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Abstract: Carbon (C), nitrogen (N), and phosphorus (P) stoichiometry and their allometric relation-
ships in soil and plants are hot topics that attract a lot of attention, while those rocks that form
soils are often neglected. Weathering is a common geological phenomenon that may significantly
influence the nutrient composition and release of nutrients from rock and its inherent soils. This study
presents C, N, and P concentrations data as well as microscope petrological photographs of fresh and
weathered sandstones from Longhushan World Geopark in SE China, in an attempt to investigate C,
N, and P stoichiometry of rocks before and after weathering and discuss the driving mechanisms.
The results show that weathering significantly decreased rock C, C/N, and C/P concentrations,
slightly decreased N and N/P concentrations, and slightly increased P concentration. Microscope
observations show that fresh sandstones contain calcite, apatite, microplagioclase, and organic matter,
while weathered sandstones feature apatite and organic matter. The flexible allometric relationships
and mineral changes before and after rock weathering indicate that chemical mechanisms, such as
dissolution of carbonate and hydration of microplagioclase, have changed the existence form of C, N,
P and, thus, significantly influence rock C, N, and P stoichiometry. This stoichiometry feature can be
in turn used to reflect the regulation effect of rock weathering.

Keywords: weathering; C N and P stoichiometry; allometric relationship; Danxia landform rocks

1. Introduction

Carbon (C), Nitrogen (N), and Phosphorus (P) stoichiometry and their allometric
relationship are important indicators of energy flow, nutrient circulation, and terrestrial
biogeochemical processes [1–3]. Carbon is the basis of plant growth, reproduction, and
structure, and structural material of living organisms [4]. Nitrogen is a limiting element
in all kinds of ecosystems on the earth’s surface and an essential nutrient element for
plant growth and one of the main factors for the productivity of terrestrial ecosystems [5].
Phosphorus is an essential element for terrestrial ecosystems and, also, a key limiting
nutrient element for terrestrial primary productivity, which is widely involved in important
metabolic processes of living organisms [6,7]. Due to the coupling of chemical functions and
the irreplaceability of these elements, the demand and utilization of C, N, and P in terrestrial
ecosystems follow a certain proportion among them [8–10]. C, N, and P stoichiometry is a
powerful and effective tool to predict the scaling of biomass production, trophic dynamics,
and nutrient limitation in terrestrial ecosystems [9,11,12]. It was reported that stoichiometry
is considered an important index for substrate use efficiency [13]. The scaling relationship
has widely been used to analyze the C, N, and P partitioning in an organism (i.e., cellular,
biological, ecosystem) based on its invariance rules and allometric relationships [14,15] and
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based on their asymmetrical participation in the structures and functions of the distinct
organism [16]. The scaling relationship can be described by the equation y = βxα, where
y and x are nutrient concentrations, α and β represent the scaling exponent (slope) and
the normalization constant (intercept), respectively. When α equals 1, the relationship
represents an isometric scaling relationship; α 6= 1 indicates an allometric relationship.
There is no consensus on the scaling relationship of C, N, and P relationships. For example,
the 2/3 and 3/4 power laws of leaf N vs. leaf P were obtained from pooled data [17,18].
The scaling relationships are sensitive to climate, soil, and a variety of other abiotic factors,
which may be an important mediator of the most significant ecosystem processes.

Sedimentary rock occupies about 65% of the terrestrial land surface [19]. It is one
of the main material sources for soil and, thus, can influence soil element composition,
properties, and quality [20]. It is also an important source of nutrients that benefit plant
growth and the terrestrial ecosystem directly or indirectly [20–22]. Previous reports showed
that forests associated with soils generated from N-rich rocks contain 42% more carbon in
aboveground tree biomass and 60% more carbon in the upper 30 cm of the soil than those
associated with soils generated from N-poor rocks [23]. Additionally, the nutrients derived
from rocks play an important role in the regional and global geochemical cycle [23,24].

Recently, scientists began to focus on the elemental stoichiometric characteristics
of rock [24]. Some studies demonstrate that emitted rock N due to the rock weathering
process may be an important and overlooked component of ecosystem N and C cycling, and
19 to 31 teragrams of nitrogen are mobilized from near-surface rock annually in the earth’s
surface environment [23,24]. In addition, soil P has also been demonstrated to be mostly
derived from weathered rock. Although the significance of element input from rock due to
rock weathering has been demonstrated and agreed upon in previous studies, the C, N, and
P stoichiometry characteristics and the scaling relationship of weathered and unweathered
rocks, as well as the driving mechanism during weathering process remain obscure.

In this study, we collected the sandstone samples from the Danxia landform in
Longhushan Mountain World Geopark of Jiangxi Province and investigated and com-
pared the element concentrations of fresh and weathered sandstones, in an attempt to
discuss: (1) the stoichiometry characteristics and allometric relationships of sandstones
C, N, and P associated with the Danxia landforms; (2) the impact of weathering on the
characteristics and allometric relationship of stoichiometric of Danxia sandstones; and
(3) the driving mechanism of stoichiometric change of sandstone during the weathering
process. The results contribute to a better understanding of the regional as well as global C,
N, and P cycle.

