2)

A single context is employed for refinement bits since more complex
approaches do not obtain significant coding gains, so 𝜙𝑟𝑒𝑓 (𝜐, 𝑗) = 13. In
total 14 different contexts are employed, 9 for significance, 4 for sign,
and 1 for refinement coding.

Let 𝑃𝑠𝑖𝑔(𝑏𝑗 = 0 | 𝜙𝑠𝑖𝑔(𝜐, 𝑗)) denote the probability estimate for one
context of significance coding. Conventional models devised for single-
threaded execution, like JPEG2000, typically set 𝑃𝑠𝑖𝑔(⋅) = 0.5 at the
beginning of coding and then adjust this probability depending on
every new bit coded. This procedure cannot be reproduced in BPC-PaCo
due to the parallel processing of coefficients.

3. Probability models

3.1. Stationary

The original model of BPC-PaCo is based on stationary probabilities.
Instead of adjusting probabilities adaptively depending on the incoming
data, this model uses fixed estimates that depend on the wavelet sub-
band, bitplane, and context. The model is thoroughly studied in [12].
The main idea is to collect statistics of images captured with the same
sensor in order to build a LUT that both the encoder and decoder share.
The data produced by the same wavelet filter bank for images of the
same type are statistically similar [24–26], so the LUT can be employed
to estimate the symbols’ probability of other images.

First, the probability mass function (pmf) of the quantization indices
is computed with all the images in the training set. The pmf for subband
𝑢 at bitplane 𝑗 is referred to as 𝐹 (𝜐 | 𝜙 (𝜐, 𝑗)) for the contexts of
𝑢 𝑠𝑖𝑔



F. Aulí-Llinàs, J. Bartrina-Rapesta and M. Hernández-Cabronero Signal Processing: Image Communication 112 (2023) 116914

s
i

m

Fig. 1. Scanning orders employed by (a) the original tier-1 coding stage of JPEG2000 standard, and (b) the highly parallel engine BPC-PaCo.
ignificance coding. The support of this pmf is [0,… , 2𝑗+1 − 1] because
t considers coefficients 𝜐 ∈ [0, 2𝑗+1). Then, the probability that 𝑏𝑗 = 0

is determined as

𝑃𝑠𝑖𝑔(𝑏𝑗 = 0 | 𝜙𝑠𝑖𝑔(𝜐, 𝑗)) =

2𝑗−1
∑

𝜐=0
𝐹𝑢(𝜐 | 𝜙𝑠𝑖𝑔(𝜐, 𝑗))

2𝑗+1−1
∑

𝜐=0
𝐹𝑢(𝜐 | 𝜙𝑠𝑖𝑔(𝜐, 𝑗))

. (3)

These probabilities populate the LUT for significance coding, which
is accessed as 𝑢[𝑗][𝜙𝑠𝑖𝑔(⋅)]. The LUTs for refinement and sign coding
are derived similarly. Through these LUTs, the coding procedure com-
putes the coefficient’s context and then accesses the corresponding LUT
to obtain the estimate. No further operations are required since the
LUTs are not updated during the coding process, so the computational
complexity of such a strategy is very low.

3.2. Finite state machine

Adapting the probability estimates with a finite state machine is
a widely employed technique in image and video coding [8,22,27].
Each state holds a probability estimate for the most probable symbol
(MPS), in the range [0.5, 1), and has two transitions to other states. One
of the transitions is employed when coding the MPS, and the other
when coding the least probable symbol (LPS). Each context points at
one state. They are commonly initialized at the state with the lowest
probability (i.e., 0.5). Every time a new symbol is coded, a transition
to a new state with a higher (lower) probability in the case of an
MPS (LPS) is carried out. In general, the state machine contains a
series of states that increase the probability estimate very rapidly at the
beginning of coding while MPSs are found, and then the probabilities
are more finely adjusted as more data are processed.1

Such a state machine works well when transitions among states
are carried out for every new symbol coded, which is not feasible
in BPC-PaCo. The threads processing coefficients in parallel cannot
share information about the symbols that are currently coding because
that would entail causal relations among them, disrupting the parallel
processing. However, once the coefficients are processed, the coding

1 We refer the reader to [12, Figure 2] for an illustration of the state
achine employed in the MQ coder of JPEG2000.
3

results can be employed to update the probability estimate of each
context. Fig. 2 illustrates the state machine used in our approach.
It has 64 states depicted with circles. Transitions of MPSs and LPSs
are respectively depicted in blue and red arrows. The coding of an
MPS increases the probability estimate linearly from 0.5 to 0.992,
whereas coding an LPS decreases the estimate exponentially. Similar
strategies are employed in other image codecs (such as the MQ coder
of JPEG2000 [12]). It has been devised empirically with a large dataset
to achieve high coding efficiency regardless of the image type.

