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Systematics of Miocene apes: State of the art of a neverending controversy

Abstract

Hominoids diverged from cercopithecoids during the Oligocene in Afro-Arabia, initially
radiating in that continent and subsequently dispersing into Eurasia. From the Late Miocene
onward, the geographic range of hominoids progressively shrank, except for hominins,
which dispersed out of Africa during the Pleistocene. Although the overall picture of
hominoid evolution is clear based on available fossil evidence, many uncertainties persist
regarding the phylogeny and paleobiogeography of Miocene apes (honhominin hominoids),
owing to their sparse record, pervasive homoplasy, and the decimated current diversity of
this group. We review Miocene ape systematics and evolution by focusing on the most
parsimonious cladograms published during the last decade. First, we provide a historical
account of the progress made in Miocene ape phylogeny and paleobiogeography, report an
updated classification of Miocene apes, and provide a list of Miocene ape species-locality
occurrences together with an analysis of their paleobiodiversity dynamics. Second, we
discuss various critical issues of Miocene ape phylogeny and paleobiogeography (hylobatid
and crown hominid origins, plus the relationships of Oreopithecus) in the light of the highly
divergent results obtained from cladistic analyses of craniodental and postcranial characters
separately. We conclude that cladistic efforts to disentangle Miocene ape phylogeny are
potentially biased by a long-branch attraction problem caused by the numerous postcranial
similarities shared between hylobatids and hominids—despite the increasingly held view
that they are likely homoplastic to a large extent, as illustrated by Sivapithecus and
Pierolapithecus—and further aggravated by abundant missing data owing to incomplete

preservation. Finally, we argue that—besides the recovery of additional fossils, the retrieval
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of paleoproteomic data, and a better integration between cladistics and geometric
morphometrics—Miocene ape phylogenetics should take advantage of total-evidence (tip-
dating) Bayesian methods of phylogenetic inference combining morphologic, molecular, and
chronostratigraphic data. This would hopefully help ascertain whether hylobatid divergence

was more basal than currently supported.

Keywords: Hominoidea; Evolution; Taxonomy; Phylogeny; Cladistics; Homoplasy.

1. Introduction
1.1. What, if anything, is a Miocene ape?

The term ‘ape’ is sometimes used as a synonym of ‘hominoid’—i.e., a member of the
superfamily Hominoidea, which includes the families Hylobatidae (gibbons and siamang) and
Hominidae (orangutans, gorillas, chimpanzees, and humans; Groves, 2017), plus their extinct
relatives. However, following the most common usage of ‘apes’ as opposed to both
‘monkeys’ and ‘humans’ (e.g., Alba, 2012; Tuttle, 2014; Andrews, 2020; Almécija et al.,
2021), we restrict the former term to hominoids exclusive of the human lineage (i.e.,
nonhominin hominoids). Originally, the term ‘ape’ broadly referred to all nonhuman
anthropoids, so that nonhuman hominoids were referred to as ‘manlike apes’ (Huxley, 1863)
or ‘anthropomorphous apes’ (Darwin, 1871; Huxley, 1872). Huxley (1872) formalized the
term ‘anthropomorph’, subsequently used by other authors (e.g., Pocock, 1926; Delson,
1977; Szalay and Delson, 1979), but currently in disuse in the English literature. Hylobatids
and nonhominin hominids are customarily referred to as ‘lesser apes’ and ‘great apes’,
respectively, in allusion to their size differences (Tuttle, 2014). Extant hylobatids include

more than a dozen species classified in four genera, while hominids similarly include four
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genera but a lower number of species (Groves, 2001, 2017). The restricted diversity of
extant hominoids contrasts with that of both extant Old World monkeys and extinct apes.
The latter attained a much wider geographic distribution (including Europe and mainland
Asia) during the Miocene (e.g., Alba, 2012; Fleagle, 2013; Begun, 2015). As a result of the
decimated current genus diversity of hominoids, making sense of their evolutionary history
constitutes a monumental challenge from both adaptive and phylogenetic viewpoints (see
review in Almécija et al., 2021).

This review focuses on apes recorded from the Miocene—the first geological epoch of the
Neogene period, being formally divided into Early (23.04-15.99 Ma), Middle (15.99-11.65
Ma), and Late (11.65-5.33 Ma) Miocene (Raffi et al., 2020). This epoch witnessed important
environmental and biotic changes (Zachos et al., 2001; Blois and Hadly, 2009; Raffi et al.,
2020). The closure of the Tethys Seaway, due to the collision of the Afro-Arabian and
Eurasian plates, enabled intermittent intercontinental dispersals through the Middle East
from ~19 Ma onward (Harzhauser et al., 2007), although they were temporarily interrupted
during the Langhian transgression at the beginning of the Middle Miocene (~16 Ma; Rogl,
1999). The Mid-Miocene Climatic Optimum, a global warming event that peaked ~17-15 Ma,
was followed by the Middle Miocene Climate Transition, a stepwise cooling phase that
continued throughout the Late Miocene and had a profound impact on terrestrial
ecosystems and mammalian communities (Flower and Kennett, 1994; Zachos et al., 2001;
Kirschner et al., 2008; Foster et al., 2012; Pound et al., 2012). The geographic spread of
woodland and savanna biomes throughout the Old World, and the associated Pikermian
chronofauna adapted to more open and arid environments, started around the Middle to
Late Miocene transition and peaked at ~7.5 Ma (Eronen et al., 2009; Kaya et al., 2018).

Toward the end of the Miocene, beginning at ~6 Ma, a combination of tectonic and
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glacioeustatic factors repeatedly isolated the Mediterranean Sea from the Atlantic Ocean
during the Messinian Salinity Crisis (Krijgsman et al., 1999), which favored the spread of
open landscapes around the Mediterranean and the establishment of additional dispersal
routes between Europe and Africa (Gibert et al., 2013).

As for many other groups, the factors outlined above played a major role in shaping
hominoid evolution and adaptation (Andrews, 1992, 1996; Andrews and Bernor, 1999;
Andrews and Kelley, 2007). Several books (Tuttle, 2014; Andrews, 2015; Begun, 2016) and
reviews (Wood and Harrison, 2011; Begun, 2013, 2015; Andrews, 2020; Almécija et al., 2021)
have been devoted to Miocene apes during the last decade, and the general picture is quite
clear. Hominoids originated in Africa during the late Oligocene, experienced a first radiation
in that continent during the Early and Middle Miocene, and later dispersed into Eurasia,
where they experienced a second radiation during the Middle to Late Miocene.
Subsequently, from the Late Miocene onward, many hominoid genera went extinct and the
geographic distribution of hominoids progressively shrank to equatorial Africa and
southeastern Asia—with the remarkable exception of members of the human lineage, which
radiated during the Plio-Pleistocene and ultimately dispersed throughout the globe.
Nevertheless, many uncertainties still persist, particularly regarding the origin of hylobatids

and crown hominids (Almécija et al., 2021).

1.2. Taxonomic scope and aims of this review

This review aims to synthesize current knowledge of Miocene ape diversity as well as to
critically review their taxonomy, phylogeny, and paleobiogeography in light of the cladistic
analyses published during the last decade, with emphasis on hylobatid and hominid origins.

A first section with the necessary historical background is followed by an updated
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classification of Miocene apes and an analysis of their paleobiodiversity dynamics. Various
controversial issues (the origin of hylobatids, the relationships of Oreopithecus, and the
pongine—hominine divergence) are then discussed in the light of phylogenetic uncertainties
highlighted by the contradictory cladistic results obtained from craniodental and postcranial
data separately. We finally discuss future directions of research with emphasis on
phylogenetic inference methods.

Besides Oligocene and Plio-Pleistocene apes, which are excluded from this review by
definition, Early and Middle Miocene small-bodied catarrhines from Africa of uncertain
affinities have also been left out. These include dendropithecids, which have been variously
considered stem catarrhines (Harrison, 2010a, 2013; Nengo et al., 2017; Gilbert et al., 2020a)
or stem hominoids (Rae, 1999, 2004; Zalmout et al., 2010; Alba et al., 2015; Begun, 2015;
Rossie and Hill, 2018), because we consider that currently available evidence leans against
considering them hominoids—albeit recognizing that more complete remains would be
required to more conclusively assess their systematic position (see Section 3.5).

Two small-bodied genera from Eurasia of debated affinities have also been excluded. Kapi
ramnagarensis Gilbert et al., 2020a, based on an isolated M3 from the Middle Miocene
(13.8—-12.5 Ma) of India, was originally recovered as a stem hylobatid (Gilbert et al., 2020a),
but subsequently reinterpreted as a pliopithecoid (Ji et al., 2022). Similarly, Pliobates
cataloniae Alba et al., 2015 from the Middle/Late Miocene (11.6 Ma) of Spain, known on the
basis of a partial skeleton, was originally considered a stem hominoid (Alba et al., 2015) but
alternatively interpreted as a possible pliopithecoid (Benefit and McCrossin, 2015; Nengo et
al., 2017; Gilbert et al., 2020a, 2020b). Pliobates displays a mosaic of plesiomorphic (stem

catarrhine-like) and derived (crown hominoid-like) features (Alba et al., 2015; Bouchet et al.,
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2021), but work in progress by the authors supports the hypothesis that it is a stem
catarrhine postcranially convergent with hominoids.

The hominin status of the Late Miocene genera Ardipithecus White et al., 1995 (~5.8-4.4
Ma; White et al., 1994, 2009; Haile-Selassie, 2001; Haile-Selassie et al., 2004, 2009), Orrorin
Senut et al., 2001 (Pickford et al., 2002; Gommery and Senut, 2006; Almécija et al., 2013),
and Sahelanthropus Brunet et al., 2002 (~7 Ma; Zollikofer et al., 2005; Guy et al., 2005;
Macchiarelli et al., 2020; Daver et al., 2022) has sometimes been questioned (Wolpoff et al.,
2002; Macchiarelli et al., 2020; Wood and Harrison, 2011). However, here these genera have
been excluded based on the general view (e.g., Harcourt-Smith, 2010; Simpson, 2010, 2013;
Pugh, 2022)—further supported by most recent cladistic analyses (Mongle et al., 2019; Pugh,

2020)—that they are early hominins.

2. Historical background

For the purposes of the present review, we distinguish three (slightly overlapping) phases
of Miocene ape research: (1) from the pioneering works of earliest evolutionists until the
1970s; (2) a turmoil phase characterized by the molecular revolution and the cladistic
paradigm shift (1960s—1970s); and (3) a modern phase, characterized by an acceleration of
fossil discoveries and the regular application of computer-assisted methods of phylogenetic

inference.

2.1. From Darwin to the Ramapithecus debate

Ever since Darwin (and Dryopithecus) More than a century and a half ago, evidence on

extinct apes was very meager. However, largely based on Huxley’s (1863) studies, Darwin

(1871) hypothesized an African origin for the human lineage. Given the scarcity of fossil apes
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known by then, Darwin (1871) recognized that the aforementioned hypothesis was little
more than a well-informed guess. Indeed, the discovery of Dryopithecus fontani Lartet, 1856
in the Miocene of France already indicated that paleobiogeographic scenarios of ape and
human evolution must be more complex than implied by the geographic distribution of
extant apes. Darwin’s (1871) hypothesis did not gain general acceptance during the
following decades, owing to several factors besides the initial dearth of fossil humans in
Africa. Even after the discovery of australopiths in South Africa (Dart, 1925), the infamous
Piltdown hoax from England (Dawson and Smith Woodward, 1913, 1914) contributed—
among other factors—to divert paleoanthropologists’ attention from Africa (Tobias, 1985,
1992; Lewin, 1987). The Piltdown Man became eventually sidelined in the 1940s (Harrison
and Howells, 2007), before the fraud was uncovered a decade later (Weiner et al., 19533,
1953b). However, racist prejudices by European researchers arguably played a more
important role in the initial dismissal of australopiths as early human ancestors (Lewin, 1987;
Bowler, 1992).

A massacre of Miocene apes Fossil evidence from Europe, Asia, and Africa accumulated until

Simons and Pilbeam (1965) published a highly influential taxonomic revision of fossil apes.
During the 1960s, systematic thinking was dominated by Simpson’s evolutionary
systematics, which accepted paraphyletic and even polyphyletic taxa and was strongly
biased in favor of taxonomic lumping—with the proliferation of genus and species names
being debunked as ‘typological thinking’ (Cartmill, 2018). Following Mayr’s (1950) influential
contribution, Le Gros Clark (1955: 18) qualified “the somewhat arbitrary multiplication of
genera and species” one of “the more vexing taxonomic problems in Primate paleontology”.
Simons (1963) adhered to such views and put them into practice in Simons and Pilbeam’s

(1965) revision, which showed a marked lumping tendency—a “massacre of Miocene ape
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taxa” (Cartmill, 2018: 680). They shoehorned most fossil large-bodied hominoid remains into
just seven species within the genus Dryopithecus Lartet, 1856, divided in three subgenera:
Dryopithecus (Proconsul) Hopwood, 1933 from Africa, Dryopithecus (Sivapithecus) Pilgrim,
1910 from Asia, and Dryopithecus s.s. from Europe. Only Gigantopithecus von Koenigswald,
1935 (considered an aberrant late offshoot of dryopithecines) and Ramapithecus Lewis,
1934 (considered an early member of the human lineage) were spared by Simons and
Pilbeam (1965) from being subsumed into Dryopithecus.

The rise and fall of Ramapithecus The notion that humans and apes (or at least African great

apes) diverged from a common stock deep in the Miocene or even earlier was widespread
during the 20t century well into the 1960s (e.g., Gregory, 1916, 1927; Keith, 1925; Osborn,
1930; Simpson, 1949; Leakey, 1953; Le Gros Clark, 1955, 1959)—albeit with widely divergent
viewpoints between Gregory and Osborn (see review in Lewin, 1987). Following Lewis’s
(1934) original suggestion, Simons (1961, 1964) resurrected Ramapithecus as an early
representative of the human lineage, contrasting to the previously prevailing view that it
was a dryopithecine (Simpson, 1963). By that time, Leakey (1961) made a similar proposal
for Kenyapithecus wickeri Leakey, 1961 from Africa, subsequently criticizing Simons and
Pilbeam’s (1965) proposed synonymy with Ramapithecus punjabicus (Pilgrim, 1910) as an
"extreme example of taxonomic lumping” (Leakey, 1967: 155).

As characterized in the 1960s, Ramapithecus fulfilled the expectations for a fossil human
relative (parabolic dental arcade, small upper incisors and canines, and orthognathous face;
Simons, 1961, 1964). This contention led to the so-called “Ramapithecus debate,” which
“had a profound and lasting effect on paleoanthropology” (Ward, 1997a: 270). According to
Simons and Pilbeam (1965), Ramapithecus might have evolved from an early species of

Dryopithecus and bounded the divergence between humans and apes to not later than 14
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Ma, while extant African apes might have originated from later species of Dryopithecus, and
orangutans from an even older dryopithecine ancestor back in the Oligocene. Pilbeam (1966,
1969) even hypothesized ancestor—descendant relationships between extant great ape
genera and different Miocene ape species. As epitomized by the same author three decades
later (Pilbeam, 1997: 13—-14): “When the number of taxa was limited, the number of
morphological characters small, phylogenetic analysis not rigorous, and when molecular
clocks could safely be ignored, there were few impediments to tracing extant lineages well
back into the Neogene, or even earlier.”

The status quo set forth by Simons and Pilbeam’s (1965), particularly regarding
Ramapithecus (see also Pilbeam and Simons, 1965; Pilbeam, 1966), was contested by other
paleontologists during the following decade (see below) but temporarily led to a mainstream
consensus that drastically differs from current views on hominin origins. This is illustrated by
Campbell and Bernor’s (1976) review of ape evolution, explicitly aimed to evaluate the place
of origin of the human lineage. The views summarized by these authors still hold nowadays
regarding hominoid origins in Africa and their subsequent dispersal into Eurasia ~16 Ma.
However, their discussion about hominin origins was colored by the wide geographic range
still attributed by then to Ramapithecus, concluding that “Dryopithecines in either Africa or
Eurasia could have given rise to early Hominidae [currently Hominini]”, such that “neither
continent can be precluded as the place of origin” (Campbell and Bernor, 1976: 441). Toward
the end of the 1970s, Simons (1977) maintained unaltered his opinion about Ramapithecus.
Pilbeam and colleagues (Pilbeam et al., 1977, 1980; Pilbeam, 1979) were more amenable to
different interpretations—he subsequently admitted having doubts since the mid 1970s

(Pilbeam, 1983)—but still highlighted the distinctiveness of Ramapithecus.
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In contrast, other authors voiced multiple criticisms against the interpretation of
Ramapithecus as an early member of the human lineage. Ramapithecus wickeri was
resurrected for the African remains (Andrews, 1971) and it was shown that this species
lacked a rounded, human-like dental arcade (Walker and Andrews, 1973; Frayer, 1976;
Greenfield, 1978). Von Koenigswald (1973) resurrected Kenyapithecus Leakey, 1961 for this
species and considered it an ape, while Greenfield (1974) argued that some remains from
Asia also belonged to dryopithecines and criticized the purported status of Ramapithecus as
a human ancestor. A more thorough rebuttal was provided by Frayer (1976), then Pilbeam
(1978) acknowledged that Ramapithecus lacked a parabolic arcade, and finally Greenfield
(1979) concluded that Ramapithecus is a junior subjective synonym of Sivapithecus—leading
him to favor a late divergence for the human lineage (Greenfield, 1980). During the 1980s,
only a few researchers (e.g., Kay, 1982; Kay and Simons, 1983) still supported ‘hominid’

status of these taxa despite accepting their synonymy.

2.2. The molecular revolution and the paradigm shift of cladistics

The molecular revolution Early studies of hominoid phylogeny based on serological data

indicated that humans are more closely related to African apes than to orangutans
(Zuckerkandl et al., 1960; Goodman, 1962a, 1962b, 1963). Although this was recognized by
Simons and Pilbeam (1965), they did not see it as a challenge for an early divergence of the
human lineage. Studies based on protein data subsequently supported a much more recent
divergence between humans and African apes (Sarich and Wilson, 1967; Wilson and Sarich,
1969; Goodman et al., 1971; Goodman, 1974). However, paleoanthropologists were
unwilling to accept such a late divergence (e.g., Simons, 1969; Leakey, 1970; Uzzell and

Pilbeam, 1971) with just few exceptions (Washburn, 1967). Only the end of the
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Ramapithecus debate enabled them to more widely reject the long held assumption that
apes were closely related and the human lineage divergent (Pilbeam, 1983).

In the following decade, molecular studies conclusively settled the identity of humans'
closest relatives. Initial results based on mitochondrial DNA (Ferris et al., 1981) were
ambiguous, but further analyses based on proteins (Goodman et al., 1983) and DNA
hybridization (Sibley and Ahlquist, 1984; Caccone and Powell, 1989; Sibley et al., 1990)
strongly supported a sister-taxon relationship between humans and chimpanzees. This was
confirmed by mitochondrial and nuclear DNA data during the late 1980s and 1990s
(Miyamoto et al., 1987, 1988; Williams and Goodman, 1989; Goodman et al., 1990, 1994;
Ruvolo 1994, 1997; Ruvolo et al. 1994; Arnason et al. 1996; Goodman, 1996). Current
estimates based on molecular data indicate that humans and chimpanzees diverged
sometime during the Late Miocene (~¥9-7 Ma; Perelman et al., 2011; Springer et al., 2012;
Moorjani et al., 2016).

The paradigm shift of cladistics Besides the paleoanthropologist’s reluctance to accept the

conclusions of ‘outsiders’ from another discipline in front of the ‘hard evidence’ provided by
fossils (see Lewin, 1987), several reasons explain the former’s adherence to an early
divergence of humans until the 1970s. First, the molecular revolution took several decades
to complete, such that the closer relationship between humans and chimpanzees did not
became firmly established until the 1980s (see above). Second, during the 1960s and early
1970s, paleoanthropologists lacked the necessary analytical methods to rigorously infer
phylogenetic relationships. In the 1960s and 1970s, most paleoanthropologists were still
anchored to the Simpsonian systematic paradigm, which allowed for paraphyletic taxa as
long as they were based on structural grades (e.g., Simpson, 1945). For this reason, Simons

and Pilbeam (1965) favored the traditional division between pongids and hominids
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(Simpson, 1945, 1963) despite recognizing that humans were more closely related to African
apes than orangutans.

The conceptual cladistic toolkit was available since the publication of Hennig’s (1966)
book in English and molecular biologists pioneered the introduction of cladistic ideas in
anthropology (Goodman, 1996), as illustrated by their tendency to redefine the content of
the Hominidae (e.g., Goodman, 1963). However, it was not until the early 1970s that
cladistics started to gain ground in vertebrate paleontology, largely thanks to the work of
paleontologists from the American Museum of Natural History (AMNH) in New York (e.g.,
Nelson, 1972; see review in Cartmill, 2018). In turn, the somewhat slower diffusion of the
cladistic paradigm in paleoanthropology during the late 1970s was promoted by Eric Delson,
by then already affiliated to the AMNH, and some of his colleagues there (Delson, 1977,
Delson et al., 1977).

In retrospect, the paradigm shift from Simpsonian to Hennigian systematics throughout
the 1970s and 1980s was relatively rapid, according to Cartmill (2018) because the cladistic
revolution was mostly ‘esthetic’ (sensu Kuhn, 1970)—i.e., not dictated by new facts or data
but by disagreements as to how phylogeny should be reflected in the classifications.
Certainly, unlike the molecular revolution in phylogenetic inference, the cladistic paradigm
shift was not driven by wealth of new data. Nevertheless, Cartmill’s (2018) account
downplays the profound influence that the cladistic paradigm had in the methods and
practice of morphology-based phylogenetic inference. Although many aspects of cladistic
classification are debatable (e.g., Mayr, 1974), the spread of cladistic analysis had much
deeper implications by prompting an explicit recognition that phylogenetic relationships
must be determined on the basis of shared-derived features (synapomorphies) as opposed

to shared-primitive characters (symplesiomorphies).
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Cartmill (2018) argued that many previous systematists implicitly accepted that only
synapomorphies should be considered for assessing phylogeny. However, this was not the
case for most paleoanthropologists during the 1960s and early 1970s—as explicitly admitted
by Pilbeam (1986). This is also evident from the pioneering work of Delson and Andrews
(1975: 405), which aimed to assess the “phyletic relationships among Old World higher
primates in the light of the “cladistic” methodology.” These authors had to explain that “only
those linkages based on shared derived (“advanced,” apomorphous) characters reflect true
phyletic relationships” (Delson and Andrews, 1975: 406), which denotes that this was not yet
clearly perceived by then. This is even more clear-cut from Delson’s (1977) didactic effort to
explain to the paleoanthropological community the concepts, methods, merits, and pitfalls
of cladistics. In turn, Delson et al. (1977) put theory into practice by applying the cladistic
methodology to apes and humans. These contributions by Delson and colleagues played a
key role in promoting the application of cladistic principles and methods to
paleoanthropology despite being still influenced by the then prevailing paradigm that
considered Ramapithecus an early member of the human lineage. For example, Delson
(1977) adopted a very wide definition of the Hominidae (including apes and humans) but still
classified humans and African apes in different subfamilies (Ponginae and Homininae; see
also Szalay and Delson, 1979). In any event, the spread of cladistics promoted a more
thorough evaluation of morphological evidence (both craniodental and postcranial) in the

following decades.

2.3. The modern phase: Cladistics at its peak and the Sivapithecus dilemma

Sivapithecus and the beginning of the modern phase The mid-1970s and 1980s witnessed

the description of much more complete cranial remains of Miocene apes (Tekkaya, 1974;
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Kretzoi, 1975; de Bonis and Melentis, 1978; Andrews and Tekkaya, 1980; Wu et al., 1981,
1982, 1983, 1984; Pilbeam, 1982; Ishida et al., 1984; Leakey and Walker, 1985; Leakey and
Leakey, 1986a, 1986b; Teaford et al., 1988; Zhang et al., 1988) than in the preceding
decades—Ileading to the appreciation that Miocene apes were far more diverse than
previously considered (Pilbeam, 1986). Campbell and Bernor’s (1976) attempt of
paleobiogeographic synthesis soon became outdated but was followed by Bernor’s (1983)
renewed efforts, which could not yet include the determinant discovery of a partial cranium
of Sivapithecus that showed many orangutan-like features (Pilbeam, 1982; see also Andrews,
1982). By then, persuaded by similarities between material from Turkey (now in
Ankarapithecus Ozansoy, 1957) and Sivapithecus (Andrews and Tekkaya, 1980), Andrews
had also independently arrived to the conclusion that the latter was an orangutan relative
and that the molecular divergence times were correct (Andrews and Cronin, 1982).

The discovery of the Sivapithecus cranium led to many new lines of research (Ward,
1997a), such as a detailed anatomical analysis of hominoid subnasal morphology (Ward and
Kimbel, 1983; Ward and Pilbeam, 1983; McCollum et al., 1993; McCollum and Ward, 1997).
These and other analyses led to the recognition of Sivapithecus as the Miocene ape most
clearly related to orangutans (Preuss, 1982; Ward and Kimbel, 1983; Ward and Pilbeam,
1983; Pilbeam and Smith, 1984; Pilbeam, 1985; Shea, 1985; Ward and Brown, 1986; Brown
and Ward, 1988). By this time, the synonymy between Ramapithecus and Sivapithecus
became widely accepted (Andrews, 1982; Andrews and Cronin, 1982; Kay, 1982; Lipson and
Pilbeam, 1982) and paleoanthropologists finally embraced the molecular-based late
divergence between humans and chimpanzees. As noted by Lewin (1987) and Pilbeam

(1997), besides the fossil evidence itself this shift in opinion about Ramapithecus was deeply
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influenced by the molecular data, even if this was not widely acknowledged at the time (but
see Greenfield, 1980).

The establishment of a late-diverging chimpanzee—human clade thus prompted a critical
rethinking of the available morphological evidence, while Sivapithecus served to calibrate
the hominoid molecular clock. The confluence of these factors with the spread of cladistics
gave rise to a new consensus in hominoid phylogenetics during the 1980s (Andrews and
Cronin, 1982; Pilbeam, 1984) and a brand-new phase of interpretation of Miocene ape
evolution. Thus, since the mid-1980s, most researchers (e.g., Andrews, 1985, 1992; Alba,
2012; Fleagle, 2013; Groves, 2017; Almécija et al., 2021), only with few exceptions (e.g.,
White, 2002; Tuttle, 2014), have distinguished only two extant hominoid families:
Hylobatidae and Hominidae, with the latter subdivided into Ponginae and Homininae. The
former distinction (e.g., Simpson, 1945) between Pongidae (for apes or great apes) and
Hominidae (for humans) became untenable because, from a cladistic viewpoint, paraphyletic
groups are unnatural.

Nevertheless, as researchers struggled to make compatible the molecular data with the
morphological evidence of extant hominoids, this consensus temporarily led to a plethora of
widely divergent morphology-based cladistic hypotheses supporting the monophyly of either
all great apes (Kluge, 1983), African apes (Andrews, 1987; Andrews and Martin, 1987a),
humans and chimpanzees (Groves, 1986), or even humans and orangutans (Schwartz, 1984a,
1984b). This is attributable to several factors: (1) some paleoanthropologists had yet to
embrace the view that molecular phylogenies were more reliable than morphology-based
ones; (2) the implementation of maximum-parsimony computer algorithms for cladistic
analysis was still underway; (3) there is an inherent arbitrariness in the selection of

characters and the definition of character states (Pilbeam and Young, 2001; Cartmill, 2018);

15



358 and (4) there is a lot of ‘phylogenetic noise’ caused by homoplasy (false homology; e.g.,
359  Larson, 1998). While the two first problems were solved during the next decade, the latter
360 two issues have proven more enduring and difficult to resolve.

361 The Sivapithecus dilemma Despite difficulties in retrieving the molecular phylogeny of

362 hominoids based on morphological data, the resolution of the Ramapithecus debate and the
363 discovery of the Sivapithecus cranium soon led to renewed optimism. During the 1980s, it
364 seemed as if a new synthesis of Miocene ape evolution based on the “judicious use of

365 paleontological and neontological data sets” (Pilbeam, 1985: 51) was going to emerge as
366 new fossils were discovered and carefully analyzed. Then, in the blink of an eye, the view
367 that Sivapithecus is a member of the orangutan clade was questioned owing to the discovery
368 of new postcranial remains of this taxon. In particular, two humeri of Sivapithecus indicated
369 that it displayed pronograde locomotor behaviors unlike those of modern hominoids

370  (Pilbeam et al., 1990)—as was further corroborated by additional postcranials during the
371 following decades (Madar et al., 2002; Morgan et al., 2015). More complete postcranial

372  material of other Miocene apes was also discovered throughout the 1980s and 1990s

373  (Walker and Pickford, 1983; Ward et al., 1993; Moya-Sola and Koéhler, 1996), indicating that
374  Early Miocene apes (with some possible exceptions; Gebo et al., 1997) were predominantly
375  pronograde (Ward, 1993; Ward et al., 1993), whereas at least some Late Miocene apes

376  appeared suspensory (Moya-Sola and Kohler, 1996).

377 In the early 1990s, the consensus emerging from the previous decade was probably too
378 immature to readily comprehend the implications of a Miocene ape combining an

379  orangutan-like cranium with primitive postcranials closely resembling those of the Early

380 Miocene taxa. No matter how Sivapithecus was interpreted from a phylogenetic viewpoint,

381 it was evident there must be a considerable amount of homoplasy involved—implying an
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382 independent evolution of its orangutan-like cranial morphology, an evolutionary reversal of
383 its postcranium, or the independent acquisition of postcranial similarities by crown

384  hominoids. This conundrum was dubbed the ‘Sivapithecus dilemma’ (Pilbeam and Young,
385 2001; Young, 2003), and has ever since permeated debates about Miocene ape phylogeny.
386 Andrews (1992) reviewed the Miocene apes known by then from a cladistic perspective
387 and favored the view that Sivapithecus was closely related to Pongo Lacépéde, 1799, which
388 is the interpretation favored by most subsequent authors until the present (e.g., Ward,

389  1997a, 2015; Larson, 1998; Kelley, 2002; Alba, 2012; Begun, 2015; Pugh, 2022). However,
390  during the 1990s an alternative interpretation was championed by Pilbeam (1996, 1997),
391 who reacted to the Sivapithecus dilemma by closely adhering to the postcranial evidence—
392  incidentally qualifying the profession as “craniophilic” (Pilbeam, 1996: 162). On this basis, he
393  concluded that most Miocene apes—including Middle and Late Miocene ones, such as

394  Sivapithecus, and with only the exception of Oreopithecus Gervais, 1872 and maybe some
395  dryopithecines—were most likely ‘archaic’ hominoids that diverged before the radiation of
396 hominoids of ‘modern aspect’.

