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A B S T R A C T   

Two human proteins involved in the inflammatory cell death, namely Gasdermin D (GSDMD) and the Mixed 
Lineage Kinase Domain-Like (MLKL) protein have been engineered to accommodate an efficient ligand of the 
tumoral cell marker CXCR4, and a set of additional peptide agents that allow their spontaneous self-assembling. 
Upon production in bacterial cells and further purification, both proteins organized as stable nanoparticles of 46 
and 54 nm respectively, that show, in this form, a moderate but dose-dependent cytotoxicity in cell culture. In 
vivo, and when administered in mouse models of colorectal cancer through repeated doses, the nanoscale forms 
of tumor-targeted GSDMD and, at a lesser extent, of MLKL promoted CD8+ and CD20+ lymphocyte infiltration in 
the tumor and an important reduction of tumor size, in absence of systemic toxicity. The potential of these novel 
pharmacological agents as anticancer drugs is discussed in the context of synergistic approaches to more effective 
cancer treatments.   

1. Introduction 

Despite many innovative therapeutic initiatives, cancer therapies are 
still largely supported by low molecular weight cytotoxic agents [1–3] 
that, upon primary tumor resection, are administered systemically to 
prevent or delay tumor relapse and metastasis. Being untargeted, the 
systemic toxicity and severe side effects linked to chemotherapies [3] 
push to develop new drug delivery approaches, that being highly se-
lective for target cells, could enhance the local cytotoxic effect and 
reduce undesired off-target toxicities. Selectivity in drug delivery for 
cancer was initially based on plain nanoscale carriers [4–6], designed to 
exploit the enhanced retention and permeability (EPR) effect through 
the so-called passive targeting [7–10]. In a step further, several 

categories of materials have been engineered in form of nanoparticles to 
be loaded with a payload drug, and functionalized with tumor-homing 
peptides for active and very precise receptor-mediated targeting 
through the interaction with cell-surface tumor markers [11–13]. Such 
strategies, even though being conceptually promising, have not been 
generically successful [14], as only around 1% of the systemically 
administered drug dose reaches the tumor [15]. In part, such failure is 
attributed to the protein corona, which dramatically reduces the inter-
activity of the targeting ligands displayed on the surface of carrier 
nanoparticles [16–18]. On the other hand, immunotoxins and 
antibody-drug conjugates, even reaching the clinics, also fail to produce 
generically good therapeutic outcomes because of a low uptake in can-
cer tissues [19] and systemic toxicity due to high accumulation and 
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metabolism in the liver. In this context, some of such approved drugs 
have been discontinued [20]. 

Among the materials tested for cancer nanomedicines, oligomeric 
protein complexes at the nanoscale result from either spontaneous or 
ion-assisted self-assembling [21–26]. These materials benefit from the 
robust, scalable and repetitive procedures for recombinant protein 
production that have been developed during the last 40 years and that 
sustain the protein drug industry [27,28]. The multiple and geometri-
cally regular presentation of the homing peptides or other functional 
protein domains, in a virus-like fashion [29,30], favors cell receptor 
binding and internalization what in turn allows a high local concen-
tration of the payload. Also, the interactivity of these protein-based 
particles with tumor cells is not shadowed by any protein corona. The 
formation of protein coronas around protein nanomaterials has not been 
observed [31], since protein-protein contacts are exquisitely specific 
[32,33]. Finally, proteins allow, by recruitment of multiple biologically 
active domains [34], the construction of nanoparticles that are intrin-
sically multi-functional (e.g. a tumor homing peptide, a cytotoxic 
domain and a self-assembling tag in the same polypeptide), thus 
achieving the rising nanomedical concept of self-assembled, self--
delivered, cell-targeted nanoscale drugs [35] that do not require any 
driving, non-drug material as vehicle [36]. 

