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Abstract: As electrochemical measuring instruments, screen-printed electrodes (SPEs) are constructed
via a technology called thick film deposition onto plastic or ceramic substrates, allowing for simple,
inexpensive, and rapid on-site analysis with high reproducibility, sensitivity, and accuracy. Numerous
substances such as gold, silver, platinum, and carbon are applied for electrode construction, enabling
the analyst to design the best device based on its purpose to determine an analyte’s selectivity and
sensitivity. Thus, in the current review, we report the latest results and analyses conducted over the
past eight years (2015–2022) on the expansion of SPE electrochemical biosensors, including aptasen-
sors, immunosensors, DNA sensors, and enzymatic biosensors. Such expansion has resulted in new
possibilities for the identification, distinction, and quantification of biocompounds, drugs, enzymes,
etc. Therefore, in this paper, we review the role of different nanomaterials in manufacturing on-screen
electrode methods as well as strategies for the future stable diagnosis of biorecognition elements.

Keywords: screen-printed electrodes (SPEs); nanomaterials; biosensor; DNA sensor; aptasensor;
immunosensor; enzymatic biosensors

1. Introduction

Analytical chemists are typically challenged with devising methods capable of ac-
complishing rapid in situ analyses due to the fact that such methods are mainly expected
to be accurate and sensitive while being able to detect and measure different materials
with various attributes in “real-life” samples. The existing commercial laboratory tests
have been reported as being complex and costly, and thus are used less for in situ and
point-of-care solutions intended for quality control, environmental surveillance, and health-
care monitoring [1,2]. Over the years, sensors based on screen-printed electrodes (SPEs)
have emerged as one of the main branches of electrochemical research for rapid, specific,
portable, sensitive, low-cost, and precise analyses, and have been claimed as having inno-
vative applications [1,3,4]. A key driving force behind these historic developments was
the realization that screen printing can be much cheaper than traditional manufacturing
methods [5]. In the microelectronics industry, for the past three decades screen printing
has been proposed for the mass production of reproducible, cheap, reliable, single-use
sensors as an on-site monitoring technique [1]. On the one hand, SPEs allow the fabrication
of large numbers of carbon electrodes in reproducible, low-cost, and disposable formats,
also combining functionalized chemicals. On the other hand, SPEs are used in many elec-
trochemistry fields, especially in measurements of chemical and biochemical compounds
and microelectronics, as well as in the conversion and storage of energy. Moreover, these
electrodes are applied in flexible electronics, a rapidly evolving technology for printing
electronic devices directly on flexible plastic materials such as polycarbonate, polyamide,
and polyetheretherketone. All the carbon forms, especially graphite, activated carbon,
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and carbon black, have the broadest applications for deposition onto these electrodes. In
comparison with other electrode fabrication methods, SPEs have the advantage of easy
control of the electrode’s thickness, surface, and composition, and catalysts can be added to
the printing ink for easy combination. Moreover, they offer the possibility of experimental
statistical validation of the results notwithstanding the existence of duplicate electrodes.
Their most noticeable disadvantage is that they are limited to flatbeds [5].

SPEs allow a plurality of tests to be accomplished with low volumes of samples and
reagents without pretreatment or keeping of the electrode. These electrodes are often
employed for analyses in fields such as agriculture, pharmacy, medicine, the food industry,
and the environment [4].

While it is known that SPEs can vary in terms of shape, they can also be made on
demand for analysis. Moreover, they come in various forms such as a disc, a ring, or a
band. By employing SPEs, not only can calibration be performed, but they are also used for
simultaneously and promptly analyzing numerous unknown samples. However, despite
the mentioned advantages associated with SPEs, they are incompatible with nonplanar
substrates, which remains a disadvantage in terms of limiting the fabrication methodology.
As a result, SPEs, which are printed directly onto several flexible and inflexible substrates,
must be further developed [6].

In the current research, we compare SPEs’ application and performance from 2015 to
2022 as electrochemical biosensors, taking into consideration DNA sensors, aptasensors,
immunosensors, and enzymatic biosensors (Figure 1). It is acknowledged that analytical
methods for in-field screening and monitoring solutions can be substituted by electrochemical
biosensors as long as they are combined with SPEs. This has applications in various fields
from the food industry to environmental uses, in addition to forensics and cancer biomarker
analysis [2,7]. Bearing this in mind, the latest advancements in SPE-based biosensors are
summarized in this paper, along with a discussion of future favorable developments.
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2. SPEs: A Brief Overview

At present, the screen-printing system is a well-established method for electroan-
alytical instruments’ conception with various uses in the biomedical field [8–10], food
measurement [11,12], and environmental pollutant detection [6,13,14]. SPEs are often
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composed of an electrochemical cell that consists of three electrodes, namely the pseudo
reference electrode (RE), counter electrode (CE), and working electrode (WE), which are
printed on a solid substrate, as shown in Figure 2 [4].
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SPE devices appeared in the 1990s and since then they have been increasingly used
due to their low price, reproducibility, reliability, and capacity for mass production. It
has been shown that SPEs are flexible instruments, appropriate for various configurations,
constructed from various substances, and can be modified by different biological substances
including synthetic diagnosis elements, DNA, enzymes, and antibodies [9]. As previously
mentioned, SPEs as planar devices consist of three electrodes, namely WE, CE, and RE,
which are placed on the same substrate such as plastic, ceramic, or textile [8,15,16]. These
electrodes have several desirable properties, including simplicity, low cost, the possibility
of being made by various substances with flexible selectivity, the consumption of minimal
sample volumes of analyte, and minimal waste production. These attractive properties
have made these devices applicable to the development of analytical procedures as well
as analyte detection, including in clinical [9], pharmaceutical [8,15], environmental [6,17],
and microbiology fields [18], in addition to heavy metal ions [19] and liquid (bio) fuel [20]
samples. SPEs can be employed as disposable tools owing to their low price and feasibility
of mass production. Hence, the usual difficulties of the classical solid electrodes, including
surface contamination, passivation of surface, and tedious cleaning procedures, are not
present in these electrodes. Despite this, there are some limitations of this method: (1) the
reproducibility of these devices is close to or greater than 5%; (2) the high cost of devices
due to the application of specific substances for SPE production or analysis of several
samples; (3) the device is not changed after each analysis and nonproductive analysis after
using automated or mechanized procedures with on-site sample preparation steps and the
ones followed by the analysis [21].

2.1. Construction of SPEs

SPEs are constructed by popular industrial printers by the deposition of composite layers
onto a flat substrate [2]. Figure 3 exhibits the manufacturing process of these electrodes [22].

Although the screen-printing process was withdrawn from microelectronics manu-
facturing, the process is applied for the production of SPEs, among other applications.
These electrodes suggest the original attributes needed to acquire electrochemical detection
platforms in on-site analysis [23].

The published papers have recently acknowledged that most SPEs are constructed with
materials from Metrohm DropSens (Oviedo, Spain) or Gamry Instruments (Warminster, PA,
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USA). However, there are some producers in China and Europe that are also specialized in
the design of tools for electrochemistry evaluations [4].

The construction process of the SPE is rapid and permits the exhaustive and highly
reproducible production of single-use electrodes with a small size and low price [23].
Carbon and metallic inks, which are the most common of various inks or pastes (viscous
fluid) to print the electrodes [24], are compressed by means of a blade (3–10 Pa at a sheer
rate of 230 s−1) using a mesh screen on the substrate (which is often ceramic or plastic
such as polyvinylchloride and polycarbonate) [16,25,26]. The mesh screen has a specific
template that describes the dimensional attributes of the electrodes [27].

The paste formulation is mostly a commercial mystery because of the overall analytical
operation and trading value of manufacturing sensors [28]. The most common inks used in
WEs are carbon-containing graphite, fullerene, graphene (Gr), carbon nanotubes (CNTs),
etc., and this is due to their favorable properties in electrochemical evaluations, which
include their low prices, chemical stability, higher conductivity, facility of modification,
broad potential ranges, and lower background currents [8,29–31]. Conductive metallic
inks have also been extensively used along with carbon inks. Moreover, thanks to its
resemblance to thiol moieties, Au ink is the most common as it permits easy surface
modification with proteins using a self-assembled monolayer (SAM) formation. It is of
note that there are other SPEs available, which have a WE crafted using other metallic inks
such as silver (Ag), platinum (Pt), or palladium (Pd); nevertheless, their use is uncommon
and extendeds only to particular applications. Indeed, it is documented that silver or
silver/silver chloride inks are usually applied for RE construction, which is considered
as quasi or pseudo RE due to the lack of stability of its potential, contrary to an ideal RE.
Hence, as opposed to ideal REs such as the Ag/AgCl electrode, the realistic potential has
not been considered to be as precise and reproducible. The ink chemical structure towards
the electrochemical aims is significant. The ink formula and structure of SPEs are patented
by several companies and are not revealed to users. The composition of the ink can be
changed by altering the number of particles loaded, which forcefully affect the electron
transfer process and the designed SPEs’ performance [7,32–35].

This can be difficult for electrochemical evaluations in which potential control is
needed; however, it is not often a problem for detection utilizations. For making CEs, the
same inks as for WEs are usually employed. SPEs are diverse because the ink configuration
determines the electrode’s electrochemical properties. Therefore, SPEs are versatile because
various inks are employed and the WE is easily modified. Such alterations are under-
taken not only to boost the electroanalytical properties of the SPEs, but also to enhance
the recognition element’s immobilization. These recognition elements could not only be
biological such as DNA, proteins, and the like, but they could be synthetic as well, such as
molecularly imprinted polymers [23]. To increase SPEs’ conductivity, ink slurries are often
pulverized in ball mills. This process produces tiny particles of a conductive carbon called
fines with diameters between 1 and 100 nm, which fill electron tunneling gaps between
larger particles after printing [36]. Over several years, countless binder–solvent compounds
have been tested in screen printing formulas, but only a few have been prosperous and
have gained a commercial value. Two different types of thermoplastic and thermosetting
polymer binders are widely used, including poly (vinylidene fluoride). The most popular
method among electrochemists is to dissolve a thermoplastic polymer in a high-boiling
solvent [5].

Adhesives such as ethylene glycol, cellulose acetate, resin, or cyclohexanone are added
for attaching the paste to the substrate. Blending the additives may be accomplished
to enhance the sensitivity, specificity, and signal-to-noise ratio (S/N). Occasionally, it is
documented that with the purpose of augmenting the electrochemical signal for physical
or biochemical interactions, the ink possesses silver, platinum powder, or even gold [37].

To summarize, SPE construction involves several steps: (1) the mesh or screen design
to define the SPE size and geometry; (2) the choice and provision of the conductive inks
and the proper substances for the substrate; (3) thin film fabrication by layer-by-layer (LBL)
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deposition for selecting the inks on the substrate; (4) drying with hot air and IR radiation,
in addition to curing to solidify the ink. Having covered the electrical circuits by means of
an insulating substance, which is executed by adding a distinct drop of the sample (analyte)
solution on the SPE surface, the analytical evaluations can be accomplished [6,8].

