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Abstract
For the aggregation equation in R, we consider the evolution of an initial density
corresponding to the characteristic function of some set�0.We study the limitmeasure
at the blow up time 1 for �0 open or compact and we inspect the limit set (skeleton)
where this measure is supported.
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1 Introduction

Consider the aggregation equation

⎧
⎪⎨

⎪⎩

ρt + div(ρv) = 0,

v(·, t) = −∇N ∗ ρ(·, t),
ρ(·, 0) = ρ0,

(1)

where N is the fundamental solution of the laplacian and ρ0 is a bounded compactly
supported function.This problemhas been avery active area of research in the literature
(see [2, Sect. 1]).
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As in [2], we can compute an explicit solution to (1) along the flow map X(·, t) as

ρ(X(α, t), t) =
(

1

ρ0(α)
− t

)−1

= ρ0(α)

1 − tρ0(α)
, (2)

where X(·, t) is defined, as usual, by the ODE

{
d
dt X(α, t) = v(X(α, t), t),

X(α, 0) = α.
(3)

We are interested in the case of the evolution of an aggregation patch, that is, when
ρ0 = χ�0 for some bounded domain �0. In this case the explicit solution can be
simply written, according to (2), as

ρ(·, t) = 1

1 − t
χ�t , (4)

where �t = X(�0, t), 0 ≤ t < 1. That is, the set �t is the evolution of �0 along
X(·, t). With this expression, it is clear that the blow-up occurs at time t = 1. It is
well known that equation (1) preserves the L1 norm of the scalar ρ, and hence

‖ρ(·, t)‖L1 = 1

1 − t
‖�t‖ = ‖ρ0‖L1 = ‖�0‖ .

Therefore

‖�t‖ = (1 − t) ‖�0‖ → 0 as t → 1.

In [1], they show that for an initial data of the form ρ0 = χ�0 with �0 a domain of
class C1,γ then the domain �t in the solution (4) is also of class C1,γ when t < 1.

A challenging question is to study in detail the structure of the skeleton, that is, the
blow-up set

�1 = lim
t→1− X(�0, t).

Explicit computations in [2, Sect. 4.1] shows that an elliptical patch collapses at time
1 to a measure supported in an interval contained in the straight line defined by the
major axis. On the other hand, numerical simulations in [2, Sects. 4.2–4.4] suggest a
muchmore cumbersome behaviour for other patches not that regular, even though they
collapse into a complicated skeleton of codimension one. The dynamics of one-fold
symmetric patches for the two-dimensional aggregation equation has been studied by
Hmidi and Li [3]. They showed that for domainswith a suitable symmetry structure the
solution converges weakly towards a finite measure supported in the union of disjoint
segments lying in the real axis.

Since the arbitrary dimension problem is presently rather ambitious, we consider
a toy model which corresponds to equation (1) but just for dimension 1. In this case,
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the fundamental solution of the laplacian is simply N (x) = 1
2 ‖x‖ , and so the kernel

is

K (x) = −Nx (x) = −1

2
sign(x) =

{
1/2 if x < 0,

−1/2 if x ≥ 0.

As we will see later, an advantage of considering this case is that the velocity
v(X(α, t), t) is independent of t and hence it can be computed at the initial time as
v0(α) = (K ∗χD0)(α). So the particle trajectories are “straight lines” as a function of
t in R × [0, 1) in the sense that they can be written as

X(α, t) = α + v0(α)t .

In dimension 2 or bigger we apparently lose this nice property which is fundamental
to develop explicit computations concerning the behaviour of the skeleton.

1.1 Outline of the paper

In Sect. 2 we prove the evolution of an open set towards a countable collection of
Dirac deltas. In Sect. 3 we consider the evolution of a compact set. We prove that
any compact set of vanishing Lebesgue measure is the skeleton of some well chosen
compact set. In particular, Hausdorff dimensions can be distorted arbitrarily. Indeed,
we prove in Theorem 3 a more general result involving measures.

2 Open set

As we just said, we consider the one-dimensional aggregation equation. Explicitly, we
have ⎧

⎪⎨

⎪⎩

ρt + (ρv)x = 0,

v(·, t) = −Nx ∗ ρ(·, t),
ρ(·, 0) = ρ0 = χ�0 ,

(5)

where ρ : R × R
+ → R and v : R × R

+ → R, and N is the fundamental solution
of the Laplace operator, i.e. N (x) = 1

2 ‖x‖, and therefore Nx (x) = 1
2 sign(x). The

following theorem, describing the evolution of a general bounded open set in R under
equation (5), contains the choice of a representative in L∞(R) for the initial condition.