Under this concept, we have recently generated tumor-targeted 
nanoparticles based on plant [37] or microbial toxins [38], 
pro-apoptotic factors [39] or venoms [40]. Being intrinsically cytotoxic, 
these materials were aimed to tumor reduction and/or metastatic con-
trol. When administering tumor-targeted microbial toxins (namely a 
modified Pseudomonas aeruginosa exotoxin and the diphtheria toxin) to 
different animal models of human cancers, pyroptotic routes were un-
expectedly involved [41,42], and an important and clinically promising 
tumor remission was observed [41,42]. Being both pyroptosis and nec-
roptosis inflammatory forms of cell death [43], promoting those routes 
in cancer cells has been recently proposed as a novel and interesting 
therapeutic approach [44–46]. Then, proteins that are directly involved 
in inflammatory cell death cascades might be of great interest as anti-
cancer drugs. In this context, and by exploiting the versatility in the 
design and engineering of multidomain proteins, we have designed, 
produced and functionally characterized two type of protein nano-
particles targeted to the tumoral marker CXCR4. They are based on 
Gasdermin D (GSDMD) and on the Mixed Lineage Kinase Domain-Like 
(MLKL) proteins, which are essential agents in the pyroptotic and nec-
roptotic cascades, respectively [47,48]. The results presented here 
demonstrate an antitumor effect and a clinical potential of these in-
flammatory proteins formulated as self-assembling, tumor-targeted 
multimeric nanoparticles. 

2. Materials and methods 

2.1. Protein design, production and purification 

The synthetic genes encoding the modular proteins T22-GSDMDmut- 
S19-H6 and T22-MLKLmut-S19-H6 were designed in house and pro-
vided by GeneArt (Thermo Fisher), as subcloned in a pET22b plasmid 
(Novagen). T22-GSDMDmut-S19-H6 contains a mutation (L290D) in the 
GSDMD scaffold that prevents the C-terminal auto-inhibition of the N- 
terminal effector domain [49]. T22-MLKLmut-S19-H6 carries phos-
phomimetic mutations (T357E and S358D) in the MLKL scaffold to 
bypass RIPK3 activation [50]. Both constructions also contain the S19 
peptide, which stimulates the intracellular delivery [51]. The N-termi-
nal peptide T22, is a polyphemusin II derivative [52] initially adapted as 
a blocker of the human immunodeficiency virus (HIV) infection [53], as 
it specifically binds the cytokine receptor CXCR4 [54]. Incorporated to 
protein nanoparticles and imaging agents, T22 promotes their highly 
selective binding and penetration in vitro into CXCR4+ cultured cells 
[55] and in vivo, in CXCR4+ tumoral cells, with a highly precise tumor 
biodistribution [56–59]. 

The production of both constructs was preliminary assayed at 16 ºC 
(overnight), 20 ºC (overnight) and 37ºC (3 h). As in all the tested con-
ditions the only detected product occurred in the insoluble cell fraction, 
the proteins were finally produced at 37ºC for three hours to maximize 
protein yield and recovery from aggregates. For harvesting, bacterial 
cultures were centrifuged at 5000 g for 15 min and the pellets washed 
with PBS and stored at − 80ºC until use. Cell disruption was performed 
by sonication (40% amplitude, 8 min, 1 s ON, 4 s OFF) in a 20% sucrose, 
20 mM Tris-HCl buffer. After the centrifugation (15,000 g, 45 min), the 
supernatants were discarded and pellets washed with PBS (15,000 g, 15 
min). Then, the pellets were weighted and 40 mM Tris-HCl, 0.2% N- 
Lauroyl Sarcosine were added to 50 mL/g. These mixtures were left 
overnight in agitation. The next day, samples were centrifuged (15,000 
g, 45 min), pellets discarded and supernatants kept for further use. 