The pretreatment of SPEs is important to overcome the restricted electron transfer
kinetics in it when having an interface with the electrolyte. This happens because these
electrodes contain insulator additives to ameliorate the carbon ink adhesion. For activat-
ing the SPE edge planes, although several methods have been evaluated to increase the
electroactivity of the carbon, electrochemical methods are the most frequently applied.
The method of 10 cyclic voltammetry (CV) cycles in phosphate buffer solution (0.05 M)
remaining between−0.5 and 2.0 V vs. Ag/AgCl was suggested by Sundaresan’s group [38].
Pan’s group applied a constant potential (−1.2 V vs. Ag/AgCl) within 20 s so that an
electrode would possess a drop of NaOH (0.1 M) [39].
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2.2. Methodologies of Modification

SPEs’ ability for modification and miniaturization was gradually developed, which
later attracted more attention in biomedical and clinical fields. So far, different biosensors
have been commercially accessible for many applications in clinical, environmental, and
food fields [40]. To improve their analytical properties, several alterations have been ap-
plied using different nanomaterials and synthetic distinction substances, which almost
yielded prosperous outcomes in many of the experimented instances. Therefore, carbona-
ceous compounds including carbon black (CB), CNTs, Gr, and metallic NPs (Au and Ag as
well as magnetic beads (MBs)), in addition to mediator NPs (cobalt phthalocyanine and
Prussian blue) have been used for SPE modification. Nanosubstances can possess identical
dimensions of biological diagnosis elements, including proteins and DNA, whose composi-
tion can produce synergistic impacts that provide unpredicted profits. The emergent and
inspiring actions in nanotechnology progress have strongly influenced investigations in
the enzyme biosensor field. The nanomaterial’s ability to offer amended electrocatalytic
activities and reduce electrode surface deposition makes them beneficial for developing
biosensors [41,42]. The electrochemical behavior of nanomodified sensors was evaluated
using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and am-
perometry to accurately communicate the electrochemical behavior of the sensor by the
nature of nanomaterials, and to perceive the impacts of the nanomaterials on the analytical
properties [43]. In effect, by making use of nanomaterials, it is highly feasible to enhance the
analytical properties such as the sensitivity and selectivity, as well as increase the stability
while decreasing the limit of detection (LOD). In addition to these nanomaterials, a plethora
of other materials can also be employed. These include polymers and metal oxides in
addition to redox mediators with complexing agents and so forth. The easiest method for
modification of the SPEs is based on the modifying agent deposition on the WE, which is
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supported by the planar nature of the SPE. Accordingly, this could be accomplished with
an automated dispenser in a mass production method. Furthermore, the SPEs such as the
WE can be altered prior to printing by appending the modifier to the ink. This is fulfilled
by means of electrochemical or chemical deposition [44–46].

The electrode surface modification of these tools is often performed by three well-
known procedures, as shown in Figure 4. These procedures consist of mixing the ink by
the modifier agent, a metallic progressive electrochemical deposition, or nanomaterial drop
casting. Prior to ink curing, the initial procedure is performed, which contains further
critical parameters. Such parameters mainly include the temperature of the curing in
addition to the instructions for mixing. In practice, these must be monitored so that batch
reproducibility will be attained [47]. To develop the assay, ink mixing was referred to as
the primary method and as appropriate for yielding metalized SPEs. Nonetheless, such
a procedure is disadvantaged by NP accumulation, multifaceted ink instructions, and
weak reproducibility between batches. The other two procedures are accomplished on
their surfaces after electrode procurement, which are thus more appropriate when using
commercial SPEs. Drop casting methods provide an appropriate way for SPE modification
because modifications are undertaken, having prepared the ink. In practice, the NPs which
are deposited onto the surface of the WEs show a highly active surface for the analyte,
but aggregation occurs as well. NPs with precisely tailored shapes and sizes can only be
obtained using electrodeposition. Potentiostatic methods are more widely used thanks
to their applications in traditional three-electrode cells having a well-controlled RE, and
their use has been common for several years. However, when working with SPEs, the
galvanostatic methods are more effective. Besides, possible changes in the quasi-RE exert
no impact on the deposition, which is undertaken under a controlled current, and this
offers abilities akin to the nucleation and growth control of metal NPs as potentiostatic
methods. Nevertheless, the major problem of this procedure is its large-scale synthesis,
since the electron deposition is typically conducted with each sensor individually, while
the deposition step is laborious and consuming when considering the preparation of large
batches [45].

The mediator’s utilization on the electrode surface and the creation of surface oxygen
functionalities are considered as additional fundamental characteristics in understanding
the SPE reactivity [48]. To obtain more information, it would be better to focus on generating
oxygen functionalities as well as edge–plane-like sites via chemical alterations to evaluate
some of the significant recent progress made in SPE design. In this field, the application
of Gr and CNTs, as popular carbon substances, has changed the range of electroanalysis.
The utilization of carbon nanomaterials was illustrated as one of the procedures, both
analytically and economically, that can be employed for the fabrication of modified SPEs.
Concerning the detection of many targets, the increased electrocatalytic attributes are
ascribed to the defect– and edge–plane-like sites on the Gr and CNT surfaces [49,50].

2.3. Applications of SPEs in Electrochemical Biosensing

SP electrochemical biosensors have received attention as analytical devices for agricul-
ture, pharmacy, medicine, and food analysis due to benefits such as their low cost, ease of
use, low volumes, and ability to be moved freely and easily [11–13]. Hence, the SP process
has considerably helped in the transition from the classic unbearable electrochemical cells to
miniaturized and portable electrodes that meet the requirements for on-site analysis [13,51].
However, an SPE, as a typical electrode, such as a glassy carbon electrode or gold disk,
is not a strong electrode and its surface is not as ideal as that of a mirror-like polished
solid electrode. Yet in recent years, SPEs’ benefits in terms of their cost and size led to the
enhancement of their application as transducers in biosensing [23].

SPEs fabricated based on sensitive and selective sensors have been used extensively
for various analytes in clinical and pharmacy fields. The possibility of making attractive
designs for single and multiple analyses even in the absence of biological substances is
one of the notable advantages of these sensors. In the field of physiological evaluation, the
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activated sensor surface is exposed to the epidermis (oral mucosa in the mouth, stratum
corneum, or skin) to distinguish related biomarkers such as glucose [52] and ethanol [53] in
various informative biofluids such as tears, saliva, and sweat. The combination of SPEs with
simple paper-based microfluidics shows different benefits of electrochemical biosensors’
procurement in comparison with traditional analytical tools constructed by other substrates
such as polymers, silicon, or glass. The fabricated tools are cheap, have simple construction,
and are compatible with different chemical or biochemical utilizations [54]. The high surface
area in the cellulose papers offers effective substrates along with SPEs for prototyping new
point-of-care detection tools such as microfluidic systems in clinical settings.
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An area where SPEs have shown specific communication is in environmental detection.
Various samples of paper presented with proper substances, modified with metal NPs
or carbon nanostructures both in the absence or presence of special enzymes, have been
employed to measure pollutants, including heavy metals and anions [55–58].

3. Biosensors

Biosensors are useful tools for the detection of chemical and biological substances as
well as the quantitative or semi-quantitative analytical information use of sensitive detection
substances [59,60]. The sensitive, selective, and fast detection of targets is the main purpose
of these instruments, which is the aim of the evolution of sensors. The biosensors have a
transducer part that converts the biological treatment into a detectable signal. Different
biosensors with various biological and biomimetic elements have been recognized which
have various transducer parts whose physiochemical application categorizes the sensor as
electrochemical, optical, piezoelectric, etc. Miniaturization of electrochemical biosensors
based on SPEs has yielded numerous point-of-care tools in the past and is anticipated to
soon change real-time detection. SPEs’ advancement lies in the possibility to modify these
devices with tunable nanocomposites as modifiers to increase the sensor selectivity. Glucose
biosensors are known as the most extensively used point-of-care SPE tools based on the
electrochemical rule. To enhance the SPE validity, the reply time and availability of the
modified SPEs are options that are acquiring great popularity. Few papers are published on
unmodified SPE-based biosensors. Graphite ink, CNT ink, and Gr ink are commonly used
for the construction of SPEs [61]. This review explores the most promising developments in
electrochemical biosensors over the past eight years (2015–2022), including DNA sensors,
aptasensors, immunosensors, and enzymatic biosensors.



Chemosensors 2023, 11, 113 8 of 37

3.1. DNA Sensors

The utilization of single-use electrodes has acquired many applications within elec-
trochemical DNA sensors. As such, the potential to detect specific DNA sequences has
recently been taken into consideration because of their use in various areas, from detecting
pathogens to diagnosing genetic maladies [62–64]. The mentioned sensors are currently
being expanded and enhanced for extensive types of DNA sequences which cause known
ranges of diseases (Epstein–Barr virus, herpes simplex virus, and cytomegalovirus), speci-
fied pathogens (Salmonella and E. coli), and genetic mutations. Moreover, by making use
of specific DNA sequences, it has been possible to undertake electrochemical diagnosis of
proteins. These proteins include transcription factors or other DNA-binding proteins. Ap-
tamer targets, together with proteins or small molecules, are also among such proteins. In
comparison with other procedures such as optical detection, the electrochemical detection
of DNA hybridization is associated with numerous considerable merits, including faster
response time and lower costs in addition to their suitability for mass production. In this
field, single-use electrodes have grown in significance, and these electrochemical chip types
have been extensively applied to the construction of DNA sensors.

Since gold-based ink is costlier than the usual carbon-based ink, many of these single-
use electrodes make use of gold-based ink because this allows attaining well-arranged
gold thiol by DNA whose end is modified with alkane thiols based on SAM. It has been
confirmed that the quality of the SAMs gained on the mentioned electrodes will be superior
and contribute to attaining higher reproducibility and impressive electron transfer rates.
This is nevertheless the case regardless of the SPEs’ roughness issues or their surface defects
because of the fact that these have been reported to be incomparable with typical gold rod
electrodes (distinguished with a high smoother surface area) [65].

Recently, numerous instances have been suggested for DNA and RNA sequences based
on electrochemical measurements with single-use electrodes. Table 1 gives the analytical
properties as well as the chief characteristics of a few of the recent and characteristic
procedures used in biological samples [66–82]. Several instances are discussed below.

Heavy metal ion contamination such as mercury (II) ion (Hg2+) might impose threats
not only to the environment but also to human health. In recent years, there has been a
growing interest in coordinate interaction among Hg2+ and bis-thymine of DNA, where
Hg2+ is likely to bind two thymines, substituting the imino protons while prompting a
conformational change, which relies on the base pairs’ sequence. Indeed, such an interaction
is distinctive for Hg2+, as revealed in the analysis of other metal ions. Hg2+ could be
determined with an outstanding degree of selectivity using the DNA biosensors by forming
the complex Thymine-Hg-Thymine (T-Hg-T). Tortolini’s group developed a simple but
reusable electrochemical sensor for determining mercury content through the “signal on”
assay mode, in which a polythymine is typically altered in the 3′ position with methylene
blue (MB) as the redox probe. Although MB has been mostly utilized as an intercalative
probe with the aim of detecting DNA strands’ hybridization, it has also been considered as
an electrochemical probe for DNA-based biosensors. It is of note that the T–Hg–T complex
contributes to the “hairpin-like” folding of an oligonucleotide. As a result, the MB proceeds
towards the electrode surface, resulting in a better-quality electronic exchange between the
MB and the SPGE; this occurs both for the decreased distance and an upsurge in the faradic
current [68].

Immobilization of biomolecules such as DNA on a screen-printed carbon electrode
(SPCE) is a challenge, which is why choosing an easy yet efficient approach to electrode
surface modification is important. A unique reactive adhesive polymer is typically applied
to coat diverse surfaces. This modifies the SPCE with a dopamine (DA) electropolymeriza-
tion film, and a layer that adheres tightly to the SPCE, thus providing opportunities for
further surface modification.

It is to be noted that the equilibrium between quinones in polydopamine (PDA) tends
to move in the direction of the latter. This makes the biomolecules’ one-step covalent
bonding possible, which encompasses amino groups onto PDA-coated substrates via
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Michael addition or Schiff base reactions. Meanwhile, the PDA-modified surfaces can
resist nonspecific adsorption. In this study, the SPCEs were primarily functionalized with
active groups by means of electropolymerization of DA. Afterward, the DNA sensor was
acquired through a one-step covalent attachment of the amino-terminated probe DNA onto
the PDA-modified SPCE by means of Schiff base reactions which occur in slightly basic pH
conditions. Having executed the hybridization of the target DNA to the immobilization
probe DNA, the reporter DNA-functionalized gold nanoparticles (AuNPs) were introduced
onto the sensor surface by means of sandwich hybridization. DNA bases, particularly
adenine sequences, maintain a high adsorption affinity with Au substrates [70].

Fast electrochemical detection of trace Hg2+ was reported by Zhang’s group, which
was based on the “turn-off” reaction between a hairpin DNA probe binding a mismatched
target and Hg2+ using the T–Hg2+–T coordination formation, which depended on the con-
jugated hairpin DNA probes with water-soluble and carboxyl-functionalized quaternary
Zn–Ag–In–S quantum dots (QDs) on SPGE (Figure 5). The hairpin DNA probe’s conforma-
tional variation led to a considerable reduction in the electrochemical signal, which could
be employed for Hg2+ detection. The attained Zn–Ag–In–S QDs depicted high stability in
water, illustrating the feasibility of identical electrode surface modification [79].