Theorem 1 Let�0 = ⋃∞
i=1 Ii ⊂ R, with Ii = (αi , βi ) pairwise disjoint, be a bounded

open set. Let ρ and v be the solution of (5) with initial condition χ�0 . Then, �1 =
⋃∞

i=1{xi } and if dμt = ρ(·, t) dx, we have μt
w−→ μ1 = ∑∞

i=1 ‖Ii‖ δxi , where δxi is
the Dirac measure at xi .
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Proof of Theorem 1 In order to normalise a representative choice in L∞(R) for the
initial condition, we assume without loss of generality that given x ∈ I j , y ∈ Ik with
j �= k, we have ‖I (x, y) ∩ �0‖ < ‖x − y‖ , where I (x, y) indicates the minimum
interval containing x and y. In particular, this implies that instead of (a1, a2)∪(a2, a3)
we will have (a1, a3). It will also be seen from the proof, that if [a, b] is the smallest
closed interval containing �0 and ‖�0‖ = 2L > 0 then the skeleton �1 is contained
in [a + L, b − L], because it is easily verified that v0(a) = L and v0(b) = −L .

First of all, let us see that under these assumptions, there exists spatial derivative
for the trajectory map at least for α ∈ �0. Recall that, for any 0 ≤ t < 1 the trajectory
map X(·, t) is the unique homeomorphism solution to the ODE

{
dX(α,t)

dt = v(X(α, t), t),

X(α, 0) = α.

Hence, differentiating with respect to α the previous equation, we obtain

d

dα

(
dX(α, t)

dt

)

= d

dα
(v(X(α, t), t))

= d

dα

[
1

2

∫ +∞

X(α,t)
ρ(y, t) dy − 1

2

∫ X(α,t)

−∞
ρ(y, t) dy

]

= −ρ(X(α, t), t)
dX(α, t)

dα
= − 1

1 − t
ρ0(α)

dX(α, t)

dα
.

(6)

Interchanging derivatives we get

d

dt

(
dX(α, t)

dα

)

= − 1

1 − t
ρ0(α)

(
dX(α, t)

dα

)

.

Integrating and using that the homeomorphism X(·, 0) is the identitymap,we obtain
the spatial derivative (for any α ∈ �0).

dX(α, t)

dα
= 1 − t .

Secondly, we can prove that the velocity of a particle is constant along the trajectory,
this is,

v(X(α, t), t) = v(α, 0) =: v0(α). (7)

This just requires a simple computation, involving a change of variable y =
X(α′, t).

v(X(α, t), t) = 1

2

∫ +∞

−∞
sign(X(α, t) − y)ρ(y, t) dy

= 1

2

∫ +∞

−∞
sign(X(α, t) − X(α′, t))ρ(X(α′, t), t)dX(α′, t)

dα
dα′
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= 1

2

∫ +∞

−∞
sign(X(α, t) − X(α′, t)) 1

1 − t
ρ0(α

′)dX(α′, t)
dα

dα′

= 1

2

∫

α′∈�0

sign(X(α, t) − X(α′, t)) 1

1 − t

dX(α′, t)
dα

dα′

= 1

2

∫

α′∈�0

sign(X(α, t) − X(α′, t)) 1

1 − t
(1 − t) dα′

= 1

2

∫

α′∈�0

sign(X(α, t) − X(α′, t)) dα′

= 1

2

∫

α′∈�0

sign(α − α′) dα′ = v0(α);

where we have used that X(α, t)−X(α′, t) and α−α′ have the same sign since X(·, t)
is a non-decreasing homeomorphism. Then, by (7) it is clear that all particle trajectory
maps are straight lines. Indeed, for 0 ≤ t < 1, we have

X(α, t) = α +
∫ t

0
v(X(α, s), s) ds = α +

∫ t

0
v0(α) ds = α + v0(α)t .

Now we can check that any x ∈ [αi , βi ] has the same limit point

lim
t→1− X(x, t).