Protein purification was done by immobilized metal affinity chro-
matography (IMAC). Before such step, the solubilized product was dia-
lyzed against 20 mM Tris-HCl, 500 mM NaCl, pH 8.0, in two rounds of 
two hours and one additional overnight round. The soluble protein was 
recovered and charged in a HisTrap HP 5 mL column (GE Healthcare). 
Elution from the columns was achieved by a linear gradient of elution 
buffer (20 mM Tris, 500 mM NaCl, 500 mM imidazole) and the fractions 
that contained the target proteins were dialyzed against 100 mM NaCl, 
20 mM Tris-HCl, pH 8. The engineered proteins were detected by 
Western Blot using an anti-His monoclonal antibody (GenScript) and 
their concentration was determined by Bradford (BioRad). 

2.2. Dynamic light scattering 

The size distribution of T22-GSDMDmutS19-H6 and T22- 
MLKLmutS19-H6 particles was determined by dynamic light scattering 
(DLS) at 633 nm (Zetasizer Pro, Malvern Instruments). 50 µL of each 
protein (ranging from 1 mg/mL to 2 mg/mL) were measured in triplicate 
at 25ºC. Size data were later processed and analyzed in the ZS Explorer 
software (Malvern Instruments). 

2.3. Protein stability 

T22-GSDMDmutS19-H6 and T22-MLKLmutS19-H6 were incubated 
at a concentration of 1 mg/mL in human serum (Sigma) for 24 h at 37ºC 
without agitation. Samples were extracted at 0, 1, 5 and 24 h. The 
proteolytic stability was determined by Western Blot using a monoclonal 
antiHis antibody (GenScript). Protein quantification was assessed with 
the ImageLab software (Bio-Rad) comparing the proteins at different 
times with the samples at time 0 (100%). 

2.4. Cell culture and in vitro cell viability 

HeLa cells (ATCC, CCL-2) were maintained in MEM alpha medium 
(Gibco) with 10% Fetal Bovine Serum (Gibco) in a humidified atmo-
sphere at 37ºC and 5% CO2. To assess cell viability, HeLa cells were 
cultured on 96-well plates (3500 cells/well) for 24 h. The next day, the 
proteins to be tested were diluted with MEM alpha medium until the 
desired final concentration. Then, 10 µL of the protein dilution were 
added to the correspondent well. The toxicity of the protein buffer was 
also assessed as a control. Protein incubations were performed in trip-
licate. Cell viability was determined using CellTiter-Glo Luminiscent 
Cell Viability Assay (Promega), in the presence of 1 µg/mL LPS as 
described [60]. Plates were read in a Victor 3 luminescent plate reader 
(Perkin Elmer) at 48 and 72 h. The final data were expressed as the mean 
of the viability percentage ( ± standard deviation) referred to the con-
trol wells in which only MEM alpha was added. 

2.5. Animal procedures and histology 

Seven-week-old BALB/cByJ females were purchased from Charles 
River (France). Upon arrival, mice were kept in quarantine for 1 week 
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and maintained in specific pathogen-free conditions with sterile food 
and water ad libitum. All animal procedures were approved by the 
Hospital de la Santa Creu i Sant Pau Animal Ethics Committee and 
Catalonia authorities (Authorization number 9721). CT26 cells (ATCC, 
CRL-2638), which are colon carcinoma mouse cells, were transduced 
with mouse CXCR4 receptor (pLV-EF1A-Puro-mCXCR4, VectorBuilder). 
Mice were subcutaneously injected with 2.5 × 105 CT26-CXCR4 cells 
into the right flank in 200 µL RPMI 1640 medium (Gibco, Life tech-
nologies). On day 9 post cell inoculation, those animals with palpable 
tumors were randomized into 3 experimental groups (n = 5–6 per 
group) and the treatment started. Such mice were treated intravenously 
three times per week either with 8 g/Kg of T22-GSDMD-H6 or T22- 
MLKL-H6 or the equivalent volume of Tris-HCl for control animals. 
Mice’s well-being, tumor volume (V= length x width2 x 0.5) and mouse 
body weight were recorded through the experiment. Twenty-four hours 
after the fifth dose, animals were euthanized and tumors were collected, 
fixed in 4% formaldehyde and embedded in paraffin. For histological 
analysis, 4 µm sections were stained with hematoxylin and eosin and the 
necrotic area and tumor-infiltrated lymphocytes (TILs) were quantified 
by a pathologist. Representative images were acquired using an 
Olympus DP73 digital camera. For immunostaining, 4 µm paraffin 
embedded sections were dewaxing and submitted to an antigen retrieval 
procedure using a high pH buffer (PTLink, Agilent Technologies). CD3, 
CD8, CD20 (ready to use antibodies, Agilent Technologies) and CXCR4 
(1:200, Abcam) staining were performed in a DAKO Autostainer Link48 
(Agilent Technologies) following manufacturer’s directions. Stained 
slides were scanned and quantified using Panoramic Scan II and Den-
sitoQuant image analysis center from 3DHISTECH Ltd. Representative 
images were acquired using Slide Viewer software. 

