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ON THE C!' NON-INTEGRABILITY OF THE
AUTONOMOUS DIFFERENTIAL SYSTEMS

JAUME LLIBRE

ABSTRACT. In the study of the dynamics of the autonomous differential sys-
tems to know the existence or non-existence of first integrals is a relevant
fact. These last decades the meromorphic non-integrability of the autonomous
differential systems have been studied intensively using the Ziglin’s and the
Morales-Ramis’ theories. Here we study the C! non-integrability of the au-
tonomous differential systems, these studies goes back to Poincaré.

It is known that the semiclassical Jayne-Cummings differential system of
dimension five has only two independent meromorphic first integrals, namely
H and F, and of course any meromorphic function in the variables H and F.
Here we illustrate how to study the C'! non-integrability of the autonomous
differential systems showing that the semiclassical Jayne-Cummings differen-
tial system of dimension five has only two independent C! first integrals H
and F, and of course any C! function in the variables H and F.

1. INTRODUCTION

Ziglin’s theory on the meromorphic non-integrability was inspired in the studies
of the integrability of the rigid body done by Kovalevskaya. This theory study
the non-integrability of an autonomous differential system using the monodromy
group of the variational equation associated to some non-equilibrium solution of the
analysed differential system. Ziglin’s theory was improved by the Morales-Ramis
theory that considers the Galois differential group instead of the monodromy group
of the variational equation, and in general the Galois group is easier to study, see
[12]. But both theories only allow to study the non-existence of meromorphic first
integrals.

As Arnold said in [1] the mentioned both theories of non-integrability, in a be-
ginning inspired in Kovalevskaya’s ideas, go back to Poincaré, because Poincaré for
studying the non-integrability of the autonomous differential systems already used
the multipliers of the monodromy group of the variational equations associated
to periodic orbits. Apparently the mathematical community forgot the results of
Poincaré until that some Russian mathematicians published on them, see [1, 5]. In
what follows we shall summarize the results of Poincaré.
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Let U be an open subset of R™ and let f: U — R™ be C? function. We shall
work with an autonomous differential system of the form

d
1) =i = f).
As usual we denote by ¢(t, xo) the solution of system (1) such that ¢(0,z¢) = g €
U, and where t varies in the maximal interval of definition of this solution.

When ¢(T,z9) = x¢ and ¢(t,z9) # xo for t € (0,T) we say that ¢(t,zq) is
a periodic solution of period T > 0, or simply a T-periodic solution. The set
v ={¢p(t,xo) : t € [0,T]} C U is the T-periodic orbit associated to the T-periodic
As usual the differential equation
. 0
o) - (2

solution ¢(t, zo).
M,
ox w—¢(t,z0)>

where M is an n X n matrix, is the variational equation associated to the T-periodic
solution ¢(t,xo). Here df(x)/0x denotes the Jacobian matrix of f. Let M(¢,xzg)
be the solution of the differential equation (2) such that M (0, zg) is the identity
matrix. Then the matrix M (T, xz¢) is the monodromy matriz associated to the T-
periodic solution ¢(t, o). And the multipliers of the periodic solution ¢(t,xq) are
the eigenvalues of the monodromy matrix M (T, zg).

A non-constant function F: U — R of class C! satisfying that
VF(z)- f(z) =0,

where VF(z) is the gradient vector of the function F and the - indicates the usual
inner product of R™, is a first integral of the differential system (1), because F is
constant on the solutions of system (1).

Let F: U — R and G: U — R be two first integrals. They are independent if
their gradients are independent in all the points of the open set U except perhaps
in a set of zero Lebesgue measure.

The following result goes back to Poincaré, see [13]. For a detailed proof see
Corollary 3 of [9].

Theorem 1. Consider the C? differential system (1). If there is a periodic orbit
v having only s + 1 multipliers equal to 1, then system (1) has at most Fi, ..., Fy
C' linearly independent first integrals defined in a neighborhood of v if the s + 1
vectors VFy(xz),...,VFs(x) and f(x) are linearly independent on the points x € ~.

Theorem 1 provides a tool for studying the C! non-integrability of an au-
tonomous differential system (1) in a neighborhood of the periodic orbit ~, and
consequently in the domain of definition U of the differential system (1).