397 Pilbeam’s (1996) interpretation of the postcranial similarities between hylobatids and
398 hominids as synapomorphic was a logical consequence of accepting the cladistic paradigm
399  established during the 1980s—contrasting with the prevailing view during the 1950s—-1970s,
400  according to which such features would have been developed independently a number of
401 times in different lineages (see discussion in Harrison and Rook, 1997). Similar views were
402  expressed by the latter authors, who referred to previous papers by Harrison (1986, 1987a,
403  1987b, 1991) when concluding that “the postcranial features and character complexes

404  shared by extant hominoids are so detailed and so pervasive that they are extremely unlikely

405  to be the product of convergent evolution” (Harrison and Rook, 1997: 331). This quotation
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illustrates that that adoption of the cladistic paradigm in paleoanthropology during the
1980s implied an increased reliance on postcranial features, which some researchers were
reluctant to abandon in favor of the old-fashioned greater reliance on craniodental remains.

The Sivapithecus dilemma was eventually solved in favor of postcranial homoplasy
following a highly influential paper by Larson (1998), who advocated the plausibility of many
purported postcranial synapomorphies of hominoids having evolved in parallel multiple
times along the various extant lineages. This claim was still a matter of intense debate during
the 2000s, including various attempts to measure whether the craniodental or the
postcranial data displayed a greater degree of homoplasy (Finarelli and Clyde, 2004; Young,
2005). In any event, the discoveries made during the last two decades (e.g., Moya-Sola et al.,
2004) have failed to support Pilbeam’s (1996, 1997) prediction that the discovery of
additional skeletons would strengthen the view that most Miocene apes are unrelated to
the modern radiation. Rather the contrary, Larson’s (1998) views have been vindicated
further, supporting the contention that many postcranial similarities among extant ape
lineages are indeed homoplastic and that reconstructing last common ancestors based on
extant apes alone is totally unreliable (Alba, 2012; Ward, 2015; Almécija et al., 2021).

Cladistics in the Computer Age Despite having the problem of postcranial homoplasy in

mind, since the 1990s paleoanthropologists have increasingly performed morphology-based
cladistic analyses based on both craniodental and postcranial characters to decipher the
phylogenetic relationships among the ever-increasing list of Miocene ape taxa. These
analyses have been prompted by the important discoveries and reanalyses of Miocene ape
crania and postcrania that have taken place during the last three decades (e.g., de Bonis et
al., 1990; de Bonis and Koufos, 1993; Moya-Sola and Kohler, 1993, 1996; Gebo et al., 1997;

Nakatsukasa et al., 1998; Ward et al., 1999; Kordos and Begun, 2001; Moya-Sola et al., 2004,
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2009a, 2009b; Kunimatsu et al., 2007; Suwa et al., 2007; Bohme et al., 2019). The more or
less informal cladistic attempts of the early 1990s (Begun, 1992a; Moya-Sola and Kohler,
1995) were soon replaced by formal analyses based on larger taxon-character matrices and
performed with the aid of computer algorithms (Begun, 1994, 1995; Shoshani et al., 1996;
Begun et al., 1997, 2012; Cameron, 1997a; Finarelli and Clyde, 2004; Rossie and MacLatchy,
2005; Zalmout et al., 2010; Stevens et al., 2013; Alba et al., 2015; Nengo et al., 2017; Rossie
and Hill, 2018; Gilbert et al., 2020a; Pugh, 2022; Ji et al., 2022).

The cladistic analyses performed during the 1990s started to find support for the
chimpanzee—human clade on morphological grounds (e.g., Begun, 1992a; Shoshani et al.,
1996; Begun et al., 1997) and the debate about human origins switched toward the
reconstruction of the chimpanzee—human last common ancestor (for recent reviews, see
Andrews, 2020 and Almécija et al., 2021). However, it soon became obvious that
uncertainties about Miocene ape phylogeny hindered the resolution of this question, as
determining the ancestral hominin morphotype cannot be properly done without the aid of
the Miocene ape fossil record (e.g., Andrews and Harrison, 2005; Andrews, 2020; Almécija et
al., 2021).

The changing views on Miocene ape phylogenetic relationships have also given rise to
new paleobiogeographic scenarios. In the late 1990s, paleobiogeographic discussion was
focused on vicariance, either by assessing alternative phylogenetic hypotheses or by
explicitly favoring one of these hypotheses (Begun, 1994, 1995; Agusti et al., 1996; Andrews
and Bernor, 1999; Begun et al., 1997). In the 2000s, the recognition that Kenyapithecus was
recorded both in Africa and Turkey during the Middle Miocene (Kelley et al., 2008) deserves
particular mention, as it has interesting paleobiogeographic implications for hominoid

dispersal events (Andrews and Kelley, 2007; Moya-Sola et al., 2009b; Casanovas-Vilar et al.,
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2011; Alba, 2012). In any case, given the diverging opinions on Miocene ape phylogeny,
several competing paleobiogeographic scenarios are still subject to ongoing debates

(Almécija et al., 2021).

3. Systematics of Miocene apes

Systematics classifies organisms based on evolutionary relationships but has also a
utilitarian function so that there is no single true classification to be discovered (Benton,
2000)—see Supplementary Online Material (SOM) S1.1 for further details. The classification
of Miocene apes presented in this article (Tables 1 and 2) relies on the use of Linnean ranks
and other the provisions of the International Code of Zoological Nomenclature; ICZN, 1999).
Unless we abandon Linnean nomenclature (see SOM S1.2 for further discussion), paraphyly
is ultimately inescapable at the species and genus ranks (Sarmiento et al., 2002), but our
systematic scheme assumes that the distinguished family-group taxa are monophyletic (i.e.,
clades). If the paraphyletic status suspected for some of these taxa was more conclusively
supported in the future, our classification should be changed accordingly. Even within the
framework of phylogenetic systematics (which aims to faithfully reflect phylogeny and avoid
paraphyletic taxa), constructing a classification is a subjective exercise that depends on the
taxonomist’s decisions about what phylogenetic hypotheses are best supported, as well as
which clades must be denoted as taxa and what ranks should be attributed to each.
Therefore, we do not expect our systematic proposal to be uncritically adopted by other
scholars. We rather conceive it as a utilitarian construct to transmit our interpretation of
current knowledge about Miocene ape evolution.

Given that the true phylogeny of any group is scientifically unknowable, phylogenetic

inference plays a central role in systematics. In the case of Miocene apes, most studies have

20



478

479

480

481

482

4383

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

used cladistic analysis of morphological data based on maximum parsimony to test
competing phylogenetic hypotheses (for the epistemological basis of cladistics, see SOM
$1.3). Only a few studies have relied on other methods, including Finarelli and Clyde’s (2004)
analysis based on stratocladistics—an alternative method of phylogenetic inference that
combines morphological and chronostratigraphic data (Fisher, 2008; see SOM S1.4)—and
the most recent exploration of Bayesian analyses (see SOM S1.5) by Pugh (2022). We mostly
relied on the results of recent cladistic analyses (Nengo et al., 2017: Fig. 5; Gilbert et al.,
2020a: Fig. 4; Pugh, 2022: Fig. 5), coupled with the synthetic cladogram hypothesized by
Gilbert et al. (2020b: Fig. 17.1) and the cladistic results by other authors (Begun et al., 1997:
Fig. 1, 2012: Fig. 9; Alba et al., 2015: Fig. 8; Rossie and Hill, 2018: Fig. 5; Ji et al., 2022: Fig.
11). The first three recent cladistic analyses mentioned above were performed by the same
authors, and hence do not represent independent attempts at Miocene ape phylogenetic
reconstruction. However, Pugh’s (2022) analyses were more focused on hominids and hence
are more comprehensive regarding the phylogenetic relationships inferred for this group.
The phylogenetic and nomenclatural rationale underpinning our classification of Miocene
apes, together with taxonomic remarks for particular taxa, are provided below (see SOM S2

for nomenclatural remarks).

3.1. A stem-based definition of the Hominoidea

Since Simpson’s (1945) seminal paper, most authors have classified apes and humans
within a single superfamily Hominoidea (e.g., Szalay and Delson, 1979; Groves, 1986), with
only a few exceptions (e.g., Delson and Andrews, 1975; Thenius, 1981). Simpson (1945)
distinguished two families (Pongidae for apes and Hominidae for humans) but other authors

restricted pongids to the great apes and distinguished the Hylobatidae for lesser apes (e.g.,
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Fiedler, 1956). The latter scheme was widely used until the molecular revolution led to an
expanded concept of the Hominidae including the African apes (Goodman, 1974; Andrews
and Cronin, 1982), all the great apes (Goodman, 1974; Schwartz et al., 1978; Andrews, 1985;
Groves, 1986), or even both lesser and great apes (Delson and Andrews, 1975; Delson 1977;
Szalay and Delson, 1979; Goodman et al., 1990, 1998; Goodman, 1996). Groves’ (1986)
classification of extant hominoids in two families (Hylobatidae and Hominidae) and hominids
in two subfamilies (Ponginae and Homininae) has been very influential, being subsequently
adopted by most paleoanthropologists (Andrews, 1992; Andrews et al., 1996; Shoshani et al.,
1996; Delson, 2000; Wood and Richmond, 2000; Begun, 2002a, 2010; Kelley, 2002; Ward and
Duren, 2002; Wood and Harrison, 2011; Alba, 2012; Fleagle, 2013; Almécija et al., 2021). The
traditional restricted usage of the Hominidae has been favored recently by several researchers
(e.g., White, 2002; White et al., 2009; Tuttle, 2014; Schwartz, 2015). However, such an
arrangement can only prevent paraphyly by distinguishing gorillas and chimpanzees at the
family rank (i.e., Gorillidae Frechkop, 1943 and Panidae Delson, 1977, respectively; e.g.,
Schwartz, 1986), which is not favored here.

In accordance with many previous contributions (e.g., Andrews, 1992; Alba, 2012; Nengo
et al., 2017; Gilbert et al., 2020a; Almécija et al., 2021), here we adopt a stem-based
definition of the Hominoidea (Fig. 1) and other included family-group taxa (families,
subfamilies, and tribes; see SOM S1.6 for further details). This implies that taxa are defined
as putatively monophyletic groups on the basis of the subtaxa included within them, with
extant taxa defining the crown group and the extinct members equally related to all of them
constituting the stem lineage—for the concepts of ‘total group,’ ‘crown group,’ and ‘stem
lineage’, see Figure 1 and SOM S1.7. Thus, crown hominoids are defined as the clade

composed by hylobatids and hominids, whereas stem hominoids constitute a paraphyletic

22



526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

assemblage of extinct taxa more closely related to both hylobatids and hominids than to the
extant sister taxon of hominoids (i.e., cercopithecoids). In turn, crown hominids include
pongines and hominines, whereas stem hominids include crown hominoids more closely
related to both pongines and hominines than to hylobatids.

The theoretical distinction between hominoids and stem catarrhines is straightforward
but determining the systematic status of many extinct catarrhines is complicated by
uncertainties regarding their branching order relative to cercopithecoids (see Section 1.2).
The same applies to the distinction between stem and crown hominoids. Begun et al. (1997)
and Begun (2001) informally employed the terms ‘eohominoids’ and ‘euhominoids’ to
distinguish what Pilbeam (1996, 1997) termed hominoids of ‘archaic aspect’ and ‘modern
aspect,’ respectively. This distinction was subsequently formalized by Begun (2009, 2015) by
distinguishing the superfamilies Proconsuloidea and Hominoidea within a magnafamily
Hominidea. Indeed, these terms are equivalent to stem and crown hominoids, respectively,
and hence unnecessary (Alba, 2012). A distinction of a superfamily Proconsuloidea would
only make sense if the included taxa are considered stem catarrhines preceding the
cercopithecoid-hominoid split (Harrison, 2002, 2010a). However, the latter view is at odds
with the results of formal cladistic analyses (e.g., Begun et al., 1997, 2012; Zalmout et al.,
2010; Stevens et al., 2013; Alba et al., 2015; Nengo et al., 2017; Rossie and Hill, 2018; Gilbert
et al., 2020a) and not followed here.

Several family-group taxa (of questionable monophyly) have been recently distinguished
within the Hominoidea at the family and/or subfamily rank (Alba, 2012; Fleagle, 2013; Nengo
et al., 2017; Gilbert et al., 2020b). Here we follow Gilbert et al. (2020b) in distinguishing
three families of putative stem hominoids (Proconsulidae Leakey, 1963, Afropithecidae

Andrews, 1992, and Nyanzapithecidae Harrison, 2002), which correspond to the three
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subfamilies formerly distinguished by Harrison (2002, 2010a) within the Proconsuloidea.
Some cladistic results (Nengo et al., 2017, Gilbert et al., 2020a) support a basalmost
divergence of proconsulids within the hominoid stem lineage, followed by a clade including
the paraphyletic Afropithecidae and the Nyanzapithecidae, sister to crown hominoids (Fig.
2a). On this basis, Gilbert et al. (2020b) depicted afropithecids and nyanzapithecids in a
trichotomy with crown hominoids. In contrast, Rossie and Hill (2018) recovered a basalmost
divergence of nyanzapithecids (together with dendropithecids), followed by the paraphyletic
proconsulids and finally afropithecids as the sister-taxon of crown hominoids (Fig. 2b). Most
recently, Pugh (2022) supported the more basal status of equatorine afropithecids
compared with hylobatids. However, the fact that proconsulids were employed as an
outgroup (i.e., assumed a priori to be more basal than afropithecids) and that neither
afropithecines nor nyanzapithecids were included in Pugh’s (2022) analyses makes it
uncertain the early branching topology and putative monophyly of stem hominoid families.
Both proconsulids and nyanzapithecids are represented among the earliest known
hominoids from the Oligocene of Africa. Proconsulids are recorded by Kamoyapithecus
hamiltoni Leakey et al., 1995 from Kenya, ~28-24 Ma, formerly interpreted as a stem
catarrhine (Harrison, 2010a, 2013; Zalmout et al., 2010; Stevens et al., 2013) but already
showing the distinctive canine morphology of Proconsul (Hammond et al., 2019).
Nyanzapithecids are first recorded by Rukwapithecus fleaglei Stevens et al., 2013 from
Tanzania at 25.2 Ma and an indeterminate species that co-occurs with Ka. hamiltoni
(Hammond et al., 2019). Although these Oligocene hominoids are only recorded from scarce
dentognathic material, recent cladistic analyses supported the nyanzapithecid affinities of
Rukwapithecus (Nengo et al., 2017; Gilbert et al., 2020a). Together with the fact that

afropithecids are not recorded until several million years later, from the Early Miocene,
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these results support an early diversification of stem hominoids well within the Oligocene—
in rough agreement with average estimates of the cercopithecoid—hominoid divergence
between 32 Ma (Perelman et al., 2011) and 25 Ma (Springer et al., 2012)—as well as a less
basal status for afropithecids. Thus, although Nengo et al. (2017) and Gilbert et al. (2020a)
recovered afropithecids as paraphyletic, we prefer to keep them as a distinct family until

their phylogenetic relationships are clarified further.

3.2. Proconsulidae

Proconsulids include multiple species from the Early Miocene of Kenya and Uganda (~21—
16 Ma; Tables 2 and 3). The members of this family show a remarkable body mass disparity
(from ~5 to 50 kg; Ruff et al., 1989; Rafferty et al., 1995; Harrison, 2010a) and retain multiple
plesiomorphic features compared with crown hominoids (Harrison, 2010a; Begun, 2015), such
as well-developed molar cingula, an open palatine fenestra, a short tubular ectotympanic with
a deep V-shaped notch in the external margin, and a deep subarcuate fossa. Postcranially,
they display a mosaic of primitive (mostly platyrrhine-like) and derived (hominoid-like)
postcranial features, overall indicative of a pronograde body plan suggestive of generalized
arboreal quadrupedalism and powerful-grasping cautious climbing (Rose, 1983, 1997; Ward,
1993, 1997b, 2015; Ward et al., 1993; Kelley, 1997; Walker, 1997; Harrison, 2010a; Daver and
Nakatsukasa, 2015). The hominoid status of proconsulids is highlighted by the lack of an
external tail (Ward et al., 1991; Kelley, 1997; Nakatsukasa et al., 2003), although they display
other more subtle features derived toward the hominoid condition, such as an incipient distal
radioulnar diarthrosis (Daver and Nakatsukasa, 2015). Proconsulids display a lower degree of
encephalization than great apes (being more comparable in this regard to extant hylobatids;

Walker et al., 1983; Alba, 2010) but perhaps—based on crown formation time—already

25



598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

possessed a somewhat slower life history than cercopithecoids (Kelley, 1997, 2004; Kelley and
Smith, 2003).

We recognize the genus Ekembo McNulty et al., 2015 for two species—Ekembo nyanzae
(Le Gros Clark and Leakey, 1950) and Ekembo heseloni (Walker et al., 1993)—formerly
included in Proconsul (e.g., Harrison, 2010a). According to McNulty et al. (2015), Ekembo
displays some derived features relative to Proconsul, but thus far cladistic analyses have not
recovered the two genera as distinct subclades (Nengo et al., 2017; Rossie and Hill, 2018;
Gilbert et al., 2020a). However, it is noteworthy that Pugh (2022) refrained from analyzing
the two Ekembo species separately because of the difficulties to delimit their respective
hypodigms. We also follow most previous authors (MacLatchy and Rossie, 2005; Harrison
and Andrews, 2009; Harrison, 2010a, McNulty et al., 2015) in considering that
Ugandapithecus Senut et al., 2000, originally erected for Proconsul major Le Gros Clark and
Leakey, 1950 and subsequently expanded by some authors (Pickford and Kunimatsu, 2005;
Pickford et al., 2009a) to include Proconsul meswae Harrison and Andrews, 2009, Proconsul
gitongai (Pickford and Kunimatsu, 2005), and Proconsul legetetensis (Pickford et al., 2009a),
is a junior subjective synonym of Proconsul. However, Ugandapithecus remains potentially
available for P. major if other species are eventually shown to be more closely related to it
than to Proconsul africanus Hopwood, 1933. Moreover, following Pickford et al. (2020, 2021)
we find the synonymy favored by McNulty et al. (2015) between P. legetetensis (originally
described in Ugandapithecus) and P. major unconvincing (as they remarked the
distinctiveness of the holotype mandible) and tentatively prefer to keep the species distinct.

We also include in this family the genus Kalepithecus Harrison, 1988 —whose type species,
Kalepithecus songhorensis (Andrews, 1979), was left as incertae sedis by Harrison (2010a)—

because most recent analyses (Nengo et al., 2017; Gilbert et al., 2020a) have supported the
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proconsulid affinities previously noted for this species (Rae, 1997). Kalepithecus differs from
small-bodied stem catarrhines in the inferiorly broader nasal aperture and relatively deep
clivus (Harrison, 1988, 2002, 2010a; Rae, 1997), supporting its hominoid status. Proconsulids
may be thus more diverse than currently recognized, as it seems plausible that other small-
bodied catarrhines from Africa, mostly known from dentognathic material, might ultimately

be shown to belong to this family when more complete cranial material becomes available.

3.3. Nyanzapithecidae and Oreopithecini

Nyanzapithecidae The Miocene species and genera included here in the Nyanzapithecidae

follow Harrison’s (2010a) concept of Nyanzapithecinae with the addition of Nyanzapithecus
alesi Nengo et al., 2017 and Samburupithecus kiptalami Ishida and Pickford, 1997. The latter
species, known from the Late Miocene (~8.5 Ma) of Kenya on the basis of a maxillary fragment,
only slightly postdates the otherwise last occurrence of the group at ~10 Ma (Kunimatsu et
al., 2007) but is much larger than other nyanzapithecid described genera (~10-15 kg for males;
Harrison, 2010a; Fleagle, 2013). Samburupithecus Ishida and Pickford, 1997 was originally
considered a stem hominine (Ishida et al., 1984; Andrews, 1992; Ishida and Pickford, 1997;
Pickford and Ishida, 1998) but subsequently interpreted by as a late surviving stem hominoid
by other authors (Begun, 2001, 2013, 2015; Olejniczak et al., 2009; Almécija et al., 2012; Begun
et al.,, 2012)—see discussion in Harrison (2010a). Pugh’s (2022) analyses linked
Samburupithecus with Oreopithecus based on dental similarities shared with nyanzapithecids.
The nyanzapithecid-like dental features of Samburupithecus had been already noted by
Harrison (2010a), who nevertheless left the genus as incertae sedis. Based on the meager
evidence available, we consider that an inclusion of Samburupithecus within the

Nyanzapithecidae is warranted. Other large nyanzapithecids are recorded in Africa but remain
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indeterminate due to the scarcity of material. They include Early/Late Miocene (~16 Ma)
remains from South Africa that represent the southernmost record of Miocene apes (Senut et
al., 1997; Harrison, 2010a). This species might be related to the younger and somewhat
smaller nyanzapithecid from the Middle Miocene of Kenya (Fort Ternan and Kapsibor, 13.7
Ma; Leakey, 1968; Harrison, 1986, 1992), which likely represents a new genus and species
(Harrison, 2010a).

Nyanzapithecids possess a distinctive dental morphology (Harrison, 2013; Nengo et al.,
2017; Rossie and Cote, 2002) and, based on Nyanzapithecus Harrison, 1986 and
Turkanapithecus Leakey and Leakey, 1986b, also cranial similarities with hylobatids, which are
generally interpreted as homoplastic (Nengo et al., 2017). Nyanzapithecus displays a fully
ossified external acoustic meatus (Nengo et al., 2017), which appears more extant-catarrhine-
like than in Ekembo and stem cercopithecoids—despite being fully ossified, in the latter taxa
the ectotympanic is shorter and lacks a completely closed ventral tip (Alba et al., 2015),
implying some degree of independent evolution of ectotympanic ossification, as previously
suggested (Begun, 2002b). The postcranial morphology of nyanzapithecids suggests that they
were above-branch, pronograde quadrupeds broadly similar to proconsulids, but perhaps
with enhanced climbing abilities (Harrison, 2010a).

Recent cladistic analyses have supported nyanzapithecids as more basal than proconsulids
(Rossie and Hill, 2018) or as less basal than both proconsulids and afropithecids (Nengo et al.,
2017; Gilbert et al., 2020a)—see Figure 2. We follow Harrison (2010a) in considering that
Xenopithecus Hopwood, 1933 is distinct from Proconsul (see also Pickford and Kunimatsu,
2005) and shows nyanzapithecid affinities based on dental morphology. Mabokopithecus von
Koenigswald, 1969 shows more unambiguous nyanzapithecid affinities, and while some

authors have favored a generic distinction from Nyanzapithecus (Benefit et al., 1998), Harrison
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(2002, 2010a) tentatively supported their synonymy—although he did not formalize it,
pending the description of unpublished material. As remarked by Harrison (2002, 2010a),
Mabokopithecus has priority over Nyanzapithecus, so the species currently included in the
latter genus might have to be eventually transferred to the former. In any event, this would
not affect the validity of family-group taxa based on Nyanzapithecus. Pending further
clarification of the internal phylogenetic relationships of the Nyanzapithecidae and their
possible link with Oreopithecus (see below), we refrain from distinguishing nyanzapithecid
subfamilies.

Oreopithecini Oreopithecus, from the Late Miocene of Europe (~8-7 Ma; Rook et al., 2011),
is the most completely preserved Miocene ape, being known from dental, cranial, and
postcranial remains. However, due to a unique combination of features, the phylogenetic
relationships of Oreopithecus have been controversial for a century and a half (see review in
Delson, 1986). Oreopithecus has been recognized as a hominoid mostly based on its derived
postcranium (Harrison, 1987a, 1991; Sarmiento, 1987; Harrison and Rook, 1997), being
considered a close relative of nyanzapithecids from Africa (Harrison, 1986, 1987a; Benefit et
al., 1998; Benefit and McCrossin, 2001; Rossie and Cote, 2022) or a descendent of
dryopithecines from Europe (Harrison and Rook, 1997; Moya-Sola and Kdhler, 1997).

Former cladistic analyses recovered a basalmost stem hominid position for Oreopithecus
(Begun et al., 1997, 2012), but more recent ones supported its nyanzapithecid affinities
(Nengo et al., 2007; Gilbert et al., 2020a) and hinted at a possible relationship with
Samburupithecus (Pugh, 2022). The combined results of these cladistic analyses, largely
driven by dental similarities, could justify the inclusion of Oreopithecus in the
Nyanzapithecidae—which, as noted by Gilbert et al. (2020b), would imply that the correct

name for the family is Oreopithecidae Schwalbe, 1915, as already used for these taxa in
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previous decades (e.g., Harrison, 1986, 1987a; Benefit et al., 1998; Benefit and McCrossin,
2001). Here we take a conservative approach and refrain from formalizing the inclusion of
Oreopithecus in the Nyanzapithecidae, classifying it instead in a tribe of its own, which is left
as incertae sedis within the Hominoidea (Gilbert et al., 2020b).

Oreopithecus is larger-bodied (>30 kg in males; Jungers, 1987) than most nyanzapithecids
except Nyanzapithecidae nov. from Fort Ternan and Kapsibor as well as Samburupithecus.
The postcranial material of Oreopithecus further differs from the scarce postcranials
available for nyanzapithecids by possessing multiple adaptations for antipronograde
positional behaviors (Harrison, 1987a, 1991; Jungers, 1987; Sarmiento, 1987), which have
been subject to different interpretations. Some features have been interpreted as indicative
of terrestrial bipedalism (Straus, 1963; Kéhler and Moya-Sola, 1997; Rook et al., 1999; Moya-
Sola et al., 2005a), in agreement with the possession of human-like hand proportions
suitable for refined manipulation (Moya-Sola et al., 1999a, 2005a; Almécija et al., 2014). In
contrast, other authors have emphasized the possession of adaptations for vertical climbing
(Sarmiento, 1987; Sarmiento and Marcus, 2000; Hammond et al., 2020) and suspensory
behaviors (Jungers, 1987; Harrison, 1991; Harrison and Rook, 1997; Susman, 2004; Begun,
2007; Deane and Begun, 2008; Russo and Shapiro, 2013). Part of the debate around the
locomotion of Oreopithecus stems from focusing on artificial locomotor categories instead of
positional repertoires with different behaviors displayed at varying frequencies. The lower
torso of Oreopithecus lacks features related to stabilization during bipedalism as well as the
stiffness characteristic of extant great apes, being rather reminiscent of hylobatids
(Hammond et al., 2020). Coupled with its manual proportions and large body mass, this

evidence suggests that Oreopithecus might have been an orthograde arboreal ape that
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specialized in slow climbing but was committed neither to bipedalism or suspension, even if

these behaviors might have been part of its positional repertoire.

3.4. Afropithecidae

As noted above, the monophyly of afropithecids as conceived here (Tables 1 and 2)
remains to be better ascertained, even if most analyses concur that they are less basal than
proconsulids (Nengo et al., 2017; Rossie and Hill, 2018; Gilbert et al., 2020a; Pugh, 2022), in
agreement with their younger chronostratigraphic range. Afropithecids include medium- to
large-bodied species recorded from the Early to Middle Miocene (from~21-20 to ~12 Ma) of
Kenya, Uganda, Namibia, and Saudi Arabia (Table 3). Two afropithecid subfamilies are
recognized here (Afropithecinae Andrews, 1992 and Equatorinae Cameron, 2004), which are
separately discussed below. The phylogenetic relationships of some Miocene apes generally
considered to be more or less closely related to Afropithecus Leakey and Leakey, 1986a—
namely Heliopithecus Andrews and Martin, 1987b and Otavipithecus Conroy et al., 1992
(Andrews, 1992; Andrews and Kelley, 2007; Harrison, 2010a; Alba, 2012; Begun, 2013,
2015)—is particularly uncertain because they have not been included in recent cladistic
analyses. Heliopithecus, from the Early Miocene (16 Ma) of Saudi Arabia, has been
tentatively included in the Afropithecinae based on dental similarities (Andrews and Martin,
1987b; Harrison, 2010a). In turn, the medium-sized (14-20 kg) Otavipithecus, from the
Middle Miocene (12 Ma) of Namibia, has been included in the Afropithecidae given the
affinities with Afropithecus suggested by several authors (e.g., Andrews, 1992; Harrison,
2010a) and further supported by a cladistic analysis of mandibular characters (Singleton,
2000). However, Otavipithecus has been left as subfamily incertae sedis given the lack of

cladistic studies evaluating its relationships with other afropithecids. Otavipithecus is
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recorded by craniodental and some postcranial remains (the latter being indicative of
arboreal locomotion) and represents one of the southernmost occurrences of Miocene apes
(Conroy et al., 1992; Mocke et al., 2022).

Afropithecinae Afropithecids are first recorded by afropithecines, which display a primitive

nasoalveolar morphology (Begun and Giilec, 1998; Brown et al., 2005; Nakatsukasa and
Kunimatsu, 2009; Begun, 2015) and differ from proconsulids in craniodental features
probably related to sclerocarpic feeding (Leakey and Walker, 1997; Begun, 2015; Deane,
2017). The postcranial morphology of afropithecines is less thoroughly known than that of
proconsulids, but similarly indicative of a pronograde body plan (Ward, 2015), except for
some postcranial remains attributed to Morotopithecus bishopi Gebo et al., 1997, which are
suggestive of orthograde behaviors (Sanders and Bodenbender, 1994; Gebo et al., 1997,
Maclatchy et al., 2000, 2019; Maclatchy, 2004; Nakatsukasa, 2008). This species has
sometimes been recovered as a stem hominid by cladistic analyses (Young and Maclatchy,
2004), but the most recent ones recovered it as a stem hominoid more basal than (Nengo et
al., 2017; Gilbert et al., 2020a) or as basal as (Rossie and Hill, 2018) Afropithecus.

The distinctiveness of the genus Morotopithecus Gebo et al., 1997 has been disputed by
several authors, who considered its type and only species (M. bishopi) a junior synonym of
Afropithecus turkanensis Leakey and Leakey, 1986a (Pickford, 2002, 2021; Pickford et al.,
2003, 2017; Patel and Grossman, 2006; Harrison, 2010a; Pickford et al., 2017; Van Couvering
and Delson, 2020). Under this view, the cranial differences between the two genera (Gebo et
al., 1997; Maclatchy et al., 2000; Begun, 2015; Deane, 2017) might be attributable to
pathological remodeling in the holotype of M. bishopi and diagenetic deformation in that of
A. turkanensis (Pickford, 2002; Pickford et al., 2017), which other authors also consider to be

badly distorted (Begun, 2015). Based on the dental differences between M. bishopi and A.
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turkanensis pointed out by Maclatchy et al. (2019), we tentatively favor the distinction of
these taxa at least to the species rank, but remain skeptical about the generic distinction for
several reasons. First, the putative differences in facial morphology—including the seemingly
more restricted palatine fenestra of Afropithecus (Gebo et al., 1997; Brown et al., 2005;
MaclLatchy et al., 2019)—are uncertain in the light of the aforementioned arguments about
remodeling and distortion. Second, Maclatchy et al.’s (2019) contention that the age
difference between the two taxa (>3 Myr, assuming a dating of 21 Ma is correct, see footnote
in Table 2) supports their distinction is not particularly relevant from a taxonomic viewpoint
and applies to Miocene ape species but not genera.