As a base for a self-powered biosensor, Becker’s group utilized an enzymatic biofuel
cell which was employed on an SPE. The EBFCs applied the enzymes as biocatalysts
with the aim of accomplishing the catalytic change in the substrates employed as an
oxidant, fueling two individual electrodes. In practice, the most forthright choice is to
use an analyte conversion as a fuel for the EBFC so that there will be the possibility of
discriminatorily oxidizing the analyte via a proper enzyme that has been immobilized
at the bioanode. Meanwhile, for closing the circuit, a nonlimiting (bio) cathode will be
utilized. A bioanode was integrated here with the aim of converting the glucose with
pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) with the BOD-
based gas-diffusion bioelectrode on an SPE. Moreover, using a miniaturized agar salt bridge,
it was possible to separate the two bioelectrodes. This was undertaken in order to ascertain
that assembly occurs optimally in a two-compartment configuration with each electrode.
All this demonstrates that the individual electrodes operate optimally, while making it
possible to utilize smaller sample quantities [81].

Table 1. DNA SPE biosensors for (bio)compound measurements in various targets.

Sensor Construction Technique and Method Detection Analytical
Characteristics Analyte/Sample Ref.

ASV-QD DNA assay

The inserted bismuth citrate was
simultaneously transformed in situ to

bismuth NPs by Pb electrolytic
accumulation on the surface of

the sensor

ASV L.R.: 0.1 pM–10 nM
LOD: 0.03 pM Pb (II)/N/A [66]

SiNWs/AuNPs-SPGE

SiNWs/AuNPs and MB (redox
indicator) were used to increase the

SPGE conductivity, as well as to
produce a suitable site for

immobilization and hybridization of
the DNA probe

CV/DPV L.R.: 0.1 pM–100 nM
LOD: 1.63 pM

DNA oligomers
related to dengue

virus/N/A
[67]

Au/polythymine/
MB/SPE

The Hg2+ detection was performed
with the Thymine–Hg–Thymine

(T–Hg–T) complex formation
SWV L.R.: 0.2–100 nM

LOD: 0.1 nM
Hg2+ ions/Waters

and fishes
[68]

CNF/SPE

The sequence-selective DNA
hybridization was performed
following the bonding amino
miRNA-34a inosine, which

substituted the DNA probe at the
CNF-SPE surface

EIS
(Fe (CN)6

3−/4−)
/DPV

L.R.: 25–100 µg/mL
LOD: 10.98 µg/mL

miRNA-34a target
RNA/N/A [69]
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Table 1. Cont.

Sensor Construction Technique and Method Detection Analytical
Characteristics Analyte/Sample Ref.

PDA/SPCE

Covalent immobilization of
amino-terminated probe DNA was

executed on the surface of the sensor’s
Schiff base: reaction of the quinones in

PDA and the amino group of the
probe DNA was based on the

sandwich-type hybridization. Finally,
the AuNP-labeled reporter DNA was

bound onto the sensor’s surface to
increase the signal

EIS (Fe
(CN)6

3−/4−)/LSV
L.R.: 1.0–70 pM
LOD: 0.3 pM. Target DNA/N/A [70]

Au/SH-ssDNA/
MCH/SPGE

The response of this sensor was based
on the ion channel mechanism CV/OSWV LOD for 280-mer RNA:

1 pM

Specific DNA and
RNA sequences

derived from Avian
Influenza Virus

H5N1/N/A

[71]

PMCSPE

MB was employed as the
hybridization indicator; the –COOH

groups of PBA were reused to
immobilize oligonucleotides based on

covalent bonding among the –NH2
groups of oligonucleotides and

–COOH groups of PBA

DPV
L.R.: 1.0 aM–10 nM and

1 aM–0.1 nM
LOD: 0.11 and 0.24 aM

M268T
mutation of

angiotensinogen
gene/human blood

samples

[72]

SH-probe/SPGE

The high selectivity of this biosensor
in detecting the specific target DNA

oligo in the real biological
environment of unspecific DNA

sequences was due to the considerable
variation in the signal of the

accumulated hematoxylin, between
nonspecific oligos and target DNA

oligo

EIS (Fe
(CN)6

3−/4−)/CV
L.R.: 20 pM–150 nM

LOD: 8.5 pM PAH/N/A [82]

DNA biosensor Ebola virus DNA, diagnosable by
enzyme-amplified detection

EIS (Fe
(CN)6

3−/4−)/DPV N/A Ebola virus
DNA/N/A [73]

PANI/AuNP/
avidin/SPCE

The sensing mechanism was based on
an enzymatic reaction (interaction

between HRP enzyme and
TMB/H2O2). HRP converted a

nonelectroactive substrate
into an electroactive substrate

CV L.R.: 0.001–1000 pM
LOD: 0.5 fM E. coli/Urine sample [74]

DNA/sgRNA/dCas9/
PAMAM/Cys/AuE

A practical, sensitive, and fast
impedimetric/capacitive biosensor

with CRISPR-dCas9 was modified by
sgRNA to assess the most common

IDH mutation in glioblastomas

EIS (Fe
(CN)6

3−/4−)
L.R.: 100–1000 fM

LOD: 33.96 fM
Glioblastoma (target

mutant DNA) [75]

ds-DNA/PtNPs/
AgNPs/SPE

Interaction between dsDNA and three
anthracyclines: EPI, IDA, and DOX by

DPV
DPV

L.R.: 0.3–1.3 ppm for EPI
0.1–1.0 ppm for

IDA/DOX
LOD: N/A

Interaction between
DNA and three

intercalating
anthracyclines

[76]

DNA/Gold-plated
silver

and DNA/SPE

An enzyme-amplified electrochemical
assay permitted the PIK3CA

point-mutations detection
Chronoamperometric L.R.: 1–100 nM

LOD: 10 pM

PIK3CA
point-mutation

(H1047R)/Plasma
[77]

DNA−MnO2
nanosheets/SPE

ctDNA analysis is performed by
controlling the adsorption and

desorption of DNA strands on MnO2
nanosheets

SWV L.R.: 1 fM–1 nM
LOD: 0.1 fM

ctDNA/Fetal bovine
serum samples [78]

HP-QDs-SPGE

The “turn-off” reaction of a hairpin
DNA probe binds with a mismatched

target and Hg2+ through the
formation of T–Hg2+–T coordination

CV/DPV L.R.: 10 pM–1 mM
LOD: 0.11 pM

Hg2+ ions/Deionized
water, tap water,

groundwater, and
urine samples

[79]
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Table 1. Cont.

Sensor Construction Technique and Method Detection Analytical
Characteristics Analyte/Sample Ref.

Fe3O4@SiO2/
DABCO/SPE

The DPV signals of the hemin
reduction and the guanine oxidation
as an electrochemical indicator with

indirect and direct methods,
respectively, were applied to detect

the hybridization process

DPV

L.R.: 10 pM–2 µM for
guanine oxidation

7.5 pM–2 µM for hemin
reduction

LOD: 8 pM for guanine
oxidation

6.4 pM for hemin
reduction

Short-sequence DNA
of PCa/N/A [80]

Glucose/O2 biofuel cell

The biofuel cell was constructed by
coupling a biocathode for O2

transformation based on a
BOD-modified gas diffusion electrode

with a bioanode for glucose
conversion, made of PQQ–GDH

embedded into an
Os-complex-modified redox polymer

Chronoamperometry/CV N/A Glucose/
N/A [81]

ASV: anodic stripping voltammetric; QD: quantum dot; N/A: not available in the study; OSWV: osteryoung
square-wave voltammetry; MCH: 6-mercaptohexanol; SH-NC3: mixed monolayer of thiolated DNA probe; SiNWs:
silicon nanowires; CNFs: carbon nanofibers; PDA: polydopamine; PMCSPE: PBA, MWCNTs, and CS-modified
screen-printed electrodes; PAH: phenylalanine hydroxylase enzyme; SH-probe: thiolated probes; E. coli: Escherichia
coli; PANI: polyaniline; AuE: gold screen-printed electrodes; Cys: cysteamine; PAMAM: poliamidoamin; HIV-1,
HBV, HCV, Zika, Dengue, and SARS-CoV-2: Human Immunodeficiency Virus (HIV), Hepatitis B and C Viruses,
Zika Virus, Dengue Virus, and Severe Acute Respiratory Syndrome Coronavirus 2; PtNPs: platinum nanoparticles;
AgNPs: silver nanoparticles; EPI: epirubicin; IDA: idarubicin; DOX: doxorubicin; ctDNA: circulating tumor DNA;
MnO2: manganese dioxide; HP-QDs-SPGE: hairpin DNA probes conjugated with water-soluble and carboxyl
functionalized quaternary Zn–Ag–In–S quantum dot (QD) on SPGE; PCa: prostate cancer; PQQ: pyrroloquinoline
quinone; GDH: glucose dehydrogenase; BOD: bilirubin oxidase.
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Figure 5. Schematic representation of the HP–QDs–SPGE electrochemical biosensor (adapted and
reprinted with permission from [79]).

3.2. Aptasensors

Evaluating significant analytes while using electrochemical aptasensor-based sensors
is important in sensor-based procedures. Of note is that the aptasensor has an enhanced
affinity for diverse targets; to name a few, cells, proteins, as well as viruses could be
taken into account. Indeed, small molecular substances include 15–90 oligonucleotides
having short sequences of single-stranded nucleic acids (DNA or RNA) [83,84]. Since the
aptamer was reported to be more sensitive in comparison with the antibodies while it
reacts to minor variations through an electrochemical procedure, it is then a distinct design,
especially thanks to its high selectivity [85,86]. Aptamers can be used as bio-diagnosis
parts to recognize some disease mechanisms and to evaluate and detect their reasons in
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addition to determining the origins. They are also of use in a wide range of scientific fields,
from pharmacy to forward-thinking drug delivery systems. They are also employed in
order to discover new drugs and appraise their biological activities [87]. Many examples
were proposed recently for electrochemical aptamer-based sensors using SPE. Table 2
briefly presents the analytical properties and the major characteristics of some of the latest
aptasensors, in addition to illustrative procedures used in biological samples [88–110].
Several chosen instances are explained below.

Although it is evident that diazinon (DZN) is one of the most extensively used
organophosphorus compounds in agricultural and household applications, if its traces con-
tinue to stay in the environment, unfavorable impacts will be imposed on living creatures,
including humans and animals [111,112]. Bearing this in mind, its acknowledged maxi-
mum residue limits (MRLs) were determined by health authorities, limited to 0.04 µg/kg,
0.1 µg/L, and 0.04 µg/g in soil, water, and vegetables, respectively. These determining or-
ganizations are the European Union, specifying the mentioned limit for soil and vegetables,
while the Food and Agriculture Organization of the United Nations/WHO determined
the limit for water [113,114]. In line with this, a highly sensitive label-free electrochemical
aptasensor was devised by Hassani et al. to detect DZN. By making use of the SPGE which
had been modified via thiolated aptamers being immobilized on AuNPs, it was possible
to assemble the aptasensor. Nonetheless, the current selective aptasensor, which has been
designed by a special method, does not present interferences from other compounds of the
real samples [105].

It should be noted that breast cancer significantly leads to mortality among women
and constitutes 34% of all cancer cases in women. According to scientific reports, there
were more than two million new cases of this cancer in 2018 and roughly 627,000 deaths
among women. Thus, it is asserted that there should be a quick diagnosis at the initial
stage. Technically, tumor markers contribute considerably to quantitatively recognizing
cancer. These are macromolecules in cells, blood, or other biological fluids. By considering
their appearance or disparities in their concentrations, it is possible to diagnose both the
appearance and the growth of the neoplastic cells. Moreover, by utilizing specific genes, it is
typically possible to synthesize breast cancer biomarkers. An illustration of this is Human
Epidermal Growth Factor Receptor 2 (HER2). In practice, HER2 is a gene that is accountable
for HER2 protein genesis. The HER2 protein is made of three intracellular, transmembrane,
and extracellular areas. These work as receptors, contributing to controlling cell growth,
repair, and division to a great extent. In this context, the likelihood of survival would greatly
increase once highly sensitive detection experiments are employed, ideally, employing
those which will result in more rapid signals and lower expenses while being capable of
offering prompt diagnoses. In line with this, an electrochemical aptasensor to detect the
HER2 protein via SPGE was devised by Ferreira et al. On the one hand, the first principle
was fabricated by the SAM attained from the 1-mercapto-6-hexanol (MCH) and thiolated
DNA aptamers specific to the HER2 composite; on the other hand, their next principle was
a ternary SAM which encompassed 1,6-hexanethiol (HDT) while having the same aptamer.
Notably, these mentioned systems were additionally passivated by MCH while being
blocked using bovine serum albumin (BSA). The nonspecific association to the surface of
the electrode diminished significantly, as exhibited by the ternary SAM architecture, and
this was attributed to the HDT antifouling characteristics [106].