Probably the main reason that Theorem 1 has almost not used for studying the
C non-integrability of an autonomous differential system (1) is that to find a peri-
odic orbit vy of that differential system for which we can compute its multipliers and
verify that vectors VFy(x),..., VFs(z) of the known first integrals of the differen-
tial system and f(z) are linearly independent on the points x € v is not in general
an easy task. Now the recent developments of the averaging theory for computing
periodic solutions facilitates this task.
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Maciejewski and Szumiriski in [10] proved that the semiclassical Jaynes-Cummings
system (see [2, 4, 6, 7, 11]) defined by the autonomous differential system

(3) t=—y, y=x+zu, F=-—yu, u=v, U=oax—pu,
only has the two meromorphic first integrals, namely

2

I

1
(4) HZO&(Z—x)U+7u2+§U2, and F =% +y? + 22

or meromorphic functions in the variables H and F.
Our main result is the following one.

Theorem 2. The only C' first integrals of the semiclassical Jaynes-Cummings
system (3) are the first integrals H, F and the C' functions in the variables H and
F.

Theorem 2 is proved in section 3.

The tools that we shall use for proving Theorem 2 can be used for studying the
C'! non-integrability in arbitrary autonomous differential systems.

The key steps in the proof of Theorem 2 are:

1. To write the differential system (3) in the normal form for applying the
averaging theory for computing periodic orbits, see section 2 for a summary
of this averaging theory.

2. Compute a good analytical approximation of a periodic solution 7 of the
differential system (3).

3. Compute the multipliers of the periodic solution v and verify the assump-
tions of Theorem 1.

2. THE AVERAGING THEORY FOR COMPUTING PERIODIC ORBITS

Since the semiclassical Jaynes-Cummings differential system (3) is of class C? we
can apply the classical averaging theory for computing periodic solutions, see [14].
If the differential system is only continuous, or a piecewise discontinuous differential
system we can use the results on the averaging theory of [3] or [8] for computing
periodic solutions, respectively.

In Theorem 11.5 of Verhulst [14] is it proved the following result which gives a
first order approximation for the periodic solutions of a periodic differential system.

Consider first the differential system
(5) i =eF(t,z) +2R(t, z,¢), z(0) = w0,

with z € U where U is an open subset of R", and ¢ > 0. We suppose that the
function F(t,x) is T periodic in ¢. Consider now in U the averaged differential
system

(6) y=ef(y),  y(0) =,

where

(7) fy) =7 /o F(t,y)dt.
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In the next theorem we shall see, under convenient assumptions, that the equi-
librium solutions of the averaged system (6) provide T—periodic solutions of the
differential system (5).

Theorem 3. Consider the differential systems (5) and (6), and assume the fol-
lowing three conditions:

(i) The function F, its Jacobian matriz OF /Ox, its Hessian matriz 0?F/0x?
are continuous and bounded by an independent constant € in [0, c0) x U
and € € (0, eo.

(ii) The funciton F(t,x) is T—periodic in t, and its period T" does not depend
on €.

(i) The curve y(t) is in U for allt € [0,1/¢]

Then for every equilibrium point p of the averaged equation (6) satisfying

®) e (5

there is a T —periodic solution x(t, €) of the differential system (5) such that z(0,g) —
pase— 0.

70,
P

y=

3. PROOF OF THEOREM 2

It is easy to verify that the differential system (3) has two straight lines filled up
with equilibrium points, namely (0,0, z,0,0) for all z € R and (p?u/, 0, —p?/a, u, 0)
for all u € R.

3.1. Writting the differential system (3) into the normal form (5) of the
averaging theory. First we translate the equilibrium point (0,0, —u?/c,0,0) to
the origin of coordinates doing the change of variables z — ¢ doing z = o — u?/a,
in the new variables (z,y, o, u,v) system (3) writes

2

(9) = —y, y:x—i—u(o—/;), 6=—uy, w=v v=az—p’u,

and the two first integrals H and F' given in (4) now become
2

2 2 1 2
H=a«a U—xu—’u— —|—’u—u2+fv2, and F =a%+y?+ J—M— .
a 2 2 @

The linear part of the differential system (9) at the origin of coordinates is

0 -1 0 0 0
1 0 0 —p?/a 0
(10) 0O 0 0 0 0
0 0 0 0 1
a 0 0 —u2 0

So the eigenvalues of the equilibrium point localized at the origin of coordinates of
system (9) are 0,0,0,++/p? + 11.
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Doing the change of variables (z,y,0,u,v =) = (X,Y, Z,U, V) given by

X 0 % 0 0 1 .
Y a1/ 0 0 i+l 0 y

(11) Z | = 0 0 1 0 0 a |
U ae 0 0 ¢ 0 u
4 0 —a 0 0 1 v

we write the matrix (10) in its real Jordan normal form

0 ~VEZ+1 0 0 0
V2 +1 0 00 0
0 0 000 |,
0 0 00 ¢
0 0 00 0

where £ > 0 will be the small parameter which appears in the normal form of
the differential system (5) for applying the averaging theory. And the differential
system (9) in the new variables (X,Y, Z,U, V) becomes

a2 +1UZ — ep®?y ((,u2 + 1)2 - aZ)

ep? (u2 +1)*?