Algorithm 1 describes the three coding passes carried out by BPC-
PaCo when encoding. Decoding is the inverse procedure, so it is not
detailed herein. These coding passes are called consecutively in each
bitplane (not shown in the algorithm). The algorithm is described from
the point of view of a single execution flow (i.e., a thread) that codes
the data of two adjacent columns. Nonetheless, note that the execution
in the GPU runs all threads of the codeblock in parallel, advancing
their execution synchronously. The procedures in Algorithm 1 receive
the bitplane and thread as parameters. The bitplane is employed to
emit the corresponding bit and to compute the context, whereas the
thread is employed to compute the processed columns. The two first
lines in each coding pass embody the scanning order. Then, SPP(⋅) and
CP(⋅) check whether the coefficient has to be coded in that pass or not.
Quantization indices and coefficients are respectively referred to as 𝜐𝑦,𝑥
and 𝜔𝑦,𝑥 following the same notation as above but denoting the position
within the codeblock. If the coefficient needs to be coded, ACencode(⋅)
is called. If the coefficient is significant, sign coding also calls this pro-
cedure with its corresponding context (line 6 in both SPP(⋅) and CP(⋅)).
Refinement coding is similar but without sign coding. ACencode(⋅) is
also executed in parallel and synchronously for all threads. If a thread
does not call this procedure, it remains idle until the remaining threads
finish its processing. In all coding passes, ACupdate(⋅) is called just
after the coefficient is coded (also in parallel and synchronously for all
threads). The parameter given to this procedure is thread 𝑡, although
it is received as context 𝑐 in Algorithm 2. Whereas Algorithm 1 and
ACencode(⋅) in Algorithm 2 use one thread per each pair of columns,
ACupdate(⋅) uses the same threads to update the probabilities of all
contexts in parallel. As there are only 14 contexts, threads 𝑡 ≥ 15 do
not contribute to the updating operation and are idle during this step.

Algorithm 2 describes the operations related to the probability
model that are carried out by the arithmetic coder. The first line in
ACencode(⋅) sets probability 𝑝, employed to code the interval. In this



F. Aulí-Llinàs, J. Bartrina-Rapesta and M. Hernández-Cabronero Signal Processing: Image Communication 112 (2023) 116914

i
c
w
p
c

Fig. 2. Finite state machine employed to estimate probabilities of future symbols. Each state is depicted with a gray circle. The estimated probability of the MPS symbol associated
with each state is depicted in the vertical axis. Blue and red lines indicate transitions when coding an MPS and LPS, respectively.
o
e
r

r
b
L

Algorithm 1 BPC-PaCo with adaptive prob. models
SPP(𝑗 bitplane, 𝑡 thread)
1: for 𝑦 ∈ [0,numRows − 1] do
2: for 𝑥 ∈ [𝑡 ⋅ 2, 𝑡 ⋅ 2 + 1] do
3: if 𝜐𝑦,𝑥 is not significant AND 𝜙𝑠𝑖𝑔(𝜐𝑦,𝑥, 𝑗) ≠ 0 then
4: ACencode(𝑏𝑗 , 𝜙𝑠𝑖𝑔(𝜐𝑦,𝑥, 𝑗), 𝑡)
5: if 𝑏𝑗 = 1 then
6: ACencode(𝑑, 𝜙𝑠𝑖𝑔𝑛(𝜔𝑦,𝑥, 𝑗), 𝑡)
7: end if
8: end if
9: ACupdate(t)

