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GLOBAL PHASE PORTRAITS OF THE QUADRATIC SYSTEMS HAVING
A SINGULAR AND IRREDUCIBLE INVARIANT CURVE OF DEGREE 3

JAUME LLIBRE! AND CHARA PANTAZI?

ABSTRACT. Any singular irreducible cubic after an affine transformation can be written as
either 3* = 2®, or * = 2%(z + 1), or y* = z%(z — 1). We classify the phase portraits of all
quadratic polynomial differential systems having the invariant cubic y? = xz(;c +1). We prove
that there are 65 different topological phase portraits for such quadratic polynomial differential
systems.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Quadratic polynomial differential systems (or simply quadratic systems) are systems that can
be written into the form

i=Px,y) =P+ P+ P, J=Q(z,y) = Qo+ Q1+ Q2, (1)
where P; and Q; are real polynomials of degree i in the variables (z,y) and P§ + Q3 # 0.

An extensive literature is dedicated to the study of the quadratic systems these last years.
For a good survey see the book of Reyn [37] or the book of Artes et.al [4], and references therein.
For example, the following families of quadratic systems have been studied: homogeneous [16],
semi-homogeneous [12], bounded [18], reversible [24, 17], Hamiltonian [2, 15], Lienard [19],
integrable using Carleman and Painlevé tools [25], rational integrable [5, 6, 7], the ones having
a star nodal point [10], a center [42, 31, 17, 42], one focus and one antisaddle [3], with a semi-
elementary triple node [8], chordal [21, 22], with four infinite singular points and one invariant
straight line [38], with invariant lines [41], and so on. There is also an extensively literature
about Hilbert’s sixteen problem and quadratic systems, see for example [13, 23, 29, 30, 31, 44],
and the notion of ciclicity [45, 26, 15], and so on. For the study of some geometric properties
of quadratic systems see [39, 40], and others. In particular we pay attention on reference [28]
where the authors present a classification of all quadratic systems having one real reducible
invariant algebraic curve of degree 3.

In [11] it is proved that a cubic algebraic curve (or simply a cubic) is singular and irreducible
if and only if it can be written after affine transformations into one of the forms

y' =2 P =2"+1), =2 (z-1)
See Figure 1.
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fi=y>—a3 fo=v*—2%(x+1) fa=vy?—2%(x—1)

FIGURE 1. Singular and irreducible algebraic curves of degree 3.
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The goal of this paper is to continue the classification of the phase portraits in the Poincaré
disc of the quadratic systems having some invariant cubic. Thus our main result is to provide
all distinct topological phase portraits of the quadratic systems having the invariant cubic
y? =2}z +1).

Let f = f(z,y) = 0 be a real polynomial. We say that f = 0 is an invariant algebraic curve
of system (1) if it satisfies
af of
P — =K
0x + oy 1
for some polynomial K called the cofactor of the curve f = 0. Note that an invariant algebraic
curve is formed by orbits of system (1).

It is easy to check that the quadratic systems (1) having f = y? — 22(x + 1) = 0 as invariant
algebraic curve are
i = ax + by + ax?® + (3b — 2¢)xy,

y:bx+ay+cx2+gaxy+ (gb—3c> y2, (2)

See the appendix for a summary of about the Poincaré compactification of a polynomial
differential system and the definition of the Poincaré disc D, which roughly speaking is to
identify the interior of the unit closed disc D centered at the origin with the plane R? and its
boundary S' with the infinity of R?, in the plane we can go to infinity in as many as directions
as points has the circle S'. Then the Poincaré compactification consists in extend the quadratic
differential system from the interior of D to its boundary S!, i.e. to the infinity of R%. In this
way we can control the orbits of a polynomial differential in a neighborhood of the infinity, and
in particular of a quadratic system.

Our main result is the following.

Theorem 1. For the quadratic systems (2) there are 65 non topological equivalent phase por-
traits in the Poincaré disc.

The rest of the paper is dedicated to proof Theorem 1.

2. QUADRATIC SYSTEMS WITH THE INVARIANT ALGEBRAIC CURVE 32 —2%(z +1) =0

All quadratic systems admitting y? — 2%(x + 1) = 0 as the invariant cubic y? — 2?(x +1) =0
can be written as systems (2). We distinguish the following cases.

2.1. Case a = 0 and ¢ = 0. Then b # 0 otherwise the system is not quadratic, and without
loss of generality we can consider b = 1. Then system (2) becomes

1
i=y(l+3z), y= 5(2a;+9y?), (3)
and has the rational first integral
27y + 9z + 1
H(z,y)= ————5—
Bz +1)

System (3) has the three invariant algebraic curves: fo = 0, g1 = 3z +1 = 0 and g3 =
27y% + 9 + 1. Additionally, has the three finite singular points Py(0, 0), P_ (—1/3, —\/6/9)
and Py (—1/3, v/6/9). Py is a saddle, P_ is an unstable node and P, is a stable node.

In what follows we use the notation introduced in the Appendix for studying the infinite sin-
gular points using the Poincaré compactification. The origin of the chart (Uy, F1) is a nilpotent
singular point and using Theorem 3.5 of [20] is a saddle, and doing blows ups we get its local
phase portrait as it shows in Figure 2. Moreover, the origin of the local chart Us is a hyperbolic
stable node. The local and the global phase portraits of system (3) are given in Figure 2.
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FIGURE 2. The local and the global phase portraits of system (3). Here a = ¢ =
0, b =1 in system (2).

2.2. Case a =0 and ¢ # 0. Without loss of generality we can consider ¢ = 1, and system (2)
can be written as
&t = by+ (3b—2)xy,

y = bx+x2+<gb—3) Y2, (4)

where this b is the old b/c. For b = 2/3 system (4) is a Hamiltonian system with the first integral
H = 23 + 22 — y%. System (4) for b # 2/3 has the rational first integral

b +3b% (3b—2)x+2 (9b” —12b+4) 2> + (27b° — 54b* +36b — 8) ¢°
(3bx+b—22)3 '

The curve go = b* + 30 (3b—2)z +2 (96> — 12b+4) 2 + (276> — 540 +36b—8) y* =0 is

a conic for b # 2/3 and it is classified as follows: For b € (—o0,0) U (0,2/3) is a hyperbola, for

b € (2/3,8/9) an imaginary ellipse, and for b > 8/9 is a real ellipse. For b = 0 we obtain two

real invariant straight lines that intersect into a point. For b = 8/9 the conic is formed by two
parallel imaginary straight lines.

H(:an) =

System (4) has the finite singular points (whenever they exist)

b B bv2b—2 p b bv2b—2
2-30" (3p-12)%2%)" + 2-3b"(3p—2)%2 )

Py(0,0), Pi(—b,0), P (

Note that the points P_ and P, are the intersection points of the three curves fo =0, go =0
and g1 = (3b—2)z+b=0.

For b € (0,2/3) U (1, oo) the point P; is on the left hand side of the straight line passing
through the points P_ and Py. For b € (—00,0) U (0,2/3) U (1,400) the points Py exist. For
b = 0 the four points collide into Py. For b = 1 the three points Py, P— and P; collide between
them. For 2/3 < b < 1 only exist the finite singular points Py and P;.

(v0)

and its eigenvalues are £b. For b = 0 the point P, is linearly zero and doing blow—ups we obtain
that its local phase portrait is the union of two elliptic and two parabolic sectors, see Figure 4.

The point Py has the Jacobian matrix

The point P; has the Jacobian matrix

0 —3b2+3b
—b 0 ’
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b | — 0 2/3 8/9 1 00
Py S pepep | S S S S | S S

P C — C C C c | C peph S
P, N* - N* - — - | - — NU
P Nv — | NU - - - | - - N*
Q- S S S — — - | - — —
Q.+ S S S — — - | - — —
0 NY N% | N“ N* N* N® | N*® N*® N*

TABLE 1. The finite singular points of system (4)

and its eigenvalues are £by/3b — 3. For b = 0 the point P; coincides with Fy. For b = 1 the
point P; is a nilpotent point and by Theorem 3.5 of [20] we have that P; is the union of one
elliptic and one hyperbolic sectors separated by two parabolic sectors, see Figure 9.

The eigenvalues of the point P are

(6\/mb+\/§\/(b—1)(3b—2)2—4\/m>b

" (3b—2)%/? ,
b ((—65+4)\/m+\/§\/(b_ 1) (36— 2)2>
Ay =— TTEDRE :

The eigenvalues of the point P_ are

(—Gmb+\@\/(b—1)(3b—2)2+4m>b

)\1: )
(3b—2)3/2

<6\/2b—2b+ ﬂ\/(b—n (3b—2)2—4\/2b—2> b

o= (3h—2)3? '

For both points Py the product of its eigenvalues is 6% (b —1)/(3b — 2).
In the chart (Uy, F1) for b < 2/3 we obtain the infinite singular points

2 2
Q*(\/z—?)b’ 0)’ @- ( 2 —3b 0)'

The eigenvalues of the points Q1 are ++/4 — 6b.
The singular point at the origin of the chart (Us, F») has the Jacobian matrix

(8 ).

M =1-3/2b, Xy=3-—9/2b.

and its eigenvalues are

Thus, for b # 2/3 it is a node, whereas for b = 2/3 it is a nilpotent singular point, and by
Theorem 3.5 of [20] it is a stable node.

We note that the family (2) is invariant under the symmetry

(x,y,a,t) = (x,—y, —a, —t). (5)
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S=23, R=5

FIGURE 3. The local and the global phase portraits of system (4). Here a = 0,
b < 0and ¢ =1. The curve g3 = 0 is a hyperbola.