)

Y =/u? +1X,

) 2V - X) (\/;ﬂ ¥ 1U+£M2Y)
Z = ;
, ea (42 +1)°?
U=¢V,
] aZ (\/,u2—|—1U+5u2Y>
V=- .

e(u2 +1)°?
Now the first integrals H and F for the system (12) are

2 2
; 1% % 1
H= £2H=-— g Uy 27( 2 L V2
TH = ge et TgE et e\
203 (p® + VX + p? (=268 + p*(X? + Y2 - 6)
FU2(X2 4 2Y2 — 6) — 2) + 20(p? + 1)32),

2 ,LL4 2 _ 2lu4 Uy

F= U
: a?(p? +1)2 5012 (u? + 1)5/2
4 V-X 2 4y2 2\ 2
Loz [P )2+ 1z 3+(Z_u> _
a?(p?+1)"  o®(p?+1) o

Since the normal form of the differential system (5) for applying the averaging
theory needs the small parameter ¢ in front of all the equations of the differential
system, first we do the change of variables (X,Y) = (rcosf,rsind) and after the
rescaling (r, Z,U, V) = (¢2R, £25,%Q, e?W), so in the new variables (R, 0, S,Q, W)

esT}
Il
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the differential system (12) becomes

a@Scosd  ,aRSsinfcosd
= a2 TF¢ 5 3/2
pe (12 +1)
. a@Ssinf aSsin® 0
0=\/p2+1—c¢ —e? )
(u*+p) R (2 41)%2
- €M2Q(W — Rcosf) 22 p*Rsin@(Rcos® — W)

S 5
a(p? +1)° a(u? 4 1)°?

Q=cW,

. aQS  au?RSsind

—c _ 7
/’1/2 _|_ 1 (l,l,2 + 1)3/2

and the two first integrals for the system (13) become

292 20 R sin 1
H= -2+t aS—iﬂQ 5 +€5MQ 812/2—1—56 =
2(p2+1) (n2+1) 2(p2+1)
1 3u*R
—5/14]-1’2 cos(20) + puSR? + #T +2 (p? +1) p?RW cos§ + (W2 + W2> ,
W owr* o0s | o 2u*QRsin g 6 1

a? \ (u?+1)* Q22+ 12 a2+ 1)°
(u*R? sin? 0 4 (u? + 1)u*R? cos? 6 — 2(u® + 1)u* RW cos 0
+ (42 +1) (az (12 + 1)2 g2 +M4W2> ).

4
F= 62%—&—64
(0%

We shall restrict the differential system (13) to the invariant levels

p 7542}1#2 _ 5 f

_ 2 2 4 — 2
H=-ep"+e'h, and F=e""5 o2 a2(p2 + 1572

where h and f are constants. Then from this first equation we obtain

2h (2 +1)° + p2Q>
g U i)
200(p® + 1)

(14)

and from the second one we get

/
2u4Q) sin +0(e).

Additionally taking the variable 6 as the new independent variable the differential
system (13) becomes a 2m-periodic differential system in the normal form (5) for
applying the averaging theory, i.e.

w__ W
g /21
aw @ (2h (12 +1)" + u2Q2)

A 2
20 5 2 (2 +1)7/2 +O(e?).

(15) R=

+0(e?)
(16)

3.2. Computing an explicit periodic solution of the differential system
(16). Now the averaged function (7) for the differential system (16) is f(Q, W) =
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(f1(Q, W), f2(Q,W)) where

W
fl(Q7W) - 7/[,[,27—|—1’

Q (2n (12 +1)" +12Q?)
f2(Q7W) = )

2(u2+1)"°

Hence the averaged differential system (6) in our case have the equilibrium points
2+1
p=1(0,0), ps= <i“ - wzh,()) :
1

Of course the equilibria p1 only exist if o < 0. Note that the Jacobian (8) at the
points p and py takes the nonzero values h/(u? + 1) and —2h/(u? + 1)? if h # 0.
Then from Theorem 3 we know that the differential system (16) has a 2w-periodic
solution of the form

Q). W (0)) = (“2 HLvmmo) +oe)

1
associated to the equilibrium point p;. We have such a periodic solution for every
value of the constants h < 0 and f. Then we fix one of these periodic solutions for
a value of f # 0, and denote this periodic orbit by ~.