The original diagnosis of Morotopithecus was partly based on its purported derived (crown
hominoid-like) postcranial features (Gebo et al., 1997). Nevertheless, it has subsequently been
argued that more than a single hominoid is present at Moroto. Maclatchy et al. (2019)
recognized M. bishopi and a smaller proconsulid, while Jansma and MaclLatchy (2015) further
reported a nyanzapithecid. In contrast, Pickford et al. (2017) and Pickford (2021) recognized
A. turkanensis, P. gitongai, and Nacholapithecus kerioi Ishida et al., 1999. Pickford (2021) even
discussed the possibility that the Moroto vertebrae assigned to M. bishopi (Walker and Rose,
1968; Sanders and Bodenbender, 1994; Gebo et al., 1997; Nakatsukasa, 2008) might date to
the Plio-Pleistocene. Such a claim would have important implications for the earliest evidence
of orthogrady in the hominoid fossil record (Gebo et al., 1997; Maclatchy, 2004; Young and
MaclLatchy, 2004). However, it is based on very circumstantial evidence—basically, that the
fossils were surface-collected from sediments that have also yielded some Plio-Pleistocene
fossils and that differences in preservation hint at a different taphonomic history for the
vertebrae. Therefore, unless geochemical analyses eventually prove the contrary, a Miocene

age seems much more likely. Nevertheless, the impossibility to demonstrate a close spatial
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association between the holotype and the postcranial remains casts some doubts on their
attribution to the same taxon (Maclatchy et al., 2019; Pickford, 2021). Pending future analyses
that might clarify the number and identity of large hominoid taxa present at Moroto and the
composition of the M. bishopi hypodigm, we consider it prudent to keep the genus distinct.
Equatorinae Equatorines have been inferred to display, like afropithecines, adaptations to
hard-object feeding (McCrossin and Benefit, 1993, 1997; Nakatsukasa and Kunimatsu, 2009).
Nacholapithecus Ishida et al., 1999 differs from afropithecines by possessing slight
premaxillary-maxillary overlap (Ishida et al., 2004) as well as an obliterated subarcuate fossa
(Kunitmatsu et al., 2019). These features, which cannot be ascertained in Equatorius Ward et
al., 1999, have given rise to different phylogenetic interpretations for Nacholapithecus (Alba,
2012; Kunimatsu et al., 2019; Pugh, 2022). The postcranial morphology of equatorines is
better known than that of afropithecines and similar to that of proconsulids, being indicative
of a pronograde body plan without external tail (as in Nacholapithecus; Nakatsukasa et al.,
2003). However, Nacholapithecus possesses some features indicative of increased forelimb-
dominated arboreal behaviors (climbing and clambering; Ishida et al., 2004; Nakatsukasa

and Kunimatsu, 2009), while Equatorius shows evidence of semiterrestriality (McCrossin and
Benefit, 1997; Patel et al., 2009).

Following the description of Equatorius, this genus has been considered distinct from
both Kenyapithecus and Griphopithecus Abel, 1902 (here included in the Hominidae, see
below) by most (e.g., Alba, 2012; Begun, 2015) but not all (Begun, 2000, 2001, 20023;
Benefit and McCrossin, 2000; Gile¢ and Begun, 2003; Kunimatsu et al., 2004; Mocke et al.,
2022) researchers. Begun (2002a) even formally proposed to synonymize the genus
Equatorius with Griphopithecus, but subsequently abandoned this view (e.g., Begun et al.,

2012; Begun, 2015). We concur with most authors (e.g., Kelley et al., 2000, 2002; Ward and
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Duren, 2002; Andrews and Kelley, 2007; Kelley et al., 2008; Harrison, 2010a; Alba, 2012;
Begun, 2015) that Equatorius is sufficiently distinct from Kenyapithecus, with the latter
differing, among other features, by possessing derived hominid synapomorphies such as a
higher zygomatic root (Pickford, 1985; Harrison, 1992).

The systematic position of Equatorius and Nacholapithecus has been subject to different
interpretations. Ward et al. (1999) considered Equatorius to be a stem hominoid less derived
than Kenyapithecus and more closely related to Afropithecus, but Ward and Duren (2002)
included them all within the Hominidae (albeit in different subfamilies). Alba (2012), in
contrast, considered only Afropithecus to be a stem hominoid and included the other genera
within the Hominidae, distinguishing two tribes within the Kenyapithecinae Andrews, 1992.
Following the recent cladistic results indicating that Equatorius is a stem hominoid, perhaps
even more basal than Afropithecus (Nengo et al., 2017; Gilbert et al., 2020a), Gilbert et al.
(2020b) left Equatorius and Nacholapithecus as family incertae sedis—even though
Nacholapithecus was not included in these analyses. Pugh’s (2022) results recovered
Equatorius and Nacholapithecus as a clade of stem hominoids, but her analyses did not
include Afropithecus, thereby leaving unresolved the relationships between afropithecines
and equatorines. Based on current knowledge, we prefer to group Equatorius and
Nacholapithecus in a single subfamily (Equatorinae) within the Afropithecidae, while

recognizing that the latter family might ultimately prove to be paraphyletic.

3.5. Hylobatidae
The origin of hylobatids is one of the most enduring problems in hominoid phylogenetics.
As noted in Section 1.2, the Middle Miocene small catarrhine Kapi Gilbert et al., 2020a from

India was originally interpreted as a stem hylobatid (see also Gilbert et al., 2020b) but has
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more recently been considered a pliopithecoid (Ji et al., 2022). This conclusion partly relies
on the interpretation that Kapi possesses an incipiently developed mesial arm of the
pliopithecine triangle, coupled with other dental similarities (Ji et al., 2022). The homology of
the weakly developed crest displayed by Kapi with the pliopithecine triangle is debatable,
but in the lack of additional material we concur that the stem hylobatid status of Kapi is
insufficiently supported at present. In contrast, Yuanmoupithecus xiaoyuan Pan, 2006, from
the Late Miocene (~8.0—7.0 Ma) of China, is known from multiple teeth and a partial lower
face (Pan, 2006; Harrison et al., 2008; Harrison, 2016; Ji et al., 2022) and more
unambiguously supported as a stem hylobatid by cladistic analyses (Gilbert et al., 2020a; Ji et
al., 2022). For this reason, we classify this genus in a monotypic subfamily within the
Hylobatidae, Yuanmoupithecinae subfam. nov. (type genus: Yuanmoupithecus), so as to
reserve the Hylobatinae for crown hylobatids. Ji et al. (2022) also recovered the
dendropithecid Micropithecus Fleagle and Simons, 1978 as a stem hylobatid but they
interpreted this result as an artifact caused by functional dental convergence. This
interpretation is also favored here but, given that some cladistic analyses have supported a
stem hominoid status for dendropithecids (see Section 1.2) and that the Early Miocene
forerunners of hylobatids are unknown, the possibility that Micropithecus is more closely
related to hylobatids than to other dendropithecids from Africa (see also Section 4.3) should

be investigated further.

3.6. Stem Hominidae

Kenyapithecinae We distinguish a hominid subfamily (Kenyapithecinae) for Kenyapithecus

and Griphopithecus, which is equivalent to Alba’s (2012) tribe Kenyapithecini and Gilbert et

al.’s (2020b) family Kenyapithecidae. The latter authors considered unresolved the
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systematic position of this taxon (stem vs. crown hominoid) but, based on Pugh’s (2022)
results, a stem hominid status seems more likely. Although there has been some confusion
about the taxon name for the clade including both Kenyapithecus and Griphopithecus,
Kenyapithecinae is to be preferred over Griphopithecinae (Casanovas-Vilar et al., 2011; see
SOM S2.1 for further details).

Kenyapithecines are medium to large-bodied apes (~27-48 kg; Fleagle, 2013) known from
isolated teeth, dentognathic fragments, and a few postcranial remains, the latter consistent
with a pronograde body plan adapted to semiterrestrial quadrupedalism (Begun, 1992c,
2002a, 2015; Ersoy et al., 2008; Harrison, 2010a; Alba, 2012). The two kenyapithecid genera
are distinguished mostly on the basis of dentognathic features (Kelley et al., 2008).
Kenyapithecus is here considered the oldest known hominid from Africa (13.7 Ma) and also
the only one recorded both in Africa and Eurasia, where it is represented by a slightly older
species from Turkey (~14.5-14.0 Ma). Griphopithecus also comprises two species from the
Middle Miocene, one from Turkey (~14.5-13.4 Ma) that co-occurs with Kenyapithecus, and
another from Central Europe (Germany and Slovakia) that is probably younger (~13.8-12.7
Ma). There are two species names available for the latter species, but Griphopithecus suessi
Abel, 1902, as the type species of the genus, is to be preferred for the reasons explained in
SOM S2.2. Middle Miocene kenyapithecines, given their African and Eurasian geographic
distribution, play a key role for understanding the dispersal and subsequent radiation of
Miocene apes in Eurasia. Their oldest representatives predate the appearance of both
dryopithecines and pongines in Eurasia ~13.0-12.5 Ma (Alba, 2012; Alba et al., 2017, 2022;
Gilbert et al., 2020b), and thus represent plausible potential ancestors for these groups in

chronological terms.

37



884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

In the past, some cladistic analyses indicated a stem hominoid status for Kenyapithecus
s.l. (before Equatorius was distinguished; Begun et al., 1997) or Kenyapithecus s.s. (Finarelli
and Clyde, 2004), although the alternative stratocladistic analysis by the latter authors
supported Kenyapithecus as the last common ancestor of crown hominids (see SOM S1.4
regarding stratocladistics). Indeed, there is a broad (even if not universal) consensus that
Kenyapithecus is likely a stem hominid (Harrison, 1992, 2010a; Ward et al., 1999; Kelley et
al., 2002, 2008; Ward and Duren, 2002; Andrews and Kelley, 2007; Alba, 2012), as further
supported by recent cladistic analyses (Begun et al., 2012; Pugh, 2022). Kenyapithecus
already displays a clear hominid synapomorphy in the possession of a high zygomatic root
(Pickford, 1986; Harrison, 1992, 2010a; Kelley et al., 2008; Alba, 2012; Begun, 2015). Other
features that generally distinguish Kenyapithecus from Equatorius (such as the configuration
of the maxillary sinus) are found in pongines but not hominines (Harrison, 1992, 2010a), and
indeed some recent analyses recovered Kenyapithecus as crown hominid more closely
related to pongines (Nengo et al., 2017; Gilbert et al., 2020a). Nevertheless, Pugh’s (2022)
cladistic analyses—specifically focused on great apes—supported instead the stem hominid
status of Kenyapithecus, in agreement with Harrison’s (1992, 2010a) interpretation that the
features shared with pongines are symplesiomorphic.

The hominid status of Griphopithecus is less clear-cut, as it has not been frequently
included in cladistic analyses. Begun et al. (2012) recovered it as a stem hominoid but Pugh’s
(2022) analyses supported its stem hominid status as well as its inclusion within the same
clade as Kenyapithecus—albeit only in some cases as sister taxa and in most other instances
together with the dryopithecines Pierolapithecus Moya-Sola et al., 2004 and Anoiapithecus
Moya-Sola et al., 2009b, thereby only tentatively justifying the inclusion of Griphopithecus in

the Kenyapithecinae. The oldest record of hominoids in Eurasia consists of an upper molar
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908 fragment from Engelswies (~16.5-16.0 Ma; Casanovas-Vilar et al., 2011) that has been
909  variously attributed to cf. Griphopithecus sp. (Heizman and Begun, 2001; Begun, 2015),
910  ?Griphopithecus sp. (Andrews et al., 1996), and aff. Griphopithecus (Begun, 2002a).

911 However, Casanovas-Vilar et al. (2011) questioned the possibility to reach an assignment
912 (even if tentative) at the genus rank, and we concur it is best attributed to cf.

913  Kenyapithecinae.

914  Dryopithecinae We follow Alba (2012) and other recent authors (e.g., Andrews, 2020; Gilbert

915 etal.,, 2020b) in classifying many European Middle to Late Miocene apes in a distinct
916  subfamily of putative stem hominids (Dryopithecinae Gregory and Hellman, 1939), rather
917  than atribe (Dryopithecini) of stem hominines (Begun, 2009, 2010, 2013, 2015). We also
918 follow Alba (2012) in distinguishing the dryopithecine tribes Dryopithecini and

919  Hispanopithecini Cameron, 19973, respectively for Middle Miocene (12.4-11.6 Ma) and
920  early Late Miocene (11.6-9.5 Ma) genera. However, we exclude the graecopithecin

921  Ouranopithecus de Bonis and Melentis, 1977 (9.7-7.6 Ma) from this subfamily (see next
922  subsection). Dryopithecines are mostly recorded from western and central Europe

923  (Casanovas-Vilar et al., 2011), but persisted until ~8 Ma in Georgia as recorded by

924  ?Udabnopithecus Burchak-Abramovich and Gabashvili, 1945 (Agusti et al., 2020), of

925  uncertain taxonomic validity, thus overlapping by more than 1 Myr with the

926  chronostratigraphic range of graecopithecins.

927 Dryopithecines are large-bodied apes that display multiple crown-hominid cranial
928  synapomorphies, such as a high zygomatic root, deep palate, and wide nasal aperture
929  (Moya-Sola and Kohler, 1993, 1995; Begun, 1994; Moya-Sola et al., 2004; 2009a, 2009b;
930  Alba, 2012; Gunz et al., 2020). Pierolapithecus, Hispanopithecus Villalta Comella and

931  Crusafont Paird, 1944, and Rudapithecus Kretzoi, 1969 are the best known dryopithecine
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genera, both cranially and postcranially, although some cranial remains are also available for
Dryopithecus and Anoiapithecus. Hispanopithecus and Rudapithecus further lack a
subarcuate fossa (Moya-Sola and Kohler, 1993, 1995; Kordos and Begun, 1997, 2001; Begun,
2015) but the importance of this feature as a hominid synapomorphy is currently uncertain
(Pugh, 2022; see Subsection 4.5). Postcranial remains are known for all dryopithecine genera
except Anoiapithecus and ?Udabnopithecus. Dryopithecus is not very well-known
postcranially, but available specimens (Pilbeam and Simons, 1971; Moya-Sola et al., 2009b;
Alba et al., 2011; Almécija et al., 2012) are suggestive of powerful grasping above-branch
guadrupedalism and cautious climbing without evidence of an orthograde body plan (Pina et
al., 2019). In contrast, the roughly coeval Pierolapithecus represents the oldest unambiguous
evidence of an orthograde body plan in the fossil hominoid record (Moya-Sola et al., 2004;
Alba, 2012), despite the lack of specific adaptations to suspensory behaviors (Moya-Sola et
al., 2004, 2005b; Almécija et al., 2009; Alba et al., 2010; contra Begun and Ward, 2005;
Deane and Begun, 2008, 2010; Begun et al., 2012). Overall, the postcranial evidence for
Pierolapithecus indicates a forelimb-dominated locomotor repertoire with a significant
component of vertical climbing despite retaining adaptations for above-branch powerful-
grasping quadrupedalism (Moya-Sola et al., 2004, 2005b; Almécija et al., 2009; Alba et al.,
2010; Alba, 2012; Hammond et al., 2013). Danuvius Bohme et al., 2019 similarly displays an
orthograde body plan but already shows suspensory adaptations (Béhme et al., 2019;
Williams et al., 2020; Almécija et al., 2021), which are even more clearly expressed in
Hispanopithecus (Moya-Sola and Kohler, 1996; Almécija et al., 2007; Alba et al., 2010, 2012b;
Alba, 2012; Susanna et al., 2014; Pina et al., 2012) and Rudapithecus (Morbeck, 1983; Begun,

1988, 1992¢, 1993, 1995). Nevertheless, at least Hispanopithecus still retains some features
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functionally related to above-branch quadrupedalism (Almécija et al., 2007; Alba et al., 2010,
2012b).

It is generally considered that dryopithecines are less basal hominids than
kenyapithecines (e.g., Moya-Sola and Kéhler, 1993, 1995, 1996; Moya-Sola et al., 2004,
2009a, 2009b; Begun, 2009, 2010, 2015; Alba et al., 2010; Casanovas-Vilar et al., 2011; Alba,
2012; Gilbert et al., 2020b), as supported by cladistic analyses (Begun et al., 2012; Pugh,
2022). However, dryopithecines have been variously interpreted as pongines (e.g., Moya-
Sola and K6hler, 1995), hominines (e.g., Begun et al., 2012), or stem hominids (e.g., Alba,
2012; Alba et al., 2015; Pugh, 2022)—see discussion in Almécija et al. (2021). Such
uncertainties led Gilbert et al. (2020b) to place dryopithecines in a trichotomy with crown
hominids, in further agreement with some other cladistic analyses (Nengo et al., 2017;
Gilbert et al., 2020a). Dryoptihecine genera differ from one another in cranial and
postcranial features but are dentally conservative, although hispanopithecins appear
somewhat more derived in the latter regard (e.g., the C* morphology of the of male
individuals and the more peripheral dentine horns of the upper molars; Alba, 2012; Fortuny
et al., 2021). Pugh’s (2022) analyses did not find clear support that dryopithecins are less
basal than kenyapithecines and, hence, the monophyly of dryopithecines as conceived here
remains uncertain (Alba, 2012; Almécija et al., 2021; Pugh, 2022). Given the lack of a cladistic
analysis including Danuvius, we group it with the hispanopithecins because it appears
somewhat more derived than dryopithecins (Almécija et al., 2021).

Among dryopithecins, the distinctiveness of both Pierolapithecus and Anoiapithecus from
Dryopithecus has been accepted by various researchers (Pickford, 2012; Fleagle, 2013;
Bohme et al., 2019; Andrews, 2020) but questioned by Begun (2009, 2010, 2015), who

argued that the two former might be junior synonyms of Dryopithecus, mostly based on
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claims of distortion (see SOM S3 for further details). However, preliminary results of a digital
reconstruction of the Pierolapithecus cranium (Pugh et al., 2022) are consistent with its stem
hominid status and difficult to reconcile with craniodental differences relative to
Anoiapithecus (Moya-Sola et al., 2009b; Pérez de los Rios et al., 2012). In our opinion, the
distinction of the three monotypic dryopithecin genera is supported by both dental and
cranial differences (Moya-Sola et al., 2004, 20093, 2009b; Alba, 2012; Pérez de los Rios et al.,
2012; Alba et al., 2013; Fortuny et al., 2021), although more complete remains would be
required to clarify further their phylogenetic relationships relative to both kenyapithecines
and hispanopithecins. ‘Sivapithecus’ occidentalis Villalta Comella and Crusafont Paird, 1944,
previously considered a nomen dubium (Moya-Sola et al., 2004; Alba, 2012) or synonymized
with Neopithecus brancoi (Schlosser, 1901) by Pickford (2012), is here included in the
Dryopithecini as a species inquirenda following Alba et al. (2020), as this nominal species is
potentially a junior synonym of either Pi. catalaunicus Moya-Sola et al., 2004 or An.
brevirostris Moya-Sola et al, 2009b.

With regard to hispanopithecins, following the opinion of Begun and colleagues (Begun
and Kordos, 1993; Kordos and Begun, 1997; Begun, 2002a), the binomen Dryopithecus
brancoi (Schlosser, 1901) was formerly considered by many authors as a taxonomically valid
species including the hispanopithecin remains from Hungary (e.g., Moya-Sola and Kohler,
1995; Cameron, 2004, 2005; Ersoy et al., 2008; Kelley et al., 2008). In turn, the Spanish
hispanopithecin remains were included in one or more species of Dryopithecus (e.g., Begun
et al., 1990; Harrison, 1991; Begun, 1992b, 1994, 2002a; Moya-Sola and Kéhler, 1993, 1995,
1996). Alternatively, Andrews et al. (1996) considered D. brancoi a nomen dubium and
advocated the inclusion of the Hungarian material in Dryopithecus carinthiacus Mottl, 1957,

which is here considered a junior synonym of D. fontani (Begun, 2002a; Begun et al., 2006;
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1003  Casanovas-Vilar et al., 2011). Following most recent authors (Moya-Sola et al., 2009a;

1004  Casanovas-Vilar et al., 2011; Begun, 2015; Alba et al., 2020; but see Pickford, 2012), both
1005  Neopithecus Abel, 1902 and Neopithecus brancoi are here considered nomina dubia.

1006  Furthermore, following Moya-Sola et al. (2009a) and Begun (2009), Dryopithecus is restricted
1007  to Middle Miocene dryopithecines. Moya-Sola et al. (2009a) resurrected Hispanopithecus
1008 not only for Late Miocene dryopithecines from Spain, as sometimes done by previous

1009  authors (Cameron, 1997a, 1999, 2004; Almécija et al., 2007), but also for those from

1010  Hungary, which were assigned by Begun (2009) to Rudapithecus hungaricus Kretzoi, 1969.
1011  Subsequently, Alba and coauthors (Casanovas-Vilar et al., 2011; Alba, 2012; Alba et al.,
1012 2012a, 2012b) distinguished Hispanopithecus and Rudapithecus only at the subgenus rank,
1013  but following most recent authors (e.g., Begun, 2015; Gunz et al., 2020; Urciuoli et al.,
1014  2021a) here both taxa are distinguished at the genus rank. The distinction of

1015  Hispanopithecus crusafonti (Begun, 1992b) from Hispanopithecus laietanus Villalta Comella
1016  and Crusafont Paird, 1944 (Begun, 1992b, 2002a; Cameron, 1999) has been questioned by
1017  some authors (Harrison, 1991; Andrews et al., 1996; Ribot et al., 1996). However, they are
1018  here distinguished based on dental morphology (Alba, 2012; Alba et al., 2012a; Fortuny et
1019  al., 2021)—albeit recognizing that the proper genus allocation of H. crusafonti is difficult to
1020  evaluate due to the lack of more complete cranial remains.

1021 The latest occurring dryopithecine (Agusti et al., 2020), ?Udabnopithecus garedziensis
1022 Burchak-Abramovich and Gabashvili, 1945, has been variously synonymized with D. fontani
1023 (e.g., Szalay and Delson, 1979) or left as incertae sedis within the Dryopithecinae (Andrews
1024 et al., 1996). More recently, it has been considered by some a distinct species of

1025  Dryopithecus (Gabunia et al., 2001; Agusti et al., 2020). Given the limited evidence available

1026  (a maxillary fragment with P*~M?) and the current more restricted usage of Dryopithecus
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(see above), the inclusion in Dryopithecus does not appear warranted and we prefer to
provisionally leave ?Udabnopithecus as incertae sedis at the tribe rank, denoting the
uncertain taxonomic validity of the genus with a question mark. We also leave
‘Dryopithecus’ wuduensis, known on the basis of a partial mandible from the Late Miocene
(~8—6 Ma) of China (Xue and Delson, 1988), as family incertae sedis. The inclusion of this
species in Dryopithecus has been questioned (as ?Dryopithecus wuduensis) or even ruled out
by several authors (Kelley, 2002; Harrison, 2005, 2006; Gilbert et al., 2020b), and most
recently Pugh et al. (2020) identified closer similarities to stem hominoids. Given that the
referral of this species to Dryopithecus can be discounted, we put the genus name within

guotation marks until the allocation of the species is clarified.

3.7. Crown Hominidae

Ponginae Five genera of Miocene pongines are recognized here (Table 2), being recorded
from the late Middle Miocene (~13 Ma) to the latest Miocene (~6 Ma; Table 1). Besides their
geographic distribution in Asia, these genera are customarily considered pongines based on
the possession of derived craniodental features displayed by extant orangutans (e.g., Kelley,
2002)—even though this has been disputed for Lufengpithecus Wu, 1987 during the last
decade (see below). The most comprehensive cladistic analysis of crown hominids published
so far (Pugh, 2022) found support for the inclusion of non-kenyapithecine hominids from
Asia in the same clade as Pongo, with the single exception of a species thus far included in
Lufengpithecus. To reflect the internal phylogenetic relationships of pongines, we follow
Alba (2012) in distinguishing three tribes, with genera tentatively arranged in accordance
with Pugh’s (2022) results. The apparently most plesiomorphic pongines (Ankarapithecus

and Lufengpithecus) are included in the tribe Lufengpithecini Alba, 2012, whereas
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Indopithecus von Koenigswald, 1949 is included (together with Sivapithecus and the
Pleistocene Gigantopithecus) in the Sugrivapithecini Simonetta, 1958 (regarding the year of
publication of Simonetta's work, see SOM S2.3), and Khoratpithecus Chaimanee et al., 2004
is grouped with extant Pongo in the Pongini Elliot, 1913.

Sivapithecus, from the late Middle and Late Miocene of Indo-Pakistan (13.0-7.5 Ma), is
the fossil pongine whose cranial morphology is the most complete, showing extensive
similarities with orangutans; these include an airorynchous cranium, distinct supraorbital
costae, tall and narrow orbits with their inferior margin well above the superior end of the
nasal aperture, narrow interorbital space, and horizontal and procumbent premaxilla that
considerably overlaps the hard palate, configuring a long and very narrow incisive canal as
well as a smooth subnasal floor (Pilbeam, 1982; Ward and Pilbeam, 1983; Ward and Brown,
1986; Brown and Ward, 1988; Ward, 1997a; Kelley, 2002; Brown et al., 2005). In contrast,
the postcranium of Sivapithecus appears much less derived than that of Pongo, combining
some modern hominoid-like features (such as the morphology of the distal humerus) with
an otherwise plesiomorphic postcranial morphology, more consistent with a pronograde
body plan suitable for emphasis on powerful-grasping and cautious, above-branch arboreal
guadrupedalism (Pilbeam et al., 1990; Rose, 1997; Madar et al., 2002; Morgan et al., 2015).

As a result of their cranial similarities, a close phylogenetic link between Sivapithecus and
Pongo has received much support from cladistic analyses (Pugh, 2022 and references
therein). The latter analysis, however, did not consistently recover a Pongo + Sivapithecus
clade exclusive of all Khoratpithecus species. For this reason, we prefer to keep Sivapithecus,
along with other extinct taxa presumably more closely related to it than to Pongo, in a
different tribe. Although the intuitive name for this tribe would be Sivapithecini Pilbeam et

al., 1977 (e.g., Andrews, 1992; Kelley, 2002), three names of the family group—
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Ramapithecini Simonetta, 1958, Bramapithecini Simonetta, 1958, and Sugrivapithecini
Simonetta, 1958 —have priority. The latter was used by Szalay and Delson (1979) and Alba
(2012) for the tribe including Sivapithecus, but neither of them qualify as First Reviser (ICZN,
1999: Art. 24.2; see SOM S2.3). We therefore act as First Reviser and choose Sugrivapithecini
as the senior synonym of Ramapithecini and Bramapithecini for the tribe including
Sivapithecus.

We follow Kelley (2002, 2005) in tentatively distinguishing three species of Sivapithecus,
while recognizing that alternative taxonomic schemes (see discussion in Kelley, 2005;
Pickford, 2010; Bhandari et al., 2018; Gilbert et al., 2019) might ultimately prove to be more
satisfactory, because only Sivapithecus parvada Kelley, 1988 seems at present well
diagnosed from other species of the genus based on dental size and shape (Kelley, 1988,
2002, 2005). For example, Kelley (2005) tentatively assigned the specimens from
Haritalyangar to Sivapithecus cf. sivalensis (Lydekker, 1879), but admitted that this sample
could alternatively include two different species, given the high levels of molar size variation
and apparent sexual dimorphism (Scott et al., 2009). According to the present taxonomic
arrangement, Sivapithecus simonsi Kay, 1982 is considered a synonym of Sivapithecus
indicus Pilgrim, 1910 (Kelley, 2005).

We also include in the Sugrivapithecini the genus Indopithecus, from the Late Miocene
(~8.9-8.6 Ma) of India and Pakistan. Its type species, Indopithecus giganteus (Pilgrim, 1915),
was originally described in Dryopithecus based on a single lower molar and later transferred
to Indopithecus. Subsequently, Gigantopithecus bilaspurensis Simons and Chopra, 1969 was
described based on a relatively complete mandible. The two species were synonymized by
Szalay and Delson (1979), who used the combination Gigantopithecus giganteus. However,

during the last decades most authors have supported the generic distinction between
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Indopithecus and Gigantopithecus blacki von Koenigswald, 1935 (Cameron, 2004; Alba,
2012; Begun, 2015; Zhang and Harrison, 2017; Chaimanee et al., 2022; Pugh, 2022), which
displays more strongly molarized lower premolars and other dental differences relative to
Indopithecus (Kelley, 2002; Zhang and Harrison, 2017). Gigantopithecus is recorded from the
Pleistocene (~2.0-0.3 Ma) of China, Vietnam, and Thailand (Zhang et al., 2014; Zhang and
Harrison, 2017), and its pongine status has been recently supported by paleoproteomic data
(Welker et al., 2019). Similarities in molar occlusal morphology between Indopithecus and
Sivapithecus could justify their inclusion in the same genus, but the larger size and some
similarities in mandibular and Pz morphology with the much younger and larger
Gigantopithecus suggest that Indopithecus might be a basal member of the Gigantopithecus
lineage (Kelley, 2002; Zhang and Harrison, 2017; Pugh, 2002).

The subnasal morphology of Sivapithecus and orangutans is also shared to a large extent
by Khoratpithecus, which includes four species from the late Middle to latest Miocene
(~12.4-6.0 Ma) of southeastern Asia (Begun and Gileg, 1998; Kelley, 2002; Begun, 2015;
Chaimanee et al., 2019, 2022). The nasoalveolar configuration of a palate—initially
attributed to cf. Khoratpithecus (Chaimanee et al., 2019) but recently assigned by
Chaimanee et al. (2022) to the type species of the genus, Khoratpithecus piriyai Chaimanee
et al., 2004—closely resembles the pongine condition shared by Sivapithecus and Pongo but
displays larger incisive canal and fossa, thus being less derived than that of Sivapithecus
(Chaimanee et al., 2019, 2022). In contrast, Khoratpithecus has been proposed as the
pongine most closely related to orangutans based on its symphyseal morphology and the
lack of anterior digastric fossa (Chaimanee et al., 2003, 2004, 2006, 2019, 2022; Jaeger et al.,
2011). These features can be ascertained in both Kh. piriyai and Khoratpithecus

ayeyarwadyensis Jaeger et al., 2011, which in our opinion supports the inclusion of the
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genus in the same tribe as orangutans. On the other hand, Pugh (2022) only recovered a
sister-taxon relationship with Pongo in the case of Kh. ayeyarwadyensis—suggesting that
additional cranial remains would be required to better ascertain the relationships between
Pongo, Sivapithecus, and Khoratpithecus.