10: end for
11: end for

MRP(𝑗 bitplane, 𝑡 thread)
1: for 𝑦 ∈ [0,numRows − 1] do
2: for 𝑥 ∈ [𝑡 ⋅ 2, 𝑡 ⋅ 2 + 1] do
3: if 𝜐𝑦,𝑥 is significant in 𝑗′ > 𝑗 then
4: ACencode(𝑏𝑗 , 𝜙𝑟𝑒𝑓 (𝜐𝑦,𝑥, 𝑗), 𝑡)
5: end if
6: ACupdate(t)
7: end for
8: end for

CP(𝑗 bitplane, 𝑡 thread)
1: for 𝑦 ∈ [0,numRows − 1] do
2: for 𝑥 ∈ [𝑡 ⋅ 2, 𝑡 ⋅ 2 + 1] do
3: if 𝜐𝑦,𝑥 is not significant AND not coded in SPP then
4: ACencode(𝑏𝑗 , 𝜙𝑠𝑖𝑔(𝜐𝑦,𝑥, 𝑗), 𝑡)
5: if 𝑏𝑗 = 1 then
6: ACencode(𝑑, 𝜙𝑠𝑖𝑔𝑛(𝜔𝑦,𝑥), 𝑡)
7: end if
8: end if
9: ACupdate(t)

10: end for
11: end for

model, [𝑐] denotes the state of the corresponding context, whereas 𝑃 ′

s the probability associated with that state. Once 𝑝 is set, operations to
ode the interval with that probability are carried out via code(𝑠, 𝑝, 𝑡),
hich uses an independent arithmetic coder for each thread. This
rocedure is not included in Algorithm 2 for simplicity, but can be
onsulted in [17, Algorithm 1]. The remaining lines in ACencode(⋅)
 c

4

Algorithm 2 Arithmetic coder (relevant operations)
ACencode(𝑠 symbol, 𝑐 context, 𝑡 thread)

1: 𝑝 ←

{

𝑃 ′[[𝑐]] ∕ ∗ finite state machine ∗ ∕
𝑃 ′′[𝑐] ∕ ∗ sliding window ∗ ∕

2: code(𝑠, 𝑝, 𝑡) ∕ ∗ interval coding − see [17, Algorithm 1] ∗ ∕
3: if 𝑠 = 0 then
4: 0[𝑐] ← 0[𝑐] + 1
5: end if
6:  [𝑐] ←  [𝑐] + 1

ACupdate(𝑐 context) ∕ ∗ finite state machine ∗ ∕
1: if 𝑐 < 15 AND  [𝑐] > 0 then
2: [𝑐] ← LPStransition( [𝑐] − 0[𝑐])
3: [𝑐] ← MPStransition(0[𝑐])
4:  [𝑐] ← 0
5: 0[𝑐] ← 0
6: end if

ACupdate(𝑐 context) ∕ ∗ sliding window ∗ ∕
1: if 𝑐 < 15 AND  [𝑐] > 0 then
2: 𝑃 ′′[𝑐] ← 0[𝑐]∕ [𝑐]
3: if 0[𝑐] = −1 AND  [𝑐] ≥ 𝑊 then
4: 0[𝑐] ← 0[𝑐]
5: [𝑐] ←  [𝑐]
6: end if
7: if  [𝑐] ≥ 2𝑊 then
8:  [𝑐] ←  [𝑐] −[𝑐]
9: [𝑐] ←  [𝑐]

10: 0[𝑐] ← 0[𝑐] −0[𝑐]
11: 0[𝑐] ← 0[𝑐]
12: end if
13: end if

update the number of 0s and the total number of symbols coded for
this context, which are stored in 0[𝑐] and  [𝑐], respectively. These
perations can be implemented as atomic increments in a GPU, so that
ven if two or more threads use the same context in the same step, the
esult remains correct.

The procedure ACupdate(⋅) employed in this model (second in Algo-
ithm 2) updates the state of the context. If one or more symbols have
een coded with that context, the state is decreased by the number of
PSs coded (i.e.,  [𝑐]−0[𝑐]) and then increased by the number of MPSs
oded (i.e.,  [𝑐]). Afterwards,  [𝑐] and  [𝑐] are reset to zero.
0 0