S=19, R=6

FIGURE 4. The local and the global phase portraits of system (4). Here a = b =
0 and ¢ = 1. The curve go = 0 are two intersecting real lines

FIGURE 5. The local and the global phase portraits of system (4). Here a = 0,
b e (0,2/3) and ¢ = 1. The curve g2 = 0 is a hyperbola.

2.3. Case a # 0. Due to the symmetry (5) without loss of generality we can restrict our study
to a > 0. We distinguish the following cases.

Case 1: ¢ = 0. Then system (2) becomes

3 9
& = ax + by + ax® + 3bxy, y:bx+ay+§aa:y+§by2. (6)
In order to study this family we distinguish the following two subcases according to the param-
eter b.

Subcase ¢ = b = 0. Then system (2) becomes

1
& = ax(r + 1), Y= 5ay(2 + 3z), (7)
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FIGURE 6. The local and the global phase portraits of system (4). Here a = 0,
b =2/3 and ¢ = 1. The system is Hamiltonian with H(x,y) = —23 — 2?2 + 2.
F = ¢e% is an exponential factor.

$=9, R=3

FIGURE 7. The local and the global phase portraits of system (4). Here a = 0,
be (2/3,8/9] and ¢ = 1. For b € (2/3,8/9) the curve go = 0 is an imaginary
ellipse whereas for b = 8/9 are two parallel imaginary straight lines.

FIGURE 8. The local and the global phase portraits of system (4). Here a = 0,
be (8/9,1) and ¢ = 1. The curve g2 = 0 is a real ellipse.

and it has the rational first integral H = x?(x+1)/y%. Without loss of generality we can consider
that @ = 1. The unique finite singular points are Py = (0,0) and P = (—1,0). The point Py is
an unstable node. The point P € {f2 = 0} is a stable node. The origin Os of the chart (Us, F»)
has a Jacobian matrix identically zero. Doing blow ups Os is the union of one parabolic and
one hyperbolic sector. The local and the global phase portrait of system (7) is given in Figure

11.
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S$=12,R=5

FIGURE 9. The local and the global phase portraits of system (4). Here a = 0,
b=c=1. The curve go = 0 is a real ellipse.

S=16, R=5

FIGURE 10. The local and the global phase portraits of system (4). Here a = 0,
b>1and ¢ =1. The curve go = 0 is a real ellipse.

0,

F1GURE 11. The local and the global phase portraits of system (7). Here a =1
and b=c=0.

Subcase ¢ = 0,b # 0. Since b # 0 without loss of generality we can assume that b = 1. System
(6) can be written as

. . 3 9
x:ax+y+ax2+3xy, y:x+ay+§afvy+§y2, (8)

where now a is the previous a/b.
System (8) has three finite singular points:
1 1 QZiiA, 1 —9a*+34—-d"Fd’A 7
3 18 18 54 a

POZ(OaO)v Py =

with A = av/24 + a2. Note that Py, Py are points of the curve fo = 0. For a = 1 the point Py
collides with Py. The point P_ is always on the left hand side of the point P,. For a > /3 the
7



point P_ is upper the point Py, here left hand side or upper are with respect to the z and y
axes.

The linear part at the origin Py has eigenvalues a + 1 and a — 1. So, for a € (0, 1) the origin
Py is a saddle. For a > 1 it is an unstable node. For a = 1 we have that Fy is semi—hyperbolic
and using Theorem 2.19 of [20] we obtain that is a saddle-node.

Now we set
B_= a?(a®—a'A+30a*—18a%A + 3784 + 1728 — 72 A)
and note that for a > 0 we have that B_ > 0. At the point P_ the eigenvalues are
1 —24A—42a% —a*+ a?A +/2B_
A9 = — <0,
’ 72 a
and consequently that P_ is a stable node.

We additionally set
By =a*(a®+30a" +a"A+378a® + 18a° A + 1728 + T2 A)
and for a > 0 we have that By > 0. The eigenvalues associated to the point P, are
1 42a% +a* + a?A - 24 A+ /2B,
72 a ’

We have that A\; >0 and A2 > 0if a € (0,1), and \A2 < 0if a > 1. So for a € (0,1) the point
P, is an unstable node and for @ > 1 is a saddle.

In the chart (U, F1) we obtain the two infinite singular points O1(0,0) and Q(—1/3,0). The
origin O is a saddle, and the point @1 has eigenvalues 0 and —a/2, so it is semi-hyperbolic.
By Theorem 2.19 of [20] we obtain that the point @ is a saddle node. The origin of the chart
(Us, F3) is a stable node.

A2 = —

The local and the global phase portraits of system (7) are given in Figures 12, 13, 14, 15 and
16.

0, A2

S=22. R=5

FIGURE 12. The local and the global phase portraits of system (7). Here ¢ = 0,
b=1anda € (0,1).

For a = 1 system (8) has only two singular points. The origin has eigenvalues 0,2 and using
Theorem 2.19 of [20] it is a saddle-node. The singular point (—5/9, —10/27) is a stable node
and is on the curve fo = 0, see Figure 13.

Case 2: ¢ # 0. Without loss of generality we can consider ¢ = 1. System (2) becomes

& = ax+by+ar®+ (3b—2)xy,
, 2, 3 9 2 (9)
y = br+tay+z +§amy+ 5()—3 Y.

8
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F1GURE 13. The local and the global phase portraits of system (7). Here ¢ = 0,
a=b=1.

S=22,R=5

FIGURE 14. The local and the global phase portraits of system (7). Here ¢ = 0,
b=1andac (1,V3).

A4

S=21,R=4
FIGURE 15. The local and the global phase portraits of system (7). Here ¢ = 0,
b=1and a = V3.

System (9) has the following finite singular points (whenever are defined):

a
P=(0,0, P=(-b3).  Pe=(w0.m),

with

. a? —6b% +4b+ay/24b> —40b+ a? + 16
0 2(3b—2)°
_ —9ab*+18ab—a® —8a+ (3b% — a® — 2b)v/24b%> — 40b + a® + 16
7 2(3b— 2)° '
9

)




As

o

S=22,R=5

FIGURE 16. The local and the global phase portraits of system (7). Here ¢ =0,
b=1and a > V3.

In the chart (U, F1) system (9) has the infinite singular points (whenever they exist)

[ —a£Va%-24b+16 0
@5 = 2(3b—2) ’ '

The origin of the chart (U, F3) is an infinite singular point of system (9).

We define the following bifurcations curves

g1 = a® + 16 — 24b, gs=a+b=0,
gp=3b—2=0, g6 = 9a2b? — 24a%b + 64a? — 432b% + 43263 = 0,
g3 =24b> —40b+a®> +16 =0, g7 = a®+ 9b> — 9.
ga=a—b=0,
We also consider the curves
1
h=a®+\/gia —6b>+4b, jlzb—ga. (10)

2.4. Finite Singular Points.

Lemma 2. The number of finite singular points of system (9) is given in Figure 18.

Proof. Note that the points Py are not defined whenever go = 0 and also when g3 < 0. Addi-
cionally, on g3 = 0 the two points Py collide between them. Moreover, on the curve g7 = 0 for
b € (—00,0) the point P; collide with the point Py and for b € (0, 1) the point P; collide with
P_. For a = b = 8/9 the point P} collide with Py whereas the point P_ collide with P;. On
the straight line g5 = 0 the point Py colapse with Py. On g4 = 0 for a = b > 4/5 the point
Py colapse with Py, whereas for 0 < a = b < 4/5 the point P_ colapse with FPy. Finally for
a =b=4/5 the points Py collide with the point Fj. O

Lemma 3. The local phase portrait at the point Py is given in Figure 19.

Proof. The point Py has eigenvalues a = b. Hence for b > a or b < —a we have that Py is a
hyperbolic saddle. For b > a or b > —a the point Fy is a hyperbolic unstable node. Over the
straight lines g4 = 0 and g5 = 0 the point Py is a semi-hyperbolic singular point, and from
Theorem 2.19 of [20] we have that for a # 4/5 it is a saddlenode whereas for a = 4/5 it is a
saddle. (]

Remark 4. The finite singular points Py are always points of the invariant curve fo = 0. So
cannot be foci or centers.

Lemma 5. The local phase portrait at the point Py is given in Figure 20.
10



g1=0

g4=0

g2=0

FIGURE 17. ¢ = 1,a > 0. The bifurcation curves define 21 regions. It is a
qualitative picture.

Proof. The point Py has eigenvalues e+ = ab/4 — a/3 &+ ,/g6/12. For gg < 0 the eigenvalues
become comblex with non—zero real part. On gg = 0 we have that ey = e_ and P} is a node
and for g5 > 0 we have two different real eigenvalues. Note that e_e; = —g7/3. Hence, for
g7 > 0 we have that P; is a hyperbolic saddle, whereas for g7 < 0 and gg > 0 the point P;
is a hyperbolic stable node. On gy = Oone of the eigenvalues of P; becomes zero and P is
semi-hyperbolic, and from Theorem 2.19 of [20] we have that P; is a saddle-node. O

Lemma 6. The local phase portrait at the singular point Py is given in Figure 21.

Proof. We recall that the point Py is defined for g2 # 0 and g3 > 0. On the curve g3 = 0 the
point Py coincides with P_. For a = b = 4/5 € {g3 = 0} N {gsa = 0} the points P} and P_
collide with Py. Additionally, the point P, has the eigenvalues

a(—a® —42b% + 760 — 32) + (—a® 4 24b* — 16b) \ /g3 = /24

8(3b—2)
11




g=0

9=

FIGURE 18. The number of finite singular points of system (9) in the different
regions, lines and points.

where

Ayr = (£a® £ 18a%V? £ 72ab* F 12a3b F 96ab® + 32a b*) /g3
+a% + 30 a%b? + 378 a2b* + 1728 b5 — 32 a*b — 792 a2b® — 5184 1° + 8 a?
+552a2b? + 5760 b* — 128 a2b — 2816 b3 + 512 b2.