2.6. Cell cytometry 

CXCR4 membrane expression in CT26-CXCR4 was confirmed by 
MACSQuant® Analyzer 10 flow cytometer (Miltenyi Biotech) using PE 
rat anti-mouse CXCR4 antibody. The isotype PE rat IgG2b antibody was 
used as a negative control (Biolegend). 

3. Results 

Modified versions of human GSDMD and MLKL have been engi-
neered as multidomain proteins (Fig. 1), intended as building blocks for 
self-assembling as nanoscale oligomers. The occurrence of C-terminal 
polyhistidine tails (here an hexahistidine, H6) [21,61] combined with 
the cationic peptide T22 (a specific ligand of CXCR4 [62] and an effi-
cient tumor homing peptide [58]), are expected to promote the forma-
tion of regular oligomers assisted by cations from the media [63–65]. 
This category of H6-driven nanoparticles is structurally robust and sta-
ble during circulation in blood [31], what make them excellent drugs or 
drug vehicles for nanomedical purposes [57,59]. Both modular proteins 
were well produced in recombinant Escherichia coli and recovered upon 
purification as discrete bands with the predicted migration and molec-
ular mass (Fig. 1). Also, both protein constructs organized, as expected, 
as monodisperse nanoparticle populations, sizing around 46 nm 
(T22-GSDMDmut-S19-H6) and 54 nm (T22-MLKLmut-S19-H6) respec-
tively (Fig. 1). When exposing these oligomeric materials to denaturing 
plus chelating conditions they disassembled into the forming monomers 
(Fig. 1). 

The potential cytotoxicity of these nanoparticles was tested over 
cultured HeLa (CXCR4+, [66]) cells. A moderate but significant reduc-
tion of the cell viability was observed at 72 h in both cases, ranging 
between 15% and 20% depending on the protein concentration (Fig. 2). 
Since these data were in the range of previous reports about the effect of 
plain unformulated pyroptotic proteins in cell culture [67], we thus 
confirmed the retention of the biological activity of both products 
formulated as nanoscale oligomeric forms. The observed deleterious 
effect over cultured cells was dose-dependent (Fig. 2), a fact especially 

apparent after 72 h of exposure when the cytotoxicity of the nano-
particles was more obvious. 

The systemic context of the immune- and inflammatory-based 
mechanisms of pyroptosis or necroptosis prompted us to expect an in 
vivo magnified impact of these drugs. Such a biological effect should be 
more evident than the mild cell killing observed in cell culture, an event 
restricted to a mere local context. Before moving to in vivo experiments, 
the stability of T22-GSDMDmut-S19-H6 and T22-MLKLmut-S19-H6 was 
determined in human serum during incubation at 37 ºC. As observed, a 
slight decrease in the full-length forms of the protein was observed 
throughout the incubation time (Fig. 3A), indicating a half-life of around 
5 h (Fig. 3B). Although this value was not very high, most of the intra-
venously injected dose of the T22-driven nanoparticle GFP versions 
accumulate in tumor around 5 h [55]. A half-life around this value was 
then considered as promising and sufficient to observe a biological effect 
of the proteins. 