2. Study Area

The study area is located in Longhushan of Guixi City, southwest of Yingtan City,
Jiangxi Province in southeast China (Figure 1), which is a transitional zone between Wuyi
Mountains and Poyang Lake Plain. The climate in this region is classified as a subtropical
humid monsoon climate. The average annual temperature is 17.9 ◦C, the average precipita-
tion is 1750 mm. The soil is classified as red soil in the Chinese soil classification system.
The vegetation of the cliff tops is xerophytic, including Pinus massoniana, Castanopsis sclero-
phylla, Cyclobalanopsis glauca, Juniperus formosana, and Moringa oleifera [25]. The landform is
mountainous and hilly. It includes almost all kinds of the Danxia landforms in a subtropical
humid area, in which the single form includes a cliff, stone wall, peak, valley, and others,
and the group form is characterized by the eroded residual broad valley peak cluster, peak
forest, isolated peak, and residual hill [26].

Tectonically, the Longhushan area is located in the confluence zone of the Yangtze
plate and Cathaysian plate and the southern margin of the middle section of the Mesozoic
Xinjiang fault basin. The regional strata include a relatively complete quaternary sequence
from Lower Proterozoic to Cenozoic. The strata exposed in the Longhushan area are mainly
the Hekou formation and the Tangbian formation of the Late Cretaceous. The Hekou
formation is characterized by purplish-red medium-thick layered conglomerate sandstone;
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Tangbian formation is characterized by purplish-red, brick-red rock intercalated with
grayish-green sandstone, siltstone, and mudstone and locally intercalated with (containing)
gravelly sandstone and gypsum [26,27].
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Figure 1. The geographic map shows the location of the Longhushan area.

3. Materials and Methods
3.1. Sampling

The sampling sites were located in the hilly ground outside the Danxia landform
in Longhushan World Geopark, Jiangxi Province. Seven different sites were selected for
sample collection in March 2017. Fresh purplish-red sandstone, as well as weathered and
discolored or white sandstone in purplish-red sandstone, was collected with a hammer
(Figure 2). Fresh sandstone samples were collected from the bedrock that was not exposed
to the surface while weathered sandstone samples had been exposed to the surface for a
long time as some parts of the sample had obvious fading [28]. A total of 42 samples were
cut or knocked away from surface contaminants, such as mud coats, dust covers, and other
potential deposited materials, and cleaned carefully. Each cleaned sample was divided into
two parts. The first part was used for rock total C, N, and P concentration analyses, and the
second part was used for petrological and mineralogical analysis.
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Figure 2. Typical photos show fresh (purplish-red) and weathered (discolored or white) sandstones.

3.2. Rock Total C, N, and P Concentration Determination

The first part of sample was reduced to rock pieces of 1–2 cm in size using a percussion
mill and powdered with a thoroughly cleaned agate mill, then analyzed with a carbon-
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nitrogen analyzer (Elementar Vario EL III; Elementar, Langenselbod, Germany) and the
molybdenum-antimony anti-colorimetric method [29] to determine rock total C, N, and P
concentrations, respectively.

3.3. Petrological Mineralogical Analysis

The second part of the sample was cut using a slab saw, then reduced in size to slightly
smaller than a thin section using a trim saw. The cut and reduced rock chips were polished
to remove marks from the saw blade on their surfaces, then glued to glass slides with epoxy.
The rock chips epoxied to glass slides were cut off and ground to 30 µm thick, then covered
with thin glass slips to protect them from damage. The rock sections were photographed
using a PDV-SW-200S microscope equipped with a polarizer. The micrographs of the
sections were taken by a digital photographic system of PDV-HDMI-1400V.

3.4. Data Analyses

All data analyses were conducted in SPSS 26.0 software and R version 3.6.1. The
data were log-transformed to meet normality, and the effects of rock weathering on rock
C, N, and P concentrations were analyzed by the t-test using SPSS 26.0. We also selected
Hedge’s d to calculate the effect size for rock C, N, and P stoichiometry among different
rock types. The effect size of Hedge’s d was calculated according to the equation [30,31]:
d = [(XE − XC)/S] × J. where XE is the mean of weathered rock, XC is the mean of fresh
rock, S is the pooled standard deviation, and J is a weighting factor that is calculated
according to Yang [31]. J = 1–3/ [4 (NC + NE − 2) − 1], N was the sample size. The effect
size was calculated using the “esc” package in R v. 3.6.1. The standardized major axis
(SMA) regression was used to describe the scaling relationship among the elements. A
common scaling slope was quantified with no statistically significant differences in the
numerical values of α among fresh and weathered rock. The significance level for testing
slope heterogeneity was set at p < 0.05. The SMA was performed using the “smart” package
in R v. 3.6.1.

4. Results
4.1. Rock Total C, N, and P Concentrations

The C, N, and P concentrations of the collected rock samples are in the range of
41 mg g−1 to 680 mg g−1, 3.1 mg g−1 to 20 mg g−1 and 2.4 mg g−1 to 6.5 mg g−1, respectively.
The C/N, C/P, and N/P ratios are ranging from 6.03 to 210, 6.5 to 290, and 0.51 to 7.6,
respectively. It is clear that rock C, C/N, and C/P concentrations were significantly
decreased, N and N/P concentrations were slightly decreased, and P concentration was
slightly increased after the weathering process (Figures 3 and 4).