We observe that both eigenvalues cannot be zero simultaneously. Note that AL > 0 due to
Remark 4. The product of the eigenvalues det is

a (4563 +2a® —78b* +32b) /g3 g3 (—9b® +2a® + 6b?)
4(3b—2)° 4(3b—2)° ‘

det+ = —

If dety < 0 then Py is a saddle, see Figure 21. Note that dety = 0 on g3 = 0, g5 = 0 and for
a=0b>4/50n gy =0. For b <0 on the points of the curve g; = 0 we have that det, = 0. In
these cases we have that P, is a semi—hyperbolic singular point and so we apply Theorem 2.19
of [20], see also Figure 21. If det, > 0 the point Py is a node, see Figure 21. O

Lemma 7. The local phase portrait at the point P_ is given in Figure 22.
12
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FIGURE 19. The local phase portrait at the origin Py = (0,0).

Proof. The point P_ is defined for g3 > 0 and g2 # 0, and has eigenvalues

a(—a® —42b* + 76b — 32) + (a® — 24b% +16b) /g3 = /2A_
8(3b—2)* ’

where A_ is defined in Lemma 6.

Note that for all the values of the parameters we have that A_ > 0, see also Remark 4. The
product of the eigenvalues det_ is

ot a(45b° +2a* —78b* +32b) /g3 g3 (90 +2a® +61?)
et_ = _
4(3b—2)* 4(3b—2)°
If det— < 0 the point P_ is a saddle, see Figure 22. For g3 = 0 we have that det— = 0.
Additionally, for b > 0 on the points of g7 = 0 we have that det_ = 0. For b > 4/5 and

additionally g4 = 0 we also have det_ = 0. In these cases the point P_ is semi-hyperbolic and
so we apply Theorem 2.19 of [20], see Figure 22. If det_ > 0 the point P_ is a node, see Figure
22. O

2.5. Infinite singular points.

Lemma 8. The number of infinite singular points of system (9) is given in Figure 23.
13



hyperbolic stable node with e+~ e-

1 =
addle )
~ de
gs_o g0
hyperbolic saddle
strong stable focus

e+,e- complex

/‘1
0] P

40ale ng de g7=0
strong stable hyperbolic focus A
g=0 Rp, hyperbolic stablé

e+, e- complex

F1cure 20. The local phase portrait at the singular point P = (—b,a/3).

Proof. In the local chart (Uy, Fy) system (9) becomes

node with e+ # e-

1 3
21 =14+bxn+—-ann+|-b—-1 2’12—b2122’2,

2 2

Z9 = —z9 (azg +bz12z9+a+3bz; —2210),

and for g > 0 and g5 # 0 it has the infinite singular points

Q+ = <ai\/gT, 0)-

292

Note that neither @Q_ nor Q4 coincide with the origin of the chart (Uy, F7). The two points Q4+

collided between them over the curve g; = 0.

In the local chart (Us, F3) system (9) becomes

3 1
21 =bzy + <—2 b+ 1> 21 — B a212 - 621222 — 213,

1
29 = —522 (2b2122+2a22+2212—i—3azl—{—9b—6),

and the origin of the local chart (Us, F») is an infinite singular point.

O

Lemma 9. The stability of the infinite singular points of system (9) in the local chart (Uy, FY)

18 given in Figure 24.
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FiGure 21. The local phase portrait at the singular point P;.

Proof. We recall that the points Q- are not defined on go = 0. For g; < 0 are not real points,
so we will consider them only when g; > 0. The point () has eigenvalues
—a+ /5a%>+4a,/g1 —96b + 64
1 )
Note that on g1 = 0 the point Q4 collide with )_ and is a semi—hyperbolic saddle—node. Also
note that both eigenvalues at the point )+ cannot be zero. The product of the eigenvalues is
Dety = —1/4a* —1/4a\/g1 +6b— 4,

and for g; > 0 we have that Det; < 0, and so the point () is a saddle. The point Q_ has
eigenvalues

—a+ /5a® —4a/g1 —96b+ 64
4 )
and on ¢g; = 0 is a semi-hyperbolic saddlenode. The product of the eigenvalues at the point

Q_is

Det_ = —1/4a* +1/4a\/g1 +6b— 4.
The point () changes from a saddle to a node when the values of the parameters of the system
cross the line g2 = 0, see Figure 24. U

Lemma 10. For b < 2/3 the origin of the local chart (Ua, F») is an unstable node. If b > 2/3 is
a stable node. If b =2/3 the origin is the union of an elliptic and a hyperbolic sector separated

by two parabolic sectors.
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Fi1GURE 22. The local phase portrait at the singular point P-_.

Proof. The origin Oz = (0,0) of the chart (Us, F») has the Jacobian matrix

~3/2b+1 b
0 3-9/2b )

with eigenvalues —3b/2 + 1 and 3 — 9b/2. For b > 2/3 the point O3 is a stable hyperbolic node
whereas for b < 2/3 becomes an unstable hyperbolic node. For b = 2/3 both eigenvalues become
zero, (the Jacobian is not identically zero) so Oj is a nilpotent singular point. Using Theorem
3.5 of [20] and the blow up technique we obtain that the point Oy is the union of an elliptic
and a hyperbolic sector separated by two parabolic sectors. Note that the straight line of the
infinity locally is contained in the two parabolic sectors. O

Proposition 11. For g1 > 0 we obtain two distinct infinite singular points Q— and Q4. On
the curve g1 = 0 the two points collided: Q_ = Q4+ and one eigenvalue of them becomes zero.
For g1 < 0 the two infinite singular points Q_ and Q4+ do not exist.

On the curve go = 0 the singular points Py and Q+ do not exist. The point Py changes from
a saddle to a node when the parameters of the system cross the line go = 0. Q— changes from
a node to a saddle when the parameters of the system cross this line and at this line the origin
of (Ua, F3) is a nilpotent singular point, see Figure 24.

On the bifurcation curve gs = 0 the two finite singular points Py collided between them. On
g3 =0 for a =b=4/5 the points Py collide to Py. For g3 < 0 the points P+ do not exist. For
g3z > 0 see Figures 21 and 22.
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FIGURE 23. The number of the infinite singular points of system (9).

On the line g4 = 0 the point Py for a # 4/5 is a semi-hyperbolic saddle-node, whereas for
a=4/5 is a saddle. For a =b > 4/5 the point Py colapse with Py whereas for 0 < a=0b<4/5
the point P_ colapse with Py. For a = b = 4/5 both points Py collide to Py and is a saddle.
Fora=1"b¢€ (4/5,8/9) the point P_ is a saddle whereas for a = b > 8/9 is a stable node. For
a=>b>4/5 the point Py changes from a saddle to a node. For b < 4/5 the point P_ changes
from a saddle to a node when the parameters of the system cross the line g4 = 0, see Figures
18, 19, 21 and 22.

On the line g5 = 0 the Py is a semi—hyperbolic saddle—node. The point Py colapse to Py. The
point P changes from a saddle to a node when the parameters of the system cross this line, see
Figures 19 and 21.

On the curve gg = 0 the point Py is a hyperbolic stable node. For gg < 0 we have that P, has
complez eigenvalues and consequently is a strong stable focus. For gg > 0 we have that P; has
real eigenvalues, see Figure 20.

On the curve g7 = 0 the point P_ collided with Py when b > 0 whereas for b < 0 the point Py
collide with Py. Note that the product of the eigenvalues of Py is g7/(—3). On g7 = 0 the point
Py is a semi—hyperbolic saddle—node. Py changes from a saddle to a node when the parameters
of the system cross this line. The point Py changes from a saddle to a node when the parameters
of the system cross the line g; = 0, see Figure 20.

Proof. The proof of Proposition 11 follows directly from Lemmas 2, 3, 5, 6, 7, 8, 9 and 10. [
17
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F1GURE 24. The infinite singular points of the local chart (Ui, F}).

3. PHASE PORTRAITS

In this section we study the global phase portraits of system (9): We draw the local phase
portrait of the finite and infinite singular points in the Poincaré disc, see for details on the
Poincaré compactification the Appendix 5. Additionally we plot in the Poincaré disc the invari-
ant algebraic curve fo = 0. Finally, we should present all the global phase portraits.

Let L be a straight line and let ¢ be a point of L. We say that ¢ is a contact point of the
straight line L with a vector field X, if the vector X (q) is parallel to L.

For quadratic systems the following two results are well known.

Lemma 12. On any straight line which is not invariant the total number of singular points and
contact points is two. If there are two such points, P and P,, then the orbits intersecting the
line coP; cross in the same sense as the orbits intersecting the line Pyoo, and in the opposite
sense the orbits Py Ps.

For a proof of Lemma 12 see the lemma in page 296 of Coppel [14].

Lemma 13. On any non invariant straight line through a finite singular point P reaching the
infinity in a pair of infinite singular points the orbits crossing the segment oo P have opposite

sense to the orbits crossing the segment Poo.
18



Lemma 13 is equivalent to Lemma 12 when one of the contacts points mentioned in Lemma
12 goes to infinity. For a proof of Lemma 13 see [1].

Remark 14. In what follows when we apply Lemmas 12 or 18 we must check that the straight
lines mentioned in these lemmas are not invariant. In case that there are invariant we shall
state this fact explicitly.

The following theorem also appears in Coppel’s paper [14].

Theorem 15. A singular point in the interior of a closed path of a quadratic system must be
either a focus or a center.

Here a closed path is an invariant curve of the quadratic system contained in R? homeomorphic
to a circle such that in its neighborhood contained in the bounded region limited by it the
Poincaré return map is defined.