To assess such expected effect of both nanoparticles in vivo, an 
immunocompetent mouse model of aggressive, CXCR4+ colorectal 
cancer was developed, through the implantation of CXCR4+ CD26 cells 
(Fig. 3C) in immunocompetent animals. The resulting tumors were, as 
expected, CXCR4+ (Fig. 3D). The animals were treated with repeated 
intravenous doses of each protein once the tumors were palpable (9 days 
post cell implantation). The selected tentative dosage was 8 µg of each 
nanoparticle per g of animal weight, administered intravenously 3 times 
per week, with a total of 5 doses. 

As observed (Fig. 4A), the weight of the treated animals remained 
unmodified in comparison with the buffer-treated group, indicative of 
absence of systemic toxicity associated to the administration of both 
protein nanoparticles. Notably, the treatment with T22-GSDMDmut- 
S19-H6 significantly reduced tumor growth since its implantation 
compared with the buffer-treated group (Fig. 4B, adjusted P value =
0.008, Tukey post-hoc test following an ANOVA test), while T22- 
MLKLmut-S19-H6 also showed a similar therapeutic trend (adjusted P 
value = 0.095). This antitumoral effect was evident along the experi-
mental time and very pronounced at 13, 15 and 19 days post- 
implantation (Fig. 4B). Unfortunately, the scattering of data within the 
control group rendered a few comparative points in which the differ-
ences resulted in the border of significance, while the global healing 
effect was evident along the treatment time (Fig. 4B). In the last sam-
pling analysis (20 days post implantation), the tumor size was similar in 
all the groups, suggesting a loss of antitumoral activity while the drug 
was still administered (Fig. 4B). Interestingly, the histological analysis of 
the tumors at day 20 (Fig. 5A, B) indicated infiltration of TILs in tumor 
tissue at a statistic significant level, for the animals treated with T22- 
GSDMDmut-S19-H6 nanoparticles and also for those treated with T22- 
MLKLmut-S19-H6 nanoparticles (Fig. 5C). Moreover, at day 20, there 
was also a trend towards an increase in necrotic tumor area in 
nanoparticle-treated mice, compared to control mice, again in the 
border of statistical significance (Fig. 5C). 

To more precisely assess lymphocyte infiltration in tumor, CD3, CD8 
and CD20 lymphocyte subpopulations, relevant to the emerging im-
munotherapies of cancer [68–70], were analyzed in tumors of treated 
animals, through immunohistochemistry. As observed (Fig. 6 A, B), tu-
mors of animals treated with T22-GSDMDmut-S19-H6 or 
T22-MLKLmut-S19-H6, exhibit an increased number of infiltrated 
B-lymphocytes (CD20) and cytotoxic T-Lymphocyte (CD8) when 
compared with buffered treated mice. CD3, a pan T lymphocyte marker 
did not show differences, suggesting a specific anti-tumor immune cell 
recruitment. 