The inclusion of other non-kenyapithecine hominid genera from the Miocene of Asia
(Ankarapithecus and Lufengpithecus) in the Ponginae, and their classification within a single
tribe Lufengpithecini is more debatable because the group might ultimately prove
paraphyletic. Both Ankarapithecus meteai Ozansoy, 1957 from the Late Miocene (9.8 Ma) of
Turkey and the species previously included in Lufengpithecus, from the late Middle to latest
Miocene of China, retain a more plesiomorphic stepped subnasal configuration (Begun and
Guleg, 1998; Brown et al., 2005; Kelley and Gao, 2012; Ji et al., 2013) more similar to that of
dryopithecines (Begun, 1994; Moya-Sola and Kdhler, 1995; Brown et al., 2005; Moya-Sola et
al., 2009a, 2009b; Pérez de los Rios et al., 2012; Pugh, 2022). Nevertheless, the subnasal
morphology of Ankarapithecus appears somewhat derived toward the condition of other
pongines, being interpreted as the plesiomorphic condition for this subfamily—as further
supported by cladistic analyses (Begun and Giileg, 1998; Pugh, 2022), although it could be
alternatively interpreted as compatible with a stem hominid status (Alpagut et al., 1996;
Kappelman et al., 2003).

The genus Lufengpithecus has traditionally been considered a pongine (e.g., Schwartz,
1990, 1997; Kelley, 2002; Alba, 2012; Begun, 2015), but evidence supporting its pongine
status is more debatable than in the case of Ankarapithecus and further complicated by the
existence of multiple species with a complex nomenclatural history (Harrison et al., 2002).
Kelley (2002) tentatively distinguished three species of Lufengpithecus: Lufengpithecus

lufengensis (Xu et al., 1978), which is the type species of the genus; Lufengpithecus
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keiyuanensis (Woo, 1957); and Lufengpithecus hudienensis (Zhang et al., 1987). In contrast,
Harrison et al. (2002) and Harrison (2006) favored a two species taxonomic scheme, by
considering that L. hudienensis was a junior subjective synonym of L. keiyuanensis. Yet
another species, Lufengpithecus yuanmouensis Zheng and Zhang, 1997 was described based
on a juvenile cranium from Yuanmou as the holotype, being considered a junior subjective
synonym of either L. hudienensis or L. keiyuanensis, according to Kelley (2002) and Harrison
et al. (2002), respectively. The redescription of juvenile crania attributed to L. hudienensis
and L. cf. lufengensis, the two younger species of Lufengpithecus (~8—6 Ma), not only
showed substantial differences between these species but also the lack of crown hominoid
(either pongine or hominine) synapomorphies—not being attributable to their ontogenetic
stage (Kelley and Gao, 2012; Ji et al., 2013). Subsequent cladistic analysis recovered
Lufengpithecus as more closely related to dryopithecines than to Pongo or Sivapithecus
(Nengo et al., 2017; Gilbert et al., 2020a), which could justify transferring the Lufengpithecini
into the Dryopithecinae. Nevertheless, most recently Pugh (2022) did not recover the
monophyly of Lufengpithecus and supported a pongine status for L. lufengensis but not L.
hudienensis, while the older species L. keiyuanensis (~12 Ma) could not be analyzed.

On the basis that Lufengpithecus might be polyphyletic, Gilbert et al. (2020b) left this
genus as incertae sedis within the Hominoidea. However, we consider more advisable to
provisionally keep the Lufengpithecini (for L. lufengensis) within the Ponginae while
transferring ‘L." hudienensis to a different genus, for which the nomen Sinopithecus Zhang et
al., 1990 is available with this species as its type (Harrison et al., 2002; Harrison, 2006). This
is consistent with the marked cranial differences previously noted between these taxa
(Kelley and Gao, 2012; Ji et al., 2013; Kelley, 2017). We thus formally reassign the species to

Sinopithecus hudienensis, which is left as subfamily incertae sedis until it is clarified whether
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1171 it belongs to the Dryopithecinae, the Ponginae, or neither. The third and least well-known
1172  species of Lufengpithecus distinguished by Kelley (2002) and Ji et al. (2013) is further
1173  tentatively included in Sinopithecus, as previously done by Zhang et al. (1990), given the
1174  greater dental similarities with S. hudienensis (Harrison et al., 2002; Harrison, 2006). This
1175 arrangement must be considered very tentative until additional until additional evidence
1176  enables a better assessment of the phylogenetic relationships between Lufengpithecus,
1177  Sinopithecus, putative basal pongines (Ankarapithecus), and dryopithecines (particularly
1178  hispanopithecins). It is remarkable that the few postcranial remains of Lufengpithecus,
1179  unlike those of Sivapithecus (but similar to hispanopithecins such as Hispanopithecus and
1180  Rudapithecus, see above), are indicative (particularly based on phalangeal curvature) of
1181  suspensory behaviors (Deane and Begun, 2008; Begun, 2015; Zhang et al., 2020).

1182  Graecopithecini The Late Miocene genera Ouranopithecus and Graecopithecus von

1183  Koenigswald, 1972, from the Late Miocene (9.7-7.2 Ma) of Greece and Turkey, are included
1184  in the tribe Gracopithecini Cameron, 1997b, whereas an isolated upper premolar from

1185  Bulgaria (7.2 Ma; Spassov et al., 2012; Bohme et al., 2017) is assigned to Graecopithecini
1186 indet. The genus Graecopithecus has been variously considered distinct from (Begun, 20023,
1187 2009, 2015; Koufos and de Bonis, 2005; Begun et al., 2012; Bohme et al., 2017; Fuss et al.,
1188  2017) or synonymous with (Martin and Andrews, 1984; Andrews et al., 1996; Cameron,
1189  1997a, 1997b; Smith et al., 2004) Ouranopithecus, in which case the former would take
1190  precedence. Most authors favoring the latter view have indeed synonymized the respective
1191  type species, except for Cameron (1997b), who considered them distinct. In the light of
1192  recently published evidence (Fuss et al., 2017; Pugh, 2022), we favor the view that these two
1193  genera and species are distinct but likely closely related. Following the cladistic results

1194  summarized in the following paragraph, we include both Graecopithecus and
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Ouranopithecus within a single tribe Graecopithecini Cameron, 1997b, with Ouranopithecini
Begun, 2009 being considered its junior subjective synonym (see SOM S2.4 for further
details).

Only the older graecopithecin species, Ouranopithecus macedoniensis (de Bonis et al.,
1974) from Greece (9.7-8.8 Ma), is known from craniodental material (de Bonis et al., 1990;
de Bonis and Koufos, 1993, 1994). This species is characterized by larger body size than
dryopithecines (Kappelman et al., 2003), hyperthick molar enamel (Smith et al., 2004)—
interpreted as an adaptation for a sclerocarpic diet (Ungar, 1996; Begun, 2009; DeMiguel et
al., 2014)—and a subnasal morphology most similar to that of dryopithecines (de Bonis and
Melentis, 1987; de Bonis and Koufos, 1994; Moya-Sola and Kohler, 1995). The phylogenetic
relationships of Ouranopithecus have been much debated, being interpreted as an early
hominin by some authors (de Bonis et al., 1990, 1998; de Bonis and Koufos, 1993, 1994,
2004; Koufos and de Bonis, 2005), or alternatively as a stem pongine (Moya-Sola and Kohler,
1995; Agusti et al., 1996; Kdhler et al., 2001), a stem hominid (Alba, 2012), or a stem
hominine (Begun, 1994, 2001, 2002a, 2009, 2010, 2015; Cameron, 2004). Ouranopithecus
has been recovered as a stem hominine by cladistic analyses (Begun et al., 1997, 2012;
Cameron, 1997a; Nengo et al., 2017; Gilbert et al., 2020a; Pugh, 2022). However, while
Begun et al. (1997, 2012) recovered Ouranopithecus and dryopithecines as successive sister
taxa of extant hominines, both Cameron (1997a) and more recent cladistic analyses (Nengo
et al., 2017; Gilbert et al., 2020a; Pugh, 2022) supported a hominine status only for
Ouranopithecus. It has also been recently argued that Graecopithecus is a hominin (Fuss et
al., 2017) but such a contention has not been supported by subsequent cladistic analyses
(Benoit and Thackeray, 2017; Pugh, 2022). Nevertheless, Pugh (2022) yielded tentative

support to a clade of stem hominines including both Ouranopithecus and Graecopithecus.
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Although we favor the view that these genera are closely related, following Pugh’s (2022)
results, we consider it premature to classify the Graecopithecini in the Homininae. While
Pugh’s (2022) analyses are thus far the most thorough in supporting the hominine status of
graecopithecins, we consider that their hominine status is plausible but insufficiently
supported at present (for further explanations, see SOM S4 and SOM Fig. S1), and even
unlikely unless at least some dryopithecines are also considered hominines (e.g., Begun et
al., 2012). Therefore, we provisionally prefer to leave graecopithecins as incertae sedis at the
subfamily rank while noting that, on both morphologic and chronostratigraphic grounds,
graecopithecins might have been derived from dryopithecines irrespective of whether they
are closely related to Nakalipithecus Kunimatsu et al., 2007 and/or hominines (see below).
Homininae The ape record from the latest Middle and Late Miocene of Africa is quite
meager compared to the panoply of Eurasian taxa during the same time interval. Isolated
teeth from Middle Miocene (~12.8—-12.0 Ma) localities of the Ngorora Formation, Kenya
have been interpreted by some authors as hominines (Bishop and Chapman, 1970; Pickford
and Senut, 2005) or stem hominoids (Hill and Ward, 1998; Hill et al., 2002), and the same
applies to dental specimens from the latest Miocene (~6 Ma) of the Lukeino Formation
(Pickford, 1975; Hill and Ward, 1988; Pickford and Senut, 2005), considered by some related
to African apes (Pickford and Senut, 2005). All these samples are too meager to reach
definite conclusions beyond a probable hominid status (e.g., Harrison, 2010a). A very
fragmentary mandibular fragment, tentatively dated to the Late Miocene (Pickford et al.,
2008, 2009b), records the presence of hominoids in Niger but does not allow further
taxonomic precision (Harrison, 2010a)

Additionally, two great ape genera have been recognized from the Late Miocene in Africa,

being represented by fragmentary dentognathic remains: Nakalipithecus from Kenya (9.9—
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9.8 Ma) and Chororapithecus Suwa et al., 2007 from Ethiopia (~8.0 Ma). Nakalipithecus was
originally proposed as a stem hominine likely related to Ouranopithecus (Kunimatsu et al.,
2007)—as further favored by Harrison (2010a, 2010b), who on the basis of the more
plesiomorphic dental features of Nakalipithecus supported an African origin of hominines.
More recently, Pugh’s (2022) cladistic results supported a stem hominine status for
Nakalipithecus and, more tentatively, a possible link with European graecopithecins, but the
features used in support of such links (Kunimatsu et al., 2007; Pugh, 2022) are too
ambiguous (see SOM S4 for further details). Chororapithecus was originally interpreted as a
member of the gorilla lineage based on some details of molar shape and overall size (Suwa
et al., 2007), but this phylogenetic link has been questioned by Harrison (2010a), who
suggested instead a link (and possible synonymy) with Samburupithecus. Pugh (2022) found
the cladistic topology of Chororapithecus to be unstable because the available hypodigm
does not preserve enough phylogenetically informative features to resolve its relationships
and also owing to the fact that the purported gorillin synapomorphies identified by Suwa et
al. (2007) have not been examined in a broad hominoid sample. Based on Pugh’s (2022)
results for Nakalipithecus and the purported similarities between Chororapithecus and
gorillas noted by Suwa et al. (2007), we tentatively include both genera in the Homininae as
tribe incertae sedis, given that additional remains would be required to better support the

hypothesized relationships with graecopithecins and gorillins, respectively.

4. Miocene ape paleobiodiversity, phylogeny, and paleobiogeography
4.1. Paleobiodiversity dynamics
The chronostratigraphic range and geographic distribution of Miocene ape species are

summarized in Table 3, whereas species-locality occurrences with primary references and
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the age of each Miocene ape-bearing locality are reported respectively in SOM Tables S1 and
S2. Up to 56 species of Miocene apes are considered valid in this work (plus two species of
uncertain taxonomic validity), being included in 35 genera (plus two of doubtful or uncertain
taxonomic validity). The geographic distribution of these taxa, including occurrences
indeterminate at the species rank, during the Early, Middle, and Late Miocene is depicted in
Figures 3, 4, and 5, respectively. In turn, the chronostratigraphic ranges reported in Table 3
for Miocene ape species, together with other citations indeterminate to species rank, have
been summarized at the genus level in Figure 6.

The chronostratigraphic ranges reported in Table 3 simultaneously reflect the occurrence
of each species in differently aged localities and the dating uncertainties for these localities,
but may be used to provide a first approximation to the paleobiodiversity dynamics of
Miocene apes through time (Foote, 2000; see SOM S5 and SOM Table S3 for further details).
Range-through (total) diversity (Fig. 7a) and standing diversity (Fig. 7b) at the species level
yield similar diversity patterns, with a diversity peak during the Early Miocene (~21-20 Ma)
and an even more marked peak during the Late Miocene (~9-8 Ma). Both metrics reflect a
more or less marked decrease in diversity during the late Early Miocene, followed by an
irregular recovery throughout the Middle Miocene until reaching the highest diversity well
within the Late Miocene, followed by an abrupt decline thereafter. Changes in diversity
through time are more marked in the plot based on standing diversity (Fig. 7b), which more
adequately minimizes sampling biases than total diversity counts (Fig. 7a). However, both
patterns support that the Middle (Fig. 4) and Late (Fig. 5) Miocene ape radiation—largely
driven by the diversification of great apes throughout Eurasia—was of comparable
magnitude to (if not greater than) the Early Miocene radiation of putative stem apes (Fig.

3)—confined to Afro-Arabia except for the Engelswies tooth fragment.
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It is noteworthy that the Mid-Miocene Climatic Optimum (Foster et al., 2012) is
characterized by a low diversity of Miocene apes, which is followed by a progressive increase
in diversity that continues into the Late Miocene despite a progressive trend toward
increased cooling and seasonality initiated at ~14 Ma. This supports the interpretation that
climatic 'deterioration' and associated paleoenvironmental changes might have triggered
the adaptive radiation of crown hominoids in Eurasia (Casanovas-Vilar et al., 2011), as a
result of progressive locomotor and dietary specialization (DeMiguel et al., 2014). A
temporary drop in diversity at ~11 Ma appears artifactual to a large extent, both in Eurasia
(where the poor sampling of hominoids by this time has been previously noted; Alba et al.,
2022) and in Africa (as indeterminate remains older than 12 Ma and the presence of several
taxa from 10 Ma onward suggest a greater diversity than currently recorded around the
Middle/Late Miocene boundary). In contrast, the marked decline in diversity during the
latest Miocene mostly reflects the local extinction of hominoids in Western Eurasia and their
progressive decline in Eastern Eurasia and probably Africa (hominins excluded). This has
been interpreted as the result of changes in vegetation structure related to progressive
climate cooling and aridification (Agusti et al., 2003; Casanovas-Vilar et al., 2011; Marmi et
al., 2012; Almécija et al., 2021), roughly coinciding with the spread or more open and arid

environments across the Old World (Kaya et al., 2018).

4.2. Phylogenetic uncertainties: Craniodental vs. postcranial evidence

Although both climatic and paleogeographic factors seemingly played a role in Miocene
ape diversification, important paleobiogeographic issues remain to be deciphered due to
phylogenetic uncertainties. For example, it is unclear whether hominids and hylobatids

diverged in Africa during the Early Miocene and separately dispersed into Eurasia by the
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Middle Miocene, or whether they diverged in Eurasia following a single dispersal event. It is
similarly uncertain whether hominines and pongines evolved as a result of a vicariant event
in Eurasia and Africa, respectively, or whether they diverged in one of these continents and
subsequently dispersed to the other. Gilbert et al. (2020b) examined several recent
phylogenetic hypotheses from a paleobiogeographic perspective and concluded that they
implied between one and four hominoid dispersal events between Africa and Eurasia and
zero to two between Europe and Asia. Later in this section, we will discuss the pros and cons
of various competing paleobiogeographic scenarios in the light of phylogenetic evidence, but
before doing so it is worth discussing to what extent the phylogenetic relationships favored
by cladistic analyses published during the last decade (Nengo et al., 2017; Rossie and Hill,
2018; Gilbert et al., 2020a; Pugh, 2022) appear reliable.

Discrepancies between most parsimonious topologies and chronostratigraphic ranges are
to be expected due to the multiple biases of the fossil record, but can also by caused by
inaccurate phylogenies, particularly in the light of abundant postcranial homoplasy. Previous
attempts to determine whether craniodental or postcranial features are more homoplastic
proved rather inconclusive, finding higher levels in craniodental (Finarelli and Clyde, 2004) or
postcranial (Young, 2005) characters. Any attempt to estimate craniodental and postcranial
homoplasy based on a most parsimonious cladogram derived from both anatomical areas
simultaneously results in circular reasoning and is biased by the number of characters in
each subset and their actual degree of homoplasy (which is unknowable). An alternative way
to tackle this issue is to compare the results provided by separate analyses of craniodental
and postcranial features, as done by Pugh (2022).

The most parsimonious cladograms obtained by Pugh (2022: Fig. 4) based on craniodental

and postcranial characters separately evince important similarities and differences, and
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further highlight those phylogenetic links that are exclusively or mostly based on
craniodental data. The results supported by both craniodental and postcranial evidence
include the sequential branching of equatorines, kenyapithecines, and dryopithecines.
Hispanopithecines are also recovered as less basal than dryopithecins + kenyapithecines in
all analyses, but the craniodental evidence supports H. laietanus as a pongine and R.
hungaricus as a hominine—casting even more doubts on the monophyly of dryopithecines
as conceived here. The results of the total morphological evidence analysis that are only
supported by craniodental data include: (1) the stem hylobatid status of the clade
constituted by Oreopithecus and Samburupithecus; (2) the polyphyly of Lufengpithecus s.l.
and Khoratpithecus; and (3) the recovery graecopithecins in a hominine clade also including
Nakalipithecus. This is not surprising given that most of these taxa were not included in the
postcranial analysis, with the exception of Oreopithecus. However, it is noteworthy that the
clade including graecopithecins + Nakalipithecus is not recovered as sister to crown
hominines, but as sister of hominins—supporting the view that, unless interpreted as
basalmost hominins (e.g., de Bonis and Koufos, 2004), the hominine status of these taxa in
the total morphological evidence analysis is influenced by craniodental convergences with
hominins related to powerful mastication (see discussion in Pugh, 2022).

Most noteworthy for assessing the reliability of Pugh’s (2022) results based on total
morphological evidence are the differences between the postcranial and craniodental
results. The cladogram based on the former recovers the monophyly of crown hominoids,
hylobatids, hominids, and hominines, but excludes from these clades all the analyzed
Miocene apes except Si. sivalensis and Oreopithecus, which are recovered as crown
hominids. Thus, besides failing to recover the pongine status of Sivapithecus, the postcranial

data support a much less basal branching for both hylobatids and Oreopithecus. As a result,
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most of the Miocene apes recovered as hominids in the craniodental analysis (equatorines,
kenyapithecines, dryopithecines, and Si. sivalensis) are recovered as stem hominoids based
on the postcranial data. Oreopithecus exhibits the most extreme incongruency between
craniodental and postcranial data, but the contrasting results obtained for hylobatids are
also worrisome for the reliability of their topology in the total morphological evidence
cladogram—intermediate between equatorines and kenyapithecines + dryopithecins—given
its implications for distinguishing stem from crown hominoids. As in the case of
Oreopithecus, the branching topology of hylobatids appears strongly influenced by
postcranial similarities with hominids, which are functionally related to orthograde
behaviors and most likely evolved in parallel to a large extent, as illustrated by Sivapithecus
and Pierolapithecus (e.g., Larson, 1998; Moya-Sola et al., 2004; Alba, 2012; Ward, 2015) and
further favored by Pugh (2022).

To account for the potential bias introduced by crown hominoid postcranial similarities, in
Figure 8b we have depicted a cladogram that better reflects current main uncertainties
about Miocene ape phylogeny while hypothesizing a more basal divergence of hylobatids
(more consistent with the craniodental results) instead of the less basal divergence
hypothesis currently favored by most parsimonious cladograms. The cladogram depicted in
Figure 8b thus mainly differs from that of Figure 8a in the position of afropithecines and
equatorines, which are considered basalmost stem hominids instead of advanced stem
hominoids (leaving unresolved if they constitute a clade or successive sister taxa). Based on
the consistency between craniodental and postcranial results about the more derived status
of hispanopithecins, in Figure 8b we have further considered them less basal than

dryopithecins while leaving unresolved if the latter constitute a clade with kenyapithecines.
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In the following subsections, we discuss some of the most vexing unresolved enigmas of
Miocene ape evolution in terms of phylogeny and paleobiogeography by taking into account
not only molecular estimates of divergence times and the additional evidence provided by
the fossil record (chronostratigraphic ranges and geographic distribution), but also the more
vs. less basal divergence hypotheses for hylobatids depicted in Figure 8. These unresolved
issues are the following: (1) What are the closer phylogenetic relationships of Oreopithecus;
(2) What is the evolutionary origin of hylobatids, i.e., where do we draw the cladistic
boundary between stem and crown hominoids; (3) When and where did pongines and
hominines diverge, and what is the role that dryopithecines and graecopithecins played in

the origin and subsequent diversification of the hominid clade.

4.3. The perplexing enigma of Oreopithecus

Uncertainties about the phylogenetic relationships of Oreopithecus, from the Late
Miocene of Italy, are “especially perplexing because Oreopithecus is one of the best-known
fossil primates” (Harrison and Rook, 1997: 328). A skeleton discovered in 1958 led Straus
(1963) to conclude that Oreopithecus was either a ‘hominid’ s.s. or a member of a separate
hominoid family, whereas Hirzeler (1958, 1968) more explicitly considered Oreopithecus a
side branch of the human lineage. However, the bizarre dental morphology of Oreopithecus,
coupled with its peculiar cranial morphology and modern hominoid-like postcranium led to
varied interpretations over the years (see review in Delson, 1986). Harrison (1986, 1987a)
advocated a phylogenetic link between Oreopithecus and nyanzapithecids, while supporting
its hominoid status based on the contention that its postcranial similarities with extant apes
“are so detailed that there seems little possibility that they could have been developed

independently” (Harrison, 1987a: 541). Similar views were stated by Sarmiento (1987: 35):
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“given the evidence of the forelimb anatomy and associated shape of the thorax, this form
[Oreopithecus] cannot be interpreted as anything but a hominoid”. Sarmiento (1987) noted
that, in some aspects, Oreopithecus is more hylobatid-like than great ape-like, and put
forward two possible interpretations: either Oreopithecus retained the crown-hominoid
plesiomorphic condition; or Oreopithecus is a large-bodied hylobatid.

Given Harrison’s (1986, 1987a, 1987b) views about the synapomorphic nature of crown
hominoid postcranial similarities (see Section 2.3), Harrison and Rook (1997: 347) still
maintained that “the postcranial characteristics shared by Oreopithecus and the extant
hominoids are so pervasive throughout the skeleton that it is almost impossible to consider
that these could have been developed independently to such a remarkable degree of detail
in every anatomical region.” The same opinion was held by Pilbeam (1996, 1997), who
considered Oreopithecus as the most secure modern Miocene hominoid. Nevertheless,
Harrison and Rook (1997) abandoned Harrison’s (1986, 1987a) former views about a close
phylogenetic link with nyanzapithecids and, like Moya-Sola and Kéhler (1997), hypothesized
that Oreopithecus is a derived dryopithecine. The postcranial similarities between
Oreopithecus and Hispanopithecus (Moya-Sola and Kéhler, 1996) were determinant in these
proposals of a great ape status for Oreopithecus, even if also supported by some cranial
features—such as the configuration of the incisive canal and the lack of subarcuate fossa
(Harrison and Rook, 1997; Moya-Sola and Kdéhler, 1997), whose reliability as hominid
synapomorphies is currently doubtful (see next subsection). A hominid status for
Oreopithecus would not only imply dental convergences with nyanzapithecids (see
discussion in Rossie and Cote, 2022), but also that its cranial morphology is autapomorphic

(Harrison and Rook, 1997; Moya-Sola and Kohler, 1997; Alba et al., 2001) rather than
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symplesiomorphic for crown hominoids, as generally assumed (Harrison, 1987a; Sarmiento,
1987; Begun et al., 1997; Begun, 2002a, 2013, 2015; Pugh, 2022).

Begun et al.’s (1997, 2012) cladistic analyses recovered Oreopithecus as a stem hominid,
and its hominid status was generally accepted until about a decade ago (e.g., Wood and
Harrison, 2011; Alba, 2012), with some exceptions restating the link with nyanzapithecids
(Benefit et al., 1998; Benefit and McCrossin, 2001). Subsequent cladistic analyses, including a
wider representation of Early and Middle Miocene apes, recovered Oreopithecus as deeply
nested within the nyanzapithecid clade (Nengo et al., 2017; Gilbert et al., 2020a)—in
agreement with Harrison’s (1986, 1987a) former opinion. Most recently, Pugh’s (2022)
analyses hinted at a possible close relationship between Oreopithecus and Samburupithecus
and provided some support for considering both taxa as stem hylobatids. The link between
Oreopithecus and Samburupithecus, given the previously noted dental similarities between
the latter taxon and nyanzapithecids (Harrison, 2010a), is consistent with previous cladistic
analyses supporting that Oreopithecus is a derived nyanzapithecid (Nengo et al., 2017;
Gilbert et al., 2020a), in further agreement with previously noted similarities between
Oreopithecus and members of this family (Leakey, 1968; Harrison, 1986, 1987a, 1992,
2010a). In contrast, the stem hylobatid status recovered by Pugh (2022) must be considered
poorly supported at present, given the lack of nyanzapithecids in her analyses and the highly
divergent results obtained for Oreopithecus based on craniodental and postcranial
characters. As noted by Pugh (2022), similarities between Oreopithecus with hylobatids
include a few craniodental features present in some putative stem hominoids (e.g., elongate
fourth premolars as in nyanzapithecids) and even stem catarrhines (an anteriorly protruding
rhinion), thus being likely symplesiomorphic, coupled with multiple modern hominoid-like

postcranial characteristics that are most likely homoplastic between crown hominoids.
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Therefore, Pugh (2022) concluded that Oreopithecus is most reasonably interpreted as a
stem hominoid.

That the link between Oreopithecus and hylobatids retrieved by Pugh (2022) is not
entirely attributable to postcranial similarities is confirmed by the fact that craniodental
features alone support this link (while postcranial characteristics favor a more advanced
status toward hominids). Nevertheless, a stem hominoid status for Oreopithecus is further
supported by the morphology of the inner ear semicircular canals, which despite some
similarities in proportions with extant great apes is much more primitive and does not show
particular similarities with that of hylobatids (Urciuoli et al., 2020, 2021a, 2021b). On the
other hand, the homologies hypothesized between Oreopithecus and nyanzapithecids in
lower molar cristids (Rossie and Cote, 2022) are suggestive but questionable, so it is
probably too early to confidently rule out their independent evolution. Analyses of enamel-
dentine junction shape (currently underway) would be required to better evaluate these
dental similarities, but preliminary results indicate close morphometric affinities between
Oreopithecus and stem catarrhines (Zanolli et al., 2022a), supporting further that the former
is not a crown hominoid. Taken overall, current evidence lends greater support to the
hypothesis that Oreopithecus is a late descendant of an ancient hominoid lineage (maybe
nyanzapithecids) that dispersed from Africa into Tusco-Sardinia sometime before 8 Ma and
acquired orthograde-related features independently from crown hominoids. However, given
that the branching order between nyanzapithecids and crown hominoids does not appear
reliable (see Section 5.1), the possibility that Oreopithecus and some nyanzapithecids are

stem hylobatids deserves further consideration in the future.

4.4. The vexing problem of hylobatid origins
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The fossil record indicates that hominoids originated in the Oligocene (Stevens et al.,
2013; Hammond et al., 2019) and first radiated during the Early Miocene in Afro-Arabia
(Harrison, 2010a), when this continent was isolated from Eurasia by the Tethys Seaway
(Bernor, 1983; Seiffert, 2012; Begun et al., 2012). By ~19 Ma, the emergence of an
intermittent land-bridge allowed intercontinental faunal exchanges between Africa and
Eurasia (Harzhauser et al., 2007), even if temporarily interrupted by the Langhian
transgression at ~16 Ma (Rogl, 1999), leading to the eventual dispersal of multiple catarrhine
lineages into Eurasia at different times (Roos et al., 2019; Gilbert et al., 2020b). Stem
catarrhines (pliopithecoids) were apparently the first group to disperse, being first recorded
at ~19-18 Ma in Asia (Harrison and Gu, 1999; Begun, 2002b, 2017; Harrison, 2013; Harrison
et al., 2020). Large-bodied putative hominids followed soon thereafter, being first recorded
by kenyapithecines (Griphopithecus and Kenyapithecus) at ~16.5-14 in Europe and Turkey
(Heizmann and Begun, 2001; Andrews and Kelley, 2007; Casanovas-Vilar et al., 2011), and
subsequently by dryopithecines in Europe and pongines in Asia from ~13-12.5 Ma onward
(Kelley, 2005; Alba, 2012; Begun, 2015; Gilbert et al., 2020b). However, the scarce record of
Miocene hylobatids (Harrison, 2016; Ji et al., 2022), coupled with phylogenetic uncertainties
(Fig. 8), hinders an adequate understanding of hylobatid origins.

Molecular estimates strongly support that hylobatids and hominids diverged during the
Early Miocene (i.e., before the Langhian transgression), probably ~20-17 Ma, although the
large confidence intervals of some of these estimates do not completely rule out a later
divergence in the early Middle Miocene: 20.3 (24.2-16.5) Ma (Perelman et al., 2011), 17.4
(23.9-12.4) Ma (Springer et al., 2012), 20.3 (23.5-17.4) Ma (Finstermeier et al., 2013), and
16.8 (17.6—15.9) Ma (Carbone et al., 2014). Given that their oldest unambiguous fossil

record (Yuanmoupithecus) dates to the latest Miocene (8.2—7.1 Ma; Harrison, 2016; Ji et al.,
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2022), hylobatids have a long ghost lineage. Furthermore, molecular data indicate that
crown members of the group did not diverge from one another until the latest Miocene
(Perelman et al., 2011; Springer et al., 2012; Finstermeier et al., 2013; Carbone et al., 2014),
which implies that stem hylobatids might lack most of the derived features shared by
Yuanmoupithecus and crown hylobatids.