Remark 16. In fact the proof which appears in Coppel’s paper [14] also works when the closed
path of the quadratic system has some piece at infinity. So Theorem 15 also holds for closed
paths having some orbit at infinity.

Theorem 17. Let X be a vector field of class C' on an open set A C R%. Consider v a closed
path of X such that the bounded region R limited by ~y is contained in A. Then there exist a
singular point of X in R, inside the region limited by ~y.

The proof of Theorem 17 is the same as the proof of Theorem 1.31 of [20].
The next result is due to Berlinskii [9).

Theorem 18. Suppose that a quadratic system has four singular points. If the quadrilateral
with vertices at these points is conver then two opposite singular points are saddles and the other
two are antisaddles (nodes, foci, or centers). But if the quadrilateral is not convex then, either
the three exterior vertices are saddles and the interior vertex is an antisaddle, or the exterior
vertices are antissaddles and the interior vertex is a saddle.

Next we prove that system (9) has no limit cycles.

Lemma 19. System (9) has no limit cycles.

Proof. Consider system (9) and X = (P, Q) the corresponding vector field. According to Theo-
rem 15 a possible limit cycle can appears only surrounding a focus. Note that for system (9) we
only have a focus in the interior of the loop of the curve fo = 0 for the values of the parameters in
the regions rg, 17,78, 79, 12,713, 714, T'15, and on the lines Ly, Ls, Lg, L7, L13, L14, Lag, L7, Lag, Lag.
Also we have a focus on the right side of this curve for the values of the parameters in the regions

r19 and 799 and on the line Lg. The divergence of the system (Pf2_4/3, Qf2_4/3) is
D:a(Pf;4/3)+a(Qf;4/3) _ aBz+4)  _ a(Bz+4)
ox oy 6(—a3 — 22 + y2)4/3 6f§/3

Note that the vertical straight line 3z + 4 = 0 does not intersect the invariant curve fo = 0.
Hence D does not change sign in the regions containing the focus. Hence, by the Bendixon—
Dulac criterium (see Theorem 7.12 of [20]) there are no periodic orbits in the mentioned regions
and lines in the (a,b) parameter plane, and so there are no limit cycles. O

In what follows a heteroclinic loop is formed by two saddles P; and P, and two different
separatrices connecting these saddles and forming a loop in such a way that at least in one of
the two sides of the loop a Poincaré return map is defined. Let p; < 0 < A; be the eigenvalues
of the saddles P; for ¢ = 1,2. Set

oy
AL Ao
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If £ < 1 then the loop in the region limited by it is unstable, and if £ > 1 then the loop is
stable, see Poincaré [36] (see Theorem XVII).

For regions 719, o9 and the line Lg we have the following result.

Lemma 20. For the values of the parameters in the regions r1g, r20, and on the line Lg system
(9) has no connection between the separatrices of the saddles Q4.

Proof. We assume that there is a connection between the separatrices of the saddles QQ+ of
system (9) for the values of the parameters in the regions r19 and r99. Then there is a heteroclinic
loop containing a focus. Note that for the points Q=+ (see also Lemma 9)

o —a—+/5a>+4a\/g1 —96b+ 64 —a— +/5a®>—4a,/g1 —96b+ 64 o
\—a+ Ba¥+dagr—96b+64) \ —a+ \/5a2 —4da/gi — 96D+ 64

Thus the heteroclinic loop is stable. Since the focus in the interior of the heteroclinic loop
is also stable it must exist a cicle limit by the Poincaré—Bendixson Theorem (see for instance
Corollary 1.30 of [20]). But this is in contradiction with Lemma 19.

Now we consider the values of the parameters on the line Lg. If there is a connection between
the separatrices of the points ()1 and )2, then they form a heteroclinic loop that must contain
the focus. Working in a similar way as in Lemma 20 for the saddles ()1 and ()2 we obtain

(—a—i— \/5@2—4(1\/&4—96&—1—64) (—a—i— \/5(12—1—4(1\/&—1—96@—1—64)
(—a— \/5a2—4a\/&+96a+64> (—a— Va2 +davd+96a+ 64)

with d = a® + 24a + 16. Thus this heteroclinic loop is stable. Since the focus in the interior
of the heteroclinic loop is also stable by the Poincaré—Bendixon Theorem it must exist a limit
cycle. But this is in contradiction with Lemma 19. U

I{/’:

> 1,

3.1. Phase portraits in the regions. The bifurcation curves define 21 regions, see Figure
17. Here we are going to present all the phase portraits of system (9) in the Poincaré disc for
the values of the parameters in each one of the 21 regions.

Q2

FIGURE 25. The local and the global phase portraits of system (9) corresponding
to the region 7.

For the region r; we realize the following steps, see also Figure 25.

(i) According to Theorem 22 of the Appendix first we draw the separatrices in the Poincaré
disc and then we should draw an orbit in each canonical region. This determines com-
pletely the global phase portraits in the Poincaré disc.

(ii) We first draw the local phase portrait of the finite and infinite singular points in the
Poincaré disc, see Figure 25.

(iii) Next we study the o — — and the w — —limits of the separatrices.
20



(iv) Since in the region 7 does not exist any focus we have that no limit cycle exist for the
quadratic system (9), see Theorem 15.

(v) We should only study the separatrices of the point P; (saddle). The two unstable
separatrices can only reach the infinite stable node O2 or the finite stable node P_.
Additionally the w — —limit of thess two unstable separatrices cannot be the same
stable node, otherwise they should define a closed region and it should contain a stable
separatrix without its v — —limit.

(vi) Finally, we obtain the unique global phase portrait in Figure 25.

FIGURE 26. The local and the global phase portraits of systems (9) correspond-
ing to the region rs.

Next we describe the phase portrait of system (9) corresponding to the values of the param-
eters in the region 12, see Figure 26.

(i) In the finite region the stable separatrix of Q4 can only have as o — —limit the unstable
node Oj.

(ii) By similar arguments as in the region r; we have that the two unstable separatrices of
the point P; can only have as w — —limit the points Oy and P-_.

(iii) The unstable separatrix 7 of the infinite point @', in the finite region could have as
w — —limit the points P_, Py or Oy. Consider the straight line passing on the points @,
P_ and Q4. In the region ry the point P; is always upper this straight line. According
to Lemma 13 the vector field have opposite direction in the two half-lines @', P_ and
P_Q+. Additionally note that P; is always at the same side of the straight line in the
region rg. Therefore the w — —limit of v must be the point P_, see Figure 26(b).

(iv) The two stable separatrices of P; have the « — —limits at the points P and Q.

(v) Finally we obtain the unique global phase portrait in Figure 26(c).

In what follows we describe the phase portrait of system (9) corresponding to the region rs,
see Figure 27.

(i) Consider the straight line passing through the points Q4+, Py and Q’,. We distinguish
the following cases.

(i.1) The point P_ is below this straight line, see Figure 27(a). Then the direction of
the loop on the curve fo = 0 determines the direction of the vector field on this
line, see also Lemma 13. The separatrices of the points Py, Q4 and @', are as in
Figure 27(a).

(i.2) For a and b satisfying the equation h = 0 (see (10)) the point P_ belong to this
straight line and now the line is invariant for the vector field (9), see Figure 27(b).

(i.3) The point P_ is above this straight line. Then the direction of the vector field in the
segment Q' P is determined by the unstable node Oj see Figures 27(c),(d),(e1),
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Fi1GURE 27. The local and the global phase portraits corresponding to the region r3.

(e2). Also note that the unstable separatrix of the saddle @4 must be upper this
straight line, see also Lemma 13 (and also check the stable separatrix of the saddle
Q'.). For the same reason the unstable separatrices of the point Py must be as
they are shown in Figures 27(c),(d),(e1),(e2).

Now consider the straight line L passing through the points Q_, Py and Q.

(j1) The point P; can be upper this straight line L. Then, the unstable separatri-
ces of P; can only have w-limit the points O2 and P_. This determines the
direction of the vector field over the straight line L, see Figures 27(a),(b),(c).

(j2) For the values of the parameters a and b in the line 3(iv) (so a, b satisfying
the equation j; = 0, see (10)) the point P; belong to the straight line L and
so the line becomes invariant for the vector field (9), see Figure 27(d).

(js) The point P; can be below the straight line L. The unstable separatrices
determine the direction of the vector field on this line, see Figure 27(e;).
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(ii) In all the cases the unstable separatrices of the point P; can have as w — — limit only
the points O and P_.

(iii) In all the cases the stable separatrices of the point P; can only have as o — — limit the
points Py and Q’_.

(iv) Now consider the straight line L' passing through the points @, Py and @', . In general,
the point P; is above this straight line L. So in general, in the finite region the unstable
separatrix of the point @', must be bellow this straight line and therefore its w-limit
must be the point P_. However, for the values of the parameters a and b in the line
3(vii) (so a,b satisfying the equation j; = 0, see (10)) the point P; belongs to this
straight line L' and so becomes invariant, see Figure 27(e2).

(v) The local phase portrait (a) yields to the global phase portrait (f). The local phase
portrait (b) yields to the global phase portrait (g). The local phase portraits (¢),(d),(e1)
and (e2) yields to the same global phase portrait (h). We summarize: For the values
of the parameters in the regions 3(iii), 3(iv), 3(v), 3(vi) and (3vii) we obtain the global
phase portrait (h), see Figure 27.

FiGure 28. The local and the global phase portraits corresponding to the region ry.

Next we describe the phase portrait of system (9) corresponding to the the region 74, see
Figure 28.

(i) The unstable separatrices of the point P; can only have as w — — limit the points Oq
and P_.