F. Aulí-Llinàs, J. Bartrina-Rapesta and M. Hernández-Cabronero Signal Processing: Image Communication 112 (2023) 116914

r
t
i

p
g
r
A
f
t
h
(
d
a
W
b
e
0
t
T
l
𝑊
v
o
e

4

o
I
p
a
b
m
o
s
h
t
i
e
R
6
a
b
p
c
i

m

i

3.3. Sliding window

A variable-size sliding window [28,29] is employed by this last
model of probabilities. The main idea is to use statistics of the last
coded symbols, enclosed in this window, to estimate the probability
of the incoming. This strategy assumes that the new symbols have
a similar distribution to the last ones. The window has between 𝑊
and 2𝑊 symbols, approximately, except at the beginning of coding.
With some abuse of notation, let the number of 0s and total number
of symbols coded within this window be denoted by 0[𝑐] and  [𝑐],
espectively. When  [𝑐] ≥ 2𝑊 , the window size is reduced subtracting
he statistics of the first 𝑊 symbols, approximately, which are stored
n 0[𝑐] and [𝑐] for the 0s and the total, respectively.

Like the previous model, probability estimates are updated after
rocessing 32 coefficients in parallel, so the procedures detailed in Al-
orithm 1 hold for this approach too. Algorithm 2 details the operations
equired to compute the probability and update the window. Procedure
Cencode(⋅) carries out the same operations for both models except the

irst, which in this case uses 𝑃 ′′[𝑐] to set the probability 𝑝 corresponding
o that context. 𝑃 ′′[𝑐] is updated after checking that at least one symbol
as been coded with this context in the first operation of ACupdate(⋅)
third procedure in Algorithm 2). This updating is expressed as a
ivision, though in practice it can be implemented with bit shifts and
dditions depending on the interval partitioning procedure employed.
e also note that the result of the division may never reach 1. At the

eginning of coding, all array positions in 𝑃 ′′[𝑐] are initialized to 0.5
xcept for the first, which is set to 0.9. This first context is initialized to
.9 because it is employed to code the significance bits of coefficients
hat do not have any significant neighbor, so they are generally 0 too.
his increases slightly the efficiency of the coder. The conditional in

ine 3 checks if the number of symbols coded in the window exceeds
for the first time (via 0[𝑐] that is initialized to −1). If so, sets

ariables 0[𝑐] and [𝑐]. Every time the window contains 2𝑊 symbols
r more, it is half emptied as detailed in lines 7–12. Experimental
vidence indicates that 𝑊 = 256 obtains high coding efficiency.

. Experimental results

The experimental tests below utilize 4 corpora with different types
f images to consider a wide variety of scenarios. The first corpus is the
SO 12640-1, which has eight color images of 2048 × 2560 and 8 bits
er sample (bps). The images in the second corpus are captured with
n aerial sensor covering vegetation and urban areas, are gray scale, 8
ps and have a size of 7200 × 5000. The third corpus belongs to the
edical field. It consists of three X-ray angiography images with a size

f 512 × 512 with 15 components and 12 bps. The last corpus con-
ists of three AVIRIS (Airbone Visible/Infrared Imaging Spectrometer)
yperspectral images of 512 × 512 with 224 components and 16 bps
hat are provided by NASA. This corpora is the same to that employed
n the original BPC-PaCo paper [17] to allow comparison. All codecs
xcept HT JPEG2000, are implemented in our Java framework [30].
esults for HT JPEG2000 are obtained with Kakadu [31]. Codeblocks of
4 × 64 and 5 levels of irreversible (reversible) wavelet transformation
re employed for the lossy (lossless) regime.2 Training is neither needed
y (HT) JPEG2000 nor by BPC-PaCo using either of the two models
roposed in this work, since probabilities are adaptively adjusted while
oding new data. The training set required by the stationary model
ncludes all images of each corpus except the one that is evaluated.

First, lossy coding performance is assessed. The stationary, state
achine, and sliding window models are compared against JPEG2000

2 The proposed methods do not employ the bit stuffing technique deployed
n JPEG2000 that avoids coding bytes with a 0𝑥𝐹𝐹 value. This does not signif-

icantly affect the rate–distortion comparisons since this technique increments
negligibly the length of the codestream.
5

Table 1
Evaluation of lossless coding performance.