Decades ago, pliopithecoids were considered broadly ancestral to hylobatids (Hiirzeler,
1954; Zapfe, 1958, 1961; Simons and Fleagle, 1973; Andrews and Simons, 1977). However,
such an assumption was based on superficial cranial and postcranial similarities and is no
longer tenable given the widely-accepted stem catarrhine status of pliopithecoids (e.g.,
Zalmout et al., 2010; Stevens et al., 2013; Nengo et al., 2017; Gilbert et al., 2020a; Urciuoli et
al., 2021b). The latter is supported by the lack of crown catarrhine synapomorphies and the
retention of multiple plesiomorphic features (e.g., incompletely ossified ectotympanic,
entepicondylar foramen in the distal humerus, and single hinge-like carpometacarpal thumb
joint; Zapfe, 1961; Harrison, 1987b, 2005; Andrews et al., 1996; Begun, 2002b, 2017).
According to this interpretation, hylobatids must represent an independent dispersal event
from those of pliopithecoids. It has generally been assumed that hylobatids and large-bodied
hominoids from Eurasia are the result of at least two different dispersal events from Africa
(Moya-Sola et al., 1999b; Roos et al., 2019; Gilbert et al., 2020a), either synchronous or
diachronous. Gilbert et al. (2020a) suggested that this dispersal event took place from Africa
into Asia just after the Mid-Miocene Climatic Optimum. However, in the light of the
molecular estimates of crown hominoid divergence time reported above, hylobatids could
have alternatively dispersed somewhat earlier, before than Langhian transgression (19-16

Ma), like pliopithecoids (see above). Both alternatives are possible, as a pre-Langhian
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divergence time does not exclude a later dispersal event of hylobatid ancestors from Africa
into Eurasia.

Gilbert et al. (2020a) further hypothesized that hylobatids might have originated from a
dendropithecid or purported stem hominoid (Proconsulidae s.l.) from the Early Miocene of
Africa. Hypothetical basalmost hylobatids might be simply unknown or currently
unrecognized as such among the multiple small-bodied catarrhine genera of uncertain
affinities from Early Miocene of Africa. An origin from dendropithecids (sensu Harrison,
2010a) is plausible on chronological grounds, as they are first recorded in the Early Miocene
(e.g., Harrison, 2010a), but would imply that at least some dendropithecids are crown
hominoids instead of the stem catarrhines (as supported by Rossie and Hill, 2018, who
recovered Dendropithecus Andrews and Simons, 1977 and Simiolus Leakey and Leakey, 1987
as basal nyanzapithecids). Cladistic analyses have generally recovered dendropithecids as
stem catarrhines (Nengo et al., 2017; Gilbert et al., 2020a) or as stem hominoids at most
(Rae, 1999, 2004; Zalmout et al., 2010; Alba et al., 2015; Rossie and Hill, 2018), such that a
crown hominoid status for dendropithecids lacks cladistic support except perhaps for
Micropithecus. Originally interpreted as a hylobatid relative based on facial morphology
(Fleagle and Simons, 1978), Micropithecus and other dendropithecids were subsequently
reinterpreted as stem catarrhines given the lack of crown catarrhine postcranial
synapomorphies (e.g., Harrison, 1987b, 2002, 2010a), with cranial similarities with
hylobatids being interpreted as symplesiomorphic. However, Micropithecus was tentatively
considered a hominoid (‘proconsuloid’) by Begun (2015) based on its moderately developed
molar cingula, and most recently recovered as a stem hylobatid more basal than

Yuanmoupithecus by Ji et al. (2022). Even if the latter authors attributed this result to dietary
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convergence, the possibility that hylobatids may be closely related to some dendropithecids
should be scrutinized further when more complete material becomes available.
Alternatively, hylobatids (or even crown hominoids as a whole) might have evolved from
putative stem hominoids from the Early or Middle Miocene of Africa, i.e., proconsulids or
nyanzapithecids. The Oligocene record of both proconsulids and nyanzapithecids (Stevens et
al., 2013; Hammond et al., 2019) supports an early divergence between these families, while
afropithecids are not recorded until later. Although some recent cladistic analyses recovered
a monophyletic nyanzapithecid clade that nests within afropithecids (Nengo et al., 2017;
Gilbert et al., 2020a; but see Rossie and Hill, 2018 for a different topology), the Oligocene
age of Rukwapithecus and another indeterminate nyanzapithecids (Stevens et al., 2013;
Hammond et al., 2019) is at odds with its nesting well within the nyanzapithecid radiation.
This suggests that the relationships between nyanzapithecids, afropithecids, and crown
hominoids are not well resolved. The less basal divergence hypothesis for hylobatids (Fig. 8a)
suggests that they are a dwarfed lineage (Pilbeam, 1996; Reichard et al., 2016) evolved from
an afropithecid-like ancestor, which is compatible with molecular estimates and with either
one or two dispersal events of crown hominoids into Eurasia during the Early and/or Middle
Miocene. In contrast, the basal divergence hypothesis for hylobatids (Fig. 8b) favored by
craniodental data suggests that they originated from a nyanzapithecid-like (or proconsulid-
like) ancestor, is in better agreement with average divergence times estimated from
molecular evidence, and requires two dispersal events of crown hominoids into Eurasia. The
craniodental similarities shared between nyanzapithecids and hylobatids (e.g., relatively
short face, broad interorbital distance, and projecting orbits; Nengo et al., 2017) may be
interpreted as the plesiomorphic condition for crown hominoids and, hence, neither favor

nor contradict a possible origin of hylobatids from more or less derived nyanzapithecids
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(which would imply that the latter are paraphyletic). Dendropithecids and proconsulids seem
more unlikely ancestors for hylobatids given the results of cladistic analyses, but the
plausibility of an afropithecid-like—as opposed to nyanzapithecid-like—ancestor, or a
Eurasian divergence between hylobatids and hominids following a single dispersal event
from Africa, largely depends on the extent to what most parsimonious cladistic analyses are

biased by postcranial homoplasy between hylobatids and hominids.

4.5, The elusive origin of the great ape and human clade
Equatorines The uncertain monophyly and phylogenetic relationships of afropithecids are
illustrated by the fact that they have been hypothesized as stem hominids by various
researchers (Andrews, 1992, 1996; Ward and Duren, 2002) whereas others have considered
that at least afropithecines would precede the hylobatid—hominid divergence (e.g., Moya-
Sola et al., 2009b; Casanovas-Vilar et al., 2011; Alba, 2012; Begun, 2015; Andrews, 2020). As
discussed in the preceding subsection, deciding whether afropithecids are stem hominoids,
as favored by most parsimonious cladograms (Nengo et al., 2017; Gilbert et al., 2020a; Pugh,
2022), instead of stem hominids, as supported by craniodental evidence (Pugh, 2022),
depends on their branching sequence relative to hylobatids (Fig. 8). Afropithecids are
recorded in the Early Miocene before 17 Ma, and probably at least by 20 Ma if the older
dating of Morotopithecus is correct (see Section 3.4), which roughly coincides with the
average divergence time between hylobatids and hominids estimated on molecular grounds,
and is thus compatible with both possibilities.

The phylogenetic relationships of the equatorine Nacholapithecus are particularly
controversial. Some authors have considered it as a stem hominid (Alba, 2012; Kunimatsu et

al., 2019) largely based on the possession of an elongated and procumbent premaxilla that
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slightly overlaps the maxillary palatine process (Ishida et al., 2004; Kunimatsu et al., 2004;
Nakatsukasa and Kunimatsu, 2009). This condition is more derived than that of hylobatids,
which differ from both pongines and hominines in the lack of premaxillary-maxillary overlap
(Ward and Kimbel, 1983; McCollum et al., 1983; McCollum and Ward, 1997). Except
pongines, other Miocene apes also lack a clear overlap, although dryopithecines (and maybe
afropithecines to a lesser extent) display a more derived condition than proconsulids and
hylobatids, with the posterior pole of the premaxilla closely approaching or minimally
overlapping the palatine process of the maxilla (Ward and Kimbel, 1983; Begun, 1994; Moya-
Sola and K6hler, 1995; McCollum and Ward, 1997; Brown et al., 2005; Moya-Sola et al.,
2009a; Pérez de los Rios et al., 2012; Pugh, 2022). Based on current fossil evidence, it is not
possible to determine whether the divergent subnasal configuration of orangutans and
African apes independently evolved from a dryopithecine-like condition, or whether gorillas
retain the plesiomorphic configuration for crown hominids. This makes it difficult to
interpret whether the derived condition of Nacholapithecus is homologous with that of
crown hominids (Kunimatsu et al., 2019) or merely homoplastic (Pugh, 2022)—although the
more plesiomorphic subnasal configuration of dryopithecines supports the latter view as
long as they are interpreted as stem hominids less basal than equatorines.

The potential stem hominid status of Nacholapithecus has been reinforced by the report
that this taxon has an obliterated subarcuate fossa (Kunimatsu et al., 2019), which is
similarly absent or very shallow in dryopithecines (Hispanopithecus and Rudapithecus;
Moya-Sola and Kohler, 1993, 1995; Kordos and Begun, 1997, 2001). However, as admitted
by Kunimatsu et al. (2019), a well-developed subarcuate fossa is variably absent in
cercopithecoids and hylobatids (Spoor and Leakey, 1996), indicating that its phylogenetic

value must be interpreted with care, given its variability and the possibility that its
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obliteration could be homoplastic in various stem hominoids (Pugh, 2022). The latter
contention is further reinforced by the lack of the subarcuate fossa in Oreopithecus (Harrison
and Rook, 1997; Moya-Sola and Kéhler, 1997), currently most parsimoniously interpreted as
a stem hominoid (see Section 4.3).

Current morphological support for the stem hominid status of Nacholapithecus is thus
somewhat ambiguous, although craniodental data support equatorines as stem hominids
when postcranial features are ignored (Pugh, 2022) and this systematic position appears
most likely under a basal divergence hypothesis for hylobatids (Fig. 8b). As remarked by
Kunitmatsu et al. (2019), a hominid status for Nacholapithecus would provide additional
support to the contention that not only suspensory behaviors (Moya-Sola et al., 2004; Pugh,
2022) but also an orthograde body plan (Alba, 2012) would have been independently
acquired by hylobatids and hominids. Given that equatorines roughly coincide in age (~16—
15 Ma) with crown hominid divergence average dates estimated from molecular data—16.5
(19.7-13.5) Ma (Perelman et al., 2011) and 15.1 (20.8-11.0) Ma (Springer et al., 2012)—
these neither favor nor preclude a crown hominid (e.g., hominine) status for
Nacholapithecus. However, this possibility is not favored by most parimonious cladograms
even if based on craniodental evidence alone (Pugh, 2022), and hence it is much more
unlikely that a stem hominid status.

Kenyapithecines and dryopithecines Unlike in the case of Nacholapithecus, the hominid

status of Kenyapithecus is much better supported by cladistic analyses, albeit with some
discordant results. Begun et al. (1997) recovered Kenyapithecus s.l. (including Equatorius) as
a stem hominoid, while Begun et al. (2012) recovered Griphopithecus as a stem hominoid
and Kenyapithecus as a stem hominid. More recently, Kenyapithecus was supported as a

pongine (Nengo et al., 2017; Gilbert et al., 2020a) or as a stem hominid together with
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Griphopithecus (Pugh, 2022). The latter view had been favored by Alba (2012), in agreement
with many previous authors (see Section 3.6) and the interpretation that the craniodental
similarities between Kenyapithecus and pongines are symplesiomorphic (Harrison, 1992,
2010a).

Kenyapithecus stands out from a paleobiogeographic viewpoint because it is the only
Miocene ape genus thus far recorded both in Africa and Eurasia, but a clear-cut
interpretation of this fact is obscured by its uncertain phylogenetic relationships with
dryopithecines and crown hominids (Almécija et al., 2021). Based on the record of a possible
kenyapithecine in Europe before the Langhian transgression (Heizmann and Begun, 2001;
Casanovas-Vilar et al., 2011), Gilbert et al. (2020b) suggested that apes might have followed
a more westward dispersal route from Africa into Eurasia than the ancestors of
pliopithecoids, subsequently dispersing into Asia sometime between 16 and 13 Ma.
However, the larger samples of Griphopithecus and Kenyapithecus (Alpagut et al., 1990;
Begun, 1992c, 2002a; Begun et al., 2003b; Kelley et al., 2008) are not recorded until
somewhat later (~14.5-14.0 Ma) in Turkey (see discussion in Casanovas-Vilar et al., 2011 and
Gilbert et al., 2020b, regarding the older dates favored for these sites by some other
authors). It is generally assumed that Kenyapithecus dispersed from Africa into Eurasia
(Andrews and Kelley, 2007; Alba, 2012) rather than the other way around, as an excessively
literal reading of the fossil record might suggest (Begun, 2000). However, it is uncertain
whether Eurasian kenyapithecines originated from a single dispersal event (as suggested by
the close phylogenetic link between Kenyapithecus and Griphopithecus recovered by Pugh,
2022) or two (pre- and post-Langhian) dispersals from Africa.

Sometime after kenyapithecines are first recorded in Turkey, both pongines and

dryopithecines are recorded in Asia and Europe, respectively, ~13.0-12.5 Ma. Not
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surprisingly, thus, transcontinental dispersal events followed by vicariant divergence have
played a major role in the interpretation of the Eurasian hominoid radiation (Agusti et al.,
1996; Andrews and Bernor, 1999; Begun, 2005). However, the recognition that at least some
species formerly included in Lufengpithecus lack pongine synapomorphies (Kelley and Gao,
2012; Ji et al., 2013; Pugh, 2022) requires a more complicated paleobiogeograpic
interpretation (Begun and Kelley, 2016), which is nevertheless obscured by phylogenetic
uncertainties regarding dryopithecines and graecopithecins (see Section 3.7). Agusti et al.
(1996) and Kohler et al. (2001), following Moya-Sola and Kohler (1993, 1995), hypothesized
that, after the hominoid dispersal into Eurasia, hominines evolved in Africa, with
dryopithecines and graecopithecins being successive members of the pongine stem lineage
less closely related to orangutans than Sivapithecus. This scenario is very reasonable from a
paleobiogeographic perspective (Andrews and Bernor, 1999), but not supported by most
parsimonious cladograms, which favor a stem hominid status for dryopithecines (Alba et al.,
2015; Pugh, 2022). In contrast, based on the hominine hypothesis for both dryopithecines
and graecopithecins, Begun and coauthors initially discussed different paleobiogeograpic
scenarios (Begun, 1994, 1995; Begun et al., 1997) but ultimately more actively promoted a
Eurasian origin and early divergence of crown hominids, followed by a subsequent back-to-
Africa dispersal of the latter in the Late Miocene (Begun, 2001, 2002a, 2005, 2009, 2010,
2013, 2015, 2016; Begun et al., 2003a, 2012; Begun and Nargolwalla, 2004).

Moya-Sola et al. (2009b) advocated the view that dryopithecines are closely related to
kenyapithecines and considered likely a Eurasian origin of crown hominids, but did not
discount an independent evolution of hominines and pongines in Africa and Eurasia,
respectively, from similar kenyapithecine ancestors—which is essentially the same

hypothesis proposed by Agusti et al. (1996). Alba (2012), despite classifying dryopithecines
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as stem hominids, further commented on the possibility that pongines and hominines
evolved separately in different continents from similar kenyapithecine ancestors. According
to this hypothesis, dryopithecines would be more closely related to pongines—in which
case, as noted by Alba (2012) and Almécija et al. (2021), orthogrady would have had to
independently evolve not only between hylobatids and hominids, but also between
hominines, pongines (as currently conceived), and dryopithecines. While the latter is
plausible in the light of the postcranial evidence available for taxa such as Pierolapithecus
and Sivapithecus (see Section 3.7), the cranial similarities noted by some previous authors
between dryopithecines and pongines (Moya-Sola and Kéhler, 1993, 1995; Pérez de los Rios
et al., 2012) do not provide sufficient support to this hypothesis according to most recent
cladistic analyses (Pugh, 2022) and support instead that even hispanopithecins (which
appear less basal than kenyapithecines and dryopithecins) are stem hominids. The inclusion
of Danuvius—chronologically intermediate between dryopithecins and hispanopithecins
(Bohme et al., 2019)—in a formal cladistic analysis might help disentangle the phylogenetic
relationships between dryopithecins and hispanopithecins, given that this genus also
appears morphologically intermediate between them (Almécija et al., 2021). However,
clarifying the phylogenetic relationships of dryopithecines would probably require as well
more complete fossils around the Middle/Late Miocene from Europe (Alba et al., 2022) and
China (Begun and Kelley, 2016).

Although Pugh’s (2022) analyses generally support hispanopithecin monophyly, the
support of H. laietanus as a stem pongine and of R. hungaricus as a stem hominine by her
craniodental analyses parallels the previous cladistic results by Cameron (1997a), which led
this author to resurrect Hispanopithecus. If supported by additional evidence, this topology

would imply a Eurasian divergence of crown hominids—albeit not in the usual sense in
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1719  which hispanopithecines are all considered hominines (e.g., Begun, 2005). Pugh’s (2022)
1720  support for the stem hominine status of graecopithecins is also consistent with a Eurasian
1721  divergence of crown hominids followed by a Late Miocene dispersal of hominines into Africa.
1722  However, as explained in Section 3.7 (see also SOM S4), we do not consider this

1723 phylogenetic link to be sufficiently supported at present. In any case, its paleobiogeographic
1724  implications would be less straightforward than the purported hominine status for some
1725  dryopithecines, given the stem hominine status further supported by Pugh (2022) for

1726  Nakalipithecus from the Late Miocene of Africa.

1727 Before the finds of Nakalipithecus and Chororapithecus (Kunimatsu et al., 2007; Suwa et
1728  al., 2007), the lack of unambiguous great apes during the late Middle Miocene and early Late
1729  Miocene of Africa was used to support the view that hominines originated in Europe (e.g.,
1730  Begun, 2001)—even though, as pointed by Cote (2004), the absence of ape fossils was

1731  largely attributable to low sampling effort or inadequate habitat sampling. The existence of
1732 such a gap in the African hominid record is no longer tenable for the Late Miocene, although
1733  the support for the hominine status of Nakalipithecus and Chororapithecus is tenuous at
1734  best. Both the oldest graecopithecin (0. macedoniensis) and Nakalipithecus predate the
1735  average molecular dates between gorillins and other hominines—8.3 (10.1-6.6) Ma

1736  (Perelman et al., 2011) or 8.0 (11.7-5.5) Ma (Springer et al., 2012). This fact suggests that
1737  these taxa, unlike Chororapithecus, are unlikely to be crown hominines based on their

1738  chronology, although this remains a possibility given the uncertainty range of molecular
1739  divergence dates.

1740 While the phylogenetic relationships of Chororapithecus cannot be properly evaluated
1741  (see Section 3.7), the potential link between Nakalipithecus and graecopithecins, if

1742  confirmed, would be suggestive of an intercontinental connection during the Late Miocene.
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Nevertheless, the less derived morphology of Nakalipithecus (Kunimatsu et al., 2007), in
agreement with its slightly older dating, might be interpreted to support instead an African
origin and subsequent dispersal into Eurasia of graecopithecins. A European origin of
graecopithecins from derived dryopithecines such as hispanopithecins would be consistent
with their known fossil record in chronological terms. However, according to Pugh’s (2022)
results—which recover hispanopithecins as advanced stem hominids and graecopithecines
as stem hominines—this would imply that hispanopithecins gave rise to both pongines and
hominines, which is at odds with the older (>2 Myr) record of pongines as compared with
hispanopithecins.

Other possibilities would be: (1) graecopithecins represent a dispersal event of stem
hominines from Africa into Eurasia (also consistent with the most parsimonious results of
Pugh, 2022); (2) graecopithecins are stem hominids evolved from hispanopithecins that
represent an evolutionary dead-end (not supported by the results of Pugh, 2022); or (3)
ouranopithecins and at least some hispanopithecins are stem hominines (only supported by
the craniodental analysis of Pugh, 2022). Only the latter possibility necessarily entails a
hominine dispersal back to Africa, whereas Pugh’s (2022) best supported alternative implies
a dispersal event that might have been in either direction. Therefore, the place of origin of
hominines seems difficult to determine until more complete Late Miocene hominids from
Africa are discovered, although the various alternatives discussed above illustrate why
clarifying the phylogenetic relationships of dryopithecines is also key for clarifying this

question.

5. Discussion

5.1. Something is rotten in Miocene ape phylogeny
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1767 Despite the progress made during the last decades in terms of Miocene ape systematics,
1768  many phylogenetic and paleobiogeographic uncertainties persist. Some of them, such as the
1769  systematic status of equatorines and the potential paraphyly of dryopithecines, might seem
1770  of relatively minor relevance for understanding the big picture of hominoid evolution, even
1771  if they have potentially deeper implications for the origin of crown hominids. In contrast, the
1772  enduring uncertainties about origin of hylobatids appear of utmost importance, given the
1773  implications of its branching topology to determine the systematic (stem vs. crown

1774  hominoid) status of Early Miocene apes.

1775 The parsimony analyses published during the last decade support a less basal divergence
1776  of hylobatids that implies a stem hominoid status for all Early and Middle Miocene apes
1777  from Africa except Kenyapithecus. This is the view that—coupled with some uncertainties
1778  regarding some Eurasian taxa (such as oreopithecins and graecopithecins)—has been

1779  reflected it in the systematic classification used in this work. Nevertheless, several lines of
1780  evidence strongly suggest that such an advanced branching of hylobatids is probably amiss:
1781 (1) Molecular estimates for the hylobatid—hominid divergence predate by several million
1782  years the oldest record of stem hominids and hylobatids; (2) A separate analysis of

1783  craniodental and postcranial data yields strikingly different topologies for hylobatids—with
1784  postcranial data excluding most Miocene apes from the crown hominoid clade, and

1785  craniodental evidence supporting the crown hominoid status of equatorines; and (3) Bona
1786  fide Miocene great apes (especially Pierolapithecus and Sivapithecus) support the

1787  independent evolution of suspensory and orthogrady-related features along various crown
1788  hominoid lineages.

1789 Discrepancies between two subsets of data taken from a single taxon-character matrix

1790  areinevitable, as the resulting most parsimonious cladograms will be but sampling estimates
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of the true (parametric) phylogeny (Rodrigo et al., 1993). However, highly discrepant results
may also highlight the presence of insufficient (or misleading) phylogenetic signal in one or
all of the analyzed subsets. In general, combining different morphological datasets in a total
evidence analysis is preferable, as this procedure may reveal hidden support that is not
evident from each dataset separately (de Queiroz and Gatesy, 2007). Nevertheless, if one
dataset is systematically affected by homoplasy in a particular given direction (as in the
assumption of postcranial paralellism between hylobatids and hominids), then the results of
the total evidence analysis might be less accurate than those yielded by the other dataset
(i.e., craniodental data). This suggests that the relative branching order among hylobatids
and putative stem hominoids from Africa other than proconsulids might be less reliable
(potentially less accurate) than other phylogenetic relationships recovered by the analysis.

Pugh’s (2022) results based on postcranial data evoke Pilbeam’s (1997) contention that
most Miocene apes except Oreopithecus likely belong to an ‘archaic’ radiation not directly
related to modern hominoids. Paradoxically, Oreopithecus is the taxon that most clearly
evinces the contradictory signal provided by craniodental and postcranial data. The detailed
phylogenetic affinities of Oreopithecus deserve further investigation but multiple lines of
craniodental evidence (from the facial morphology to the inner ear anatomy and tooth
endostructural shape) support that it is a late descendant of an ancient lineage more basal
than crown hominoids. The incongruent signal displayed by Oreopithecus is the opposite of
that of Sivapithecus but highlights the same problem.

Pilbeam (1997) and Harrison and Rook (1997) argued that the traditional tendency to
invoke postcranial rather than cranial homoplasy was a historical bias owing to the scarcity
of hominoid postcranial remains. However, these views were soon challenged by Larson

(1998), who advocated parallelism between lesser and great apes. Subsequent discoveries
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have largely supported Larson’s (1998) views that there are good reasons to mistrust the
purported postcranial synapomorphies of crown hominoids (Moya-Sola et al., 2004; Alba,
2012; Ward, 2015): the fact that Pierolapithecus and Sivapithecus are recovered as a stem
hominid and as a pongine, respectively, by most parsimonious cladograms (Pugh, 2022),
despite lacking some of the derived postcranial features shared by crown hominids, supports
the view that these features are homoplasies rather than true synapomorphies. Under this
view, the hominoid postcranium would be prone to evolve the same features again and
again as long as it is subject to similar positional selection pressures. The fact that cladistic
analyses can resolve the Sivapithecus dilemma could be taken as an indication that
postcranial homoplasy can be readily overcome by parsimony analysis. However, in reality
we cannot know how often and to what extent the potentially misleading evidence provided
by the postcranial remains may override the true phylogenetic signal.

The problem of abundant homoplasy has long been recognized in paleoanthropology
(e.g., Fleagle, 1997; Larson, 1998; Lockwood and Fleagle, 1999; Young, 2003; Begun, 2007).
Although homoplasies may result from character misscoring, in most cases they reflect a real
biological phenomenon resulting from evolutionary constraints and/or recurrent selective
pressures during evolution (Felsenstein, 1978; Lockwood and Fleagle, 1999; Begun, 2007).
The fact that, on epistemological grounds, homoplasies cannot be determined a priori but
must be identified a posteriori based on most parsimonious cladograms (see SOM S1.3) does
not mean that they can be discarded as uninteresting ad hoc hypotheses or phylogenetic
‘noise’—rather the contrary, they should be scrutinized on the basis of morphofunctional
and developmental considerations (Fleagle, 1997; Lockwood and Fleagle, 1999; Begun,
2007). Nevertheless, this is more easily said than done. In practice, there is no other option

but to rely on most parsimonious cladograms based on all available evidence, even if it
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suspected (as in this case) that homoplasy is more prevalent in a particular anatomical area.
This does not prevent the results from being potentially biased by differential degrees of
homoplasy between the cranium and the postcranium because the result will be “heavily
dependent on which morphological area can muster the greater number of characters”
(Andrews and Pilbeam, 1996: 124).

The fact that most cladistic studies show a large minimum level of homoplasy (Fleagle,
1997; Begun, 2007) represents a caveat for retrieving phylogenetic signal because
morphological characters, in practice, are potentially exhaustible (Felsenstein, 1978) so that
data matrices can become saturated by excessive homoplasy as clades age (Wagner, 2000).
This saturation erodes and can even override true phylogenetic signal, leading to a long-
branch attraction problem (Wagner, 2000; Bergsten, 2005). The latter occurs when lineages
that have undergone many changes artifactually appear too closely related (Bergsten, 2005),
either because phylogenetic signal has been saturated or because the long branches
converge on similar morphologies. Cladistic analyses are expected to be more prone to long-
branch attraction than other methods of phylogenetic inference because parsimony does
not take into account the lengths of the branches and hence tends to underestimate the
amount of change in long branches (Pagel, 1999).

To conclude that postcranial homoplasies are causing a long-branch attraction problem
between hylobatids and hominids we would need independent evidence that most
parsimonious cladograms are yielding inaccurate results (Brower, 2017). Of course, we do
not have such evidence, but the highly contradictory results yielded by craniodental and
postcranial datasets (Pugh, 2022) point to this direction. Hylobatids, hominids, and
Oreopithecus are the longest branches of hominoid phylogeny from the viewpoint of their

duration and they all display postcranial adaptations for antipronograde behaviors.
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Therefore, the conditions for a long-branch attraction problem are undoubtedly met, being
further aggravated by the high number of missing data. According to this, parsimony
analyses might potentially recover hylobatids and hominids as more closely related than
they actually are (relative to Early and Middle Miocene hominoids) simply because they have

had more time to accumulate morphological changes.

5.2. Future directions of work

The possibility that Miocene ape most parsimonious cladograms are biased by a long-
branch attraction problem that systematically recovers hylobatids as too closely related to
hominids has far-reaching implications: even if Pilbeam’s (1996, 1997) views about the
synapomorphic nature of extant hominoid postcranial similarities have been progressively
abandoned during the last two decades, they would still exert a powerful—even if largely
unconscious—influence simply because of the way cladistics works (see SOM S1.3) and the
fragmentary nature of the ape fossil record. Abandoning postcranial characters in Miocene
ape phylogenetic inference is not an option, both from an epistemological perspective and
on more practical grounds. We agree with previous authors (e.g., Ward, 2015; Pugh, 2022)
that the incongruence between craniodental and postcranial features does not imply that
the latter are not useful in hominoid phylogenetics. So, how can we make progress? In the
following, we outline future directions of research, with emphasis on the possibilities offered
by recent developments in phylogenetic inference.

More and better fossils and analyses From the viewpoint of fieldwork, finding additional

remains of Miocene apes will always be most helpful, not only to increase taxon sampling
but especially to reduce the proportion of missing data. Too many Miocene ape genera are

still known mainly from fragmentary dentognathic remains, so that partial skeletons of
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Miocene apes with associated craniodental remains would be particularly welcome. This is
not an easy task because fossil hominoids tend to be comparatively less abundant than
many other mammalian taxa, and thus their finding generally requires a large sampling
effort (Cote, 2004; Alba et al., 2017).

More detailed morphological analyses could also increase the number of phylogenetically
informative characters analyzed. These efforts should ideally be focused on craniodental
features that embed strong phylogenetic signal (sensu Blomberg and Garland, 2002)—such
as the semicircular canals of the inner ear (Urciuoli et al., 2020, 202143, 2021b) or enamel-
dentine shape (Zanolli et al., 2022b)—because a priori they appear less prone to (albeit not
entirely devoid of) homoplasy than other features with a greater functional signal (such as
postcranial remains; e.g., Arias-Martorell et al., 2021). Automated quantitative
morphometric methods would further reduce the inherent subjectivity of cladistic analyses.
One of the main merits of cladistics—besides the computer-assisted analysis of large
amounts of data—is the obligation to be transparent about the data upon which most
parsimonious cladograms are based, by elaborating taxon-character matrices that can be
scrutinized by other scholars. Nevertheless, in morphology-based phylogenetic inference
there is still a subjective component in the selection, definition, and scoring of the characters
employed (Pilbeam and Young, 2001; Cartmill, 2018). This subjectivity is much greater than
in molecular phylogenetics (Scotland et al., 2003), to the extent that the “often subjective
nature of discrete character coding can generate discordant results that are rooted in
individual researchers’ subjective interpretations” (Parins-Fukichi, 2017: 328). This makes
obtaining different results unavoidable, largely depending on the researchers’ unconscious
preconceptions, informed preferences, and anatomical expertise. The Ramapithecus debate

illustrates “the power of preconceptions” as we as paleoanthropologists—like all scientists—
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are all “guided to some degree by a set of assumptions, usually implicit rather than explicit”
(Lewin, 1987: 126).