(ii) Consider the straight line passing through the points Oa, P_ and Oj. Then the direction
of the loop on the curve fo = 0 determines the direction of the vector field on this line,

see also Lemma 13. Then the stable separatrices of P; can only have as o — — limit the
points Py and O}.
(iii) The unstable separatrices of Py have as w — — limit the points O2 and P-_.

(iv) Finally we obtain the unique global phase portrait in the region r4, see Figure 28.

Since by Lemma 19 system (9) have no limit cycles the phase portraits corresponding to the
regions r; for i = 5,6,7,8,9, 10 follow immediately from their local phase portraits, see Figures
29, 30, 31, 32, 33 and 34.

In what follows we study the phase portrait of system (9) corresponding to the region 711,
see Figure 35.

(i) We consider the straight line passing through the points P_ and Py. Note that the points
Q@+, Q— are under this straight line, and that the points Q’,, Q" are upper.

(i) The unstable separatrices of the points @', and P_ can only have as w — — limit the
point Os.
(iii) Then the unstable separatrix A of the point P, can only have as w — — limit the point

O2, see also Figure 35(b).
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S=15,R=4
F1GURE 30. The local and the global phase portraits corresponding to the region rg.

Qa2

F1GURE 31. The local and the global phase portraits corresponding to the region 7.

(iv) Consider the straight line passing through the points )4 and Py. Then the unstable

separatrix B of the point Py can only have as w — — limit the stable node @Q_, see also
Figure 35(c).
(v) The stable separatrix of the point @4 can only have as aw — — limit the point Py.

(vi) Finally we obtain the global phase portrait in the region r1;, see Figure 35(d).

The phase portraits corresponding to regions 12 and 713 follow using the same arguments as
the ones corresponding to the region r1; and are given in Figures 36 and 37 respectively.

Next we describe the phase portrait of system (9) corresponding to the region r4, see Figure
38.

(i) Consider the straight line passing through the points Py and P;. Note that Q4 and Q_
are situated in the opposite sides of this straight line.
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S=16, R=5

F1GURE 34. The local and the global phase portraits corresponding to the region r1g.

(ii) The unstable separatrices of the points Q4 and Q" can only have as w — — limit the
point P4.

(iii) The stable separatrices of the points @— and @', can only have as o — — limit the point
pP_.

(iv) Finally we obtain the global phase portrait in the region r14, see Figure 38.

The global phase portraits of system (9) in the regions 715 and 716 follow by similar arguments
as in the region r14 and are given in Figures 39 and 40.

Next we describe the phase portrait of system (9) corresponding to the region 7, see Figure
41.

(i) Consider the straight line passing through the points Q, Py and @', . In the finite region
the unstable separatrix v of the point (), must be over the straight line, otherwise it
must have as w — —limit one of the points O} or Q_. If the point Q_ is the w — —limit
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FicURE 35. The local and the global phase portraits corresponding to the region 1.

(i)

02“

F1GUurE 36. The local and the global phase portraits in the region rys.

of v then there is a closed path without a singular point in its interior, a contradiction.
If the w — —limit of 7 is the point O) then the stable separatrix of the point () cannot
have an a — —limit, a contradiction. So the direction of the vector field on the straight
line is determined, see Figure 41(a)). Additionally the w — —limit of ~ is the point Pj.
Moreover the stable separatrix of the point ¢, must be on the upper side of the straight
line.

Consider the straight line passing through the points Q' , Py and Q_. We distinguish
the following cases for the position of the point P; with respect to this line:

(ii.1) The point P; is below this straight line. The direction of the vector field on
this straight line is as in Figure 41(b), otherwise one of the unstable separatrices of the
point P; should have as w — — limit the point O}. This is a contradiction because then
the stable separatrix of the point @, should not have an « limit. Hence in this case the
global phase portrait is given in Figure 41(c).
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S=23,R=5

FicUrE 38. The local and the global phase portraits corresponding to the region 4.

S=24,R=5

FicURE 39. The local and the global phase portraits corresponding to the region rys.

(ii.2) The point P; belongs to this straight line and so the straight line is invariant
by the vector field (9). This happen when the parameters a and b satisfy equation
j1 = 0, see relation (10). Then the unstable separatrix of the point @’ can only have
as w — —limit the point P, see Figure 41(d). Then the global phase portrait is given in
Figure 41(e).

(ii.3) The point P; is upper this straight line. Then in the finite region the unstable
separatrix 7 of the point " must be below this straight line (see Figure 41(f)), otherwise
4 should have as w — —limit one of the points P, or Pj, see Figure 41(g). If P, is the
w — —limit of 4 then the unstable separatrices of P, must go to Py but then the stable
separatrix of P; has no o — —limit. So the correct direction of the vector field on the
mentioned straight line is the one of Figure 41(f). Now 4 cannot have as w — —limit the
point Q’,. So the only possible w — —limit of 4 is the point P_. Finally we obtain the
global phase portrait, see Figure 41(h).
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FIGURE 41. The local and the global phase portraits corresponding to the region r17.

Next we describe the phase portrait of system (9) corresponding to the region g, see Figure

42.
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FIGURE 42. The local and the global phase portraits corresponding to the region rig.

(i)

Consider the straight line passing through the points Q_, Py and Q' . Note that the
points P, P_ and P; in the region rig are always upper this straight line, see Figure
42(a). The direction of the closed loop of the curve fo = 0 determines the direction of
the vector field over this straight line, see Lemma 13. The unstable separatrix of the
point @’ is upper this straight line and only can have as w — — limit the point P_.
Additionally the stable separatrix of the point J_ is upper this straight line.

Now we prove that there is no connection between the separatrices of the saddles )+ and
Q_. If there is a conexion then in its interior should contain a singular point which must
be a focus or a center, and this is a contradiction because Pj is a node, see Theorems
15, 17 and Remark 16.

Consider the straight line passing through the points @1, Py and @’,. Note that the
points P_ and P, are always upper this straight line. We consider the following cases
for the point Pj: (iii.1) The point P; is upper this straight line, see Figure 42(a). Then,
the unstable separatrix « of () must be upper this straight line, otherwise either should
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(v)
(vi)

Now

43.

(i)

(iii)

(iv)

have O) as w — —limit, but then the stable separatrix of the point @_ could not have
an « — —limit, a contradiction; or v connects with the stable separatrix of QQ_, but as
in (ii) this is a contradiction. This determines the direction of the vector field over this
last straight line. Then « can only have as w — —limit the point P;. (iii.2) The point Py
belongs to this straight line, see Figure 42(b). Since this straight line is now invariant,
the unstable separatix of () belongs to this line and can only have as w——limit the point
Py. (iii.3) The point P; is below this straight line, see Figure 42(c). Then the unstable
separatrix v of the point ()4 can only be below this straight line. This determines the
direction of the vector field over this straight line. Then again the w — —limit of v is
the point P;.
We consider the straight line passing through the points Q_, P, and Q' . We note that
on the points of the curve h = 0 (see relation (10)) the point P_ belongs to the straight
line and system (9) has this straight line invariant. Now we distinguish three cases:

(iv.1) The point P_ is below this straight line. Then the unstable separatrices of the
point P, have as w — — limit the points P; and P_, see Figure 42(d).

(iv.2) The point P_ belongs to this straight line. Then the unstable separatrices of
the point P; have as w — — limit the points _— and P_, see Figure 42(e).

(iv.3) The point P_ is upper this straight line. Then the unstable separatrices of the
point P} have as w — — limit the points O} and P_, see Figure 42(f).
Py is the o — — limit of the unstable separatrice of the point @', see Figure 42(a).
Finally, we obtain the three global phase portraits in the region 715 see Figures 42(g),(h)
and (i).

we study the phase portrait of system (9) corresponding to the region r19, see Figure

Consider the straight line passing through the points @4, Py and @', see Figure 43. Note
that in the region 719 the points P_ and P, are always upper this straight line and the
point P is always below the straight line. In the finite region, the unstable separatrix
of the point Q4 is below the straight line, otherwise could not have an w — —limit. This
determines the direction of the vector field over the straight line. So the w — —limit of
v can only be the point P;. The point O} cannot be the w limit of v because in this
case a stable separatrix of Q_ would be without an o — —limit. Additionally there is
no connection between the separatrices of 4 and @ _, see Lemma 20.

Consider the straight line passing through the points Q_, Py and @', see Figure 43(c).
Note that the point P_ is upper the straight line. Then the direction of the closed
loop of the invariant curve fo = 0 determines the direction of the vector field over this
straight line. The unstable separatrix of . must be over the straight line and can only
have as w — —limit the point P-_.

Consider the straight line passing through the points @, Py and @', . For the values of
a and b that satisfy equation h = 0 (see relation (10)) system (9) has this straight line
invariant. Hence we distinguish three cases:

(iii.1) The point P_ is below the straight line. Then the unstable separatrices of the
point Py have as w — — limit the points P, and P-.

(iii.2) The point P_ is on the straight line. Then the unstable separatrices of the
point Py have as w — — limit the points @_ and P-. (iii.3) The point P_ is upper the
straight line. Then the unstable separatrices of the point P, can only have as w — —
limit the points O% and P-_.

Finally we obtain the three global phase portraits in the region r19 see Figures 43(a),(b)
and (c).

Next we describe the phase portrait of system (9) corresponding to the region rgg, see Figure
44.
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FIGURE 43. The local and the global phase portraits corresponding to the region r1g9.

S=24, R=5

FI1GURE 44. The local and the global phase portraits corresponding to the region rag.

(i) Consider the straight line passing through the points Q_, Py and @’ . Note that in the
region rog the point P_ is always upper the straight line. The direction of the closed
loop of the invariant curve fo = 0 determines the direction of the vector field on this
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straight line. The unstable separatrix of Q" is upper the straight line and can only have
as w — — limit the point P_. The stable separatrix of the point )_ is upper this straight
line.