BPC-PaCo

HT Station- State Sliding
JP2 JP2 ary machine window

ISO 12640-1

Portrait 3.81 4.0 3.94 3.94 3.82
Cafeteria 4.69 4.97 4.79 4.80 4.69
Fruit 3.96 4.22 4.15 4.06 3.96
Wine 3.94 4.20 4.12 4.05 3.94
Bicycle 3.90 4.18 4.09 4.04 3.93
Orchid 3.45 3.69 3.68 3.56 3.46
Music. 5.34 5.63 5.52 5.42 5.29
Candle 4.75 5.03 4.87 4.86 4.75

Average 4.23 +0.27 +0.16 +0.11 +0.00

aerial

forest1 6.20 6.51 6.16 6.25 6.10
forest2 6.28 6.59 6.23 6.33 6.18
urban1 5.54 5.88 5.55 5.68 5.50
urban2 5.20 5.52 5.23 5.33 5.16

Average 5.80 +0.32 −0.01 +0.09 −0.07

X-ray

A 6.37 6.68 6.30 6.40 6.27
B 6.48 6.79 6.45 6.52 6.37
C 6.35 6.66 6.29 6.38 6.25

Average 6.40 +0.31 +0.05 +0.03 −0.11

AVIRIS

cuprite 7.01 7.32 6.98 7.09 6.90
jasper 7.66 7.98 7.61 7.74 7.52
lunarLake 6.91 7.22 6.89 6.98 6.81

Average 7.19 +0.31 −0.03 +0.08 −0.12

and HT JPEG2000. Each image is coded at 100 equally spaced rates.
Quality is evaluated in terms of peak signal to noise ratio (PSNR). Fig. 3
reports the results achieved by one image of each corpus. Similar results
hold for the others. Results are reported as the PSNR difference between
that obtained by the evaluated method and that of JPEG2000. The
horizontal straight line in each plot is the performance of JPEG2000,
while the remaining represent the evaluated methods. Results below
(above) this horizontal line indicate lower (higher) performance than
that of JPEG2000. The results of Fig. 3 suggest that the state machine
model, which is similar to that employed by JPEG2000, obtains low
performance when applied to parallel processing. Differences vary
depending on the rate and image type. This seems to indicate that the
transitions among states, which are necessarily performed only once for
every 32 coefficients coded, diminishes the precision of the probability
estimates. Contrarily, the sliding window model achieves the highest
performance at medium and high rates in three of the four types of
images evaluated. At these rates, this model obtains gains in the order
of 0.5 dB with respect to JPEG2000, while at low rates it is in general
less than 0.2 dB inferior to the standard, suggesting that very precise
probability estimates are obtained when enough data are within the
window (i.e., from medium to high rates). Compared to HT JPEG2000,
the sliding window model obtains similar performance at low rates but
much higher at medium and high rates. Similar results are obtained
for codeblocks of smaller size (not shown in the figure), with the
performance achieved by the two adaptive approaches being slightly
more penalized than that achieved by the stationary model because
fewer data are coded and so the probabilities are adjusted with less
precision. The abrupt variations in coding performance seen in Fig. 3
for some of the images are due to the statistical behavior of the data
coded in each coding pass, which is handled differently depending on
the employed probability model.

The evaluation of lossy coding performance is completed with the
test reported in Fig. 4, which compares the above-mentioned methods
against JPEG XS (ISO/IEC 21122). JPEG XS is a wavelet-based im-
age compression standard tailored for very low complexity and high
throughput. Results are obtained with the JPEG XS Reference Software
using profile ‘‘High444.12.’’ As seen in the figure, the performance

achieved by this standard is lower than that obtained by the proposed



F. Aulí-Llinàs, J. Bartrina-Rapesta and M. Hernández-Cabronero Signal Processing: Image Communication 112 (2023) 116914

c

Fig. 3. Evaluation of lossy coding performance for images of different corpora: (a) ‘‘Musicians’’ of the ISO12640-1 corpus, (b) ‘‘forest2’’ of the aerial corpus, (c) ‘‘B’’ of the X-ray
orpus, and (d) ‘‘jasper’’ of the AVIRIS corpus.
Fig. 4. Evaluation of lossy coding performance, including JPEG XS, for the ‘‘Musicians’’
image of the ISO12640-1 corpus.

methods, in part due to the lack of arithmetic coding. Similar results
are obtained for the other images.