From (14) and (15) the periodic orbit v of the differential system (16) in the
differential system (13) becomes (R(t),0(t), S(t), Q(t), W (t)) equal to
f P+l )
St/ u? + 1,0, vV—=2h,0) +O(e),
(2\/2@3 (2 1 1)sime Y m (€)
and has period 27 /+/p? + 1. This periodic orbit in the coordinates of the differential
system (12) is (X (t), Y (¢), Z(t),U(¢), V(t)) equal to
2
E2fcot<t u+1) E f
2V =2hu3 (p2 4+ 1) 2v/=2hu3 (u2 + 1)’
Using the change of variables (11) this periodic orbit for the differetnial system (9)
becomes (z(t), y(t),o(t), u(t),v(t)) equal to

2
1
0752“: V=20,0 | +O().

, fcot(t u2+1>

g¥=2hu _ o2 ! £ 0
“ 20/ —2hp (p2 + 1%/ 20/ =2hp (2 + 1)?
v/—9 feot (ty/p?+1
€ h + &2 f 2 ( ) O(g3).

€ , €
Iz W 2hp (2 + 1) 2/ =2k (2 4+ 1)°

Finally the periodic orbit 7 of period 2w/(1/u? + 1) in the coordinates of the dif-
ferential system (3) is (z(t), y(t), 2(t), u(t),v(¢)) equal to

2
= ¥ , f cot (t u? + 1) 711172
€ @ 9 5/276 20 ’
an ' 207/ —2hp (2 + 1) 20/ —2hp (2 4+ 1) a
o5 feot [ty/p?+1
€ 2 / 2 ( ) +0(e?).

+e€ ,E
H 2/ —2hu (2 + 1) 2/ =2hpu (2 +1)°
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3.3. Computing the multipliers of the periodic solution . The variational
equation (2) on the periodic orbit (17) of the differential system (3) restricted to
the dominant terms of order ¢ is

(18)
where
Y(t) =
M =
and
Y(t) =

Y = MY,
yi(t)  ya(t)  ys(t)  wi(t)
ye(t)  yr(t)  ys(t)  wo(t)
Yt yi2(t) yis(t)  y1a(?)
Yie(t) yir(t) yis(t)  yio(?)
yor(t)  vaa(t)  yas(t)  voa(t)
0 -1 0 0
1 0 € —2h e
U o
0 _eY—2h 0 0
i
0 0 0 0
a 0 0 —
vi(t)  y2(t)  ys(t)  yalt)
ye(t) yr(t) ys(t) yolt)
yi1(t) yi2(t) ws(t) y1a(t)
yi6(t) wir(t) wyis(t) wio(t)
yo1(t)  yoa(t) wo3(t) yo2u(l)

The solution Y (t) at order O(g) of the variational equation (18) such that Y (0)
is the 5 x 5 identity matrix is

S (C—1)v—=2h u2 — O ¢Zﬂﬁvw+1+s)
p?+1 2u2 +2 w(p?+1)° ap? +a a(p2+1)%?

S W2+ C \/jh<t u2+1u2+25) Sp? C— 1)
VGRS Vap (2 +1)°2 IEN/ES a (i +1)

V%Muﬁw%2+1—5)
0 0 L 0 3/2
o (p?+1)

a—Ca ta (C = 1)v—Fa O 41 S(Su2+t\/;m)
u2+1 212 + 2 o (p2 + 1)2 12+ 1 (1+ p2)3/2

Sa (C—1a v=ha (t\/lﬂi"'1 - 25) Su? Cp?+1
ViEFT el (e 1) /S EE
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where C' = cos(y/p? 4+ 1¢) and S = sin(y/p? + 1t). Then the monodromy matrix

Y(2r/\/p?+1)is

;T 0 AL
2 3/2 9 3/2
(0*+1) JovE a(p?+1)
iV 2Vhrp
v @+ ’
2iv/2
0 0 | o 2vavhme |
a(u22+sl)
yiyes e
" 2+ 1) " : (2 +1)%?
0 0 B ivV2vhra .
p(p?+1)%?

and their eigenvalues

2mvVh 2mvVh

2 3/27 1 + 2 3/2°
(n? +1) (n? +1)

are the multipliers of the periodic orbit . That is, three multipliers equal to 1 and
two complex multipliers.

1, 1, 1, 1-—

In order to apply Theorem 1 and to obtain that the unique C' first integrals of
the differential system (3) are H, F and any C' function in the variables H and
F we need to verify that the three vectors VH(z,y, z,u,v), VF(z,y,z,u,v) and
(Z,9,2,u,0) of system (3) are linearly independent on the points (z,y, z,u,v) of
the periodic orbit (17). Indeed, an easy computation shows that the matrix 3 x 5
having the three files formed by the components of the vectors VH(zx,y, z,u,v),
VF(z,y,z,u,v) and (&,9, 2,4, 0) has rank three. This completes the proof of The-
orem 2.
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