Given that morphology can be discretized ad infinitum, there is no objective solution
regarding how many characters or character states a particular anatomical area requires,
further resulting in the loss of potentially informative data. Therefore, it is always desirable
to develop more objective ways to quantitatively analyze shape from a phylogenetic
viewpoint. Additional efforts would be thus required to determine the most suitable
methods to code continuous data (Goloboff et al., 2006; Pugh, 2022) as well as to more fully
integrate 3D geometric morphometric data with cladistics (Almécija et al., 2021). This
synthesis is already underway thanks to recent methodological developments based on
landmarks (Catalano et al., 2010; Goloboff and Catalano, 2011, 2016). Nevertheless,
landmark-free methods (e.g., Urciuoli et al., 2020) should ideally be employed, as landmark
protocols may introduce some biases of their own. If bone morphology could be analyzed
using parsimony by entirely relying on automatic coding methods based on geometric
morphometric techniques, the subjectivity of character and character state definition would
be drastically reduced.

In the midterm, paleoproteomics (based on the retrieval of phylogenetically informative
amino acid sequences from fossil remains) might also provide invaluable data for deciding
among some of the most controversial hypotheses about Miocene ape phylogeny and
paleobiogeography (Almécija et al., 2021). Thus far, paleoproteomic data have confirmed
that Early Pleistocene (1.9 Ma) Gigantopithecus is a pongine distantly related to orangutans
(Welker et al., 2019), with an estimated divergence date of 12-10 Ma, compatible with
being more closely related to the sugrivapithecins Sivapithecus and Indopithecus. If

technological advances eventually enable the retrieval of phylogenetically informative
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paleoproteomic data from key Miocene apes (such as Oreopithecus or dryopithecines), this
might be enough to confidently anchor them in the phylogeny of extant species and use it as
an extended molecular backbone in cladistic analyses—hopefully resulting in a more
accurate phylogeny of Miocene apes as a whole.

Beyond parsimony Besides the various aspects mentioned in the paragraphs above, it is

worth emphasizing that further progress in Miocene ape phylogeny could potentially be
made based on currently available paleontological data. The most obvious next step would
be to increase taxon sampling and replicate Pugh’s (2022) joint and separate analyses of
craniodental and postcranial characters—including taxa such as afropithecines, more
proconsulids, putative stem hylobatids, and dendropithecids—to better assess the potential
long-branch attraction problem hypothesized above. The application of character weighting
methods (e.g., Goloboff, 1993, 1997) to Pugh (2022) and others’ cladistic matrices might
potentially help cope with differential homoplasy between anatomical regions as well.
Finally, and most importantly, Miocene ape phylogenetics could take advantage of recent
methodological advances that have yet to be applied to these taxa.

The inclusion of extinct taxa in morphology-based cladistic analysis has a very positive
effect because they are closer in time to ancestral nodes and display combinations of
primitive and derived features not found among extant taxa, thus helping determine the
polarity of change and better discriminate between homoplasy and homology (Gauthier et
al., 1988; Donoghue et al., 1989; Huelsenbeck, 1991; Smith, 1998; Smith and Turner, 2005;
Hunt and Slater, 2016; Mongiardino Koch et al., 2021). Methods of phylogenetic inference
other than morphology-based cladistics are not immune either to the problems of pervasive
homoplasy, subjectivity in character selection and definition, and abundant missing data.

However, parsimony arguably lags behind because of its inability to incorporate one of the
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main contributions of paleontology to evolutionary biology: deep time. To solve this
problem, several decades ago some paleontologists advocated a modified concept of
parsimony incorporating stratigraphic data a priori, as in stratocladistics, which maximizes
explanatory power based on a modified parsimony criterion (Fisher, 2008; see SOM S1.4 for
further details). Although this method was criticized by some other paleontologists, if
stratigraphic data are considered relevant for inferring phylogeny there is no reason why the
former cannot overturn parsimony considerations based exclusively on morphological data
(Grantham, 2004), in agreement with the principle of total evidence frequently advocated in
cladistics (SOM S1.4).

Despite criticisms, stratocladistic analyses performed well (Clyde and Fisher, 1997) and
simulation studies supported that stratocladistics outperforms the accuracy of conventional
cladistics (Fox et al., 1999), being eventually applied to Miocene apes (Finarelli and Clyde,
2004). But despite the development of a computer program to perform automated
stratocladistic searches (Marcot and Fox, 2008), this approach never became mainstream.
This might be attributable to the development in the 2000s of Bayesian methods of
phylogenetic inference using Markov chain Monte Carlo techniques applicable to discrete
morphological data (e.g., Nylander et al., 2004; see SOM S1.5 for further details). According
to simulations, Bayesian analyses yield more accurate (Puttick et al., 2019)—although less
resolved (O’Reilly et al., 2016)—cladograms than parsimony analyses, even when extinct
taxa are incompletely preserved and there are high levels of homoplasy, being less sensitive
to long-branch attraction (see additional references in SOM S1.5). Instead of incorporating a
molecular backbone in morphology-based cladistic studies or deriving molecular estimates
of divergence times based on bounds taken from the fossil record (‘node dating’), total-

evidence Bayesian analyses based on morphologic, chronostratigraphic, and molecular data
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produce time-calibrated phylogenies (‘tip dating’; e.g., Ronquist et al., 2016; Zhang et al.,
2016; Pozzi and Penna, 2022).

Despite various criticisms and limitations (e.g., O’Reilly et al., 2016; Goloboff, 2018; see
discussion in Pugh, 2022 and SOM S1.5), simulation studies support that tip-dated
phylogenies generally have a better fit with stratigraphic data and a greater accuracy than
other methods (King, 2021; Mongiardino Koch et al., 2021). Therefore, it is somewhat
surprising that tip-dating methods have yet to be applied in Miocene ape phylogenetics.
Thus far, the application of these methods to primates is still limited (see review in Pozzi and
Penna, 2022). This is probably because it takes time to introduce methodological advances in
phylogenetic inference into paleoanthropology (see Section 2.2. regarding the slow
introduction of cladistics)—which, as a discipline, has played a much more important role in
the development of geometric morphometrics (Slice, 2007).

Only recently, Pugh (2022) compared the results of parsimony and Bayesian methods for
inferring the phylogeny of Miocene apes, obtaining a better resolution using the former, in
agreement with simulation results (O’Reilly et al., 2016). However, Pugh (2022) did not take
advantage of Bayesian tip-dating methods to obtain a time-calibrated phylogeny of Miocene
apes. Although various aspects of Bayesian analyses are not sufficiently understood yet
(Almécija et al., 2021; Pugh, 2022), total-evidence (tip-dating) methods are very appealing in
the light of recent simulation results, which support that “fossils help to extract true
phylogenetic signals from morphology” not only because of “their distinctive morphology”
but also because of “their temporal information” (Mongiardino Koch et al., 2021: 1).
Therefore, performing a tip-dated Bayesian total evidence analysis and comparing the
results with those of parsimony with implied character weighting should be a must for

Miocene ape phylogenetics in the midterm.
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6. Summary and conclusions

Miocene apes are much more diverse than their extant counterparts, evincing a suite of
mosaic morphologies that are essential to reconstruct the evolutionary history of the
Hominoidea. Here we review Miocene ape evolution with emphasis on their phylogenetic
relationships and the paleobiogeographic scenarios that derive from them. The oldest
hominoids from the Oligocene, Miocene catarrhines of uncertain affinities, and Late
Miocene purported hominins are excluded from this review.

First, we provide a historical account of the progress made in hominoid phylogeny and
paleobiogeography during the last one hundred and fifty years, with emphasis on the
Ramapithecus debate, the molecular revolution, the spread of the cladistic paradigm, the
Sivapithecus dilemma, the enigmatic ape Oreopithecus, and the synapomorphic vs.
homoplastic nature of the postcranial similarities shared by extant apes. Second, based on
our interpretation of the most parsimonious results yielded by recent cladistic analyses, we
report an updated classification of Miocene apes. Our classification tentatively distinguishes
three families of putative stem Hominoidea (Proconsulidae, Afropithecidae, and
Nyanzapithecidae), a new subfamily Yuanmoupithecinae for stem Hylobatidae, and two
subfamilies of stem Hominidae (Kenyapithecinae and Dryopithecinae), while the tribes
Oreopithecini and Graecopithecini are provisionally left as subfamily incertae sedis. Third,
we report a list of Miocene ape species-locality occurrences accompanied by an analysis of
their paleobiodiversity dynamics and a discussion of the highly contradictory results yielded
by parsimony analyses based on craniodental and postcranial features. On the basis of the
latter, we argue that the less basal divergence of hylobatids relative to putative stem

hominoids, as currently favored by most parsimonious cladograms, is far from being
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definitively settled and that a more basal divergence is likely given the abundant postcranial
homoplasy between hylobatids and hominids. With these two competing hypotheses (more
vs. less basal divergence for hylobatids) in mind, we discuss ongoing debates about the
origin of hylobatids, Oreopithecus, and hominoids from a phylogenetic and
paleobiogeographic perspective.

Hylobatid origins remain uncertain because their branching topology relative to
nyanzapithecids and afropithecids is unreliable, given the contrasting phylogenetic signal
provided by craniodental and postcranial features. However, if the suspicion that recent
cladistic analyses are biased toward a too advanced divergence of hylobatids were correct,
an initial divergence of crown hominoids in Africa followed by two independent dispersal
events into Eurasia would be most likely. It remains to be more conclusively determined
whether equatorines are stem hominids rather than stem hominonids, as favored by most
recent cladistic analysis, whereas kenyapithecines appear as the most likely stock from
which crown hominids might have evolved. In contrast, current data favor the view that
Oreopithecus is a stem hominoid rather than a stem hominid or hylobatid. The geographic
origin of crown hominids remains unresolved due to phylogenetic uncertainties regarding
dryopithecines and graecopithecins. The possibility that a dispersal event from
kenyapithecines into Eurasia set the initial divergence between hominines and pongines
remains a plausible interpretation but lacks cladistic support (unless European
dryopithecines originated from a second dispersal event of stem hominids from Africa).
Alternatively, the pongine—hominine divergence might have occurred in Eurasia, in
agreement with the view that graecopithecins and at least some dryopithecines are

hominines, which we consider insufficiently supported at present.
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The less basal divergence of hylobatids favored by most parsimonious cladograms might
artifactually result from a long-branch attraction problem caused by the numerous
postcranial similarities shared by extant hylobatids and hominids (which appear largely
homoplastic), coupled with abundant missing data from Miocene apes. Although is it
currently recognized that postcranial features functionally related to antipronograde
behaviors likely evolved in parallel along various ape lineages, they still exert a strong
influence in the outcome of parsimony analyses because homoplasy can only be identified a
posteriori and branch lengths are not considered. Although it is not possible to determine to
what extent this potential problem might affect the accuracy of most parsimonious
cladograms, it could be ameliorated by the discovery of additional Miocene ape fossils
(leading to increased taxon sampling and/or a decrease of missing data), the implementation
of character weighting methods, the scoring of new characters from anatomical areas
embedding high phylogenetic signal, and the integration of geometric morphometric
continuous data in cladistic analyses. Paleoproteomic analyses offer even more promising
prospects to more reliably reconstruct the evolutionary history of hominoids if future
technological advances allow the retrieval of molecular data from Miocene apes of
controversial systematic position.

Finally, we further advocate incorporating chronostratigraphic information in
phylogenetic inference by taking advantage of recent methodological advances. In
particular, total-evidence (tip-dating) Bayesian methods of phylogenetic inference appear to
outperform parsimony methods and provide time-calibrated phylogenies based on the
simultaneous analysis of molecular, morphologic, and chronostratigraphic data. Performing
these analyses and comparing their results with more conventional parsimony analyses

would hopefully allow to ascertain if, as we suspect, our current concept of the hominoid
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stem lineage is artifactually inflated by a long-branch attraction problem between hylobatids

and hominids. The data required to perform such analyses are already out there.
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Figure legends

Figure 1. Schematic cladogram showing the relationships between extant catarrhine main
clades and hypothetical extinct clades to illustrate the concepts of stem lineage, crown
group, and total group based on a stem-based definition of the Hominoidea (black arrow). A
crown-based definition would restrict the taxon to the crown clade. An apomorphy-based
definition would imply that the hominoid last common ancestor would depend on the crown
hominoid synapomorphy selected as definitory of the group (character state 1 in the

example of the figure).

Figure 2. Schematic cladograms summarizing the phylogenetic relationships of the hominoid
families distinguished here relative to cercopithecoids and the most advanced stem
catarrhines (pliopithecoids and dendropithecids) according to the contrasting cladistic
results of various authors: a) based on Nengo et al. (2017) and Gilbert et al. (2020a); b)
based on Rossie and Hill (2018). The hominoid stem lineage is denoted in light gray whereas
the hominoid crown group is denoted in dark gray. Note that, according to Rossie and Hill

(2018), Dendropithecidae s.s. (Dendropithecus and Simiolus) would be stem hominoids but
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Dendropithecidae s.l. (including Micropithecus) would be polyphyletic. Abbreviation: LCA =

last common ancestor.

Figure 3. Geographic distribution of Early Miocene apes. The information reported mostly
comes from Table 2 but further includes the following species-locality occurrences (see SOM
Table S1 for further details and SOM Table S2 for references): Hominoidea indet. from
Moruorot (Kenya; 17.5 Ma); Nyanzapithecidae indet. from Ryskop (South Africa; 16.0 Ma);
and cf. Kenyapithecinae indet. from Engelswies (Germany; 16.5-16.0 Ma). Base map
downloaded from ArcGIS Online (https://www.esri.com/it-it/arcgis/products/arcgis-online/);
image sources: Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS,
AeroGRID, IGN, and the GIS User Community, Sources: Esri, Airbus DS, USGS, NGA, NASA,
CGIAR, N Robinson, NCEAS, NLS, OS, NMA, Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland,

FEMA, Intermap and the GIS user community.

Figure 4. Geographic distribution of Middle Miocene apes. The information reported mostly
comes from Table 2 but further includes the following species-locality occurrences (see SOM
Table S1 for further details and SOM Table S2 for references): Nyanzapithecidae indet. from
Fort Ternan and Kapsibor (Kenya; 13.7 Ma); Kenyapithecinae indet. from Thannhausen
(Germany; 14.0 Ma); cf. Kenyapithecus sp. from Berg Aukas (Namibia; 13.0-12.0 Ma);
Hominidae indet. from Ngorora (Kenya; 12.8—12.0 Ma). Base map downloaded from ArcGIS
Online (https://www.esri.com/it-it/arcgis/products/arcgis-online/); image sources: Esri,
Maxar, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and

the GIS User Community, Sources: Esri, Airbus DS, USGS, NGA, NASA, CGIAR, N Robinson,
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NCEAS, NLS, OS, NMA, Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap

and the GIS user community.

Figure 5. Geographic distribution of Late Miocene apes. The information reported mostly
comes from Table 2 but further includes the following species-locality occurrences (see SOM
Table S1 for further details and SOM Table S2 for references): Hominoidea indet. from N 885
(Niger; 11.0-5.0 Ma); Nyanzapithecinae indet. from Nakali (Kenya; 9.9—9.8 Ma); Hominidae
indet. from Maragheh (Iran; 7.5 Ma); Dryopithecinae indet. from Wissberg (Germany; 13.7—
7.5 Ma), Neuhausen, Egingen, and Trochtelfingen (Germany; 11.0-9.0 Ma), Melchingen
(Germany; 11.2-7.5 Ma), and Salmendingen (Germany; 11.6—7.5 Ma); Graecopithecini indet.
from Azmaka (Bulgaria; 7.2 Ma); and Hominidae indet. from Kapsomin and Cheboit, Lukeino
(Kenya; 6.2-5.7 Ma). Base map downloaded from ArcGIS Online (https://www.esri.com/it-
it/arcgis/products/arcgis-online/); image sources: Esri, Maxar, GeoEye, Earthstar
Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community,
Sources: Esri, Airbus DS, USGS, NGA, NASA, CGIAR, N Robinson, NCEAS, NLS, OS, NMA,
Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap and the GIS user

community.

Figure 6. Chronostratigraphic ranges and broad geographic distribution of Miocene apes
summarized at the genus level and organized according to the classification reported in
Table 1; family names are colored as in Figures 3-5. Chronostratigraphic ranges are
organized from oldest to youngest (left to right) for each (sub)family and colored based on
geographic distribution at the continental level (gray denotes geographic uncertainty due to

lack of record for taxa represented in more than a single continent). The depicted genus
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3528

3529
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3531

3532
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3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

ranges are reported in Table 2. Also depicted are the ranges for some taxa not identified to
the genus rank (see SOM Table S1 for further details and SOM Table S2 for references): cf.
Kenyapithecinae from Engelswies (Germany; 16.5-16.0); and Nyanzapithecidae indet. from

Fort Ternan, Kapsibor (Kenya; 13.7 Ma) and Nakali (Kenya; 9.9-9.8 Ma).

Figure 7. Paleobiodiversity curve of Miocene apes through time: range-through or total
diversity (top) and estimated standing diversity (bottom). Diversity metrics are based on the

data reported in Table 3, see SOM Table S3 for further details.

Figure 8. Alternative phylogenetic hypotheses discussed in this paper as depicted by
schematic time-calibrated cladograms at the (sub)tribe rank: a) phylogenetic hypotheses
favored in this paper based on our interpretation of the current state of knowledge
according to most parsimonious cladograms; b) alternative hypothesis of a more basal
divergence for hylobatids coupled with multiple polytomies to highlight current phylogenetic
uncertainties. Colored rectangles represent the chronostratigraphic ranges of the depicted
taxa (color-coded as in Figs. 3—6 based on geographical distribution; gray denotes geographic
uncertainty due to lack of record for taxa represented in more than a single continent);
colored dots at the tips of extant lineages denote their current geographic distribution. Gray
semitransparent rectangles represent the maximum-minimum divergence age estimates for
crown clades. Internal nodes have been depicted arbitrarily 0.5 Myr before the oldest record
of the group or relative to the oldest node that immediately follows, with the exception of
crown groups, for which average estimated divergence times (Perelman et al., 2011) have

been used (except when they are too close or even younger than the oldest record of the
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3550 group). Note that no Plio-Pleistocene ranges are depicted, whereas in contrast the Oligocene
3551 range of proconsulids and nyanzapithecines has been depicted.

3552
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Table 1
A summary of the systematic classification of the Hominoidea followed in this paper down to
tribe rank. A dagger denotes extinct taxa. See Table 2 for taxonomic authorities and a

classification of Miocene ape genera and species.

Family Subfamily Tribe

Proconsulidaet — _
Nyanzapithecidaet — —
Afropithecidaet Afropithecinaet —

Equatorinaet —

Hylobatidae Yuanmoupithecinaet —
Hylobatinae —
Hominidae Kenyapithecinaet —
Dryopithecinaet Dryopithecinit
Hispanopithecinit
Ponginae Pongini
Lufengpithecinit
Sugrivapithecinit
Homininae Gorillini
Panini
Hominini
incertae sedis Graecopithecinit

incertae sedis incertae sedis Oreopithecinit




10

11

12

13

14

15

16

17

18

19

20

Table 2
Systematics of Miocene apes including taxonomic rank, taxon name, and taxonomic authority®. A dagger denotes extinct taxa. Small-bodied
catarrhines of uncertain systematic status (such as dendropithecids) are not included, whereas two species variously interpreted as hominoids
or pliopithecoids depending on the authors are included as incertae sedis at superfamily rank.
Order Primates Linnaeus, 1758
Semiorder Euprimates Hoffstetter, 1977
Suborder Haplorrhini Pocock, 1918
Infraorder Anthropoidea Mivart, 1864
Parvorder Catarrhini E. Geoffroy Saint-Hilaire, 1812
Superfamily Hominoidea Gray, 1825
Family Proconsulidae Leakey, 1963t
Genus Proconsul Hopwood, 19337
Proconsul africanus Hopwood, 1933t
Proconsul major Le Gros Clark and Leakey, 1950t

Proconsul gitongai (Pickford and Kunimatsu, 2005)t



21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Proconsul meswae Harrison and Andrews, 2009t
Proconsul legetetensis (Pickford et al., 2009a)*
Genus Kalepithecus Harrison, 1988+
Kalepithecus songhorensis (Andrews, 1978)t
Kalepithecus kogolensis Pickford et al., 20177
Genus Ekembo McNulty et al., 2015t
Ekembo heseloni (Walker et al., 1993)*
Ekembo nyanzae (Le Gros Clark and Leakey, 1950)t
Family Afropithecidae Andrews, 1992t
Subfamily Afropithecinae Andrews, 1992+
Genus Afropithecus Leakey and Leakey, 1986at
Afropithecus turkanensis Leakey and Leakey, 1986at
Genus Heliopithecus Andrews and Martin, 1987bt
Heliopithecus leakeyi Andrews and Martin, 1987bt

Genus Morotopithecus Gebo et al., 19977



36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Morotopithecus bishopi Gebo et al., 19977
Subfamily Equatorinae Cameron, 2004+

Genus Equatorius Ward et al., 1999+

Equatorius africanus (Le Gros Clark and Leakey, 1950)*

Genus Nacholapithecus Ishida et al., 1999t

Nacholapithecus kerioi Ishida et al., 19997
Subfamily incertae sedis

Genus Otavipithecus Conroy et al., 1992t

Otavipithecus namibiensis Conroy et al., 1992t
Family Nyanzapithecidae Harrison, 2002t

Genus Xenopithecus Hopwood, 1933t
Xenopithecus koruensis Hopwood, 1933t

Genus Mabokopithecus von Koenigswald, 1969t
Mabokopithecus clarki von Koenigswald, 1969+

Genus Rangwapithecus Andrews, 1974+



51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Rangwapithecus gordoni (Andrews, 1974)t

Genus Nyanzapithecus Harrison, 1986t
Nyanzapithecus vancouveringorum (Andrews, 1974)t
Nyanzapithecus pickfordi Harrison, 1986t
Nyanzapithecus harrisoni Kunimatsu, 1997+
Nyanzapithecus alesi Nengo et al., 2017t

Genus Turkanapithecus Leakey and Leakey, 1986b*
Turkanapithecus kalakolensis Leakey and Leakey, 1986b*
Turkanapithecus rusingensis Pickford, 2010t

Genus Samburupithecus Ishida and Pickford, 1997t
Samburupithecus kiptalami Ishida and Pickford, 1997t

Family Hylobatidae Gray, 1870
Subfamily Yuanmoupithecinae subfam. nov.t
Genus Yuanmoupithecus Pan, 20067

Yuanmoupithecus xiaoyuan Pan, 2006t



66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Family Hominidae Gray, 1825
Subfamily Kenyapithecinae Andrews, 1992t
Genus Griphopithecus Abel, 1902t
Griphopithecus suessi Abel 1902t
Griphopithecus alpani (Tekkaya, 1974)t
Genus Kenyapithecus Leakey, 19617
Kenyapithecus wickeri Leakey, 19617
Kenyapithecus kizili Kelley et al., 2008t
Subfamily Dryopithecinae Gregory and Hellman, 1939t
Tribe Dryopithecini Gregory and Hellman, 1939+
Genus Dryopithecus Lartet, 18567
Dryopithecus fontani Lartet, 1856t
Genus Pierolapithecus Moya-Sola et al., 2004t
Pierolapithecus catalaunicus Moya-Sola et al., 2004+

Genus Anoiapithecus Moya-Sola et al., 2009b*



81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Anoiapithecus brevirostris Moya-Sola et al., 2009b*
Genus incertae sedis
‘Sivapithecus’ occidentalis Villalta Comella and Crusafont Paird, 1944 species inquirendat
Tribe Hispanopithecini Cameron, 1997at
Genus Hispanopithecus Villalta Comella and Crusafont Paird, 1944+
Hispanopithecus laietanus Villalta Comella and Crusafont Paird, 1944+t
Hispanopithecus crusafonti (Begun, 1992b)t
Genus Rudapithecus Kretzoi, 19697
Rudapithecus hungaricus Kretzoi, 1969t
Genus Danuvius Bohme et al., 20197
Danuvius guggenmosi Bohme et al., 2019t
Tribe incertae sedis
Genus Neopithecus Abel, 1902 nomen dubiumt
Neopithecus brancoi (Schlosser, 1901) nomen dubiumt

Genus ?Udabnopithecus Burchak-Abramovich and Gabashvili, 1945t



96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

?Ubadnopithecus garedziensis Burchak-Abramovich and Gabashvili, 1945
Subfamily Ponginae Elliot, 1913
Tribe Pongini Elliot, 1913
Genus Khoratpithecus Chaimanee et al., 2004+
Khoratpithecus chiangmuanensis (Chaimanee et al., 2003)t
Khoratpithecus piriyai Chaimanee et al., 2004t
Khorapithecus ayeyarwadyensis Jaeger et al., 2011t
Khoratpithecus magnus Chaimanee et al., 2022t
Tribe Sugrivapithecini Simonetta, 1958t
Genus Sivapithecus Pilgrim, 1910t
Sivapithecus sivalensis (Lydekker, 1879)t
Sivapithecus indicus Pilgrim, 1910t
Sivapithecus parvada Kelley, 1988t
Genus Indopithecus von Koenigswald, 1949t

Indopithecus giganteus (Pilgrim, 1915)t



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

Tribe Lufengpithecini Alba, 2012t
Genus Ankarapithecus Ozansoy, 19577
Ankarapithecus meteai Ozansoy, 1957t
Genus Lufengpithecus Wu, 1987t
Lufengpithecus lufengensis (Xu et al., 1978)t
Subfamily Homininae Gray, 1825
Tribe incertae sedis
Genus Chororapithecus Suwa et al., 2007t
Chororapithecus abyssinicus Suwa et al., 2007t
Genus Nakalipithecus Kunimatsu et al., 2007t
Nakalipithecus nakayamai Kunimatsu et al., 2007t
Subfamily incertae sedis
Tribe Graecopithecini Cameron, 1997b*
Genus Graecopithecus von Koenigswald, 1972+

Graecopithecus freybergi von Koenigswald, 1972+



126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

Genus Ouranopithecus de Bonis and Melentis, 1977t
Ouranopithecus macedoniensis (de Bonis et al., 1974)t
Ouranopithecus turkae Glileg et al., 2007

Tribe incertae sedis

Genus Sinopithecus Zhang et al., 1990
Sinopithecus keiyuanensis (Woo, 1957)*
Sinopithecus hudienensis (Zhang et al., 1987)t

Family incertae sedis
Subfamily incertae sedis
Tribe Oreopithecini Schwalbe, 1915t

Genus Oreopithecus Gervais, 1872%

Oreopithecus bambolii Gervais, 18727
Tribe incertae sedis
Genus incertae sedis

‘Dryopithecus’ wuduensis Xue and Delson, 1988+



141 @ Taxonomic authority consists of the author(s) that originally described a given taxon followed by year of publication. Following the
142 requirements of the Code (ICZN, 1999), taxonomic authorities are placed within parentheses only when a species was originally described

143 within a different genus than the one in which it is included in this work.



144

145

146

147

Table 3

Chronostratigraphic range and geographic distribution of Miocene apes, synthesized from species-locality occurrences reported in SOM Table

S2. The details for each locality are provided in SOM Table S1. Species of doubtful taxonomic validity and citations indeterminate to the species

rank are excluded from this table; in contrast, tentative attributions to species (with ‘cf.’) are included.

Species Family Subfamily Age Subepoch Distribution
Proconsul africanus Proconsulidae - 20.3-18.5 Early Miocene Kenya, Uganda
Proconsul major Proconsulidae - 20.5-19.0 Early Miocene Kenya, Uganda
Proconsul gitongai Proconsulidae - 15.8° Early to Middle Miocene Kenya, Uganda
Proconsul meswae Proconsulidae - 22.5 Early Miocene Kenya
Proconsul legetetensis Proconsulidae - 20.5-19.0 Early Miocene Uganda
Kalepithecus songhorensis Proconsulidae - 20.5-19.0 Early Miocene Kenya, Uganda
Kalepithecus kogolensis Proconsulidae - 21.0-20.0 Early to Middle Miocene Uganda
Ekembo heseloni Proconsulidae - 18.5-16.0 Early to Middle Miocene Kenya
Ekembo nyanzae Proconsulidae - 18.5-16.0 Early to Middle Miocene Kenya
Xenopithecus koruensis Nyanzapithecidae — 20.0-19.0 Early Miocene Kenya



Mabokopithecus clarki
Rangwapithecus gordoni
Nyanzapithecus pickfordi
Nyanzapithecus vancouveringorum
Nyanzapithecus alesi
Nyanzapithecus harrisoni
Turkanapithecus kalakolensis
Turkanapithecus rusingensis
Samburupithecus kiptalami
Afropithecus turkanensis
Heliopithecus leakeyi
Morotopithecus bishopi
Equatorius africanus
Nacholapithecus kerioi

Otavipithecus namibiensis

Nyanzapithecidae
Nyanzapithecidae
Nyanzapithecidae
Nyanzapithecidae
Nyanzapithecidae
Nyanzapithecidae
Nyanzapithecidae
Nyanzapithecidae
Nyanzapithecidae
Afropithecidae
Afropithecidae
Afropithecidae
Afropithecidae
Afropithecidae

Afropithecidae

Afropithecinae

Afropithecinae

Afropithecinae
Equatorinae
Equatorinae

Incertae sedis

15.3 Middle Miocene
20.0-17.0 Early Miocene
15.8-15.3 Middle Miocene

18.3 Early Miocene

13.3 Middle Miocene

15.0 Middle Miocene
17.5-17.0 Early Miocene
20.5-18.3 Early Miocene

8.5 Late Miocene

17.6-17.2% Early to Middle Miocene

16.0 Early Miocene
21.0-20.0° Early Miocene
16.0-15.0 Middle Miocene

15.0° Early to Middle Miocene

12.0 Middle Miocene

Kenya
Kenya
Kenya
Kenya
Kenya
Kenya
Kenya, Ethiopia
Kenya, Uganda
Kenya
Kenya, Uganda
Saudi Arabia
Uganda
Kenya
Kenya, Uganda

Namibia



Yuanmoupithecus xiaoyuan Hylobatidae Yuanmoupithecinae 8.2-7.1 Late Miocene China

Griphopithecus suessi Hominidae Kenyapithecinae  13.8-12.7 Late Miocene Austria, Slovakia
Griphopithecus alpani Hominidae Kenyapithecinae  14.5-13.4 Middle Miocene Turkey
Kenyapithecus wickeri Hominidae Kenyapithecinae 13.8 Middle Miocene Kenya
Kenyapithecus kizili Hominidae Kenyapithecinae  14.5-14.0 Middle Miocene Turkey
Dryopithecus fontani Hominidae Dryopithecinae 12.5-11.0 Middle to Late Miocene Austria, France, Spain
Pierolapithecus catalaunicus Hominidae Dryopithecinae 12.0 Middle Miocene Spain
Anoiapithecus brevirostris Hominidae Dryopithecinae 12.4-12.0 Middle Miocene Spain
Hispanopithecus laietanus Hominidae Dryopithecinae 10.0-9.6 Late Miocene Spain
Hispanopithecus crusafonti Hominidae Dryopithecinae 10.3-10.0 Late Miocene Spain
Rudapithecus hungaricus Hominidae Dryopithecinae 10.0-9.8 Late Miocene Hungary
Danuvius guggenmosi Hominidae Dryopithecinae 11.6 Late Miocene Germany
?Udabnopithecus garedziensis Hominidae Dryopithecinae 8.1-7.7 Late Miocene Georgia
Khoratpithecus chiangmuanensis Hominidae Ponginae 12.4-12.2 Middle Miocene Thailand

Khoratpithecus piriyai Hominidae Ponginae 9.0-6.0 Late Miocene Thailand



Khorapithecus ayeyarwadyensis
Khoratpithecus magnus
Ankarapithecus meteai
Lufengpithecus lufengensis
Sivapithecus sivalensis
Sivapithecus indicus
Sivapithecus parvada
Indopithecus giganteus
Chororapithecus abyssinicus
Nakalipithecus nakayamai
Graecopithecus freybergi
Ouranopithecus macedoniensis
Ouranopithecus turkae
Sinopithecus keiyuanensis

Sinopithecus hudienensis

Hominidae

Hominidae

Hominidae

Hominidae

Hominidae

Hominidae

Hominidae

Hominidae

Hominidae

Hominidae

Hominidae

Hominidae

Hominidae

Hominidae

Hominidae

Ponginae
Ponginae
Ponginae
Ponginae
Ponginae
Ponginae
Ponginae
Ponginae
Homininae
Homininae
incertae sedis
incertae sedis
incertae sedis
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Late Miocene
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Late Miocene
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Late Miocene
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Late Miocene
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Turkey
China
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Pakistan
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Ethiopia
Kenya
Greece
Greece
Turkey
China
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Oreopithecus bambolii incertae sedis incertae sedis 8.3-6.7 Late Miocene Italy

‘Dryopithecus’ wuduensis incertae sedis — 8.3 Late Miocene China

2 Pickford et al. (2017) and Pickford (2021) identified A. turkanensis, P. gitongai, and N. kerioi at Moroto, whereas MacLatchy et al. (2019)
recognized ?M. bishopi and Proconsulidae indet. and Jansma and MaclLatchy (2015) further reported a nyanzapithecid. We have tentatively
included cf. P. gitongai and cf. N. kerioi in SOM Table S1, but not considered them in the ranges of this table. If confirmed by subsequent
studies, they would modify the chronostratigraphic ranges of these taxa, depending on the age attributed to Moroto (see next footnote).

b The age of Moroto localities has been much debated. It is noteworthy that some researchers (e.g., MacLatchy et al., 2019) favor the
radiometric date of >20.6 Ma (Gebo et al., 1997) for Moroto, whereas Pickford and colleagues have favored younger ages of ~17.5-17.0 Ma
(Pickford et al., 1986, 2003; Pickford and Mein, 2006) or even ~16.5-15.5 (Pickford et al., 2017) on biostratigraphic grounds. Most recently, Van
Couvering and Delson’s (2020) provided a date of 19.3 Ma based on the redating of Bukwa at ~19 Ma (MacLatchy et al., 2006; Cote et al.,
2018), which are somewhat older than Pickford’s (2017) radiometric dates for the same site (~18.0—17.5 Ma). Until new radiometric date for
Moroto are published, we follow Cote (2018) in considering that biostratigraphic data support an older age for Moroto, tentatively around

~21.0-20.0 Ma.