Second, lossless coding performance is appraised. Table 1 reports
the results for all images. They are expressed in bps of the compressed
file except for the average of each corpus. These rows report the
 c

6

average difference between the method evaluated and JPEG2000. The
best results are depicted in bold. The sliding window model obtains
the lowest rate for almost all images, achieving improvements about
0.1 bps with respect to JPEG2000. Again, these results suggest that this
model is highly efficient at high rates, when more data are available.
This is also seen through the gains obtained for the X-ray and AVIRIS
images, which are slightly higher than those achieved for the natural
and aerial images because X-ray and AVIRIS images have higher bit-
depths. The state machine model achieves inferior performance to that
of JPEG2000, similar to that achieved by the original stationary model.
HT JPEG2000 obtains lower performance, suggesting that it is more
indicated for lossy regimes.

Third, computational complexity is analyzed. It is approximated
as the execution time spent by the bitplane and entropy coder when
executed with a single thread.3 This provides an idea of the complexity
burden imposed by each model as compared to the stationary, which
is the simplest computationally. Our experience indicates that this
burden is similar to that achieved with GPU implementations. This
comparison only considers the complexity of the probability models
proposed for BPC-PaCo to evaluate its complexity differences, leaving
apart JPEG2000 and HT JPEG2000 since they utilize different scanning
orders and entropy coders. A workstation with an i7-6700K CPU at
4.00 GHz and 32 GB of DDR4 RAM is employed to carry out these

3 The lowest execution time of 10 execution runs is employed, since that
orresponds with the execution that is less disrupted.



F. Aulí-Llinàs, J. Bartrina-Rapesta and M. Hernández-Cabronero Signal Processing: Image Communication 112 (2023) 116914

t
c
e
r
s
r
m
a
p

5

h
m
i
p
b
i
e
p
c
b
g
a
P
o

Fig. 5. Evaluation of computational complexity for different corpora: (a) ISO12640-1, (b) aerial, (c) X-ray, and (d) AVIRIS.
I
J
&

ests. Fig. 5 shows the average results achieved in lossy regime for each
orpus. The left and right column depicted for each method represent
ncoding and decoding time, respectively. Results hold for lossless
egimes as well. As seen in the figure, the complexity increase of the
liding window model is slightly lower than that of the state machine,
equiring an approximate increase of 10% with respect to the stationary
odel. In general, encoding takes slightly more time than decoding in

ll tests due to operations required by the rate–distortion optimization
rocess.

. Conclusions

This work evaluates two probability models for a wavelet-based,
ighly-parallel image coding architecture. The main novelty of these
odels is that they adaptively adjust the probabilities while coding data

nstead of using training as required in previous work. The first pro-
osed model utilizes a finite state machine to adaptively adjust proba-
ilities. It is inspired in the same mechanism employed in conventional
mage and video codecs. Experimental results indicate regular coding
fficiency, suggesting that this model is not suitable for fine-grain
arallelism. The second proposed model employs a sliding window, a
ompletely different mechanism that determines probability estimates
ased on statistical data from past symbols. Experimental results sug-
est that the sliding window is well suited for fine-grain parallelism,
chieving higher compression efficiency than that of the original BPC-
aCo and, at medium to high rates, than that of JPEG2000. This model

btains gains of approximately 0.1 bps in lossless coding as compared

7

to JPEG2000. In terms of computational complexity, experimental tests
indicate a moderate increase of 10%, approximately. Although this
work is based on our previous algorithm BPC-PaCo, conclusions may
also be extended to other parallel codecs. Future work will implement
the sliding window model in a modern GPU to assess its complexity
and performance when executed in a highly parallel processor.

CRediT authorship contribution statement

Francesc Aulí-Llinàs: Conceptualization, Methodology, Validation,
nvestigation, Writing – original draft, Writing – review & editing.
oan Bartrina-Rapesta: Methodology, Investigation, Writing – review
editing. Miguel Hernández-Cabronero: Methodology, Investigation,

Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Two of the image corpora employed (ISO 12640-1 and NASA
AVIRIS) are publicly available, and the other two corpora (aerial and

X-ray) are provided by institutions without permission to share them.