Categorized as a metabolic disorder, diabetes stands as a major health issue worldwide.
Issues associated with insulin supply and production in the human body are responsible for
diabetes. Insulin is a hormone containing a double-chain polypeptide. To determine insulin
levels, an electrochemical method was recommended by Amouzadeh’s group, which is
based on an aptasensor at femtomolar (fM) concentrations, in which the surface of the
SPE is modified by means of the ordered mesoporous carbon, which underwent chemical
modification by 1,3,6,8-pyrenetetrasulfonate (TPS) (Figure 6). In this way, with the use of
the reactive sulfonyl chloride groups, the aptamer functionalized with amino groups was
covalently bonded to the TPS. Afterward, the MB was intercalated with the immobilized
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aptamer, which was considered in this context as the redox probe. It was possible for the
modified MB to relate to the insulin, resulting in the MB release while minimizing the
signal attained by the DPV [107].
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Figure 6. Schematic of aptasensor construction. Inset: responses of CSPE/OMC-TPS/aptamer-MB
without insulin (a) and with insulin (b) (adapted and reprinted with permission from [107]).

Table 2. SPE aptasensors for (bio)compound detection in some samples.

Sensor Construction Technique and Method Detection Analytical Characteristics Analyte/Sample Ref.

Apt/AuNPs/SPCE

High affinity between FB1 and its
aptamer by a small association
constant (Ka), calculated by the
Langmuir adsorption isotherm

EIS
(Fe (CN)6

3−/4−)/
CV

L.R.: 0.01–50 ng/mL
LOD: 3.4 pg/mL FB1/Corn [88]

4-MPBA/Au
NFs/SPCE

Label-free and quantitative
HbA1c electrochemical

bioanalysis based on the catalytic
property of HbA1c

CV L.R.: 5–1000 µg/mL
LOD: N/A HbA1c/Serum [89]

CcR/SAM-
GNP/PPy/SPCE

Covalent coupling of CcR with
SAM–GNP–PPy onto the SPCE CV L.R.: 0.1–1600 µM

LOD: 60 nM

Nitrite/Hypoxia-
induced cardiac cell

lines
[90]

Carbon nanomaterial
(C, SWCNT,

MWCNT and
CNF)/SPE

Noncovalent immobilization of
aptamers on the nanomaterial

electrodes via π–π stacking
interactions between the DNA

nucleobases and the surface

SWV/CV L.R.: 0.0001–1000 ng/mL
LOD: 0.03 pg/mL

HbA1c/Human
whole blood [91]

TNT-specific
peptide/SPE

A portable smartphone-based
biosensing platform for TNT

detection was developed with
impedance monitoring on SPE

EIS
(Fe (CN)6

3−/4−)
L.R.: N/A
LOD: N/A TNT/N/A [92]
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Table 2. Cont.

Sensor Construction Technique and Method Detection Analytical Characteristics Analyte/Sample Ref.

CdTiPNPs-
NTV/SPCE

Binding free biotin to
CdTiPNPs–NTV and preventing

their reaction with the sensor
surface (Alb–BT)

SWASV L.R.: 2–40 nM
LOD: 1 nM

Biotin/Multivitamin
tablets [93]

Aptamer/SPE

Label-free aptasensor based on an
SPE-specific adsorption to Cd2+

solution because of the key
aptamer’s high affinity for Cd2+

CV/DPV L.R.: 0.1–1000 ng/mL
LOD: 0.05 ng/mL

Cadmium (II)
ions/River water [94]

MoS2 NFs/CM/
APTES/SPE

Physical and chemical reactions
occurred in every step of the

device surface modification to
provide a higher binding affinity

platform for the probe
immobilization, which enhances a
large number of immobilizations

of biotin-linked aptamers on
STVD

EIS
(Fe (CN)6

3−/4−)
L.R.: 10 fM to 1 nM

LOD: 10 fM

AMI biomarker
(troponin I)/Human

serum
[95]

Hydrazine-modified
aptamer/TTCA

monomer/
AuNPs/SPCE

Sandwich aptamer detection was
accomplished via a specific

interaction between aptamers
and cTnI

EIS
(Fe (CN)6

3−/4−)/
CV

L.R.: 1–100 pM
LOD: 1 pM cTnI/Human serum [96]

Aptamer/
AuNCs-Cys/SPGE

A label-free electrochemical
aptasensor for selective CAP

detection

EIS
(Fe (CN)6

3−/4−)/
CV/SWV

L.R.: 0.03–6.0 µM
LOD: 4.0 nM

CAP/Human blood
serum [97]

Aptamer/
rGO-PAMAM/

Aunano/SPE

Selective interaction of CYC with
W1/rGO-PAMAM-

FAD/Aunano/Anti-ptamerCYC
and VEGF165 with W2/rGO-
PAMAM-Th/Aunano/Anti-

ptamerVEGF165

CV/DPV
L.R.: 2.5–320.0 pM

LOD: 1.0 pM for CYC and
0.7 pM for VEGF165

CYC and VEGF165
tumor

markers/Human
serum

[98]

AuNPs/Fe3O4@SiO2/
DABCO/SPE

Label-free electrochemical
aptasensor for the selective

detection of epirubicin based on
the specific interaction of

aptamers with epirubicin and
formation of the

epirubicin–aptamer complex

EIS
(Fe (CN)6

3−/4−)/
CV/LSV

L.R.: 0.07µM to 1.0 µM and
1.0 µM to 21.0 µM

LOD: 0.04 µM

Epirubicin/Human
blood serum [99]

Zr-MOF/
Fe3O4(TMC)/
AuNCs/SPE

Antibody-labeled
Zr-MOF/Fe3O4(TMC)/

AuNCs
as the signal amplification unit

and rGO/APBA/SPE
as the sensing platform

ECL/CV L.R.: 2–18%
LOD: 0.072%

HbA1c/Human
whole blood [100]

TBA-SWCNT/
SPCE

Competitive interaction with the
TBA to thrombin and SWCNT is a

key role in this sensor system,
which is applicable to label-free

faradic impedance detection

EIS
(Fe (CN)6

3−/4−)
L.R.: 0.0001–1.0 µM

LOD: 0.02 nM Thrombin [101]

Hemin-aptamer/
PEG- Au/SPE

Thrombin binding to the aptamer
and formation of the

DNAzyme—the G4 structure with
intercalated hemin—underwent

direct electron transfer (ET)

CV L.R.: 0.5–100 fM
LOD: 0.5 fM Thrombin [102]

Aptamer/CNFs-
AuNPs/SPCE

After the incubation of
SARS-CoV-2-RBD (64 nM) with

the immobilized aptamer, the Rct
increased due to the mass transfer
limiting of Fe (CN)6

3−/4− to the
electrode surface that is caused by
SARS-CoV-2-RBD (~35 kDa) as a

large molecule

EIS
(Fe (CN)6

3−/4−)
L.R.: 0.01–64 nM

LOD: 7.0 pM

SARS-CoV-2-
RBD/Human saliva

samples
[103]
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Table 2. Cont.

Sensor Construction Technique and Method Detection Analytical Characteristics Analyte/Sample Ref.

Aptamer-SWCNT-
SPEs

Binding-induced folding of the
DNA aptamer in the presence of

the target S1 protein leads to
a concentration-dependent

suppression in the registered
amperometric signal

DPV L.R.: 20−100 nM
LOD: 7 nM

SARS-CoV-
2 spike protein S1

subunit/Other
proteins

[104]

DZN-thiolated
aptamer-Au

NP-SPGE

Label-free electrochemical
nano-aptasensor as portable

devices would be a promising
approach in the fast and precise

detection of DZN

EIS (Fe
(CN)6

3−/4−)/CV
L.R.: 0.1–1000 nM
LOD: 0.0169 nM

Diazinon/Plasma of
male Wistar rat [105]

SAM: Aptamer +
MCH-SPGEs
Ternary SAM:

Aptamer + HDT +
MCH-SPGEs

Two different aptamer
immobilization strategies (SAM

and ternary SAM) were
demonstrated for the detection of

the HER2 protein biomarker in
PBS diluted and undiluted serum

using SPGEs

EIS (Fe
(CN)6

3−/4−)
L.R.:1 pg/mL–1000 ng/mL

LOD: 172 pg/mL

Breast cancer
(HER2)/

Human serum
[106]

Aptamer-MB/
OMC-TPS CSPE

MB as a probe can bind to the
DNA chain through the

preferential binding between MB
and guanine bases, and the

decrease in peak current intensity
of the DPV of intercalated MB

was monitored

EIS (Fe
(CN)6

3−/4−)/CV
L. R.:1.0 fM to 10.0 pM

LOD: 0.18 fM
Insulin/Normal
human serum [107]

Cu (OH)2 NRs/SPCE

In the presence of SARS-CoV-2
spike glycoprotein, a decrease in

Cu(OH)2 NR-associated peak
current was observed that can be

due to the target–aptamer
complex formation and thus the

blocking of the electron transfer of
Cu(OH)2 NRs

SWV L. R.: 0.1 fg/mL–1.2 µg/mL
LOD: 0.03 fg/mL

SARS-CoV-2/Saliva
and VTM samples [108]

Apt-AuNPs/SPE

An amperometric aptasensor with
a sandwich-type architecture for

the specific detection of CRP
through NPs as biorecognition

and signaling elements

Amperometry L.R.: 10 pg/mL–1.0 ng/mL
LOD: 3.1 pg/mL

CRP/Human serum
samples [109]

Apt/Au/SPE
Signal switch-based detection was

achieved using MB-modified
insulin specific aptamer

SWV L.R.: 25–150 pM
LOD: 18.5 pM

Insulin hormone/
Blood samples [110]

FB1: fumonisin B1; CV: cyclic voltammetry; AuNPs; gold nanoparticles; HbA1c: glycated hemoglobin; N/A: not
available in the study; 4-MPBA: 4-mercaptophenylboronic acid; Au NFs: gold nano-flowers; CcR: cytochrome
c reductase; SAM: self-assembled monolayer; GNPs: gold nanoparticles; PPy: polypyrrole; HbA1c: glycated
hemoglobin; DZN: diazinon: SPGE: screen-printed gold electrode; MCH: 1-mercapto-6-hexanol; HDT: 1,6-
hexanethiol; OMC-TPS: ordered mesoporous carbon/1,3,6,8-pyrenetetra sulfonic acid; MB: methylene blue; DPV:
differential pulse voltammogram; TNT: 2,4,6-trinitrotoluene; CdTiPNPs: cadmium-modified titanium phosphate
nanoparticles; SWASV: square-wave anodic stripping voltammetry; CdTiPNPs: cadmium-modified titanium
phosphate nanoparticles; NTV: neutravidin; SPCE: screen-printed carbon electrodes; AMI: acute myocardial
infarction; MoS2 NFs: 3D-flower-like MoS2 nanoflowers; APTES: (3-aminopropyl) triethoxysilane; CM: complex
mixture; STVD: streptavidin; cTnI: cardiac troponin I; TTCA: 5,2′:5′2”-terthiophene-3′-carboxylic acid; CAP:
chloramphenicol; AuNCs: gold nanocubes; Cys: cysteine; CYC: cytochrome c; VEGF165: vascular endothelial
growth factor; rGO-PAMAM/Aunano: reduced graphene oxide/gold functionalized with poly(amidoamine)
dendrimers; Fe3O4@SiO2/DABCO: magnetic double-charged diazoniabicyclo [2.2.2] octane dichloride silica
hybrid; Zr-MOF/Fe3O4(TMC)/AuNCs: zirconium metal-organic framework/Fe3O4(trimethyl chitosan)/gold
nanocluster; TBA: thrombin binding aptamer; CRP: C-reactive protein; GLU: glutaraldehyde; CNFs-CHIT: carbon
nanofiber–chitosan nanocomposite; Cu(OH)2 NRs: copper hydroxide nanorods; VTM: viral transport medium;
RBD: receptor-binding domain; CNFs: carbon nanofibers.