159  <Kelley (2002) reported an approximate age range of ~12.5-10.5 Ma for S. indicus. The oldest citation from Pakistan would be 12.8-12.7 Ma
160  according to Barry et al. (pers. comm. in SOM Table S1). Remains from Ramnagar in India (see SOM Table S1) might be older (13.8-12.5 Ma),

161  probably close to ~13.0 Ma (Gilbert et al., 2020a), which is the maximum date considered here until the dates are clarified further.
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SOM S1
The principles of systematics and phylogenetic inference
1.1. Biological classifications as human constructs based on a natural system

Systematics aims to classify organisms according to a ‘natural’ (as opposed to ‘artificial’)
system, which implies the existence of an external reality that needs to be discovered.
Evolution, as the unifying paradigm for life sciences, provides such an objective basis for
biological classification, and cladogenesis (beginning with speciation) further justifies the
hierarchical structure of the system. Phylogenetic inference therefore plays a central role in
the practice of systematics. However, besides cladogenesis, evolution further implies
anagenesis, and there are different systematic approaches to reflect the patterns originated by
these evolutionary processes—trespectively, taxonomic diversity and morphological disparity
(for a distinction between these concepts, see e.g., Briggs et al., 1992; Foote, 1994)—into
classification, particularly given the double (both utilitarian and evolutionary) function of
biological classifications (Benton, 2000). Despite the universal acceptance that systematics
must reflect the evolutionary relationships among taxa, biological classifications are
necessarily human constructs, so that there is no single true classification to be discovered in
Nature (Benton, 2000). As a result, choosing among competing systematic classifications
depends on both the systematic philosophy of each taxonomist and the phylogenetic

hypotheses perceived by them as more accurate.

1.2. Monophyletic vs. paraphyletic groups

With the advent of phylogenetic systematics (Hennig, 1966), emphasis shifted from
disparity to phylogeny (determined on the basis of synapomorphies), but the treatment of
paraphyletic groups (i.e., those including taxa that share a common ancestor but that do not
include all of its descendants) has proven controversial ever since. Phylogenetic systematics
considers that only clades (i.e., strictly monophyletic groups) must be considered natural, such
that paraphyletic groups should not be treated as taxa because they are based on the crossing
of an arbitrary morphological threshold (or ‘grade’). Of course, paraphyletic groups can be
inadvertently erected as presumed monophyletic taxa within a cladistic framework when most
parsimonious cladograms do not reflect the true phylogeny of the group. Nevertheless, from
an evolutionary viewpoint, the possibility that an originally monophyletic taxon becomes
paraphyletic is contingent on it giving rise to a morphologically distinct subclade instead of
becoming extinct (Carroll, 1988). Paraphyly is thus inescapable at the species and genus ranks

because new species necessarily evolve from a pre-existing one and—unless we abandon



Linnean nomenclature—every species must belong to a genus (Sarmiento et al., 2002). This
problem is often overlooked due to the cladistic convention that phylogenetic relationships
must be depicted as dichotomic branching patterns, as if all species were monophyletic. This
may generally hold true when only extant species are analyzed, but when applied to extinct
species, sister-taxon relationships do not reflect the difference between sister species
originated from a common ancestor and ancestor—descendant species pairs. In summary,
paraphyly is an expected result of evolution (Carroll 1988) except when a lineage goes
extinct. Therefore, some degree of tolerance toward paraphyly is advisable at lower
taxonomic ranks. As noted by Sarmiento et al. (2002: 54), “Although at higher levels (above
genus) a paraphyletic taxon is unacceptable, at lower levels it is inevitable”.

To solve the purported problem of paraphyly, some authors have advocated the
abandonment of binomial nomenclature and Linnean ranks altogether (de Queiroz and
Gauthier, 1992; Cantino et al., 1999; de Queiroz and Cantino, 2001; Bryant and Cantino,
2002; Lee and Skinner, 2007). However, this proposal that has not been exempt of criticism
(Benton, 2000; Forey, 2002) and has not gained wide acceptance. Adherence to the so-called
phylogenetic nomenclature largely reflects a fundamental confusion about the difference
between a phylogeny (which is real) and biological classification (which must be useful).
Biological classifications must always be somewhat arbitrary: first, because they are
conceived as practical means to efficiently transmit scientific knowledge; and second, because
they cannot faithfully depict all the details of the continuum represented by the tree of life.
Therefore, this work relies on the use of Linnean ranks—not because they have any intrinsic
biological meaning, but rather because of their practical utility to simultaneously reflect
(albeit imperfectly) both disparity and relatedness. Moreover, the use of Linnean ranks is not
at all incompatible with trying to avoid paraphyly at suprageneric ranks—while recognizing

that its avoidance at the genus and species-group levels is futile.

1.3. The epistemological basis of cladistics

Cladistics has been the predominant paradigm in morphology-based phylogenetic
inference for several decades now. The word ‘cladistics’ may be employed as a synonym of
‘phylogenetic systematics’ or more specifically refer to a particular methodology of
phylogenetic inference (i.e., cladistic analysis). Much has been written from the viewpoint of
the philosophy of science about cladistic analysis, which is based on the main premise that
only shared-derived features (synapomorphies) are phylogenetically informative (Hennig,

1966; Farris, 1983), as well as in the application of the principle of maximum parsimony. This



principle, first introduced in phylogenetics as the ‘principle of minimum evolution’ (Edwards,
1996), stems from the assumption that homology must be presumed in the lack of evidence to
the contrary (Hennig, 1966; Wiley, 1975), which is equivalent to assume that homoplasy must
not be postulated beyond necessity a priori (Farris, 1983). In this sense, maximum parsimony
is but the application in phylogenetic inference of an old and well-known epistemological
approach that restricts inferential reasoning to the simplest theoretical framework necessary to
account for the data (Kluge, 1984; Brower, 2000).

Following Wiley (1975) and Farris (1983), the scientific character of cladistic analysis
based on maximum parsimony has generally been formulated as a refutationist
(falsificationist) approach in terms of Popperian testability (Kluge, 1997, 1999, 2001).
According to this interpretation, cladistic hypotheses (cladograms) would be composite
explanations consisting of hypotheses of monophyly (cladogenetic events) and homology
(character transformation events; Grant and Kluge, 2003), which are tested on the basis of the
principle of parsimony. The latter emphasizes the degree of corroboration for deciding among
competing hypotheses, so that the most parsimonious cladogram is the least disconfirmed and,
hence, the most highly corroborated hypothesis (Kluge, 1999). Traditionally, it has been
argued that parsimony maximizes explanatory power (presumed homologies) by minimizing
the requirement for ad hoc hypotheses of homoplasy (Farris, 1983; Kluge, 1997). Subsequent
reformulations have alluded to the ‘antisuperfluity principle,” according to which explanatory
power is maximized by minimizing the number of transformation events required as
hypotheses of homology (Kluge and Grant, 2006).

From an operational viewpoint, similarity is only relevant for proposing hypotheses of
primary homology based on similar traits shared by several taxa (Kluge, 1997). Hypotheses of
primary homology, formalized as character statements, must be tested on the basis of the most
parsimonious hypothesis (de Pinna, 1991), thus being corroborated (secondary homology) or
refuted (homoplasy) a posteriori. Despite the claims to the contrary (Brower, 2000), cladistics
must assume evolution (descent with modification) as background knowledge so as to
interpret secondary homologies as such, as well as to interpret most parsimonious cladograms
in terms of phylogenetic hypotheses. However, unless the most parsimonious hypothesis
coincides with the true phylogeny, homoplasy as measured by cladistic analyses will always
underestimate the true degree of homoplasy (Archie, 1996). In the lack of a better solution for
the problem of homoplasy, a priori character weighting (Neff, 1986) might seem appealing.
However, it is contrary to the epistemological basis of cladistics, according to which

hypotheses of homology can only be corroborated or refuted a posteriori. Methods of



character weighting a posteriori, such as successive weighting (Farris, 1969; Carpenter, 1988,
1994) or especially implied weighting (Goloboff, 1993, 1997) seem preferable, as the latter
approach allows considering some character state transformations as more reliable than others
as a consequence of the analysis, not as an assumption. Other alternative approaches include
using a modified concept of parsimony (as in stratocladistics; see SOM S1.4) or probabilistic
methods (such as Bayesian analyses; SOM S1.5).

Cladistics has been criticized by some researchers by arguing that it does not adhere to
Popper’s (1959, 1962) approach to the philosophy of science (e.g., Cartmill, 1981; Hull,
1988). Other authors have supported the scientific character of cladistics but questioned the
interpretation of parsimony as a falsificationist method (Rieppel, 2003; Vogt, 2008; de
Queiroz and Poe, 2001, 2003; de Santis, 2021). Some of the latter authors have argued that
parsimony methods are only valid in Popperian terms if they incorporate probabilistic
assumptions, with likelihood methods being considered the basis of Popper’s degree of
corroboration (de Queiroz and Poe, 2001, 2003; de Queiroz, 2004). This interpretation, which
has been used to favor a unified and inclusive philosophy of phylogenetic inference (de
Queiroz, 2004), has been criticized by others based on the contention that Popper’s
explanatory power is maximized deductively instead of inductively (Kluge and Grant, 2006).
However, the latter position seems difficult to maintain and it is more reasonable to accept
that testing among competing cladogram hypotheses cannot be based on Popperian
falsificationism (Rieppel, 2003; Vogt, 2008, 2014).

We therefore concur with the views of Rieppel (2003) and Vogt (2008, 2014), according to
whom: (1) cladistics is better interpreted as an inductive approach that is not based on
Popperian falsificationism; (2) the hypothetico-deductive setting that constitutes the basis of
Popperian falsificationism, developed for experimental sciences, must not necessarily be the
only valid scientific approach, particularly for historical sciences such as phylogenetics; (3)
hypothesis testing is not unique to Popperian falsificationism and plays a central role in
phylogenetic inference by means of the application of general concepts that allow for
hypothesis testing. Whether this means that cladograms are unfalsifiable (Vogt, 2008, 2014)
or falsifiable (Crother and Murray, 2015) outside a Popperian philosophical framework is
debatable—because a philosophy of phylogenetic inference independent from Popper’s
falsificationist approach would be necessary but is still a work in progress (Rieppel, 2003; de
Queiroz, 2004; Helfenbein and DeSalle, 2005; Vogt, 2008; de Santis, 2021). However, this
represents a rather semantical issue, as long as all methods of phylogenetic inference allow

for testing among competing cladograms and potentially refuting them based on some general



principle (such as maximum parsimony, among others). In any case, there can be little doubt
that parsimony analysis differs epistemologically from probabilistic (likelihood and Bayesian)
methods because the latter depend on specific evolutionary models (Huelsenbeck and
Rannala, 1997; Goloboff et al., 2018), which arguably have some advantages and associated

problems simultaneously, as explained in SOM S1.5.

1.4. Stratocladistics

Stratocladistics is a method of phylogenetic inference alternative to conventional cladistics
that was developed during the 1990s to simultaneously consider morphological and
chronostratigraphic data (Fisher, 1991, 1994, 2008). This method adheres to a similar
epistemology to conventional cladistics (SOM S1.3) and is thus based on parsimony, but differs
from conventional cladistics by minimizing ad hoc hypotheses of both character homoplasy
and non-preservation in the fossil record (ghost lineages). Other differences of stratocladistics
from conventional cladistics include taking into account autapomorphies and performing the
analyses at the level of phylogenetic tree. This allows stratocladistic methods to infer ancestor—
descendant relationships (Fisher, 2008), which are considered untestable under a strict cladistic
paradigm. When stratocladistics was developed, several researchers warned against approaches
incorporating stratigraphic data a priori because they would prevent using phylogeny as an
independent test other temporal trends (Smith, 2000; Sumrall and Brochu, 2003), favoring
instead the use of metrics measuring the congruence between cladograms and the stratigraphic
record (e.g., Huelsenbeck, 1994; Hitchin and Benton, 1997).

Nevertheless, if it is conceded that stratigraphic data are relevant for inferring phylogeny,
there is no reason to insist that they cannot in principle overturn parsimony considerations based
on morphological data (Grantham, 2004). This contention fulfills the principle of total
evidence—a basic maxim for non-deductive inference frequently advocated in cladistics—
according to which “evidence must be considered if it has relevance to an inference” (Fitzhugh,
2006: 309). Stratocladistics thus minimizes the number of homoplasies and the number of ghost
lineages simultaneously based on the concept of total parsimony debt (the sum of morphologic
parsimony and stratigraphic parsimony debts) by assuming that an ad hoc hypothesis of
preservation probability represents as much loss in explanatory power as an ad hoc hypothesis
of homoplasy (Clyde and Fisher, 1997; Fisher, 1999, 2008). Despite criticisms, stratocladistic
analyses with real data performed reasonably well, yielding cladograms with much lower

stratigraphic parsimony debts than conventional cladistics at the expense only of slightly higher



parsimony debts (Clyde and Fisher, 1997). Simulation studies further supported that

stratocladistics outperforms the accuracy of conventional cladistics (Fox et al., 1999).

1.5. Bayesian analyses

Bayesian methods of phylogenetic inference using Markov chain Monte Carlo techniques
developed two decades ago (Huelsenbeck et al., 2001; Holder and Lewis, 2003) can be applied
to discrete morphological data and thus represent an alternative to parsimony analysis (Lewis,
2001a, 2001b; Nylander et al., 2004). Multiple simulation studies have shown that Bayesian
methods outperform parsimony in terms of accuracy (Wiens, 2005; Wright and Hillis, 2014;
O’Reilly et al., 2016, 2018; Puttick et al., 2019; Keating et al., 2020), particularly when
homoplasy is high (Puttick et al., 2019), even if the former perform less efficiently in terms of
node resolution (O’Reilly et al., 2016; Smith, 2019). Simulations further indicate that Bayesian
analyses are less sensitive to long-branch attraction problems and that even very incompletely
preserved extinct taxa can improve accuracy, unlike in parsimony analyses (Wright and Hillis,
2014). Moreover, Bayesian analyses allow for the simultaneous analysis of morphologic and
molecular data, resulting (like stratocladistics) in time-calibrated phylogenies. Molecular
evidence is customarily incorporated in parsimony analyses using a molecular backbone (e.g.,
Pugh, 2022) that does not inform about divergence times. In turn, fossil data are often included
in molecular analyses to constrain the estimates of divergence times (e.g., Roos et al., 2019),
an approach known as ‘node dating’. In contrast, total-evidence analyses (combining
morphologic and molecular data) based on Bayesian methods date divergence times by directly
incorporating the age of the all the analyzed fossils, a procedure known as ‘tip dating’ or ‘total-
evidence dating’ (e.g., Pyron, 2011; Ronquist et al., 2012, 2016; Donoghue and Yang, 2016).
This approach has become more popular since the introduction of the fossilized birth—death
process that models extant and fossil data as outcomes of the same macroevolutionary process
(Heath et al., 2014; Zhang et al., 2016; King, 2021; Mongiardino Koch et al., 2021).

Tip dating differs from stratocladistics (see SOM S1.4) because topologies implying a higher
stratigraphic debt are not explicitly penalized, although it has a similar result by making it more
unlikely the grouping of morphologically similar but stratigraphically distant taxa (Hunt and
Slater, 2016). Simulation studies have shown that tip-dated Bayesian analyses yield different
topologies than both undated Bayesian and parsimony analyses, with the former having a better
fit with stratigraphic data (King, 2021) and a greater accuracy (Mongiardino Koch et al., 2021),
at least as long as fossil age uncertainties (Barido-Sottani et al., 2020) as well as fossilization

and sampling biases (Zhang et al., 2016) are adequately modeled. Nevertheless, Bayesian



methods had not been exempt from criticism, particularly regarding simulation results
indicating that they have a lower resolution than parsimony methods (O’Reilly et al., 2016;
Smith, 2019) or suggesting that the latter yield comparable, if not better, results as long as
implied weighting is used (Goloboff, 2018; Smith, 2019; but see Keating et al., 2020). One of
the caveats that currently apply to tip dating is that, unlike parsimony (Goloboff et al., 2006;
Goloboff and Catalano, 2016), Bayesian methods do not permit the treatment of continuous
morphological data as such, which is beneficial for reducing the subjectivity and potential loss
of information implicit in the use of discrete characters (Parins-Fukichi, 2017), even if
discretized using the gap-weighted method (Thiele, 1993). Nevertheless, recent developments
of Bayesian methods are most promising in this regard (Alvarez-Carretero et al., 2017; Parins-
Fukuchi, 2018). Even more important from an epistemological viewpoint is the fact that, unlike
parsimony, Bayesian methods necessitate the a priori assumption of a particular evolutionary
model of uncertain applicability to morphological data (Goloboff, 2018). On the other hand,
this allows for further improvement in the future (as more realistic methods are developed) as
well as the possibility to tackle potential problems of long-branch attraction (which parsimony
cannot directly address because it does not take branch length or evolutionary rates into

account; Pagel, 1999).

1.6. Apomorphy vs. clade-based definitions of taxa

Even if paraphyletic groups are avoided above the genus rank, not all clades can be erected
as taxa. The advent of cladistics originally favored the use of apomorphy-based definitions of
taxa, but subsequently phylogenetic nomenclature promoted instead clade-based definitions
based on common ancestry (de Queiroz and Gauthier, 1990), which refer to a common ancestor
of two taxa included in the taxon being defined. Two types of clade-based definitions of taxa
are possible (de Queiroz and Gauthier 1992; Benton 2000): node-based definitions, which
include all the descendants of the last common ancestor; and stem-based definitions, which
further include those taxa more closely related to this last common ancestor than that of its
closer formally-defined sister-taxon. The Code (ICZN, 1999) does not specify how taxa should
be defined, so that Linnean ranks are not restricted to taxa defined on the basis of characters
(Benton, 2000). Although both apomorphy-based and clade-based definitions may be useful,
apomorphy-based definitions are the most problematic because they rely on an arbitrary
selection of one or more synapomorphies that ultimately constitute a grade. Such a selection is
particularly problematic when dealing with extinct taxa, due to the mosaic nature of evolution—

the more basal is an extinct member of a clade, the more likely it will lack the synapomorphies



of more advanced members of the same clade. Furthermore, some of the purported
synapomorphies employed to define a particular group might eventually prove to be
homoplastic. In contrast, clade-based definitions are more stable, and stem-based definitions

are further favored here for groups with extant representatives.

1.7. Stem lineage vs. crown group

For an extant monophyletic group formally erected as a taxon, we can distinguish the crown
group from the stem lineage (Jefferies, 1979; Ax, 1985; Smith, 1994; Benton, 2000), which
together constitute the total group. The crown group is the clade that includes all the extant
representatives of the taxon plus extinct representatives more closely related to some (but not
all) of them. In contrast, the stem lineage is a paraphyletic assemblage of basal taxa that are
more or less distantly (but equally) related to all crown group members, but more closely related
to the latter than to its sister-group. Extinct representatives of the taxon’s total group will be
included into its crown group or stem lineage, depending on their particular phylogenetic
relationships. Although supporters of node-based definitions of taxa have tended to restrict
taxon names to the crown group (de Queiroz and Gauthier, 1992; Rowe and Gauthier, 1992),
we prefer stem-based definitions, which apply to the whole community of descent (total group),
because it may be difficult to determine whether a particular extinct species is a stem or a crown
member of a particular clade. With a stem-based definition, the inclusion of this particular
species into the taxon remains stable under both phylogenetic hypotheses. The crown group
constitutes a clade and can be therefore formally erected as a taxon, whereas the stem lineage
will rarely constitute a clade and, hence, it would constitute a paraphyletic taxon if formally
designated. To avoid paraphyly, the use of several subtaxa (even if monotypic) for various
subclades of the stem lineage (with the same rank as the crown group) is favored here—unless
the current state of knowledge does not enable to discern whether the known members of the

stem lineage constitute a monophyletic or paraphyletic assemblage.



SOM S2
Nomenclatural remarks
2.1. On the valid name for the family-group taxa including Kenyapithecus and
Griphopithecus

Begun (2001, 2002) distinguished the family Griphopithecidae to include either
Griphopithecus s.l. (including Equatorius) + Afropithecus (Begun, 2001) or Griphopithecus
s.l. + Kenyapithecus (Begun, 2002), while Kelley (2002) distinguished a subfamily
Griphopithecinae for Griphopithecus within the Afropithecidae. More recently, Begun (2010)
distinguished a subfamily Griphopithecinae for these three genera plus Nacholapithecus
within the Hominidae, while Andrews (2020) restricted the Griphopithecidae to
Griphopithecus. Nevertheless, as remarked by previous authors (Moya-Sola et al., 2009b;
Harrison, 2010; Casanovas-Vilar et al., 2011), the tribes Afropithecini and Kenyapithecini
erected by Andrews (1992) would have priority over family-group names derived from
Griphopithecus if Afropithecus and/or Kenyapithecus are included. Furthermore, as noted by
Casanovas-Vilar et al. (2011), Begun (2001, 2002) and Kelley (2002) did not fulfill the
conditions of the Code (ICZN: Art. 16.1 and 16.2), according to which every new family-
group name published after 1999 must be explicitly indicated as intentionally new and
accompanied by citation of the name of the type genus; the same applies to Andrews (2020).
None of these authors stated taxonomic authorities, so it is unclear if they attributed the taxon
names to a previous author. Only Begun (2002) denoted both Griphopithecinae (for
Griphopithecus s.1.) and Griphopithecidae (including Griphopithecinae + Kenyapithecinae) as
‘new rank’ but, to our knowledge, previous usage of this family-group taxon is restricted to
Begun’s (2001) Griphopithecidae. In any event, no family-group name derived from
Griphopithecus is nomenclaturally available from these publications, irrespective of whether

Afropithecus and Kenyapithecus are excluded, as in Kelley (2002) and Andrews (2020).

2.2. On the valid name for the European species of Griphopithecus

There are two species names available for the Griphopithecus species recorded in
Germany and Slovakia, which were erected in the same publication based on material from
the same locality: Griphopithecus suessi Abel, 1902 (the type species of the genus) and
Dryopithecus darwini Abel, 2012. As noted by Simonetta (1958), Giile¢ and Begun (2003),
and Casanovas-Vilar et al. (2011), either Remane (1921a) or Remane (1921b)—not Glaessner
(1931), as argued by Holec and Emry (2003)—acted as the First Reviser (ICZN, 1999: Art.

24.2) by choosing D. darwini as the senior synonym. Following the resurrection of
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Griphopithecus by Andrews et al. (1996), the combination Griphopithecus darwini has been
frequently used (e.g., Begun, 2002, 2009; Kelley, 2002; Giile¢ and Begun, 2003).
Nevertheless, G. suessi is the type species of Griphopithecus by monotypy (Holec and Emry,
2003; Casanovas-Vilar et al., 2011). A determination of precedence based on the Principle of
the First Reviser is nullified if it can be subsequently shown that the precedence can be
determined objectively. If it is interpreted that the designation of a type species fulfills the
latter condition (Holec and Emry, 2003; Casanovas-Vilar et al., 2011), then the Principle of
the First Reviser does not apply and the valid name for the species is G. suessi, with G.

darwini being its junior subjective synonym.

2.3. On the valid name of the tribe including Sivapithecus

Although the intuitive name for a tribe including Sivapithecus would be Sivapithecini
Pilbeam et al., 1977 (e.g., Andrews, 1992; Kelley, 2002), Bramapithecini Simonetta, 1958,
Ramapithecini Simonetta, 1958, and Sugrivapithecini Simonetta, 1958 take precedence. Note
that, although the publication year of these nominal taxa has generally been attributed to 1957
(e.g., Szalay and Delson, 1979), as noted by Ceccolini (2022) the publication was not issued
until 1958—the date of the proofs stated in the last contribution of the same volume is
February 4th, 1958, indicating that it could not have been issued before this date. Simonetta
(1958) included these tribes within the Dryopithecinae, being based on genera erected by
Lewis (1934), whereas Sivapithecus was included in the nominotypical tribe (Dryopithecini).
Simonetta’s (1958) spelling of Bramapithecini was Brahmapithecini, because he intentionally
emended the spelling of Bramapithecus Lewis, 1934 into Brahmapithecus. However,
although Lewis (1934) explicitly dedicated the genus to ‘Brahma’, the genus name was
consistently written in Lewis (1934). Incorrect transliteration or latinization cannot be taken
as an inadvertent error (ICZN, 1999: Art. 32.5), so that Simonetta’s (1958) emendation of the
genus name must be considered unjustified (ICZN, 1999: Art. 33.2). This means that
Brahmapithecus Simonetta, 1958 is a junior objective synonym of Bramapithecus Lewis,
1934 and that the name of the tribe must be corrected as well (ICZN, 1999: Art. 35.4). Neither
Simons and Pilbeam (1965) nor Szalay and Delson (1979) followed Simonetta’s (1958)
emendation of Bramapithecus, and Szalay and Delson (1979) apparently considered
Brahmapithecini a lapsus, which was not.

Pilbeam et al. (1977) distinguished the subfamilies Sivapithecinae and Ramapithecinae,
but Szalay and Delson (1979) considered that Sivapithecini was a junior synonym of

Sugrivapithecini. Following Simons and Pilbeam (1965), Szalay and Delson (1979)
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considered Bramapithecus a subjective synonym of Ramapithecus Lewis, 1934 (then included
in the Hominidae), and hence listed both Ramapithecini and Bramapithecini as synonyms of
this family. In contrast, following Simons and Pilbeam (1965), Szalay and Delson (1979)
considered that Sugrivapithecus Lewis, 1934 was a junior subjective synonym of Sivapithecus
Pilgrim, 1910, and hence considered that Sugrivapithecini had priority over Sivapithecini.
Given that Lewis’ (1934) genera are all currently considered junior subjective synonyms of
Sivapithecus, the three tribes erected by Simonetta (1958) must be considered subjective
synonym as well, but their priority cannot be objectively determined. Following Szalay and
Delson (1979), Alba (2012) used Sugrivapithecini and noted it had priority over Sivapithecini,
but failed to comment as to why Sugrivapithecini would have priority over Ramapithecini or
Bramapithecini. According to the Principle of the First Reviser (ICZN, 1999: Art. 24.2), when
the precedence between names cannot be objectively determined, the precedence is fixed by
the action of the first author citing in a published work those names and selecting from them.
Given that Szalay and Delson (1979) did not synonymize the three tribes erected by
Simonetta’s (1958) and that Alba (2012) did not cite two of the three available names, neither
of them qualifies as First Reviser. As we have been unable to find another work where these
family-group names are mentioned, the present paper should fulfill the requirements of the
Principle of the First Reviewer by stating that, to preserve current usage (Szalay and Delson,
1977; Alba, 2012), we choose Sugrivapithecini over Ramapithecini and Bramapithecini as the
valid name for the tribe including Sivapithecus and its junior subjective synonyms
Ramapithecus, Bramapithecus, and Sugrivapithecus.