F. Aulí-Llinàs, J. Bartrina-Rapesta and M. Hernández-Cabronero Signal Processing: Image Communication 112 (2023) 116914
Acknowledgments

This work has been partially supported by the Spanish Ministry
of Science, Innovation and Universities (MICIU) and by the European
Regional Development Fund (FEDER) under Grants RTI2018-095287-
B-I00 and PID2021-125258OB-I00, by the Catalan Government under
Grants 2018-BP-00008 and 2017SGR-463, and by the Horizon 2020
under the Marie Skłodowska-Curie grant agreement #801370.

References

[1] D. Huffman, A method for the construction of minimum redundancy codes, Proc.
IRE 40 (1952) 1098–1101.

[2] J. Rissanen, Generalized Kraft inequality and arithmetic coding, IBM J. Res. Dev.
20 (3) (1976) 198–203.

[3] J. Duda, K. Tahboub, N.J. Gadgil, E.J. Delp, The use of asymmetric numeral
systems as an accurate replacement for huffman coding, in: Proc. IEEE Picture
Coding Symposium, 2015, pp. 65–69.

[4] G. Lakhani, Modified JPEG huffman coding, IEEE Trans. Image Process. 12 (2)
(2003) 159–169.

[5] J.-S. Lee, J.-H. Jeong, T.-G. Chang, An efficient method of huffman decoding for
MPEG-2 AAC and its performance analysis, IEEE Trans. Speech Audio Process.
13 (6) (2005) 1206–1209.

[6] G. Lakhani, Modifying JPEG binary arithmetic codec for exploiting inter/intra-
block and DCT coefficient sign redundancies, IEEE Trans. Image Process. 22 (4)
(2013) 1326–1339.

[7] A. Skodras, C. Christopoulos, T. Ebrahimi, The JPEG2000 still image compression
standard, IEEE Signal Process. Mag. 18 (5) (2001) 36–58.

[8] D. Marpe, H. Schwarz, T. Wiegand, Context-based adaptive binary arithmetic
coding in the H.264/AVC video compression standard, IEEE Trans. Circuits Syst.
Video Technol. 13 (7) (2003) 620–636.

[9] G.J. Sullivan, J.-R. Ohm, W.-J. Han, T. Wiegand, Overview of the high efficiency
video coding (HEVC) standard, IEEE Trans. Circuits Syst. Video Technol. 22 (12)
(2012) 1649–1668.

[10] M. Dyer, D. Taubman, S. Nooshabadi, A.K. Gupta, Concurrency techniques for
arithmetic coding in JPEG2000, IEEE Trans. Circuits Syst. I 53 (6) (2006)
1203–1212.

[11] M. Rhu, I.-C. Park, Optimization of arithmetic coding for JPEG2000, IEEE Trans.
Circuits Syst. Video Technol. 20 (3) (2010) 446–451.

[12] F. Auli-Llinas, M.W. Marcellin, Stationary probability model for microscopic
parallelism in JPEG2000, IEEE Trans. Multimedia 16 (4) (2014) 960–970.

[13] D. Zhou, J. Zhou, W. Fei, S. Goto, Ultra-high-throughput VLSI architecture of
H.265/HEVC CABAC encoder for UHDTV applications, IEEE Trans. Circuits Syst.
Video Technol. 25 (3) (2015) 497–507.
8

[14] Y. Zhang, C. Lu, A highly parallel hardware architecture of table-based CABAC
bit rate estimator in an HEVC intra encoder, IEEE Trans. Circuits Syst. Video
Technol. 29 (5) (2019) 1544–1558.

[15] D. Karwowski, Precise probability estimation of symbols in VVC CABAC entropy
encoder, IEEE Access 9 (2021) 65361–65368.

[16] D. Taubman, A. Naman, R. Mathew, High throughput block coding in the
HTJ2K compression standard, in: Proc. IEEE International Conference on Image
Processing, 2019, pp. 1079–1083.

[17] F. Auli-Llinas, P. Enfedaque, J.C. Moure, V. Sanchez, Bitplane image coding
with parallel coefficient processing, IEEE Trans. Image Process. 25 (1) (2016)
209–219.

[18] C. de Cea-Dominguez, J.C. Moure, J. Bartrina-Rapesta, F. Auli-Llinas, GPU-
oriented architecture for an end-to-end image/video codec based on JPEG2000,
IEEE Access 8 (2020) 68474–68487.