3.3. Immunosensors

Before discussing the components and the working principle of an immunosensor, it
is necessary to clarify the immunoassay. An immunosensor refers to the mechanism where
either the antibody or antibody fragments are employed as the elements to perform molec-
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ular recognition for the antigens as specific analytes to create a steady complex. Yalow and
Berson were the pioneering scholars introducing the immunoassay principle in 1959 [115],
and they succeeded in developing the extensively employed radioimmunoassay, which
was designed for assessing the attributes of insulin-binding antibodies in human serum.
This was accomplished by using samples attained from patients cured with insulin. Later, a
biosensor notion was presented by Clark and Lyons in 1962 for different applications [116].

The main reason these instruments were considered in food, environmental, and
clinical analyses is the fact that electrochemical immunosensors incorporate specificity
which is highly characteristic of the interactions between the antigen and the antibody,
accomplished by higher sensitivity to electrochemical transduction. A considerable quantity
of published works has elaborated on electrochemical immunosensors which have been
based on the immobilization of the antibodies on an electrode surface, reacting with free
antigens in the face of the labeled antigens [117]. Afterward, the interaction between them
is pursued by determining the enzyme activity, including determining the specific enzyme
substrate that is added. The label-free immunosensors have recently been able to detect
the immune interaction between the antibody and antigen. These biosensors demonstrate
some significant benefits with regard to the rate and ease of action [118].

Between these evaluations, enzyme-linked immunosorbent assay (ELISA) or enzyme
immunoassay is a favored method. ELISA is extensively applied as a detection device in
clinical trials. The major point in this technique is that an indistinct antigen amount is
immobilized onto a surface, and then a known antibody amount is added on the surface
to bind with the antigen. This antibody is linked to an enzyme, and finally, a substance is
appended so that the enzyme can convert to some recognizable signal, which in a chemical
substrate consistently creates optical or electrochemical variations. This method, due to its
higher specificity and sensitivity in comparison with other immunoassays, is reliable [26].

SPE immunosensors are mostly engaged in on-site/point-of-care detection. SPEs
are mechanically strong electrochemical converters with a low cost which allows the
miniaturization of sensors and their manufacturing, which is feasible for merging the
WEs and REs in the same chip. They are also single-use tools, making them beneficial in
immunosensors’ fabrication [119].

In this section, several examples are reported on the use of immunosensors in the
analysis of different biocompounds with SPEs (Table 3) [54,120–144].

J. Fei’s group offered a sandwich-type electrochemical immunoassay for Salmonella
gallinarum and Salmonella pullorum based on a synthesized core shell of Fe3O4/SiO2/AuNPs
by anchoring AuNPs on Fe3O4 particles with strong bonding forces between AuNPs and
–SH. S. gallinarum and S. pullorum were used as the target bacteria. The AuNPs operated
as the intermediary substances for bonding between Fe3O4/SiO2-SH and the antibody
and acquired the immunomagnetic nanocomposites (Ab1/AuMNPs). The HRP-labeled
antibody versus S. gallinarum and S. pullorum (HRP-Ab2) was employed as the signal tag.
The S. gallinarum and S. pullorum bacteria in the sample were obtained with Ab1/AuMNPs
and separated from the analyte samples using an external magnetic field. The MNP–
Salmonella complexes were redispersed in a buffer solution and then subjected to HRP-anti
S. gallinarum and HRP-anti S. pullorum. The final sandwich complexes were attached on the
surface of the WEs of a four-channel SPCE (4-SPCE) by an external magnetic field (Figure 7).
The SPCE and 4-SPCE reproducibility were compared with CV [122].

As a growth-promoting agent, salbutamol (SAL) is a β2-agonist that is typically uti-
lized illegitimately in livestock. This illegitimate application could cause health risks,
including cardiac palpitation, tachycardia, and muscle tremors. C.-H. Lin’s group offered
highly sensitive label-free impedimetric immunosensors which functioned on the basis of
gold nanostructure (AuNS)-deposited SPCE. It is acknowledged that interactions of anti-
bodies and antigens can be directly detected using label-free electrochemical immunosen-
sors lacking fluorescence- or enzyme-labeled secondary antibodies. This eliminates the
labeling and reacting methods while resulting in lower costs and time throughout the
measurement procedure.
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The AuNS was prepared by a two-step template and low electrodeposition in a sea
urchin shape had submicrometer-scale pyramidal structures on micrometer-scale particles.
AntiSAL monoclonal antibody was immobilized on the 1-ethyl-3-(3-dimethylamino-propyl)
carbodiimide hydrochloride/N-hydroxysuccinimide-activated 3-mercaptoproponic acid-
modified AuNS/SPCEs (Figure 8). The label-free immunosensors based on the EIS method
are mostly employed in the detection of high-molecular-weight biomarkers, such as DNA
and protein, but are scarcely employed to detect low-molecular-weight compounds with
several hundreds of g/mol. This is because chemicals with a lower molecular weight
cause fewer spatial changes in the electrochemical characteristics of the interface among
the electrolyte and antibody immobilized on the electrode surface, which reduces the
electrochemical signal and leads to a high LOD. Thus, conductive NSs such as AuNPs with
a large surface area are significant for developing label-free EIS-based immunosensors for
the detection of low-molecular-weight chemicals [127].

L. Zhao et al. offered a multiplexed, single-channel, label-free amperometric im-
munosensor, as shown in Figure 9, for the detection of neuron-specific enolase (NSE),
squamous cell carcinoma antigen (SCCA), carbohydrate antigen 125 (CA125), and frag-
ment antigen 21-1 (Cyfra21-1) as tumor markers. In the multiplexed SPCE immunosensor,
composites of WEs on the SPCE surface were separately modified for each target, and the
related signals were registered using a multi-channel electrochemical workstation [145,146].
Although these types of safety sensors have made significant progress, they have problems:
(1) RE and CE contain precious metals such as Au, Pt, and g printed on single-use SPCEs,
which led to increased SPCE costs and pollution with precious metals [147]; (2) due to SPCE
use with multiple WEs and only one RE, the area of the RE is not much larger than that of
WEs and cannot prevent the current detection interference from the CE, leading to poor
immunoassay repeatability; (3) the polymeric binder presence in the carbon ink affected
the SPCEs’ conductivity, which seriously influenced the immunoassay sensitivity [26]; (4) a
costly multi-channel electrochemical workstation is needed, resulting in a restriction of the
immunoassay’s vast utilization. If, by designing SPCEs with a new structure and attaching
highly conductive material on WEs, these problems can be overcome, this will widely
increase the possible utilizations of this immunosensor type. To improve this case, a new
SPCE type with several WEs and one signal output channel but without CEs and REs
was constructed. The multifold WEs are able to be separately modified for each analyte
of interest, allowing the advanced SPCE to be employed in the multifold label-free im-
munosensor fabrication. The CEs and REs including expensive metals (Au, Ag, and Pt)
were independent of single-use SPCE, which lowers the costs and eliminates the metal
contamination of the SPCE. With a platinum network as CE, it was confirmed that the CE
area was larger than the WE area and thus enhanced the reproducibility of the SPCE. In
addition, a three-dimensional (3D) network hydrogel production method was used on the
WE to increase the conductivity of the SPCE [131].

Table 3. Immunosensors for (bio) compound detection in some samples.

Sensor Construction Technique and Method Detection Analytical Characteristics Analyte/Sample Ref.

Anti
mAβ/AuNPs/DEP

Label-free impedimetric amyloid
beta immunosensor on carbon

DEP chip

EIS (Fe
(CN)6

3−/4−)
L.R.: 1–200 µM
LOD: 0.57 nM

Amyloid beta
peptide/Human
serum albumin

[120]

QD-STV/
anti-H-IgA-BT/

anti-tTG IgA/SPCE

A blocking-free one-step
immunosensing strategy using
eight-channel screen-printed

arrays for the detection of
anti-transglutaminase IgA

antibodies

DPV L.R.: 3–40 U/mL
LOD: 2.7 U/mL

Anti-tTG IgA
antibodies/Human

serum
[121]

Ag/Ab/Fe3O4/
SiO2/AuNPs/SPCE

A sandwich electrochemical
immunoassay method CV L.R.: 102–106 CFU/mL

LOD: 32 CFU/mL

S. pullorum and S.
gallinarum/Food

samples (chickens)
[122]
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Table 3. Cont.

Sensor Construction Technique and Method Detection Analytical Characteristics Analyte/Sample Ref.

Anti-HSA/
EDC + NHS/

COOH-P-SPCE

A simple and sensitive
electrochemical immunosensor

based on carboxyl-enriched
porous SPCE for detecting urinary

albumin in the range of
microalbuminuria

CV/CA L.R.: 10–300 µg/mL
LOD: 9.7 µg/mL

Microalbuminuria/
Urine [123]

BSA/HRP/Ab2/
CEA/Ab1/EDC +

NHS/AuNPs/
rGO/SPEs

A sandwich type immunosensor
to mimic the ELISA

(enzyme-linked immunosorbent
assay) immunoassay

CV L.R.: 0.5–2000 ng/mL
LOD: 0.28 ng/mL CEA/N/A [124]

PPY/CEA/Ag-SPE

Combination of the novel
PCB-based SPEs comprising Ag

tracks with the use of an
antibody-like biomimetic material

as a sensing element

CV/SWV/
EIS

(Fe (CN)6
3−/4−)

L.R.: 0.05–1.25 pg/mL
LOD: N/A CEA/Urine [125]

Ab/fG/SPE
A convenient graphene SPE
platform for nonenzymatic
label-free immunosensors

EIS
(Fe (CN)6

3−/4−)
L.R.: 0.1–1000 ng/L

LOD: 52 pg/L
Parathion/Tomato

and carrot [126]

Antibody SAL/EDC
+ NHS-activated

MPA/AuNS/SPCEs

The high roughness and
conductivity of AuNS allowed the

immunosensor to have more
immobilized antibodies and a
smaller interface impedance,

resulting in a lower LOD than the
one using flat AuDEs

EIS
(Fe (CN)6

3−/4−)
L.R.: 0.1 pg/mL–1 µg/mL

LOD: 4 fg/mL SAL/Serum samples [127]

Ab/rGO-
TEPA/AuNPs/SPE

A disposable sandwich
immunosensor for sensitive

electrochemical detection of AFP
through the combination of SPEs

and paper-based microfluidic
channels

SWV L.R.: 0.01–100 ng/mL
LOD: 0.005 ng/mL AFP/Serum samples [54]

Ab/AgNPs-
rGO/SPE

The sandwich-type
immunosensor, which yielded a

lower LOD than its nonsandwich
counterpart

CV L.R.: 0.05–0.40 µg/mL
LOD: 0.042 µg/mL CEA/N/A [128]

HER2 Ag/Ab/SPE

Unmodified SPEs fabricated for
HER2 detection antigen using the

traditional sandwich ELISA
protocol

without compromising on the
accuracy, precision, or sensitivity

of the device

CV

L.R.:
5–20 ng/mL

and 20–200 ng/mL
LOD: 4 ng/mL and 5 ng/mL

HER2/Serum
samples of invasive

and non
invasive breast
cancer patients

[129]

AQ-2◦Ab/
Anti-1◦Ab/

L-Cys/Au/SPGE

A dual-working electrode was
custom-designed to

simultaneously compare the
presence and absence of CRP to

reduce the analysis time

DPV L.R.: 0.01–150 µg/mL
LOD: 1.5 ng/mL CRP/Serum samples [130]

(1) Ab/PoPD-Au/
Pd-SA-AuNP/SPE
(2) Ab/PMB-Au/

Pd-SA-AuNP/SPE
(3) Ab/PPPD-Au/
Pd-SA-AuNP/SPE

(4) Ab/PTMB-
Au/Pd-SA

AuNP/SPCE

Multiplexed label-free
immunosensor, where one signal
output channel could make the
immunosensor be realized by a

common single-channel
electrochemical workstation

SWV

L.R.: 0.01–100 ng/mL
for SCCA

0.01–100 ng/mL
for Cyfra21-1

0.01–200 U/mL
for CA125

0.01–200 ng/mL
for NSE

LOD: 5.5 pg/mL for SCCA
4.8 pg/mL for Cyfra21-1
0.0054 U/mL for CA125

2.3 pg/mL for NSE

SCCA, Cyfra21-1,
CA125, NSE/Serum

samples
[131]
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Table 3. Cont.