It is noteworthy that the name Gigantopithecinae von Koenigswald, 1958 might be
available for any family-group taxon including Gigantopithecus von Koenigswald, 1935.
Although von Koenigswald (1958) did not explicitly note his will to establish a new taxon or
designate a type genus, these requirements were not mandatory at the time (ICZN, 1999: Art.
16). As we include Gigantopithecus in the same tribe as Sivapithecus, Gigantopithecini von
Koenigswald becomes a synonym of Sugrivapithecini as used here. Although we have been
unable to determine the exact publication date of von Koenigswald's (1958) contribution in a
conference proceedings volume, it could not have appeared before May 23th, 1958, when the
conference has held, while Simonetta (1958) likely appeared shortly after February 4th the
same year (see above). As such, there is currently no reason to support the precedence of

Gigantopithecini over Sugrivapithecini.
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2.4. On the valid name of the tribe including Ouranopithecus and Graecopithecus
The tribe Graecopithecini was first used in two articles published in the same year

(Cameron, 1997a, 1997b). Only Cameron (1997b) explicitly noted the intention to erect a new
taxon but, as both articles were published before 2000, this requirement of the Code (ICZN,
1999: Art. 16.1) does not apply for the name to be valid. In any event, based on publication
date, the authorship of the taxon must be attributed to Cameron (1997b)—unlike for
Hispanopithecini, which was only mentioned by Cameron (1997a) and must be considered
available from that publication despite the lack of explicit mention of the erection of a new
taxon, for the reason outlined above. Both Graecopithecus freybergi and Ouranopithecus
macedoniensis were included in the Graecopithecini by Cameron (1997b), although the latter
species was included in Graecopithecus by this author. The different opinions about the
synonymy between Quranopithecus and Graecopithecus and the taxonomic validity of G.
freybergi have caused some confusion as to the correct name for the tribe including these
taxa, particularly since another family-group taxon, the subtribe Ouranopithecina Begun,
2009, was subsequently described to include both genera. Alba (2012) elevated the latter
taxon to tribe rank (i.e., Ouranopithecini Begun, 2009) to refer exclusively for
Ouranopithecus, implicitly considering that Graecopithecus and its type species were nomina
vana (Casanovas-Vilar et al., 2011). The latter authors remarked that Graecopithecini
Cameron, 1997b would take precedence to include Ouranopithecus if Graecopithecus was
considered a taxonomically valid genus included in the same tribe. As this is the opinion
followed in the present paper, Ouranopithecini Begun, 2009 must be considered a junior
subjective synonym of Graecopithecini Cameron, 1997b, although the former remains
available if Ouranopithecus and Graecopithecus were eventually classified in different

family-group taxa of the same rank.
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SOM S3
On the deformation of the Pierolapithecus cranium

Based on the distortion of the Pierolapithecus cranium, Begun (2009, 2010) casted doubts
on Moya-Sola et al.’s (2004) interpretation of its facial profile as more plesiomorphic than
that of crown hominids. Begun (2015: 1302—-1303) further considered that the face of
Anoiapithecus is “distorted” and that of Pierolapithecus is “seriously damaged,” but provided
no further details in this regard. According to the more detailed account of the
Pierolapithecus cranium preservation published by Pérez de los Rios et al. (2012), the most
serious issue relates to the missing contact between the premaxilla and the maxilla.
Nevertheless, the study of Pérez de los Rios et al. (2012), which was focused on internal
cranial anatomy, failed to notice the difficulties in adequately orienting the lower face relative
to the upper face. Based on our own evaluation of the original specimen, the distortion that
affects the fossil in multiple areas is not caused by plastic deformation of the bone but by
multiple cracks filled with matrix and the consequent displacement of some fragments from
their original position, which can be reasonably corrected by means of virtual 3D
reconstruction. The latter is currently underway—see preliminary results by Pugh et al.
(2022), which are consistent with the stem hominid status originally favored by Moya-Sola et
al. (2004) and later supported by cladistic analyses (Alba et al., 2015; Pugh, 2022). Even if
the reconstructed facial profile of Pierolapithecus is ultimately demonstrated to be more
orthognathous than preserved, it will be difficult to reconcile with the much more
orthognathous facial profile of Anoiapithecus, which further displays other important
craniodental differences that justify their generic distinction (Moya-Sola et al., 2009b; Pérez

de los Rios et al., 2012).
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SOM S4
The phylogenetic relationships between Quranopithecus, Nakalipithecus, and hominines

The cladistic analyses of Pugh (2022) supported a stem hominine status for
Ouranopithecus and Graecopithecus, and further lent some support to the phylogenetic link
between Ouranopithecus and Nakalipithecus (as previously hypothesized by Kunimatsu et al.,
2007). We consider such phylogenetic links plausible but insufficiently supported. For this
reason, we refrain from including Nakalipithecus into the tribe Graecopithecini and also from
classifying the latter taxon within the Homininae. We provide some discussion below as to
why we consider this link insufficiently supported.

First, as recognized by Pugh (2022), most of the purported hominine synapomorphies of
graecopithecins are ambiguous because they are present in many other taxa (e.g., relatively
broader P3, inflated glabella, or square orbits). Second, other purported hominine
synapomorphies can be easily explained by the overall cranial robusticity of OQuranopithecus
(e.g., robust supraorbital 'torus' and broad nasal aperture). A geometric morphometric analysis
of the Ouranopithecus macedoniensis face found closer similarities with gorillas among
extant great apes (Iloannidou et al., 2019). This confirmed the previous morphometric results
by McNulty (2005), which were based exclusively on the supraorbital region, thus apparently
supporting phenetic affinities between Quranopithecus and hominines. However, as
recognized by loannidou et al. (2019), about half of the variance of the axis distinguishing
gorillas from chimpanzees and orangutans was correlated with size, while a reconstruction of
the Hispanopithecus laietanus face was also classified as gorilla despite occupying an
intermediate position on the morphospace among the three great ape genera (Ioannidou et al.,
2019). This suggests that the Ouranopithecus might resemble gorillas in facial morphology
more closely than dryopithecines simply owing to size-scaling (allometric) effects.

Third, the definition and/or scoring of some of the characters mentioned above is
debatable. For example, Pugh’s (2022) scored the orbits of Sivapithecus and Pongo with the
same state (‘rounded’) as those of Ekembo and hylobatids (among many other taxa). This
arguably obscures the derived condition of the former in this regard and, in any event,
according to Pugh (2022) the purportedly derived ‘squared’ state of Quranopithecus is also
present in the dryopithecine Rudapithecus. Regarding the supraorbital ‘torus,” given previous
controversies about the presence of supraorbital costae (Moya-Sola and Kdhler, 1995) vs. a
supraorbital torus (Begun, 1994) in Hispanopithecus, Rudapithecus, and Ouranopithecus,
Pugh (2022) explicitly refrained from coding this structure as such. Instead, she split it into

five different characters to better capture the morphological variation in this area. Pugh (2022)
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noted similarities between Quranopithecus and Hispanopithecus in the configuration of the
temporal lines and supraglabellar region, but interpreted them as primitive retentions.
Nevertheless, of the five characters used by Pugh (2022) to code the morphology this region,
only three (orientation of temporal lines, presence of transverse supratoral sulcus, and
glabellar development) show differences between orangutans and African apes and could
potentially be phylogenetically informative for resolving the closer phylogenetic relationships
of graecopithecins among crown hominids. For the first two features, Quranopithecus shows
the same condition as dryopithecines and pongines, so that Quranopithecus only more closely
resembles African apes regarding the development of the glabella. Nevertheless, the same
character state is displayed by Rudapithecus, while the pronounced supraglabellar depression
of Ouranopithecus is shared with Hispanopithecus and seems autapomorphically derived for
these taxa (as opposed to the apparently plesiomorphic condition retained by extant hominids
and other dryopithecines).

Finally, the interpretation of similarities in P3 morphology between Ouranopithecus,
Nakalipithecus, and gorillas (Pugh, 2022) is also debatable. Kunimatsu et al. (2007) noted
similarities between Nakalipithecus and Ouranopithecus in the morphology of the P3 (broader
and with a more lingually oriented transverse cristid originating from the protoconid than in
other Eurasian Miocene apes). Pugh (2022) elaborated further on these differences by noting
that Nakalipithecus and Ouranopithecus uniquely share with gorillas (Delezene and Kimbel,
2011) a distal curvature of the P3 transverse cristid. Nevertheless, according to Pugh’s (2022)
scorings, this cristid is more distally oriented in gorillas than in Nakalipithecus and
Ouranopithecus; the latter genera rather resemble, in this regard, Australopithecus,
Indopithecus, and Gigantopithecus—which might be related to the independent molarization
of this tooth (Pugh, 2022, and references therein). In contrast, the distal curvature of the
cristid, according to Pugh (2022), would only be present in gorillas, Nakalipithecus, and some
specimens of O. macedoniensis (but not in other specimens of the latter or in Ouranopithecus
turkae). However, we do not consider this configuration to be fundamentally different from
that variably displayed by some dryopithecines (except by the more sectorial and
buccolingually compressed crown of the latter), including the holotypes of Dryopithecus
fontani and H. laietanus (SOM Fig. S1). Pugh (2022) argued that some chimpanzees display a
distally curved cristid but considered this configuration to be different from that of gorillas,
Nakalipithecus, and some specimens of O. macedoniensis in lacking a pronounced protrusion
into the distal fovea. However, such a description might be applicable to the aforementioned

dryopithecines and, even if the morphology of the cristid in considered most similar between
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the only available specimen of Nakalipithecus and some specimens of Quranopithecus
(something questionable in the light of the variability displayed by gorillas; SOM Fig. S1),
the fact that this feature is variable in OQuranopithecus (Pugh, 2022) despite being dentally
more derived than Nakalipithecus (Kunimatsu et al., 2007) renders its phylogenetic
significance very tenuous. An alternative scoring of the P3 transverse cristid in apes and
humans based on enamel-dentine junction shape (Davies et al., 2019) reported that all the
gorillas and chimpanzees investigated displayed a protoconid cristid that is either distally
deflected or that flattens to the level of the surrounding fovea—these taxa only differing by
the more distal origin of the cristid (relative to the protoconid dentine horn) in most
chimpanzees. The configuration of African apes regarding the orientation of the cristid is
shared with hylobatids but not with orangutans, which like most hominins display a more
transversely oriented cristid originating at or near the apex of the protoconid dentine horn
(Davies et al., 2019). On this basis, the distal deflection of the cristid in Nakalipithecus,
Ouranopithecus, dryopithecines, and hominines, with its multiple variants, might be more

plausibly interpreted as a hominoid symplesiomorphy.

17



SOM S5
Paleobiodiversity dynamics

To estimate Miocene ape paleobiodiversity through time, we divided the Miocene into
equal-duration stratigraphic bins of 1 Myr (e.g., the bin 19—-18 corresponds to 19.0-18.1 Ma),
except for the most recent bin, which was restricted to 6.0-5.3 Ma (in agreement with the
Miocene/Pliocene boundary). The maximum and minimum age for the ranges of each species
were attributed to their respective bins, and a range-through approach was followed to
compute diversity. Ranges that include a single dating ending in .0 Ma (e.g., 19.0 Ma) were
thus assigned to the 19—18 bin, but ranges that include two datings ending in .0 Ma (e.g.,
19.0-18.0 Ma) were assigned to a single bin (the 19—18 bin, as in the previous example), so as
not to artifactually increase diversity counts.

The sample is too small to undertake a rigorous study of diversity dynamics (including the
computation of origination and extinction rates), but two different metrics of diversity were
computed: range-through or total diversity (Ni) and standing diversity (Ng). The former is
the most standard measure of diversity and is computed as follows (Foote, 2000): Niot = Nyt +
Nor + Nrt + NeL, where Ny is the number of range-through taxa (those found before and after
the interval considered), Ny is the number of bottom-only boundary crossers (those found
before but not after the interval considered), Nr; is the number of top-only boundary crossers
(those found after but not before the interval considered), and Nrr is the number of singletons
(single-interval taxa). Given that Ny includes singletons, this metric is particularly sensitive
to variation in preservation rates (Foote, 2000). In contrast, Ny ignores single-interval taxa
because it is computed as the average of two successive (bottom and top) boundary crossers,
thereby being a more robust estimate of standing diversity at a point in time within the
interval (Foote, 2000); it is computed as follows: Ng = (Npr + Ngt + 2Npt) / 2 = Nyt — NeL — Y4
(NoL + Nrt). The ranges for Miocene apes and per-bin metrics are shown in SOM Table S3. It
should be taken into account that such metrics are seriously affected by multiple biases of the
fossil record and can lead to misleading conclusions when interpreted literally (e.g., see
discussion in Casanovas-Vilar et al., 2014). Nevertheless, they provide a rough idea of ape

diversity changes throughout the Miocene.
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SOM Figure S1. P; morphology in extant great apes and a selected sample of Miocene apes,
in occlusal view. The approximate course of the transverse cristid originating from the
protoconid is outlined by a dotted blue line. All specimens are depicted as from the left side
(mirrored when necessary), with the mesial and distal cristids oriented to define an arbitrary
mesiodistal axis (with mesial on top), and not to scale. a) Nakalipithecus nakayamai, KNM-
NA 46423. b) Ouranopithecus macedoniensis, KNM-NA 46423. c) IPS1803,
Hispanopithecus laietanus (holotype, mirrored). d) [IPS1764, H. laietanus (mirrored). €)
HGP2, Dryopithecus fontani (holotype, mirrored). f) AMNH-M 80008, Pongo sp. g) AMNH-
M 28253, Pongo pygmaeus (mirrored). h) Gorilla gorilla, AMNH-M 167340. i) Pan
troglodytes, AMNH-M 90292 (mirrored). j) P. troglodytes, AMNH-M 89406. k) P.
troglodytes, AMNH-M 89351 (mirrored). 1) Pan paniscus, AMNH-M 86857 (mirrored).
Panels a—b, h—j, and k reproduced from Pugh (2022).
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SOM Table S1

Miocene ape species-locality occurrences, including classification to family and subfamily
ranks (see Table 2), subepoch, locality and site, country, age range, and citations of primary
literature.? For further details on each locality, see SOM Table S2. (Provided separately as an
Excel file.)

2 When indicated as "Barry et al. (pers. comm.)", identifications of Siwalik hominoid remains
checked or updated based on data kindly provided by John Barry, Larry Flynn, Jay Kelley,
Mich¢le Morgan, and David Pilbeam on September 2022.

SOM Table S2

Miocene ape-bearing localities (in alphabetical order), including site/geographic area,
country, age range, subepoch, and citations for the age.? (Provided separately as an Excel
file.)

2 When indicated as "Barry et al. (pers. comm.)", age of Siwalik localities checked or updated
based on unpublished data kindly provided by John Barry, Larry Flynn, Jay Kelley, Michele
Morgan, and David Pilbeam on September 2022.

SOM Table S3

Chronostratigraphic ranges of Miocene apes divided by 1 Myr-duration bins and the

corresponding diversity metrics. (Provided separately as an Excel file.)
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Napakil s aica Upnds 205 190 Eary Miocene plckford ecal. 2020)
iapak Aisim atrica Upnds 205 150 Early Miocene Pickford tal. 2020)
Napakxvil s atica Upnds 205 205 Eary Miocene Pickford ecal. 2020)
Napak eVt s Afica Upnds 205 150 oy Miocene. Pickford et 2020)
apak XX Aisim atica Ugnds 205 205 Eary Miocene Pickfordecal. 2020)
NapakXKxI s afica Uginds 205 205 Early Miocene. Plekord et 2020)
Napakxoi i afica Upnds 201 201 Early Miocene Van Couveringand Delson (2020)
Neuhausen Suabian Als Europe Gemany 110 90 LateMiocen pickord 20
ki1 Chalkidiki peninsula Europe Gre 7 85 LateMiocen Cosnovasviar e 3. (2011)
North Napudet Napudet atica Kenya 133 133 Niddle Wocen: Nengo et . (2017)
ch yakach afica Kenya 150 150 Middleocene Van Couveringand Delson (2020)
mbo atica Kenya 160 160 Eary Miocene Van Couveringand Delson (2020)
pasalar pasalar ssia Turkey 145 160 Middiesocene CasanovasViar et 3. (201
PikermiF. (Red Conglomerate Mamber) Pirgos Europe 2 72 2 LateMiocene. Bohmeetal 2017)
Polings2 Polinys Europe spain 16 7 LateMiocene. Casmnovasilar et 3. (2011)
Potwr en Potwar laten asa Paisn 12,7 12
etwar laten ok Pathan) ar Platcau ssia s 55 a5 focens
v Ramnagar ssia ndia 158 125 Middleocene ?\Hansela\ 208 sl 220
Rashole3 Ramnagar asia ndia 133 125 MiddleNocene etal. o
Ravinde aPluie Aosyl Europe Greece 94 93 LateMiocene. Crmovai . 0111
e ember Unit 5 KoruMuhoroni area Songhor) afica Kenya 200 185 Early Miocene. Bishopetal. (1963)
dbed Member Unit 6 KoruMuhoroni are Songhor) atica Kenya 200 185 arly Miocene Bishopetal. (1969]
Rudabinya2 Pannonian Basin Europe Hungary 100 97 LateMiocene. Cosmnovas Viar et 3. (2011)
Ryskop. Ryskop. afica SouthAfica 160 160 Eary Miocene Van Couveringand Delson (2020)
Salmendingen Swabian Alo Europe Gemany 116 25 LateMiocene CasanovasViar et 3. (201
Shihuiba 75033 026 ufeng asia china 65 62 LateMiocene. Vueand Zvang (2006)
Shuitangoa witangba ssia china 62 62 A it o]
Sinaplocality 12 soaFormain asa Turkey q e LateMiocene Koppelman et .z
Siwliks 80009 Hasnot (Nagr Fm. - Swaik Group) ssia s n2 108 LateMiocene owneta, (124 hrrv!n\ (2002);Baryeta.fers comm.)
Siwalls B0145 i S o) ssia paisn 7 2 Barry e, pers. comm )
SwalisKLODO1 Kaua Kas ok PavinF, - S Grou) asia Pakisan 93 92 aentocne St s comm )
Swalis L0021 Hutch Nola (Chi F. - Swalk Group) ssia s 14 114 e Barry (1986} Barry 3. [pers.comm)
Swaliks L0024 utch Nala (Gl Fn. - Swalk Group) asia Pakisin 124 122 Midemiocene Barry et . pers.comm )
Swalie L0035 aritayangar ssia ndia ? B Barry (1986}, Barry e o, pers.comm.)
Swaliks L0039 attalyangar ssia ndia ? ? Barry e . pers.comm )
Swalis LOOKD Haritalyangar asia India ’ ? - Barry et pers.comm )
Siwalis L0081 Andarkas (ChinjiFm. - Swalk ssia paisn 112 108 LateMiocene Sary 1988 Byl s o)
Swalis L0034 Ohala Naia Lower) Nagr . - Sivalk Group) asa Paisn 103 101 LateMiocene Barry et . pers.comm )
Swalis 0008 2(Wanchar Fm.-Siwallk Grou e pakit B B - et (1984 [ —
Swaliks 0075 Gambhir ection Chii .-l Grous) Asa Pakistn 115 14 LateMiocene. Beiyn et
Sl 0083 Hutch Nala Chi .- Swalk Grou ssia paisn 115 116 LateMiocene o o e, s o
Swalls Y0137 ‘Gandakas Road (Dhok Pathan Fm - Svalk Group)  Asia pakistn 93 93 LateMiocene. St et 2002 e conm)
Siwaliks Y0158 (-10358) Mahuwala Kas (Dhak Patnan Fm. - Swask Group) asia Pakisan 88 87 LateMiocene 3. pers.comm.
Swalis Y0182 ‘Gandakas (Dhok Pathan Fm. - Siwalk Group) ssia s 93 92 i Sy (1988 ey el 2002, o comn)
Swaliks 0151 Gandakas (Dhak Pathan Fm. - Siwaik Group) asia Pakistn 84 92 LateMiocene. e ]
Sl 0207 ar ok P - Siwaik Group) ssia s o1 9 i ary ryecal. 2002, pers. comm)
Swalls Y0211 Dinga Kas (Dhak Pathan Fm - Siwalk Group) ssia Pakisin 93 93 LateMiocene. oo e 32002 pers comm)
Stwalis 0221 inga Kas (Dhok Pathan Fm. - Siwalk Goup) asia paisan 51 93 LateMiocene.
Swalls 0224 Dinga Kas (Dhok Pathan Fm. - Siwalk Group) ssia paisn 94 94 LateMiocene S 1980 byl 100, comm )
Swalis 0225 Dinga Kas (Dhok Pathan Fm. - Siwalk Group) asia Pakisin 94 94 LateMiocene Barry (1585} Barry . (2002, pers. comm )
Sl 0227 7 Sect e s 91 94 LateMiocene Barry (1986} Barry e ol (2002, pers. comm)
Swaliks 0230 2275ection asa Pakistn 84 94 LateMiocene Barry (1986} Barry e, (2002, pers. comm )
Sl Y0251 Ratha Kas (Nagt Frm. - Sk Group) ssia s 100 100 Latei Barry (1986} Barry e o, (2002, pers. comm)
Swalls Y0259 Kautal Kas (Nagr Fn. - Swalk Group) ssia paisn 105 104 LateMiocene. Barry (1986} Barry e (2002, pers. comm)
Swalie 0260 Kautal Kas (Dhok Pathan Fm. - Svalk Group) asia Pakisan 93 93 LateMiocene Barry (1535} Barry . (2002, pers. comm )
Sualks Y0261 Kautal Kas (Dhok Pathan Fm - Svalk Group ssia pakist 97 97 teMiocene Barry (1986} Brry e a1 (2002, pers. comm)
Swaliks 0309 Dok Kia, Khaur Kas (Dhok Pathan Fn. - Sivalk Group)  Asia Pakisin 94 94 LateMiocene. Barry (1986} Barry . (2002, pers. comm )
Sl 0310 Dok i, Khaur Kas (Dhok Pathan Fm. - Sivalk Group) 52 paisan 9 93 LateMiocene. ‘
Swalls Y0311 ‘Gamohir Section (Nagri Fm - Swalk Gr ssia paistn 101 100 LateMiocene: ¢
Sl Y0314 Dok i, Knaur Kas (Dhok Pathan F. - Sivalk Group)  Asa pakist 53 93 LateMiocene. (200
Swalls Y0317 outival Kas (Nagr Fm. - Sk Group) ssia paisn 93 92 LateMiocene @
Swalike 0327 Kot Malaran (Dhok Pathan Fm. - Sk Group) asia paistn 83 92 LateMiocene.
Sl Y0328 ) Kas, Bora Kas (Dhok Patnan Fm. - Sk Group)  /sia s 91 9 A .
Swaliks Y0350 269 Secton (Dhok Pathan Fn. - Swalk Group) Asa Pakistn 84 94 LateMiocene. ’
Sl Y0403 K Pathan Fm - Silk Group) ssia s 93 92 i Barry (1986} Barry e . (2002, pers. comm)
Swalls Y0410 ~Sivalk Group) ssia Paisn 94 94 LateMiocene. Barry (1986} Brry e (2002, pers. comm)
Swalie 0414 ~Sivalk Group) asia paisan 53 93 LateMiocene Barry (1535} Barry . (2002, pers. comm )
Sl Y0416 ik Group) ssia s 94 93 LateMiocene Barry (1986} Barry e . (2002, pers. comm)
Swaliks 0442 ~Sivalk Group) asia Pakisin 86 85 LateMiocene. Barry (1986} Barry . (2002, pers. comm )
Sl Y0463 aihan Fm. - Silk Group) ssia s 93 92 LateMiocene. 00
Swalks 0494 ‘Gamohir Section (Ch P - Swalk Group) ssia Paistn 12,4 124 Middleocene i
Sl Y0435 F - Siwalk Group) asia s 116 116 LateMiocen I )
Siwallis 0495 cton (G Fn. - Swalk Group) ssia paisn 124 124 Middleocene
Swaliks 0438 i Swalk Group) asia Paistan 11,7 17 Niddleocene )
Swalis Y0493 i P - Sk Goup) ssia patist 21 121 Niddle Miocene I )
Swaliks 0500 Kanati Upper (Chinj Fm - Shalk Group) Asa Paisn 121 121 Middleocene
Sl 0502 o ssia paisan 120 120 MiddleNocene Barry t . pers. comm.)
Siwallis Y0604 Kautal Kas (Dhok Pathan F - Svalk Group) ssia Paisin 86 85 Late o e
Swalike Y0647 i P Sk Group) asia Paisan 124 124 MiddleNocene Morgan et l (2015};Barry . (per
Swalis Y0663 Group) ssia s 16 116 tocens Sy (1539 oppamen e, 1091 Byl oo comm)
Swaliks Y0750 Sivalk Group) asia Paistn 128 127 Niddlenocene Kappelman e a. (1391); Barry e . [pers. com.
Sl Y0767 ‘Garmbhir Section (Chin . - Swalk Group) ssia s 124 123 Niddle iocent Ko (1591} Byt comm]
Swalls Y0775 Rata Oala Nala (Ghin P - Stwalk Group) ssia Paistn 124 122 Middleocene Kappelman e . (1991); Barry et . pers. comm.)
Swalie Y0823 alk Group) asia Paisn 11 w1 MiddleLateMocene  Barry ta. (pers. comm.)
Siwalis Y0885 ssia paisan 7 2 - Barry et a. pers. comm )
Swalie Y0851 ~Sivalk Group) asia Paistn 88 87 LateMiocene Barry . pers.comm )
Swalis Y0990 e s ? N , Barry et . (pers.camm )
Swaliks 097 ~Sivalk Group) Asa pakistn 83 92 LateMiocene. Borry e (pers.comm )
Salie 1002 ~Sivalk Group) ssia s 51 94 LateMiocene Barry . pers.comm )
Siwalls Y1004 Kautal Kas (Dhok Pathan Fm - Svalk Group) ssia paisin 94 93 LateMiocene. Barry e, pers. comm )
swet irrawaddy Fm asia anmar 10,0 80 LateMiocene Toka et i 2021)
Some Nakhon Ratchasima Province Khorat] ssia Thailnd 90 60 LateMiocene. Chaimanceetal. 2006)
Songhor Koru-Auhoroni area afica e 203 203 Early Miocene Van Couveringand Delson (2020)
St Gaudens Haute Garamne Europe ance 15 12 iddle-Late ocene  CasnovasViar et 3.
St tefan im Lavanttal Gratkont Basin Europe dusda 122 120 Middleocene Cosmnovas Vilar el (2011)
Sun LowerSiwalk a ndia 133 125 Middleocene Gilbertetal. (2020)
Taps Kuto ssia ndia 108 100 LateMiocene. Flynnetal. 2013); Patnaket . 2022)
Tevleiade Firal TevleiadeFiral Europe spain 103 100 LateMiocen Casanovasiar o 3. (2011)
annhau i Europe Germany 140 140 Middleocene Pickord (2013)
TinauKhola Dangalley Asa Nepal 95 90 LateMiocen nectl 1903 et 199)
Tinau Ko Dangvaley asia Nepal 95 90 LateMiocene untheetl.
Trochtelfingen Swabian Alo Europe Gemany 110 90 LateMiocene Pickord 2012)
no1 b asa Georga 81 77 LateMiocene. st al. 2020]
Saccinello Europe iy 55 81 e Miocene Rooketal. 2011)
saccinello Europe iy 81 67 LateMiocene. Rooket . 2011)
L Hari Mandar Dhar asia ndia 50 50 Lateiocs Pillans tal. (200
Wissberg GauWelnhs Europe Gemany 13,7 75 e remocne  Camorosvil et G011)
Wuds Gansu asia china 83 83 LateMiocene Woodburmeetal.
Xiaolungtan Kaiyuan ssia china 125 116 Midesomonme i 2015
Xirochori 1 Aiosvaley Europe Gre 57 97 Cosmnovas Viar e 3. (2011)
irrawaddy Fm. ssia Myanmar 104 8 tacgeratal. 2011)
Zhupeng e asa hina 4 7 Lnebioceme Zhu et (2005)
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SOM Table $3

o ranges of Miocene apes divided by 1 Myr-duration bins and the diversity metrics.
Miocene ape species Range / Bin 23-22 22-21 21-20 20-19 19-18 18-17 17-16 16-15 15-14 14-13 13-12 12-11 11-10 10-9 9-8 87
Proconsul africanus 20.3-185 x x x
Proconsul major 205-19 x x
Proconsul gitongai 158 x
Proconsul meswae 25 x
Proconsul legetetensis 205-19.0 x x
Kalepithecus songhorensis 205-19.0 x x
Kalepithecus kogolensis 210200 x
Ekembo heseloni 18.5-16.0 x x x
Ekembo nyanzae 18.5-16.0 x x x
Xenopithecus koruensis 20.0-19.0 x
Mabokopithecus clarki 153 x
Rangwapithecus gordoni 20.0-17.0 x x x
Nyanzapithecus pickfordi 15.8-153 X
Nyanzapithecus vancouveringorum 183 x
Nyanzapithecus alesi 133 x
Nyanzapithecus harrisoni 15.0 X
Turkanapithecus kalakolensis 17.5-17.0 x
Turkanapithecus rusingensis 205-183 x x x
Samburupithecus kiptalami 85 x
Afropithecus turkanensis 17.6-17.2 x
Heliopithecus leakeyi 16.0 X
Morotopithecus bishopi 2120 x
Equatorius ofricanus 16.0-15.0 x
Nacholapithecus kerioi 15.0 X
Otavipithecus namibiensis 120 x
Yuanmoupithecus xiaoyuan 82-7.1 x x
Griphopithecus suessi 13.8-127 x x
Griphopithecus alpani 14.5-13.4 x x
Kenyapithecus wickeri 13.8 X
Kenyapithecus kizili 14.5-14.0 x
Dryopithecus fontani 12.5-11.0 x x
Pierolapithecus catalaunicus 12.0 X
Anoiapithecus brevirostris 12.4-12.0 x
Hispanopithecus laietanus 100-9.6 x
Hispanopithecus crusafonti 10.3-10.0 x
Rudapithecus hungaricus 100-9.8 x
Danuvius guggenmosi 116 X
?Udabnopithecus garedziensis 81-77 x x
Khoratpithecus chiangmuaneneis 124-122 x
Khoratpithecus piriyai x x
Khorapithecus ayeyarwadyenis x x x
Khoratpithecus magnus x x
Ankarapithecus meteai x
Lufengpithecus lufengensis
Sivopithecus sivalensis X X X X
Sivapithecus indicus x x x
Sivapithecus parvada x
Indopithecus giganteus x
Chororapithecus abyssinicus x
Nakalipithecus nakayamai x
Graecopithecus freybergi x
Ouranopithecus macedoniensis x x
Ouranopithecus turkae X X
Sinopithecus keiyuanensis x x
Sinopithecus hudienensis x x
Oreopithecus bambolii x x
‘Dryopithecus” wuduensis x
Variable 2322 2221 21-20 2019 1918 1817 17-16 1615 1514 14-13 1312 1211 1110 109 98 87 3
Nbt 0 0 0 1 1 2 ) 0 0 0 0 1 0 2 0 3 0
NbL 0 0 4 2 1 2 0 0 1 1 2 1 0 2 5 0
NFt 0 0 5 2 2 ) 0 0 1 1 4 0 2 1 7 0 0
NFL 1 0 2 0 1 2 0 5 3 2 1 3 1 5 4 2 0
Ntot = Nbt + NbL + NFt + NFL 1 0 7 7 6 5 2 5 4 4 6 6 4 8 13 10 0
Nst = (NbL + NFt + 2Nbt) / 2 0 0 4 3 25 1 0 05 1 25 2 15 25 45 55 0

25
Nbt = hrough taxa; NbL = by ly boundary crossers; NFt = top-only boundary crossers; NFL = single-interval taxa; Ntot = range-through or total diversity; Nst = standing diversity.