4. Discussion 

Pyroptosis and necroptosis are related types of programmed cell 
death [71] characterized by the activation of inflammatory caspases, 
including caspase-1, caspase-4, caspase-5, and caspase-11 [72], which 
lead to the release of pro-inflammatory cytokines and 
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Fig. 1. Modular organization of building blocks and characterization of the resulting nanoparticles. Modular design and amino acid sequence of T22-GSDMDmut- 
S19-H6 (up) and T22-MLKLmut-S19-H6 (bottom). The CXCR4-ligand T22 (green), a peptide spacer (dark yellow) and two furin-cleavable sites (orange) are included 
in the construct, that also harbors the endosomal escape peptide S19 (purple) and the end terminal H6 tag (blue). In red, there are indicated the point mutations over 
the original sequences known to enhance the biological activity of either GSDMD [49] or MLKL [50]. Linked to each construction map, the western blot detection of 
purified protein is shown, in which protein bands were visualized using an anti-His antibody. The size of the soluble protein nanoparticles and their monomeric forms 
(upon disassembling with 2 mM EDTA + 2% SDS), were determined by DLS. PI stands for polydispersity index. 
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damage-associated molecular patterns (DAMPs) [73,74]. They are key 
players in the regulation of both inflammation and immune responses, 
and pyroptotic and necrotic events have been associated with several 
pathological conditions, including cancer [73,75–77]. Both pyroptosis 
and necroptosis are lytic cell death types that upon induced in cancer 
cells release cytokines and DAMPs that trigger inflammation. These 
events attract circulating lymphocytes to cancer tissues. The resulting 
activation of the antitumoral immunogenic cell death is then a potential 
new approach for cancer treatment [78–81]. This is of special interest 
regarding ‘cold tumors’, which are highly relevant in human clinics due 

to their poor recognition by the immune system and their limited 
responsiveness to conventional treatments [82]. 

One of the most promising strategies for inducing inflammatory cell 
death in cancer would be the targeting to tumor cells of pore-forming 
inflammatory proteins, specifically gasdermin D (GSDMD) [83]. Gas-
dermins are a family of pore-forming proteins that are involved in 
various cellular processes, including cell death. In particular, GSDMD 
has been shown to be a key mediator of pyroptosis, as its activation leads 
to the formation of membrane pores and subsequent release of inflam-
matory signals [84]. On the other hand, MLKL induces necroptosis in 

Fig. 2. Cytotoxicity of protein nanoparticles on cultured cells. HeLa cells were incubated with increasing concentrations of GSDMD- (up) or MLKL-based (down) 
nanoparticles together with 1 µg/mL LPS for 48 or 72 h. PBS and LPS 1 µg/mL were used as controls. Significance was assessed with an ANOVA test and the adjusted 
p-value (p in the plot) was calculated using a Tukey post-hoc test comparing the different protein concentrations with the PBS control. 
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several cancer cell lines, and its expression has been found to be 
downregulated in various types of cancer, suggesting that it may func-
tion as a tumor suppressor [85]. MLKL expression and cancer progres-
sion have been shown as inversely correlated [86–88]. This whole set of 
observations places both GSDMD and MLKL as potential protein-based 
anticancer drugs candidates. 

In previous studies, we were successful in promoting the self- 
assembling of cytotoxic proteins (namely venoms, toxins or pro- 
apoptotic factors) as both scaffolding and functional building blocks of 
tumor-targeted protein-only nanoparticles [89]. This fact prompted us 
to engineer GSDMD and MLKL (Fig. 1) for this purpose through minor 
amino acid sequence modifications. The assembling of the materials as 
nanoparticles was successful (Fig. 1) and the cytotoxicity in vitro was 
observed at the expected levels (Fig. 2). The particles proved to be 
sufficiently stable in human serum (Fig. 3) to be moved towards in vivo 
testing for systemic administration in repeated doses. MLKL showed a 
mild tendency towards an antitumoral effect once administered in an 
animal model of colorectal cancer (Fig. 4B), while GSDMD-based 
nanoparticles promoted a clear reduction of tumor growth several 
days upon starting the administration regimen (Fig. 4B). The fact that 
systemic toxicities were not observed (Fig. 4 A) demonstrated the pre-
cise T22-mediated selective delivery of the nanoparticles into CXCR4+

tumor cells, as previously seen in related T22-empowered oligomeric 
vehicles used for the delivery of highly cytotoxic small molecular weight 
drugs [90–92]. On the other hand, both proteins induced a potent 