Sensor Construction Technique and Method Detection Analytical Characteristics Analyte/Sample Ref.

(1) HC/BSA/
PRF+1/SPCE
(2) JIA/BSA/
PRF+1/SPCE

The PRF+1 mimetic peptide used
as a recognition biological
element was successfully

immobilized onto the SPCE
surface, and a 15-fold increase in

the current intensity was
observed when compared to the

bare electrode

DPV/
EIS (Fe

(CN)6
3−/4−)

N/A JIA/Serum samples [132]

(1) AbEGFR
Cd(II)@LP/MIP/

DSP-SPE
(2) AbVEGF-Cu(II)

@LP/MIP/DSP-SPE

Development of electrochemical
biosensors

based on both MIP and antibodies
for sandwich assays in the dual

detection
of EGFR and VEGF

EIS (Fe
(CN)6

3−/4−)

L.R.: 0.05–50,000 pg/mL for
EGFR

0.01–7000 pg/mL for VEGF
LOD: 0.01 pg/mL for EGFR

0.005 pg/mL for VEGF

EGFR and VEGF [133]

BSA/Ab2/NR-
Au@Pt/rGO/E.coli

O157:H7/BSA/Ab1/
AuNPs/PANI/SPCE

The anti E. coli O157:H7
monoclonal antibody (Ab1) was
automatically adsorbed on the
AuNPs/PANI/SPCE platform

through amino and AuNPs
interaction. NR-Au@Pt/rGO as
the nonenzyme signal label can
enhance the performance of the
immunoassay for the catalytic

reduction of H2O2

CV
L.R.: 8.9 × 103–8.9 × 109

CFU/mL
LOD: 2.84 × 103 CFU/mL

E. coli O157:H7/Pork
samples [134]

Pt/rGO/
P3ABA/SPCE

The biocompatible P3ABA
contains an abundance of

carboxylic groups, used as the
matrix for the immobilization of

enzymes (GOx or ChOx) via
amide linkages to increase

enzyme loading, to enhance the
sensitivity and specificity, and to

improve the stability of the
modified electrode

CV/
EIS

(Fe (CN)6
3−/4−)/

Amperometry

L.R.: 0.25–6.00 mM for
glucose

0.25–4.00 mM for cholesterol
LOD: 44.3 µM for glucose

40.5 µM for cholesterol

Glucose and
cholesterol/Serum

samples
[135]

Au-Mab-hCG/
hCG/Mab-FSH/
SWCNTs/SPCE

A sandwich-type immunoassay,
where the gold-linked second
antibody (Au-Mab-hCG) was
used as a label and the signal
amplification strategy-using
AuNPs as bio-trackers and
SWCNT enhanced electron

transfer nearly double that of bare
SPCE

DPV L.R.: 10–1000 pg/L
LOD: 5 pg/L hCG/N/A [136]

PSA/anti-PSA/
GO/SPCE

The sensing platform comprises a
direct-type immunoassay which
involves the selective interaction

of PSA with anti-PSA

CV/
EIS

(Fe (CN)6
3−/4−)

L.R.: 0.75–100 ng/mL
LOD: 0.27 ng/mL

PSA/Human (male)
blood

serum sample
[137]

Ag/Ab/15 nm
AuNPs-SPE

The surface modification of
carbon SPEs with AuNPs could

increase the electron transfer rate
between the electrolytic solution

and the modified electrode
compared with that of bare SPE

CV/DPV/
EIS

(Fe (CN)6
3−/4−)

L.R.: 10–106 CFU/mL
LOD: 13 CFU/ml

MRSA/Pathogenic
bacteria [138]

MBs/
anti-rabbit IgG-AP/

anti-SARS-CoV
antibody/CB/SPE

The electrochemical assay was
conceived for spike (S) protein or

nucleocapsid (N) protein
detection using magnetic beads as
the support of the immunological
chain and the secondary antibody
with alkaline phosphatase as the

immunological label

DPV

L.R.: N/A
LOD: 19 ng/mL in buffer
solution and 8 ng/mL in

untreated saliva

SARS-CoV-2/Saliva
and nasopharyngeal

swab samples
[139]
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Table 3. Cont.

Sensor Construction Technique and Method Detection Analytical Characteristics Analyte/Sample Ref.

AuDdrites/SPCE

A flexible and label-free
immunosensor chip made with

tree-like gold dendrites
(AuDdrites) was

electrochemically formed by
selective desorption of l-cysteine

(L-cys) on (111) gold planes

SWV L.R.: 0.1–900 ng/mL
LOD: 0.03 ng/mL

25(OH)D3/Serum
samples [140]

GFAP/BSA/
GFAP Ab/
Au@ZIF-

8@rGO/SPE

The concept of the immunosensor
is to detect the signal perturbation

obtained by measuring the
changes in the load transfer

resistance
of the electrode by using Fe

(CN)6
3−/4− measurements after

binding the protein during
incubation

CV/
EIS (Fe

(CN)6
3−/4−)

L.R.: 50–10,000 fg/mL
LOD: 50 fg/mL GFAP/Urine samples [141]

AFB1-mAb/MB-
OVA-AFB1/CB/SPE

A user-friendly
smartphone-based

magneto-immunosensor on
CB/SPE modified electrodes for

point-of-care detection of
aflatoxin B1

CV/EIS (Fe
(CN)6

3−/4−)

L.R.: N/A
LOD: 13 pg/mL in buffer

solutions and 24 pg/mL in
corn samples

Aflatoxin B1/Corn
samples [142]

S1-IgG antibody and
S1 protein/
AuNP/SPE

A one-step and specific detection
of SARS-CoV-2 virus from

unprocessed clinical samples
SWV L.R.: 0.1 fg/mL–100 pg/mL

LOD: 7.62 fg/mL
SARS-CoV-2/Swab
and blood samples [143]

AbD/CYM/
Au@MNPs/SPE

Modifications were set up to
maximize the diffusion of the
probe on the electrode surface,

therefore amplifying the current
decrease occurring after the

25(OH)D3 interaction due to both
the steric hindrance and the
lipophilic nature of molecule

DPV L.R.: 7.4–70 ng/mL
LOD: 2.4 ng/mL

Vitamin D3
(25-OHD3)/

Untreated serum
samples

[144]

DEP: disposable electrochemical printed; Anti mAβ/: N-terminal human monoclonal Aβ antibody; tTG: anti-
tissue transglutaminase antibodies; QD-STV: Qdot-streptavidin conjugate; S. pullorum: Salmonella pullorum;
S. gallinarum: Salmonella gallinarum; CA: chronoamperometric; HAS: human serum albumin; COOH-P-SPCE:
carboxyl porous screen-printed carbon electrode; AuNPs/rGO: gold nanoparticles and reduced graphene oxide;
CEA: carcinogenic embryonic antigen; N/A: not available in the study; fG: functionalized graphene; SAL:
salbutamol; MPS: 2-(N-morpholino) ethanesulfonic acid; rGO-TEPA: reduced graphene oxide-tetraethylene
pen-tamine; AFP: alpha-fetoprotein; AgNPs: silver nanoparticles; HER2: Human Epidermal Growth Factor
Receptor-2; CRP: C-reactive protein; L-Cys: L-cysteine; Anti-1◦Ab: unlabeled capture primary antibody; AQ-
2◦Ab: anthraquinone-labeled signaling secondary; SCCA: squamous cell carcinoma antigen; Cyfra21-1: fragment
antigen 21-1; CA125: carbohydrate antigen 125; NSE: neuron-specific enolase; JIA: juvenile idiopathic arthritis;
HC: healthy control; PRF+1: PRF+1 mimetic peptide; EGFR: epidermal growth factor receptor; VEGF: vascular
endothelial growth factor; MIP: molecularly imprinted polymer; LP: liposomal; DSP: 3,3′-dithiodipropionic acid
di(N-hydroxysuccinimide ester); E. coli O157:H7: Escherichia coli O157:H7; Au@Pt: Gold@platinum nanoparticles;
PANI: polyaniline; NR: neutral red; P3ABA: poly(3-aminobenzoic acid); hCG: human chorionic gonadotropin;
Mab: monoclonal anti-human α-subunit; FSH: follicle-stimulating hormone; PSA: prostate-specific antigen; MRSA:
Methicillin-resistant Staphylococcus aureus; OA: okadaic acid; FL-WO3: flower-like WO3-modified screen-printed
electrode; MBs: magnetic beads; CB: carbon black; 25(OH)D3: 25-hydroxyvitamin D3; GFAP: glial fibrillary
acidic protein; Au@ZIF-8@rGO: zeolitic imidazolate frameworks and reduced graphene oxide anchored with
gold nanoparticles; CB: carbon black; AFB1-mAb: monoclonal antibody specific for aflatoxin B1; MB-OVA-AFB1:
magnetic beads conjugated with AFB1-OVA; CYM: cysteamine hydrochloride; Au@MNPs(AuMNPs): core–shell
magnetic nanoparticles (Au-covered iron oxide nanoparticles); AbD: vitamin D3 antibody.
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3.4. Enzyme Biosensors

Although there are higher expenses involved in extracting, isolating, and purifying
enzymes, they are repeatedly utilized as biological substances to fabricate biosensors. This
is because of their fast and clean formation of selective bonds with the substrate. As
proteins with polypeptide structures, enzymes catalyze certain chemical reactions in vivo,
accelerating the reaction rate. While enzymes were reported to be the first employed in
biosensors, they are currently being used widely and extensively. In fact, their specificity
has been considered as their main favorable characteristic, enabling their use in biosensor
methods. Contrary to chemical catalysts, enzymes yield significantly higher levels of
substrate specificity. This occurs due to the restrictions forced onto the substrate molecule
by the active site environment, which encompasses factors such as functional groups,
stereochemistry, molecular size, polarity, and relative bond energies [1]. The operation of
the enzyme biosensors consists of the most selective interaction between the target analyte
and the active sites of the enzyme. This results in the formation of a complex that is capable
of converting the analyte into one or more products. By appraising the quantity of the
obtained product, the analyte could be thus detected. Nevertheless, there is occasionally a
need for cofactors or coreagents, which is why they could be likewise used with the aim of
presenting the interaction between the enzyme and the analyte [29,148].

G. Hughes et al. scrutinized an SPCE encompassing the electrocatalyst Meldola blue
(MB) as the base transducer for a reagentless glutamate biosensor. This was accomplished
as the components were deposited sequentially through a layer-by-layer procedure. As
such, for encapsulating the enzyme glutamate dehydrogenase (GLDH) and the cofac-
tor nicotinamide adenine dinucleotide (NAD+), the researchers made use of MWCNTs
and biopolymer chitosan (CHIT). Poor homogenous dispersion resulted from the slight
solubility of the unmodified MWCNTs. Therefore, they were suspended in a solution
enclosing CHIT, which is considered to be a natural polysaccharide. This practice origi-
nated from crustaceans, revealing brilliant and striking film-forming characteristics, which
enhance enzyme stability [149,150]. In opposition to other solvents, MWCNTs’ dispersion
in CHIT/HCl yielded the smallest particle size, forming a larger surface area while requir-
ing no functionalization. Such a reagentless device made via the mentioned procedure
is advantageous, yielding cost-efficient biosensors. Such biosensors are claimed to be
convenient to use because of the fact that there is no need for any additional cofactors to be
added to the sample solution [151].

Table 4 briefs the analytical features and the significant characteristics of some of
the recent enzyme biosensor-based SPEs which employed the illustrative procedures in
biological samples [151–180]. Some examples of these papers are explained below.