In fact,

v0(x) = 1

2

∫ ∞

x
ρ0(y) dy − 1

2

∫ x

−∞
ρ0(y) dy

= 1

2

[∫ ∞

αi

ρ0(y) dy −
∫ x

αi

ρ0(y) dy −
∫ αi

−∞
ρ0(y) dy −

∫ x

αi

ρ0(y) dy

]

= v0(αi ) −
∫ x

αi

ρ0(y) dy = v0(αi ) − (x − αi ), (8)

where we have used the fact that ρ0 ≡ 1 in (αi , x). Hence, for any x ∈ [αi , βi ] , we
have

X(x, t) = x + (v0(αi ) − (x − αi )) t
t→1−−→ αi + v0(αi ), (9)

which does not depend on the choice of x . From now on, we denote the limit point for
each interval I j = (α j , β j ) as x j := α j + v0(α j ). Finally, we have to see the conver-
gence of the measure μt defined as dμt = ρ(x, t) dx towards μ1 = ∑∞

i=1 ‖Ii‖ δxi .
In order to prove this, let f be a continuous function on R. Then, recall

ρ(x, t) =
∞∑

i=1

1

1 − t
χ(αi,t ,βi,t ),
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where αi,t = X(αi , t) and βi,t = X(βi , t). Summing up, we have

〈 f , μt 〉 = 1

1 − t

∞∑

i=1

∫ βi,t

αi,t

f (x) dx .

Let mi,t := inf
x∈(αi,t ,βi,t )

f (x) and Mi,t := supx∈(αi,t ,βi,t )
f (x). Then, it is clear that

for any i ,

1

1 − t
mi,t (βi,t − αi,t ) ≤ 1

1 − t

∫ βi,t

αi,t

f (x) dx ≤ 1

1 − t
Mi,t (βi,t − αi,t ).

On the other hand, from (9) we have that

βi,t − αi,t = (1 − t)(βi − αi )

and hence

mi,t (βi − αi ) ≤ 1

1 − t

∫ βi,t

αi,t

f (x) dx ≤ Mi,t (βi − αi ).

Both the left and the right hand sides of the previous inequality clearly tend to the
same value f (xi )(βi − αi ), by definition of mi,t and Mi,t . Therefore we have

1

1 − t

∫ βi,t

αi,t

f (x) dx −→ f (xi )(βi − αi ), as t → 1−.

Then

〈 f , μt 〉 −→
〈

f ,
∞∑

i=1

‖Ii‖ δxi

〉

,

which proves the result. ��
We can also formulate the reciprocal result. Any bounded countable collection of

points is the skeleton of some initial open set.

Theorem 2 Let {x j }∞j=1 a bounded countable collection of points such that [c, d] is
the smallest closed interval containing

⋃∞
j=1{x j }. Let μ1 = ∑∞

j=1 c jδx j , for c j > 0
and such that

∑∞
j=1 c j = 2L, where δx j is the Dirac measure at x j . Then there exists

a bounded open set �0 ⊆ [c − L, d + L] such that the solution of (5) with initial
condition χ�0 satisfies the following:

i) �1 = ⋃∞
i=1{xi }.

ii) for �t and for the measure dμt = ρ(x, t) dx = 1
1−t χ�t (x) dx we have that

μt
w−→ μ1 as t → 1−.
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Proof For any i ∈ N, let li := ∑
x j<xi c j and define

{
ai := xi + li − L,

bi := ai + ci .

Define �0 := ⋃∞
i=1(ai , bi ). One easily checks that �0 satisfies the hypotheses of

Theorem 1 and hence by an straightforward repetition of the argument in the proof of
Theorem 1 the theorem is proved. ��
Remark 1 It is trivial to check that in Theorems 1 and 2, the initial set�0 is not unique
and the result also holds for any �̃0 such that

�0 ⊆ �̃0 ⊆
∞⋃

i=1

Ii =
∞⋃

i=1

[αi , βi ].

3 Compact set case

In the previous section we have seen that, when �0 is an open set, the limit measure is
a countable combination of Dirac measures. Consequently, the Hausdorff dimension
of this skeleton�1 is 0. Now, we shall prove that if we do not require the set to be open,
we can obtain a skeleton of any Hausdorff dimension. Specifically, we shall prove that
given a measure μ1 supported on a set �1 with zero length (but no necessarily having
Hausdorff dimension equal to 0) we can construct a set �0 such that, if ρ0 = χ�0 ,
then the solution ρ of (5) evolves towards μ1 as a measure.

Theorem 3 Let K1 be a compact set with ‖K1‖ = 0 and let [c, d] be the smallest
closed interval containing K1. Let μ1 be a measure with support equal to K1 and
μ1(K1) = 2L. Then, there exists a compact set K0 with ‖K0‖ = 2L and such that
the solution ρ(·, t) to the transport equation (5) with initial data ρ0 = χK0 satisfies

lim
t→1− ρ(x, t)dx

w−→ dμ1.