(ii) Consider the straight line passing through the points Q4+, Py and @’,. Note that in the
region rop the points P, and P; are always below this straight line. The direction of the
closed loop of the invariant curve fo = 0 determines the direction of the vector field on
this straight line. The stable separatrix of the point @, is below the straight line and
can only have as « — —limit the point P,.

(iii) By Lemma 20 we have that there is no connection between the separatrices of @
and Q_. Consider the unstable separatrix v of Q4. Then ~ cannot have O} as w — —
limit because then the stable separatrix of (J_ will not have an o — —limit. Hence the
w — —limit of v can only be the point P;.

(iv) Finally we obtain the global phase portrait in the region ryg, see Figure 44.

S=24,R=5
F1GURE 45. The local and the global phase portraits corresponding to the region ro;.

In what follows we present the phase portrait of system (9) corresponding to the the region
ro1, see Figure 45.

(i) Consider the straight line passing through the points Q, Py and Q’,. Then in the region

ro1 the points P; and P, are always below this straight line. The stable separatrix of
" can only have as a — — limit the point Py.

(ii) Consider also the straight line passing through the points @Q_, Py and Q. Then in
the region 791 the points P_ and P; are always upper this straight line. The unstable
separatrix v of @’ can have as w — — limit the point P_.

(iii) The unstable separatrix 4 of Q4 cannot have as w — — limit the point Q)_ because of
Theorem 15. If 4 has as w — — limit the point O then in the finite region a stable
separatrix of () would be without an o — — limit. Therefore the only possibility that
remains is that 4 has as w — — limit the point P;.

(iv) In the finite region the stable separatrix of )_ must have as a — — limit the point Os.

(v) Finally we obtain the global phase portrait in the region ra1, see Figure 45.

3.2. Phase portraits on the lines. The bifurcation curves define 31 lines, see Figure 46. In
this section we are going to present the phase portraits of system (9) in each line.

We should provide the details for obtaining the phase portraits on the lines Lg, Lo, L11, L2,
Loy and Los. Since the arguments used in the study of the phase portraits corresponding to
these lines are the same for studying the remaining lines we only provide their phase portraits
in the corresponding figures.

First we explain the phase portrait on the line Lg, see Figure 54. By Lemma 20 there is no
connection between the separatrices of the points Q1 and Q3. Note that the unstable separatrix
of the point @1 cannot have as w — — limit the point O). In the opposite case using the
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=0

N 4

FIGURE 46. ¢ =1,a > 0. The bifurcation curves define 31 lines. It is a qualita-
tive picture.

FIGURE 47. The local and the global phase portraits corresponding to the line L;.

continuity we should have a connection between the separatrices of the saddles. Hence, the
unstable separatrix of the point )1 must have as w — — limit the point P;. So on the line Lg
we obtain a unique global phase portrait, see Figure 54.

For the line Lg note that there is no connection between the separatrices of the saddles Q1
and Q. If there is a conexion then in its interior should contain a singular point which must
be a focus or a center, and this is a contradiction because P; is a node, see Theorems 15 and

33



F1cUurE 50. The local and the global phase portraits corresponding to the line Ly4.

17. Now we apply similar arguments as the ones for studying the phase portrait on the line Lg
and we obtain the unique global phase portrait on the line Lg given in Figure 55.

Now we will describe the phase portrait on the line L1, see Figure 57.

(i) For a > 4/5 the point P_ is below the straight line passing through the points Q,Py
and @', see Figure 57, L11(7).

(ii) The straight line passing through the points @, Py and @' becomes invariant for a =
44/5. In this case the point P_ belong to this line, see Figure 57, Lq1(i7).

(iii) For 4 < a < 4v/5 the point P_ is upper the straight line passing through the points
Q,P; and Q', see Figure 57, Lq1(ii1).

(iv) Consider the straight line passing through the points Py, @ and Q'. For a > 4 the
point P is upper this straight line, see Figure 57, L11(7), L11 (%), L11(i9t). For a = 4 this
straight line becomes invariant. In this case the point P; belong to this line, see Figure
57, L11(iv). For a < 4 the point P; is below this straight line, see Figure 57, L11(v).
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FIGURE 53. The local and the global phase portraits corresponding to the line L.

For the line L1 we consider the straight line passing through the points @, P, and Q’. Note
that the unstable separatrix of the point ' determines the direction of the vector field on this
line. The unique global phase portrait is given in Figure 58.

Now we are going to explain the phase portrait on the line Loy see Figure 70. Note that there
is no connection between the separatrices of the saddles Q1 and ()2 because the point P; is a
node, see Theorems 15, 17 and Remark 16.

Now consider the straight line passing through the points Q2, P+ and Q). There are three
possibilities:

(i) The point P is bellow the straight line. Then the unstable separatrix of @), must be
bellow the straight line, otherwise cannot have an w-limit. This determines the direction
of the vector field on the line and we obtain the global phase portrait Loy;.
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F1GURE 56. The local and the global phase portraits corresponding to the line Lig.

(ii) The point P_ belongs to the straight line and the line is invariant. Then we obtain the
global phase portrait Logs;.

(iii) The point P_ is upper the straight line. Then the direction of the loop of the curve
fo = 0 determines the direction of this straight line. Then we obtain the global phase
portrait L24iii-

Now we are going to explain the phase portrait on the line Los, see Figure 71. If there is a
connection between the separatrices of the points )1 and ()2 then they form a heteroclinic loop
that must contain the node, a contradiction, see Theorems 15, 17 and also Remark 16. Hence
the unstable separatrix of the point )7 must have as w — — limit the point P;.

Note that the unstable separatrix of the point ()1 cannot have as w — — limit the point Oj.
In the opposite case using the continuity we should have a connection between the separatrices
of the saddles. So on the line Los we obtain a unique global phase portrait, see Figure 71.
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3.3. Phase portraits on the intersection points. The bifurcation curves intersect into 11
points, see Figure 78. The intersection points are described in what follows, see also Figure 78.

pr={9a=0,1=0} = (12+8v2, 12+8V2),

8 8
D2 {94 » g7 } 9°9
—68 + 878 —68 + 878
p3:{g4:0796:0}: ) 5
3 3
4 4
ps={92=0,93 =0} = 5,5>,
ps={92a=0,91 =0} = (12-8v2, 12-8V2),

2 2
pﬁf{g4*0792*0}7 <37 3>a

. . 4 \/(37 + 9v/318)1/3(2(37 + 9v/318)2/3 — (37 + 9/318)1/3 — 58)
rr=191=09s=0}= |3 (37 + 9v/318)(1/3) ’
2/3 1/3 1/3
2 (37 +9v318)""" — (37 +9v/318) "~ — 58 L2
27 37+ 9v/318 3]
\/5\/\3/13 +16v2((13+16v2)™" - V13+16v2 - 7)
p82{912079720}: 2 )
V13 4+ 162
(13+16v2)"° = Y13+16v2-7 2
1/3 . +3 ]
134+ 162
P
P9={g2797}: 3\[ )
= (g2.00) = ws 2
P10 =192,965 = 13 ) 3
8 68
p11 =1{95,96} = 6?? g\ﬁ _3_‘ﬁ)

We present the phase portraits in each of these intersection points in Figures 79, 80 and 81.

4. TOPOLOGICAL CLASSIFICATION OF THE GLOBAL PHASE PORTRAITS

Proof of Theorem 1. In what follows we denote by S the number of separatrices and by R the
number of the canonical regions. In order to present the topological classification of all global
phase portraits of system (2) we apply Theorem 22 of the Appendix due to Markus, Neumann
and Peixoto, see [32, 33, 34] and the notion of separatrix configuration that appears there.
We recall that two global phase portrait are not topological equivalent when does not exist a
homeomorphism to bring the separatrix configuration of one to the separatrix configuration of
the other, see again Theorem 22.

For a = ¢ = 0 system (2) becomes system (3) and there is the global phase portrait Cy with
S=17and R =4.

Now for a = 0 and ¢ # 0 system (2) becomes system (4) and we obtain the following phase
portraits

S | R | Phase portraits
19| 6 | Cy
2315 | Cq,C8

9 13|Cy

12| 5 | Cs

16 | 5 | Cg
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Note that the phase portrait C; is not topological equivalent to the phase portrait C's because
their separatrix configurations are not homeomorphic.

Now we consider the case where a # 0. Because of the symmetry (5) of system (2) we can
restrict our study to a > 0. First we consider the case where ¢ = 0. So we work with system (6)
and we obtain

S | R | Phase portraits
16 | 5 | A;
22| 5| A
20| 5 | As
21| 4 | Ay
22| 5 | As

Note that the phase portrait As is not topological equivalent to the phase portrait As because
their separatrix configurations are not homeomorphic. For the same reason the phase portrait
of A; is not topologically equivalent to the phase portrait Cg, or simply A; # Cg.

S | R | Phase portraits

913 |ps=r7,Cy

10| 3 | p2

12| 5 | Cs

13| 4 | p3 = L3 = Ly= Lo, L15

13| 5 | Ly = Loy

14| 5 | Lo, Lyg

15| 4 s =T — L20

155 rg

16 | 5 r9 = 7110 = L21,T1 = Cﬁ,T’4, A1
16 | 6 D6

17 4 | Cy

17| 6 P9

18 | 5 | Laui, L31ii

18| 6 | Log

19 | 6 | L3o = Lag, L314ii, C2, L7, p10
19| 7 D5

20 | 5 | As

20 7 | p1,ps

21| 4 | Ay

21| 5 | Ly

21| 6 | Litjv, L114s

21| 7 | L1g

22| 5 | pu1 = Lg = Lo, L19, L1s, A2, 45
22 | 7 | pr = Li2 = L3, L114, L11isi = L11v, L2, Lo
23 | 4 | r18ii = 194 = Loddi, 170

23| 5 Cl, 03, T14

23| 7 | Lg

24 | 5 | Log = 115 = 716, "1740i = 718 = T19i = L24i, T18iii = T19iii> 720 = Loaiii = Los = 121,717
24 | 7 | Ly, Ly7

25 6 7344, L22

251 7 | 3

26 | 7 | T2, 73400, T30, T11 = T12

Case S =9 and R = 3. Then py = r7 and psy # C4 because in Cy in the interior of the loop of
the curve fo = 0 we have a center whereas in p4 we have a focus.