The presence of pathogenic bacteria in foods has consistently posed a serious threat to
people’s health and the income of food producers. Therefore, it is of great importance to use
advanced recognition procedures that can identify these pathogens with high sensitivity
and speed. Escherichia coli (E. coli) O157:H7 is the most common Shiga toxin-producing
variant of E. coli in North America that can cause disease with a very low dose: between 10
and 100 cells. The symptoms of this disease consist of bloody diarrhea, intense stomach
cramps, vomiting, or even the life-threatening hemolytic uremic syndrome. M. Xu’s group
reported an electrochemical biosensor for the fast recognition of E. coli O157:H7 using
screen-printed interdigitated microelectrodes (SP-IDMEs) which were modified by the
combination of bi-functional polydopamine-glucose oxidase (PDA-GOx)-based polymeric
nanocomposites (PMNCs) and Prussian blue (PB). First, along with the selfpolymerization
of DA (dopamine), the core shell magnetic beads (MBs)-GOx@PDA PMNCs were synthe-
sized. Then, the dispersion of AuNPs was accomplished by biochemical synthesis on the
surface of PMNCs to gain greater high-performance adsorption of GOx and antibodies
(ABs). The ABs/GOxext/AuNPs/MBs–GOx@PDA PMNCs, as the final product (Figure 10),
acted as the carrier to separate target bacteria from food matrices and also as the booster
and modifier of the SPE in order to run electrochemical evaluations (Figure 11). The separa-
tion of unbending PMNCs was performed using a filtration process, and then, in order to
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enable the occurrence of the enzymatic reaction, it was transferred into a glucose solution.
The process of filtration assistance was conducted in isolation and with a concentration of
free PMNCs; however, the elimination of the bonded PMNCs caused a reduction in the
background noise during detection so that the sensitivity of the developed biosensor could
be proportionally enhanced [152].

M. Asim Akhtar et al. reported an electrochemical biosensor to glucose analysis with
functionalized graphene (f-Gr) that was assembled on the surface of a gold-sputtered
SPE. Sputtering of the conducting substances such as gold and carbon on the WE present
benefits in increasing the electron transfer and giving a vast spectrum of active sites for
extra modifications. In addition, the dispersed AuNPs produced such an environment that
the biological activity of biomolecules was maintained during immobilization while it was
possible to accelerate the electron transfer between biomolecules and electrode surfaces.
The thiolation of hydroxyl and epoxide groups in graphene oxide (GO) was realized by
one-pot monothiolation, which was accomplished by hydrobromic acid to reduce GO,
followed by the addition of thiourea and hydrolysis by sodium hydroxide to create GO-
SH. Owing to the regeneration of the sp2 carbon network and the lower electronegativity
of sulfur, the electrical conductivity was increased. During immobilization of 1-ethyl-
3-(3-(dimethylamino) propyl) carbodiimide, the carboxylic groups of the Gr backbone
increased, which presented further active sites for the distant functional groups in GOx.
The increase in the electrochemical performance may be due to the bifunctionality of the Gr
backbone and the Au-sputtered morphology. AuNPs were deposited on the SPE interface
that imprinted nano-island-like Au structures on the underlying carbon layers. Eventually,
Gr functionalized with thiol groups was used in the modification of Au-sputtered SPE for
glucose analysis (Figure 12) [153].

In order to design a reagent-free electrochemical NAD+-dependent dehydrogenase,
J. Pilas et al. presented a facile approach for the modification of SPCE with GO (Figure 13).
By modifying the SPEs with the GO in addition to an additional layer of the cellulose
acetate, enzymes and cofactors ((NAD+) and Fe(CN)6

3−) were immobilized. Notably,
NAD+ has a pivotal role as an oxidizing agent in numerous central metabolic pathways.
As such, the cofactor is responsible for the electron transfer of the dehydrogenase-catalyzed
reactions. Hence, the mentioned enzymes have recently attracted attention when designing
electrochemical biosensors, and the reason is that there is a high degree of availability for
NAD+-dependent dehydrogenases for diverse analytes.

Generally, research in the construction of reagent-free systems focuses mostly on the
advancement of biosensors for single-analyte detection. For environmental, pharmaceutical,
and clinical samples, there is greater interest in more simultaneous metabolite detection. In
this view, the use of an electrode array for several analytes seems important. Therefore, in
this work, a multianalyte biosensor array for simultaneous and crosstalk-free determination
of the metabolites L-lactate, D-lactate, ethanol, and formate was evaluated [154].

Table 4. Enzymatic biosensors for (bio)compound detection in some samples.

Sensor Construction Technique and Method Detection Analytical Characteristics Analyte/Sample Ref.

ChOx/SiO2/AuSPE

ChOx/SiO2 exhibits the
characteristics of the typical
Michaelis–Menten kinetic

mechanism with the signal
saturation upon the addition of

high choline concentrations

CV/Amperometry L.R.: 0.02–0.6 mM
LOD: 6 µM

Choline/Baby food
samples [155]

MWCNT-CHIT-MB/
GLDH-NAD+-CHIT/

MWCNT-CHIT/
SPCE

A reagentless amperometric
glutamate biosensor based on

GLDH and NAD+ integrated with
a disposable SPE

Amperometry L.R.: 7.5–105 µM
LOD: 3 µM

Glutamate/Food,
serum and clinical

samples
[151]
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Table 4. Cont.

Sensor Construction Technique and Method Detection Analytical Characteristics Analyte/Sample Ref.

BSA-glutaraldehyde-
uricase/PPD/SPE

The uricase as an enzyme on an
SPE has been integrated onto a

mouthguard platform along with
anatomically miniaturized
instrumentation electronics

featuring a potentiostat,
microcontroller, and a BLE

transceiver

Amperometry L.R.: 100–250 µM
LOD: 2.32 µM

SUA/Human saliva
samples [156]

Ty-SWCNT-
COOH/SPE

The -COOH functionalized
SWCNT provides a suitable
microenvironment for the

immobilization of enzymes
retaining the bioactivity of Ty

Amperometry L.R.: 5–180 µM
LOD: 0.62 µM

Tyramine/Pickled
and smoked fish

samples
[157]

GOx/4-APBA/SPCE
Glucose reacts with oxygen to

generate hydrogen peroxide and
gluconic acid

CV/Amperometry L.R.: 0.05–100 mM
LOD: 0.86 µM

Glucose/Blood
serum, soft drink,

sweet tea, and apple
juice samples

[158]

ABs/GOxext/
AuNPs/

MBs-GOx@PDA
PMNCs/SPE

The bifunctional PMNCs contain
a high load of enzyme and can

optimally utilize the binding sites
on bacterial cells, which efficiently

amplify the signal

CV/Amperometry L.R.: 103–106 cfu/g
LOD: 190 cfu/g

E. coli
O157:H7/Foodborne

pathogens
[152]

GA/ADH/
PNR/AuNPs/

MWCNTs/SPCE

Investigation of changes in
conductivity and the

electrocatalytic activity of the
electrodes upon modifications

Amperometry L.R.: 320.2–1000 µM
LOD: 96.1 µM

Ethanol/Commercial
alcoholic beverages [159]

MWCNT/FcMe/
CS/HRP/BSA/

LOx/SPBGE

Potentially utilized as a
nonintrusive point of care sensor Amperometry L.R.: 30.4–243.9 µM

LOD: 22.6 µM

L-lactate/
Embryonic cell

culture
[160]

AChE/MWCNTs/
DCHP/SPE

The CV responses were associated
with the inhibition of AChE

activity based on the amount of
the added pesticide

CV L.R.: 0.05–105 µM
LOD: 0.05 µM

Chlorpyrifos/
Vegetable samples. [161]

ε-FK/FAOx/
Ru-complex/SPE

A disposable electrochemical
enzyme sensor strip for the

measurement of GA using FAOx,
and hexaammineruthenium (III)

chloride (Ru complex) as the
electron mediator

Amperometry L.R.: 0.05–105 µM
LOD: 0.05 µM

GA/Albumin [162]

GOx/PBNCs/
AgNWs/SPE

The combination of high
electrocatalysis of PBNCs and fast
conductivity of AgNWs to exhibit

the synergic effects in the
electrocatalytic detections

Amperometry L.R.: 0.01–1.3 mM
LOD: 5 µM

Glucose/Blood
serum sample [163]

ChOx/NiO/SPE-Au

This electrode was assembled with
ChOx to develop a first-generation

cholesterol biosensor where the
enzymatically generated H2O2

was used to sense the cholesterol
concentration

CV/Amperometry L.R.: 0.067–0.6 mM
LOD: 20 µM Cholesterol/N/A [164]

ADH/
RuO2-GNR/

SPCE

This approach allowed increased
communication and electron

transfer between the electrode
surface and redox centers in

the ADH

CV/EIS/
Amperometry

L.R.: 1–1800 µM for ethanol
1 to 1300 µM for NADH

LOD: 0.19 µM for ethanol
0.52 µM for NADH

Ethanol and
NADH/Commercial
alcoholic beverages

[165]

GA/ADH/AuNPs/
PNR/MWCNTs/
SPCE for ADH

and
GA/G/AOx/AuNPs/

PNR/MWCNTs/
SPCE for AOx

The first biosensor based on ADH
responds only to ethanol, whereas

the second biosensor based on
AOx responds to both methanol

and ethanol

CV

L.R.: 178.5–1000 µM for
ethanol

335.9–1000 µM for methanol
LOD: 53.5 µM for ethanol

100.8 µM for methanol

Ethanol, methanol
and their mixtures/

Commercial alcoholic
drink

[166]
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Table 4. Cont.

Sensor Construction Technique and Method Detection Analytical Characteristics Analyte/Sample Ref.

LOx–Cu-MOF/
CS/Pt/SPCE

A LOx-based biosensor to
determine lactate in a wide

concentration range
Amperometry L.R.: 0.75 µM–1 mM

LOD: 0.75 µM
Lactate/Sweat and

saliva [167]

Tyr/AuNPs/SPCE

Catechol, phenol, caffeic acid, and
tyrosol were analyzed

individually, and adequate
analytical and kinetic

performances were obtained

Amperometry
L.R.: 2.5–20 µM

LOD: 0.4 nM for catechol and
0.5 µM for phenol

Total phenolic
content/Commercial

beers
[168]

ADH/RA/SPCE

RA/SPCE was found to facilitate
the electrocatalytic oxidation of
NADH by the action of RA as a

natural antioxidant mediator

CV/Amperometry L.R.: 23.71–1000 µM
LOD: 7.1 µM

Ethanol and
NADH/Commercial

alcoholic drink
[169]

GOx/GO-SH/
Au/SPE

The enhanced electrochemical
performance is originated from

sputtered morphology of Au and
the bifunctionality of the

graphene backbone

CV L.R.: 3–9 mM
LOD: 0.3194 mM

Glucose/Various
biomolecules such as

cholesterol and
D-alanine

[153]

PDA@ChOx/
MWCNTox/

PB/SPE

Combination of electrocatalytic
properties of surfactant-modified

PB films and the large high
surface-to-volume ratio of CNTs

CV/EIS/Amperometry L.R.: 0–400 µM
LOD: 11 µM

Cholesterol/Biological
matrices [170]

GOx/AuNP/PANI/
rGO/NH2-MWCNTs/

SPCE

The electrochemical analysis has
been followed at different stages

of glucose oxidase coating on
modified SPCE using cyclic

voltammetry

Amperometry L.R.: 1–10 mM
LOD: 64 µM

Glucose/Human
blood serum samples [171]

GOx/SiO2-ATO/
PB/SPE

The used PB pigment is prepared
by chemically growing a thin PB

layer on the surface of SiO2
particles covered by the thin shell

of ATO, which was combined
with a Viton® binder system

Amperometry L.R.: 0.1–1mM
LOD: 54.1 µM

Glucose/
N/A [172]

GGP/GA/
ZnONPs/PtSPE

The PtSPE was modified with less
than 5 nm ZnONPs and

glutaraldehyde as a linker agent;
GGPs as a biological recognition

element exhibited sufficient
catalytic activity towards H2O2

reduction

CV/Amperometry L.R.: N/A
LOD: 84 µM

H2O2/
N/A [173]

(1) DAOx/PVF/
GRO/SPCE

(2) MAOx/PVF/
GRO/SPCE

MAOx/PVF/GRO/SPCE showed
higher sensitivity for tyramine

determination in comparison with
the DAOx/PVF/GRO/SPCE

CV

L.R.: 0.99–120 µM for DAOx
0.99–110 µM for MAOx
LOD: 0.41 µM for DAOx

0.61 µM for MAOx

Tyramine/Cheese
sample [174]

CB/PBNPs/SPE

The versatile analysis of different
pesticides was carried out by

folding and unfolding the filter
paper-based structure, without

adding any reagents and multiple
sample treatment

Amperometry

L.R.: 2–100 ppb for paraoxon
100 and 1000 ppb for

2,4-dichlorophenoxyacetic acid
10 and 100 ppb for atrazine
LOD: 2 ppb for paraoxon

50 ppb for
2,4-dichlorophenoxyacetic acid

for atrazine
5 ppb for atrazine

Pesticides (paraoxon,
2,4-

dichlorophenoxyacetic
acid, and atrazine)/

Water sample

[175]

CA/Enzymes/
GO+cofactors/SPE

NAD+ and Fe(CN)6
3− as

cofactors for
ADH, DIA, FDH, DLDH,

and L-lactate
dehydrogenase (L-LDH) enzymes

Amperometry

L.R.: 0.25–4 mM for L-lactate,
D-lactate and formate
0.05–2 mm for ethanol

LOD: N/A

L-lactate, D-lactate,
ethanol and formate [154]

Uricase/Chi-Gr
cry/PB/SPCE

Amperometric detection of UA
catalyzed by uricase was based on
the change in the cathodic current
of PB at a potential of 0.00 V in a

flow injection system

CV/Amperometry L.R.: 0.0025–0.40 mM
LOD: 2.5 µM

UA/Human serum
samples [176]
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Table 4. Cont.