Proof Since K1 is compact, then the set U1 = [c, d] \ K1 is open. Then it can be
written as a numerable union of pairwise disjoint open intervals as

U1 =
∞⋃

j=1

(a j,1, b j,1).

For a point x ∈ (ai,1, bi,1) we associate the following velocity (recall that in Theorem
1 we saw that velocity is constant along trajectories)

vi = 1

2

{

μ1

(

K1 ∩
[
ai,1 + bi,1

2
, d

])

− μ1

(

K1 ∩
[

c,
ai,1 + bi,1

2

])}

. (10)
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Now we define

{
ai,0 = ai,1 − vi ,

bi,0 = ai,0 + (bi,1 − ai,1) = bi,1 − vi .

and also we let U0 = ⋃∞
i=1(ai,0, bi,0) and set a := c − L , b := d + L . We define

K0 = [a, b] \U0.
The spirit of this procedure is as follows.We have observed in the proof of Theorem

1 that the intervals where ρ0 is 0 just move by keeping its length, because the velocity
is the same for all points in the interval. What we have done here is keeping the length
of the intervals in the complementary of K1 and move them at the expected speed
(constant for each interval) for them. So we get the right compact set.

Consider ρ0 = χK0 (dμ0 = χK0 dx the Lebesgue measure restricted on K0) and
let ρ(·, t) be the solution to the transport equation (5). We have

v(x) = (− sign ∗χK0)(x) = 1

2
{‖K0 ∩ (x, b)‖ − ‖K0 ∩ (a, x)‖} . (11)

Observe that if x ∈ U0 then x ∈ (ai,0, bi,0) for some index i and therefore v(x) = vi
as defined in (10). For 0 ≤ t < 1, the flow provided by v is

Xt (x) = X(x, t) =

⎧
⎪⎨

⎪⎩

x + t L if x ≤ a,

x + v(x)t if a < x < b,

x − t L if b ≤ x,

a non decreasing homeomorphism in R. Denote Kt = X(K0, t). On the other hand,

lim
t→1− Xt (x) = X1(x) =

⎧
⎪⎨

⎪⎩

x + L if x ≤ a,

x + v(x) if a < x < b,

x − L if b ≤ x,

is a surjective continuous map from [a, b] to [c, d]. It is clear by construction that
U1 = X1(U0) and hence K1 = X1(K0) too.

The solution of (5) is ρ(x, t) = 1

1 − t
χKt and dμt = ρ(x, t)dx , 0 ≤ t < 1. Given

a Borel set B of R one checks

μt (B) = 1

1 − t
‖Kt ∩ B‖ = μ0(X

−1
t (B)),

that is, μt is the image of μ0 under Xt , μt = (Xt )#μ0. It remains to check that μt

converges weakly to μ1 when t tends to 1. Let g a continuous function on R. Then,
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because Xt −→ X1 continuously when t → 1,

∫

gdμt =
∫

gd(Xt )#μ0 =
∫

(g ◦ Xt )dμ0

=
∫

(g ◦ Xt )χK0dx −→
∫

(g ◦ X1)χK0dx =
∫

gd(X1)#μ0.

We have μt
w−→ (X1)#μ0. Finally, we need to verify that μ1 = (X1)#μ0.

Given y ∈ [c, d], set X−1
1 (y) = {x ∈ [a, b] : X1(x) = y}. We claim that X−1

1 (y)
is either a single element or an closed interval. Assume that x0 < x1 both in X−1

1 (y)
and then x0 + v(x0) = x1 + v(x1) = y. Then by (11)

x1 − x0 = v(x0) − v(x1) = ‖K0 ∩ (x0, x1)‖.

Consequently, for all x ∈ [x0, x1] one has x + v(x) = x0 + v(x0) = y as we wanted.
In fact, if x+ = sup X−1

1 (y) and x− = inf X−1
1 (y) one has X−1

1 (y) = [x−, x+].
Now, again by construction, one has μ1(−∞, y] = μ0(−∞, x+] and μ1(−∞, y) =
μ0(−∞, x−). Playing with these two equations we get μ0(X

−1
1 (J )) = μ1(J ) for any

interval J, whether open, closed, or semi-open. For instance,

μ0(X
−1
1 [y1, y2]) = μ0(y

−
1 , y+

2 ) = μ0(−∞, y+
2 ) − μ0(−∞, y−

1 )

= μ1(−∞, y2] − μ1(−∞, y1))

= μ1[y1, y2].

In conclusion μ1 = (X1)#μ0. ��
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