lymphocyte infiltration in tumors (Fig. 5), what can be seen as turning 
‘cold’ tumors into ‘hot’ tumors [82,93,94]. As far as we know, this is the 
first report in which such activity is described for a pore-forming in-
flammatory protein. In agreement with this concept, tumors from 
treated mice exhibited an increased number of infiltrated B-lymphocytes 
(CD20) and also of cytotoxic T-lymphocytes (CD8). Interestingly, a 
general T-lymphocyte increase was not detected (no changes in of CD3+

cell infiltration), suggesting an antitumoral specific recruitment within 
the tumor when compared with control mice (Fig. 6 A,B). Cytotoxic 
lymphocytes are observed as antitumoral lymphocytes, as they partici-
pate in antigen recognition and correlate with better prognosis in several 
cancers, including colorectal cancer [95,96]. In this tumor type, CD20 
infiltration has been particularly associated with improved survival. The 
proteins tested here efficiently induce the activation of the antitumor 
adaptive immune system mediated by B and T lymphocytes. 

Regarding the antitumoral effect, that was marked the first two 
weeks upon stating the treatment, the functional nanoparticle T22- 
GSDMDmut-S19-H6 promoted an important reduction of tumor 
growth followed by a relapse (Fig. 4B). This particular outcome would 
need further analyses at the cell and tissue level to discriminate between 
appearing of resistance or other issues. However, even if transient, the 
cancer tissue destruction and the consequent lymphocyte recruitment 
(Figs. 5 and 6) initiated by the pyroptotic window might be of great 
clinical value when used in combination with synergistic treatments. In 
the clinics, it has been generically observed a correlation between the 

Fig. 3. Stability of GSDMDmutS19-H6 and T22-MLKLmutS19-H6 in human serum. A. Western blot analysis of both proteins incubated in human serum at 37ºC. The 
full length forms (red arrow) were quantified for further analysis. B. Declining of full length protein forms throughout incubation time. The horizontal line indicates 
50% of the initial protein amount. C. Histogram of CXCR4-membrane expression detected by flow cytometry in transduced CT26 cells. Cells incubated with the PE- 
isotype antibody were considered as negative. D. CXCR4 expression in subcutaneous CT26-CXCR4 tumor grown in BALB/c mice. Scale bar: 50 µm. 
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Fig. 4. Impact of protein nanoparticles on tumor size in a colorectal cancer mouse model. A murine colorectal carcinoma cell line was implanted in several mice 
(n = 16); the animals were divided into three groups depending on the treatment: a saline buffer (n = 6), T22-GSDMDmutS19-H6 (n = 5) and T22-MLKLmutS19-H6 
(n = 5). A. Mouse body eight evolution for every group. Data are the mean for each time point and the bars represent the standard deviation. B. Tumor growth was 
analyzed at day 9, 13, 15, 19 and 20 post-implantation. Two mice (one for each nanoparticle type) had a disproportionately higher tumor size at each measure and 
were not considered for statistical analysis. These mice are highlighted in the figure with a double circle. Statistical significance was assessed with an ANOVA test and 
a Tukey post-hoc test. 
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intensity of TILs infiltration and a low tumor volume, limited metastatic 
progression and good prognosis [97,98]. However, some authors have 
reported, such as in the case of meningioma, that the infiltration of TILs 
is linked with a tumor size reduction for large tumors but in contrast, it is 
associated to a slight increase in the tumor size in small tumors [99]. 
Also, in Non-Small-Cell Lung cancer, an inverse correlation between 

TILs infiltration and tumor recurrence was only observed in large 
(>5 cm in diameter) tumors but not in smaller ones [100]. In fact, a 
diversity of controversial outcomes from the crosstalk between inflam-
matory processes and tumor development have been also repeatedly 
stressed [101,102], also depending on the sub-populations of involved 
lymphocytes [103]. Among these observations, tumors might develop 