Case S =13 and R = 4. We have pP3 = L3 = L4 = L26, L15 75 L26.
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Case S =13 and R = 5. We have Loy = Ls.

Case S =14 and R =5. Ly # Lqs.

Case S = 16 and R = 5. We obtain rg = r1g = Lo1,Cg = 11, 19 £ 171 19 # 14,79 7 A1 T4 F# T1,
Ay # 1y, Ay # ra.

Case S = 18 and R = 5 There are two phase potraits L3i; # L314;.

Case S =19 and R = 5. We have p1g # C1.

Case S = 19 and R = 6 We have Lag = L3o, Lag # L314i, Log # Ca, Log # Co, Log # L7,
Lag # p1o, L3viii # C2, Ls1ii # L7, Lsiii # pro, C2 # L7, Ca # p1o, L7 # pro-

Case S = 20 and R = 7 The two phase portraits are p; # ps.

Case S = 21 and R = 6. We have two different phase portraits L1, 7# L114;-

Case S = 22 and R = 5. We have Lg = Lg = pll,Lg 7£ ng,Lg 7& ng, Lg 75 AQ,Lg 7& A5,
Lig # L1, L1g # Aa, L1g # As, Ay # L1g, A5 # L1g, A5 # As.

Case R =22 and S = 7. We have L1y = L13 = p7, L11iii = L11v, L11i # L1vii, L1 # Lo,
L11; # L1o, L11iii # L1o, L11iii # L2, L12 # Lo.

Case S =23 and R =4. We have T18i: — 11945 — L24ii, 71841 75 T174¢-

Case S =23 and R = 5. We have Cy # C3,Cy # 1r14,C3 # 114.

Case R = 24 and S = 5. We have Lo3 = 715 = T16, T175ii = T18i = T19i = Lo24i, T18iii = T19iii>
ro0 = Losiis = Las = 721, 715 # T18is T15 # T18iiis T15 7 7205 T15 7 T17i 718 7 T18iii»T18i 7
790, T'18i 7 T'17i, T18iii 7 720, T18iii 7 T17is T17i 7 T20-

Case R=24 and S =7. We have L1 # Lq5.

Case S = 25 and R = 6. We have r3;; # Los.

Case S = 26 and R = 7 We have 111 = 7112, 2 # 73i,72 7# T3iiis T2 7 712,730 7 T3iiis T3 7
T12, T3iii 7 T12-

In summary, we can compute 65 different topological phase portraits in the Poincaré disc for
the quadratic systems (2). This completes the proof of the theorem. O

5. APPENDIX

This appendix has two subsections.

5.1. Poincaré compactification. We consider the polynomial differential system (1) of degree
m and its corresponding vector field X. In order to plot the global phase portrait of system
(1) we need to control the orbits that come or escape at infinity. For doing this control we
consider the Poincaré compactification of system (1). For more details on this compactification
see Chapter 5 of [20].

Let R? be the plane in R? defined by (y1,%2,y3) = (21, 2,1). We define the Poincaré sphere
S? = {y = (y1,92,y3) € R®: vy + 33 + y3 = 1} and we denote by T(()’O’l)SQ the tangent space
to S at the point (0,0,1) (see [35]). We consider the central projection f : Tjg1) : R? — S2.
Note that f defines two copies of X', one in the northern hemisphere {y € S? : y3 > 0} and
the other in the southern hemisphere. Let X =D f o X and note that X is defined on S?
except on its equator S'. Then the points at infinity of R? are in bijective correspondence with
St = {y € S? : y3 = 0}, ( the equator of S?). Hence S is identified to be the infinity of R2,
Then the Poincaré compactified vector field p(X) of X will be analytic vector field induced on

S? as follows. If we multiply X by the factor y3", the vector field ygn)g defined in the whole S2.
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Note that on S\ S! there are two symmetric copies of X'. Hence the behavior of p(X) around
S! gives the behavior of X near the infinity. The Poincaré disc ) is the projection of the closed
northern hemisphere of S? on y3 = 0 under (y1,y2,y3) — (y1,%2). Moreover, S! is invariant
under the flow of p(X).

Two polynomial vector fields X and ) on R? are topologically equivalent if there exists a
homeomorphism on S? preserving the infinity S' carrying orbits of the flow induced by p(X)
into orbits of the flow induced by p()). Note that the homeomorphism should preserve or
reverse simultaneously the sense of all orbits of the two compactified vector fields p(X) and
p(Y).

Since S? is a differentiable manifold we can consider the six local charts U; = {y € S? : y; > 0},
and V; = {y € S : y; < 0} for i = 1,2,3 with the diffeomorphisms F; : V; — R? and
G; : V; — R?, which are the inverses of the central projections from the planes tangent at the
points (1,0,0), (—1,0,0), (0, 1,0), (0,—1,0),(0,0,1) and (0,0, —1), respectively. Let z = (z1, z2)
be the value of F;(y) or G;(y) for any i = 1,2, 3. Then the expressions of the compactified vector

field ,p(X') of X are
1
) _22P<721>> in U17
Z2 22

)
m z1 1 z1 1 z1 1 .
25" A(z) (P<22’22> —21Q<Z—2,Z—2), —22Q<22722>> in Us,
A(2)(P(z1,22),Q(21,22))  in Us,

where A(z) = (22 + 23 + 1)‘%_ The expressions of the vector field p(X) in the local chart
V; is the same as in the chart U; multiplying by the factor (—1)™~!. In these coordinates zy = 0
denotes the points of S'. We omit the factor A(z) by rescaling the vector field p(X'), and so we
obtain a polynomial vector field in each local chart. The infinity S! is invariant with p(X).

5.2. Separatrix configuration. Let p(X’) be the Poincaré compactification in S? of a polyno-
mial vector field X in R?.

We consider the definition of parallel flows given by Markus [32] and Neumann in [33]. Let
¢ be a C* local flow on the two dimensional manifold R? or R? \ {0}. The flow (M, ¢) is C*
parallel if it is C¥-equivalent to one of the following ones:

strip: (R?, ¢) with the flow ¢ defined by & = 1,9 = 0; .
annular: (R?\ {0}, ) with the flow ¢ defined (in polar coordinates) by 7 = 0,60 = 1;
spiral: (R?\ {0}, ¢) with the flow ¢ defined by # = 1,6 = 1.

The separatrices of the vector field p(X') in the Poincaré disc D are

(i) all the orbits of p(X) which are in the boundary S' of the Poincaré disc (recall that S*
is the infinity of R?);
(ii) all the finite singular points of p(X);
(iii) all the limit cycles of p(X); and
(iv) all the separatrices of the hyperbolic sectors of the finite and infinite singular points of
p(X).

We denote by ¥ the union of all separatrices of the flow (D, ¢) defined by the compactified
vector field p(&X) in the Poincaré disc D. Then X is a closed invariant subset of D. Every
connected component of D\ 3, with the restricted flow, is called a canonical region of ¢.

For a proof of the following result see [27] and [33].
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Theorem 21. Let ¢ be a C¥ flow in the Poincaré disc with finitely many separatrices, and let
> be the union of all its separatrices. Then the flow restricted to every canonical region is C¥
parallel.

The separatriz configuration 3. of a flow (D, ¢) is the union of all the separatrices 3 of the
flow together with an orbit belonging to each canonical region. The separatrix configuration X,
of the flow (D, ¢) is said to be topologically equivalent to the separatrix configuration 3. of the
flow (D, ¢~)) if there exists a homeomorphism from .. to ¥, which transforms orbits of X, into
orbits of ¥, and orbits of ¥ into orbits of .

Theorem 22. Let (D,¢) and (D, @) be two compactified Poincaré flows with finitely many
separatrices coming from two polynomial vector fields (1). Then they are topologically equivalent
if and only if their separatriz configurations are topologically quivalent.

For a proof of Theorem 22 see [32, 33, 34].

In sort, in order to classify the phase portraits in the Poincaré disc of a planar polynomial
differential system having finitely many separatrices, it is enough to describe their separatrix
configuration.

ACKNOWLEDGMENTS

J. Llibre is partially supported by the Agencia de Gestié d’Ajuts Universitaris i de Re-
cerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE-2017-
777911. J. Llibre and C. Pantazi are also supported by the Ministerio de Ciencia, Innovacion y
Universidades, Agencia Estatal de Investigacién grant MTM2016-77278-P (FEDER). C. Pan-
tazi is additionally partially supported by the Catalan Grant 2017SGR1049 and the Spanish
MINECO-FEDER Grant PGC2018-098676-B-100/AEI/FEDER/UE.

REFERENCES

[1] J.C. Artés, R.E. Kooij and J. Llibre, Structurally stable quadratic vector fields, Mem. Amer. Math. Soc.
134 (1998), 108 pp.

[2] J.C. Artés and J. Llibre, Hamiltonian quadratic systems, J. Diff. Eqns. 107 (1994), 80-95.

[3] J.C. Artés and J. Llibre, Phase portraits for quadratic systems having a focus and one antisaddle, Rocky
Mount.J. Math. 24 (1994), 875-889.