Sensor Construction Technique and Method Detection Analytical Characteristics Analyte/Sample Ref.

e-Lac/CB/SPE
ESD process was exploited for the
immobilization of laccase enzyme

on CB/SPE
CV/Amperometry L.R.: 2.5–50 µM

LOD: 2.0 µM

Phenolic compound/
drinking, surface,
and wastewater

[177]

LOx/PBNcs/SPE-BC

Handmade SPE was prepared on
oxidized BC substrate and was

modified with PBNcs as an
electrochemical mediator to

facilitate the electron transfer
capability and enhance the

biosensor sensitivity

CV/Amperometry L.R.: 1–24 mM
LOD: 1.31 mM

Lactate/
artificial sweat [178]

LOx/GMgOC/SPE

The lactate sensing system
features an integrated

microfluidic sweat collector
fabricated from

polydimethylsiloxane

CV/Amperometry L.R.: 0.1–100 mM
LOD: 0.3 mM Lactate/Sweat [179]

E/NPs/SPCEs

Acetylthiocholine iodide,
serotonin, and

β-D-phenolphthalein glucuronide
as E

gold nanoparticles and carbon
nanotubes as NPs

Amperometry

L.R.: 0.18–1.60 µg/L for AB
Fubinaca

0.18–2.00 µg/L for AB Pinaca
LOD: (0.07–0.10) µg/L for AB

Fubinaca
(0.08–0.09) µg/L for AB

Pinaca

AB-Fubinaca and
AB-Pinaca/Water

matrixes
[180]

ChOx: choline oxidase; MB-SPCE: Meldola Blue screen-printed carbon electrode; GLDH: enzyme glutamate
dehydrogenase; CHIT: chitosan; NAD+: co-factor nicotinamide adenine dinucleotide; SUA: salivary uric acid; BLE:
Bluetooth Low Energy; PPD: polymerized o-phenylenediamine; Ty: tyrosinase; GOx: glucose oxidase; 4-APBA:
4-aminophenylboronic acid; PDA: polydopamine; DA: dopamine; PMNCs: polymeric nanocomposites; PB:
Prussian blue; MBs: magnetic beads; PNR: polyneutral red; ADH: alcohol dehydrogenase; GA: glutaraldehyde;
CS: chitosan; HRP: horseradish peroxidase; Lox: lactate oxidase; SPBGEs: basal-plane-like screen-printed graphite
electrodes; FcMe: ferrocene methanol; DCHP: dicyclohexyl phthalate; AChE: acetylcholinesterase; GA: glycated
albumin; FAOx: fructosyl amino acid oxidase; ε-FK: ε-fructosyllysine; PBNCs: Prussian blue nanocubes; AgNWs:
silver nanowires; ChOx: cholesterol oxidase; NiO: nanostructured nickel oxide; GNR: graphene nanoribbon;
RuO2: ruthenium dioxide; ADH: alcohol dehydrogenase; AOx: alcohol oxidase; LOx: lactate oxidase; Cu-MOF:
copper metallic framework; Pt: platinum coating; Tyr: tyrosinase; RA: rosmarinic acid; GO-SH: functionalization
of graphene; PANI: polyaniline; PB: Prussian blue; ATO: antimony tin oxide; ZnONPs: zinc oxide nanoparticles;
GGP: Guinea grass peroxidase; GRO: graphene oxide; PVF: polyvinylferrocene; DAOx: diamine oxidase; MAOx:
monoamine oxidase; CB: carbon black; CA: cellulose acetate; DIA: diaphorase; FDH: formate dehydrogenase;
DLDH: D-lactate dehydrogenase; L-LDH: L-lactate dehydrogenase; UA: uric acid; cry: Cryogel; ESD: electrospray
deposition; CB: carbon black; BC: bacterial cellulose; PBNcs: Prussian blue nanocubes; MgOC: MgO-templated
mesoporous carbon; GMA: glycidyl methacrylate; GMgOC: graft polymerization of GMA on the MgOC surface;
E: enzyme; N: nanoparticles.
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cations, it is possible for them to be integrated into other procedures. There has recently 
been a growing application of SPEs as, for example, disposable biosensors, which can be 
employed for analyzing numerous (bio) compounds. Accordingly, to fulfil this goal, var-
ious methods have been utilized to immobilize nucleic acids, enzymes, and antibodies 
onto the surface of SPEs, especially for the detection of human pathogens. 

Sallmonella, E. coli, L. monocytogenes, and S. Pneumonia were identified in various ma-
trices with SPE-based biosensors. These electrochemical biosensors were depicted as an 
impressive alternative to the classical procedures for biocompound detection. In this re-
view paper, we present the design of SPE-based biosensors and their applications for the 
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Figure 13. Schematic representation of the multianalyte SPE biosensor (adapted and reprinted with
permission from [154]).

4. Conclusions

In this review, we present the most recent developments in the field of SPE-based
biosensors. The modern electrochemical methods in combination with SPEs have offered
advancements in micro-electronic systems. Therefore, the on-site and real-time analysis of
environmental and biological compounds has significantly improved based on the minia-
turization of the sensor process. Due to their cost-effectiveness and easy portability, SPEs
have attracted worldwide consideration. The simple and mass production of reproducible
SPEs provides the opportunity to employ SPE-based sensors as one-shot tools. SPEs’ ability
to be modified for the detection of numerous analytes and their cost-effectiveness have
made them advantageous. Furthermore, in order to cater to specific applications, it is
possible for them to be integrated into other procedures. There has recently been a growing
application of SPEs as, for example, disposable biosensors, which can be employed for
analyzing numerous (bio) compounds. Accordingly, to fulfil this goal, various methods
have been utilized to immobilize nucleic acids, enzymes, and antibodies onto the surface of
SPEs, especially for the detection of human pathogens.

Sallmonella, E. coli, L. monocytogenes, and S. Pneumonia were identified in various
matrices with SPE-based biosensors. These electrochemical biosensors were depicted as
an impressive alternative to the classical procedures for biocompound detection. In this
review paper, we present the design of SPE-based biosensors and their applications for
the detection of different (bio) compounds. As well, we summarize the novel SPE-based
biosensor designs and their applications published in the past eight years. There has been
widespread use of biosensors, including for food safety, quality control, as well as for
environmental monitoring, and it is anticipated that their use will further expand in the
coming years. As mentioned in this review, a variety of sensors for a wide range of analytes
including alcohol, H2O2, neurotransmitters, glucose, DNA sensors, and immunosensors
have been used for on-site detection.

The analytical applications and potential performances were significantly enhanced
due to the full integration of new discoveries in nanotechnology with the new biosensors’
advancements. The design of modified SPEs with the newest findings in nanomaterials,
including Gr, CNTs, and AuNPs, make them suitable substrates for immobilizing biological
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transducer elements. Moreover, such developments have contributed to SPEs’ miniaturiza-
tion by significantly increasing the sensitivity and selectivity of the sensors. This review
has focused on the ways in which SPEs were biologically modified with DNA, enzymes,
aptamers, and antibodies together with chemical modifications such as noble metals, en-
zymes, and NPs, as well as polymeric films to further enhance the performance of the
biosensors for potential applications in the analysis of biocompounds.
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supported on screen printed electrode with enhanced electrocatalytic performances toward ethanol and NADH biosensing.
Biosens. Bioelectron. 2018, 117, 392–397. [CrossRef] [PubMed]

166. Bilgi, M.; Ayranci, E. Development of amperometric biosensors using screen-printed carbon electrodes modified with conducting
polymer and nanomaterials for the analysis of ethanol, methanol and their mixtures. J. Electroanal. Chem. 2018, 823, 588–592.
[CrossRef]

167. Cunha-Silva, H.; Arcos-Martinez, M.J. Dual range lactate oxidase-based screen printed amperometric biosensor for analysis of
lactate in diversified samples. Talanta 2018, 188, 779–787. [CrossRef]

168. Cerrato-Alvarez, M.; Bernalte, E.; Bernalte-García, M.J.; Pinilla-Gil, E. Fast and direct amperometric analysis of polyphenols in
beers using tyrosinase-modified screen-printed gold nanoparticles biosensors. Talanta 2019, 193, 93–99. [CrossRef]

169. Bilgi, M.; Sahin, E.M.; Ayranci, E. Sensor and biosensor application of a new redox mediator: Rosmarinic acid modified
screen-printed carbon electrode for electrochemical determination of NADH and ethanol. J. Electroanal. Chem. 2018, 813, 67–74.
[CrossRef]

170. Salazar, P.; Martín, M.; González-Mora, J.L. In situ electrodeposition of cholesterol oxidase-modified polydopamine thin film on
nanostructured screen printed electrodes for free cholesterol determination. J. Electroanal. Chem. 2019, 837, 191–199. [CrossRef]

171. Maity, D.; Minitha, C.; RT, R.K. Glucose oxidase immobilized amine terminated multiwall carbon nanotubes/reduced graphene
oxide/polyaniline/gold nanoparticles modified screen-printed carbon electrode for highly sensitive amperometric glucose
detection. Mater. Sci. Eng. C 2019, 105, 110075. [CrossRef] [PubMed]

http://doi.org/10.1016/j.talanta.2005.05.030
http://www.ncbi.nlm.nih.gov/pubmed/18970381
http://doi.org/10.1016/j.snb.2015.04.066
http://doi.org/10.1039/C6AN00873A
http://doi.org/10.1021/acsanm.9b00041
http://doi.org/10.1021/acs.analchem.9b04481
http://doi.org/10.1002/elan.201400694
http://doi.org/10.1016/j.bios.2015.07.039
http://www.ncbi.nlm.nih.gov/pubmed/26276541
http://doi.org/10.1016/j.jfoodeng.2014.09.036
http://doi.org/10.1002/elan.201500406
http://doi.org/10.1016/j.snb.2016.06.164
http://doi.org/10.1016/j.bios.2015.11.005
http://doi.org/10.1016/j.jelechem.2017.06.032
http://doi.org/10.1016/j.bios.2016.08.005
http://doi.org/10.1016/j.bios.2016.10.013
http://doi.org/10.1016/j.elecom.2018.07.020
http://doi.org/10.1016/j.bios.2018.06.038
http://www.ncbi.nlm.nih.gov/pubmed/29960271
http://doi.org/10.1016/j.jelechem.2018.07.009
http://doi.org/10.1016/j.talanta.2018.06.054
http://doi.org/10.1016/j.talanta.2018.09.093
http://doi.org/10.1016/j.jelechem.2018.02.012
http://doi.org/10.1016/j.jelechem.2019.02.032
http://doi.org/10.1016/j.msec.2019.110075
http://www.ncbi.nlm.nih.gov/pubmed/31546385


Chemosensors 2023, 11, 113 37 of 37

172. Aller-Pellitero, M.; Fremeau, J.; Villa, R.; Guirado, G.; Lakard, B.; Hihn, J.-Y.; del Campo, F.J. Electrochromic biosensors based on
screen-printed Prussian Blue electrodes. Sens. Actuators B Chem. 2019, 290, 591–597. [CrossRef]

173. Uribe, P.A.; Ortiz, C.C.; Centeno, D.A.; Castillo, J.J.; Blanco, S.I.; Gutierrez, J.A. Self-assembled Pt screen printed electrodes with a
novel peroxidase Panicum maximum and zinc oxide nanoparticles for H2O2 detection. Colloids Surf. A Physicochem. Eng. Asp.
2019, 561, 18–24. [CrossRef]
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