Fig. 5. Lymphocyte infiltration and necrotic tumor area in mice treated with protein nanoparticles. A. Tumor-infiltrating Lymphocytes (TIL) in hematoxylin and 
eosin (H&E) stained sections. Arrows point to TILs. Scale bar represents 50 µm in the general view and 20 µm in the zoomed view. B. Necrotic areas in H&E-stained 
tumor sections. The necrotic tissue is at the left and the viable tumor is at the right. Scale bar represents 50 µm. C. Percentage of TIL (left) and necrotic area (right) in 
each condition. Statistical significance was assessed with a Kruskal-Wallis test and a Dunn post-hoc test (the p value was adjusted using the Benjamini- 
Hochberg procedure). 
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Fig. 6. Characterization of tumor infiltrating lymphocytes. A. Representative images of immunohistochemical staining against CD3, CD8 and CD20 proteins in tumor 
sections. Scale bar: 50 µm. B. Quantification of positive staining per mm2 of alive tumor tissue. Data are shown as mean±SEM. Statistical significance was assessed 
with a Kruskal-Wallis test and a Dunn post-hoc test (P value was adjusted using the Benjamini-Hochberg Procedure). 
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tolerance to the immune response through upregulation of PD-L1, an 
immune checkpoint [104]. In the trends of using combined drug for-
mulations in immunotherapy [105], inhibitors of PD-L1 have been 
developed for such type of synergistic approaches [106]. 

The presented data demonstrate that the pyroptotic inflammatory 
cell death induced by T22-GSDMDmut-S19-H6 nanoparticles (Figs. 2, 4) 
was able to release DAMPs and cytokines capable of recruiting TILs 
(Fig. 5 C, 6) which, according to the expected outcome [67,107], had an 
impact on the tumor volume size (Fig. 5). Importantly, the cellular 
events triggered by GSDMD and more moderately by MLKL promote a 
lytic cell death that could engage the antitumor activity of TILs and, 
therefore, inducing immunogenic cell death. The observed cell death 
type is in stark contrast to the classical induction of apoptosis by 
chemotherapy, which is not immunogenic [108]. In fact, and because of 
such inflammatory character, even a low level of pyroptosis in tumors 
appears to be sufficient for recruiting the actors of the immune system 
relevant to potent anticancer activities [67]. Thus, this novel approach 
based on tumor-targeted pro-inflammatory proteins might be especially 
suited for the treatment of tumors resistant to chemotherapy by an 
artificially induced upregulation of anti-apoptotic proteins [109,110]. 
In the particular case of colorectal cancer, it is believed that immuno-
therapy resistance may be related to insufficient tumor antigen pre-
sentation, tumor antigen presentation damage, T cell exclusion and 
immunosuppressive signaling in the tumor microenvironment [111]. 

In the context of the multifaceted nature of human cancer and the 
increasingly recognized need of synergistic treatments to reach efficient 
therapeutic effects [112–115], the induction of a potent pyroptotic 
event by the treatment with functional protein-only drugs might create 
new opportunities for a potent multimodal approach to cancer treat-
ment. In this context, the use of oligomeric, virus-like nanoparticles 
based on self-assembling, self-delivering concepts [116] might not only 
provide precision targeting but also a high concentration of the active 
drug at the local site of action. 

5. Conclusions 

The inflammatory proteins GSDMD and the MLKL have been 
genetically engineered for their assembly as regular and stable nano-
particles of around 50 nm that are targeted to the tumoral marker 
CXCR4. Both drug formulations induce a moderate target cell destruc-
tion in vitro but an important antitumoral effect, in absence of side 
toxicity, when intravenously administered in an animal model of colo-
rectal cancer. The therapeutic impact involves arrest of tumor growth, 
necrosis and specific infiltration of TILs in tumor tissue at a statistically 
significant level. Importantly, both tested proteins induce the activation 
of the antitumor adaptive immune system mediated by B and T lym-
phocytes. The observed effects point out the exploration and further 
development of tumor-targeted pro-inflammatory proteins as suited 
novel drugs for the primary or synergistic treatment of cancer through 
the exploitation of immunogenic cell death routes. 
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