[4] J.C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe, Geometric configurations of singularities of planar
polynomial differential systems, to appear in Birkh&user, 2020.

[5] J.C. Artés, J. Llibre and N. Vulpe, Quadratic systems with a rational first integral of degree two: a complete
classification in the coefficient space R*?, Rend. Circ. Mat. di Palermo 56 (2007), 417-444.

[6] J.C. Artés, J. Llibre and N. Vulpe, Quadratic systems with a rational first integral of degree three: a complete
classification in the coefficient space R*?, Rend. Circ. Mat. di Palermo 59 (2010), 419-449.

[7] J.C. Artés, J. Llibre and N. Vulpe, Quadratic systems with a polynomial first integral: A complete classifi-
cation in the coefficient space R'?, J. Diff. Eqns. 246 (2009), 3535-3558.

[8] J.C. Artés, A.C. Rezende and R.D.S. Oliveira, Global phase portraits of quadratic polynomial differential
systems with a semi—elemental triple node, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 23 (2013), no. 8,
1350140, 21 pp.

9] A. N. Berlinskil, On the behavior of the integral curves of a differential equation, (Russian). Izv. Vyss.
Ucebn. Zaved. Matematika, (1960), 15, 3—18.

[10] A.N. Berlinskii, Qualitative study of the differential equation @ = z + boz?® + bizy + bay®, ¥ = y + aoz?® +
arzy + azy® J. Diff. Eqns, (1966), 2, 174-178.

[11] R. Bix, Conics and cubics. A concrete introduction to algebraic curves, Second Edition, Undergraduate
Texts in Math., Springer, 2006

[12] L. Cair6 and J. Llibre, Phase portraits of planar semi—homogeneous vector fields, Nonlinear Analisis, Th.
Meth. & App. (1997) 29, 783-811.

[13] F. Chen, C. Li, J. Llibre and Z. Zhang, A uniform proof on the weak Hilbert’s 16th problem for n = 2, J.
Diff. Eqns. 221 (2006), 309-342.

[14] W.A. Coppel, A survey of quadratic systems, J. Diff. Eqns. 2 (1966), 293-304.

41



[15] S.-N. Chow, C. Li and Y. Yi, The cyclicity of period annulus of degenerate quadratic Hamiltonian system
with elliptic segment loop, Erg. Th. & Dyn. Syst. 22 (2002), 1233-1261.

[16] B. Coll, A. Gasull and J. Llibre, Some theorems on the existence, uniqueness and nonexistence of limit
cycles for quadratic systems, J. Diff. Eqns. 67 (1987), 372-399.

[17] B. Coll, C. Li and R. Prohence, Quadratic perturbations of a class of quadratic reversible systems with two
centers, Disc. & Contin. Dyn. Sys. 24 (2009), 699-729.

[18] R.J. Dickson and L.M. Perko, Bounded quadratic systems in the plane, J. Diff Eqns. 6 (1970), 251-273.

[19] F. Dumortier and C. Li, Quadratic Lienard equations with quadratic damping, J. Diff. Eqns. 139 (1997),

41-59.

0] F. Dumortier, J. Llibre and J. C. Artés, Qualitative theory of planar polynomial systems, Springer, 2006.

1] A. Gasull, S. Li-Ren and J. Llibre, Chordal quadratic systems, Rocky Mount. J. Math. 16 (1986), 751-782.

2] A. Gasull and J. Llibre, On the nonsingular quadratic differential equations in the plane, Proc. Amer. Math.

Soc. 104 (1988), 793-794.

[23] L. Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case, Invent. Math. 143 (2001), 449-497.

[24] L. Gavrilov and 1. D. Iliev, Second order analysis in polynomially perturbed reversible quadratic Hamiltonian
systems, Erg. Th. & Dyn. Syst. 20 (2000), 1671-1686.

[25] D.D. Hua, L. Cairo, M.R. Feix, K.S. Govinder and P.G.L. Leach, Connection between the existence of first
integrals and the Painlevé property in two-dimensional Lotka-Volterra and quadratic systems, Proc. Roy.
Soc. London 452 (1996), 859-880.

[26] M. Han and C. Yang, On the cyclicity of a 2-polycycle for quadratic systems, Chaos, Solitons Fract. 23
(2005), 1787-1794.

[27] W. L1, J. LLIBRE, M. NICOLAU AND X. ZHANG, On the differentiability of first integrals of two dimensional
flows, Proc. Amer. Math. Soc. 130 (2002), 2079-2088.

[28] J. Llibre, J.S. Pérez del Rio and J.A. Rodriguez, Phase portraits of a new class of integrable quadratic
vector fields, Dyn. Cont. Disc. Impulsive Syst. 7 (2000), 595-616.

[29] C. Liand J. Llibre, A unified study on the cyclicity of period annulus of the reversible quadratic Hamiltonian
systems, J. Dyn. and Diff. Eqns. 16 (2004), 271-295.

[30] C. Li and Z. Zhang, Remarks on 16th weak Hilbert problem for n=2, Nonlinearity 15, (2002), 1975-1992.

[31] V.A. Lunkevich and K.S. Sibirskii, Integrals of a general quadratic differential system in cases of a center,
Diff. Eqns. 18 (1982), 563-568.

[32] L. Markus, Global structure of ordinary differential equations in the plane, Trans. Amer. Math Soc. 76
(1954), 127-148.

[33] D.A. Neumann, Classification of continuous flows on 2-manifolds, Proc. Amer. Math. Soc. 48 (1975),
73-81.

[34] M.M. Peixoto, Dynamical Systems. Proccedings of a Symposium held at the University of Bahia, 389-420,
Acad. Press, New York, 1973.

[35] H. Poincaré, Sur lintégration des équations différentielles du premier ordre et du premier degré I, Rend.
Circ. Mat. di Palermo 5 (1891), 161-191.

[36] H. Poincaré, Sur les courbes définies par une équation différentielle, Oevres compltes, Vol.1, 1928.

[37] J.W. Reyn, A bibliography of the qualitative theory of quadratic systems of differential equations in the
plane, Third edition. Delft University of Technology, Report 94-02, 1994.

[38] I.G. Roset, Nonlocal bifurcation of limit cycles and quadratic differential equations in the plane (Russian),
Dissertation Kand. Phys. Mat. Samarkand University, 1991.

[39] R. Roussarie and D. Schlomiuk, On the geometric structure of the class of planar quadratic differential
systems, Qual. Th. of Dyn. Syst. 3 (2002), 93-121.

[40] D. Schlomiuk and N. Vulpe, Geometry of quadratic differential systems in the neighborhood of infinity, J.
Diff. Eqns. 215 (2005), 357-400.

[41] A. Schlomiuk and N. Vulpe, Integrals and phase portraits of planar quadratic differential systems with
invariant lines of at least five total multiplicity, Rocky Mountain J. Math. 38 (2008), 1887-2104.

[42] N.I. Vulpe, Affine-invariant conditions for the topological discrimination of quadratic systems with a center,
J. Diff. Eqns. 19 (1983), 273-280.

[43] Ye, Yan Qian; Cai, Sui Lin; Chen, Lan Sun; Huang, Ke Cheng; Luo, Ding Jun; Ma, Zhi En; Wang, Er Nian;
Wang, Ming Shu and Yang, Xin., A Theory of limit cycles, Translated from the Chinese by Chi Y. Lo.
Second edition. Translations of Mathematical Monographs. 66. Amer. Math. Soc., Providence, RI, 1986.

[44] P. Zhang, On the distribution and number of limit cycles for quadratic systems with two foci, Qual. Theory
Dyn. Syst. 3 (2002), 437-463.

[45] H. Zotadek, The cyclicity of triangles and lines in quadratic systems, J. Diff. Eqns. 122 (1995), 137-159.

! DEPARTAMENT DE MATEMATIQUES, UNIVERSITAT AUTONOMA DE BARCELONA, Eprrict C, 08193 BEL-
LATERRA, BARCELONA, CATALONIA, SPAIN

Email address: jllibre@mat.uab.cat
42



2 DEPARTAMENT DE MATEMATIQUES, UNIVERSITAT POLITECNICA DE CATALUNYA, (EPSEB), Av. DOCTOR
MARANON, 44-50, 08028 BARCELONA, SPAIN

Email address: chara.pantazi@upc.edu

43



L11Gv)

F1GURE 57. The local and the global phase portraits corresponding to the line L;.



F1GURE 59. The local and the global phase portraits corresponding to the line L;3.

F1GURE 61. The local and the global phase portraits corresponding to the line L;5.
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FIGURE 64. The local and the global phase portraits corresponding to the line Lg.

S=22, R=5

FIGURE 65. The local and the global phase portraits corresponding to the line Lig.
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FiGURE 66. The local and the global phase portraits on the line Lgyg.

F1GURE 67. The local and the global phase portraits on the line Lo;.

S=24,R=5

F1GURE 69. The local and the global phase portraits on the line Las.

47



S=23,R=4

24((ii)

S=24. R=5

FiGure 71. The local and the global phase portraits on the line Las.

FiGUurE 72. The local and the global phase portraits on the line Log.
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FI1GURE 74. The local and the global phase portraits on the line Log.

Q> RN "lll““‘]‘||||||||||ii9

S=19, R=6

FiGURE 76. The local and the global phase portraits on the line Lsp.
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S=19, R=6

FiGURE 77. The local and the global phase portraits on the line Ls;.
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FIGURE 78. ¢ =1,a > 0. The bifurcation curves intersect into 1144 points. It
is a qualitative picture.

S=10,R=3 S=13,R=4

FIGURE 79. The phase portraits in the points p1, po and ps.
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S=19, R=6 S=22,R=5

FIGURE 81. The phase portraits in the points p10 and p1;.
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