[19] A. Said, W.A. Pearlman, A. new, fast, And efficient image codec based on set
partitioning in hierarchical trees, IEEE Trans. Circuits Syst. Video Technol. 6 (3)
(1996) 243–250.

[20] W.A. Pearlman, A. Islam, N. Nagaraj, A. Said, Efficient, Low-complexity image
coding with a set-partitioning embedded block coder, IEEE Trans. Circuits Syst.
Video Technol. 14 (11) (2004) 1219–1235.

[21] D. Taubman, High performance scalable image compression with EBCOT, IEEE
Trans. Image Process. 9 (7) (2000) 1158–1170.

[22] D.S. Taubman, M.W. Marcellin, JPEG2000 Image Compression Fundamentals,
Standards and Practice, Kluwer Academic Publishers, Norwell, Massachusetts
02061 USA, 2002.

[23] F. Auli-Llinas, M.W. Marcellin, Scanning order strategies for bitplane image
coding, IEEE Trans. Image Process. 21 (4) (2012) 1920–1933.

[24] F. Auli-Llinas, Stationary probability model for bitplane image coding through
local average of wavelet coefficients, IEEE Trans. Image Process. 20 (8) (2011)
2153–2165.

[25] R.W. Buccigrossi, E.P. Simoncelli, Image compression via joint statistical char-
acterization in the wavelet domain, IEEE Trans. Image Process. 8 (12) (1999)
1688–1701.

[26] F. Auli-Llinas, M.W. Marcellin, J. Serra-Sagrista, J. Bartrina-Rapesta, Lossy-to-
lossless 3D image coding through prior coefficient lookup tables, ELSEVIER Inf.
Sci. 239 (1) (2013) 266–282.

[27] J.L. Mitchell, W.B. Pennebaker, Software implementations of the Q-Coder, IBM
J. Res. Dev. 32 (1988) 753–774.

[28] E. Belyaev, A. Turlikov, K. Egiazarian, M. Gabbouj, An efficient adaptive binary
arithmetic coder with low memory requirement, IEEE J. Sel. Top. Signal Process.
7 (6) (2013) 1053–1061.

[29] F. Auli-Llinas, Context-adaptive binary arithmetic coding with fixed-length
codewords, IEEE Trans. Multimedia 17 (8) (2015) 1385–1390.

[30] F. Auli-Llinas, BOI codec, 2022, URL https://deic.uab.cat/~francesc/software/
boi.

[31] D. Taubman, Kakadu software, 2022, URL http://www.kakadusoftware.com.

http://refhub.elsevier.com/S0923-5965(22)00193-X/sb1
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb1
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb1
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb2
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb2
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb2
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb3
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb3
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb3
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb3
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb3
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb4
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb4
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb4
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb5
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb5
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb5
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb5
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb5
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb6
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb6
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb6
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb6
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb6
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb7
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb7
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb7
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb8
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb8
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb8
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb8
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb8
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb9
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb9
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb9
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb9
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb9
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb10
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb10
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb10
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb10
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb10
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb11
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb11
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb11
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb12
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb12
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb12
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb13
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb13
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb13
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb13
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb13
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb14
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb14
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb14
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb14
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb14
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb15
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb15
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb15
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb16
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb16
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb16
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb16
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb16
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb17
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb17
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb17
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb17
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb17
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb18
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb18
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb18
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb18
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb18
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb19
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb19
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb19
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb19
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb19
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb20
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb20
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb20
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb20
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb20
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb21
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb21
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb21
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb22
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb22
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb22
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb22
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb22
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb23
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb23
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb23
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb24
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb24
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb24
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb24
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb24
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb25
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb25
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb25
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb25
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb25
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb26
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb26
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb26
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb26
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb26
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb27
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb27
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb27
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb28
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb28
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb28
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb28
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb28
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb29
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb29
http://refhub.elsevier.com/S0923-5965(22)00193-X/sb29
https://deic.uab.cat/~francesc/software/boi
https://deic.uab.cat/~francesc/software/boi
https://deic.uab.cat/~francesc/software/boi
http://www.kakadusoftware.com

	Probability models for highly parallel image coding architecture
	Introduction
	Bitplane Coding with Parallel Coefficient Processing
	Probability models
	Stationary
	Finite state machine
	Sliding window

	Experimental Results
	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