4.2. Allometric Relationship of C, N, and P Stoichiometry between Fresh and Weathered Rocks from
Longhushan Area

There was no significant correlation among rock C, N, and P concentrations before
and after weathering (Table 1). According to the SMA regression, the scaling slopes of
C and N and N and P in the fresh and weathered sandstone did not differ significantly,
with a common slope of −0.66 (−0.93~−0.49, p = 0.45) and −1.61 (−2.36~−1.20, p = 0.06),
respectively. The scaling slopes of C and P differed significantly and decreased from the
fresh sandstone (−1.29) to the weathered sandstone (−0.31). C concentration exhibited
strong positive correlations with C/N and C/P in the fresh sandstone (p < 0.001). N
concentration was significantly positively correlated with N/P in the fresh sandstone
(p < 0.001). N concentration was significantly negatively correlated with C/N in the two
rock types (p < 0.001; p = 0.003), with a common slope of −0.71. P concentration exhibited
strong negative correlations with C/P and N/P in the two rock types (p < 0.001; p = 0.003).
C/N was significantly positively correlated with C/P and negatively correlated with N/P
(p = 0.002; p < 0.001), with an SMA regression slope of 1.25 and −1.05, respectively.
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Table 1. Standardized major axis (SMA) regression analysis on the scaling relationships between the
C, N, and P stoichiometry of fresh and weathered rock of the Danxia landform.

Index (y − x) Type Slope
(95%CI)

Intercept
(95%CI) R2 p Common

Slope p Intercept

C-N
concentrations fresh −0.70 (−0.98, −0.50) 3.29 (3.04, 3.53) 0.01 0.50 −0.66 (−0.93, −0.49) 0.45 3.2 a

weathered −0.49 (−1.31, −0.18) 2.07 (1.60, 2.54) 0.31 0.25 2.2 b
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Table 1. Cont.

Index (y − x) Type Slope
(95%CI)

Intercept
(95%CI) R2 p Common

Slope p Intercept

C-P
concentrations fresh −1.29 (−1.80, −0.92) 3.43 (3.14, 3.71) 0.04 0.24 0.02

weathered −0.31 (−0.94, −0.10) 1.88 (1.57, 2.20) 0.02 0.77
C concentration-

C/N fresh 0.55 (0.42, 0.71) 1.70 (1.45, 1.96) 0.40 <0.001 0.51 (0.40, 0.67) 0.28 1.8 a

weathered 0.37 (0.17, 0.80) 1.36 (1.08, 1.63) 0.62 0.065 1.2 b
C concentration-

C/P fresh 0.72 (0.60, 0.87) 1.18 (0.89, 1.46) 0.70 <0.001 0.69 (0.58, 0.85) 0.078 1.2 a

weathered 0.28 (0.10, 0.80) 1.40 (1.05, 1.75) 0.18 0.40 1.0 b
C concentration-

N/P fresh −0.60 (−0.85, −0.43) 2.83 (2.70, 2.95) 0.01 0.98 −0.54 (−0.78, −0.40) 0.088 2.8 a

weathered −0.22 (−0.69, −0.07) 1.69 (1.59, 1.80) 0.02 0.79 1.7 b
N-P

concentrations fresh −1.84 (−2.58, −1.30) 2.05 (1.63, 2.47) 0.01 0.81 −1.61 (−2.36, −1.19) 0.055 1.9 a

weathered −0.62 (−1.81, −0.21) 1.26 (0.67, 1.85) 0.15 0.45 1.9 a
N concentration-

C/N fresh −0.78 (−0.94, −0.64) 2.26 (2.00, 2.51) 0.71 <0.001 −0.77 (−0.91, −0.65) 0.83 2.2 a

weathered −0.75 (−1.13, −0.50) 1.45 (1.18, 1.73) 0.91 0.003 1.5 b
N concentration-

C/P fresh −1.03 (−1.45, −0.73) 3.01 (2.27, 3.75) 0.01 0.73 −0.95 (−1.36, −0.70) 0.29 2.8 a

weathered 0.57 (0.19, 1.74) 0.27 (−0.50, 1.04) 0.04 0.71 1.7 b
N concentration-

N/P fresh 0.86 (0.73, 1.02) 0.66 (0.59, 0.73) 0.78 <0.001 0.84 (0.72, 0.99) 0.12 0.67 a

weathered 0.46 (0.20, 1.05) 0.77 (0.65, 0.89) 0.55 0.094 0.73 a
P concentration-

C/N fresh −0.42 (−0.60, −0.30) 1.34 (1.07, 1.60) 0.01 0.65 −0.48 (−0.64, −0.33) 0.072 1.4 a

weathered 1.20 (0.40, 3.64) −0.31(−1.73, 1.10) 0.05 0.66 1.1 b
P concentration-

C/P fresh −0.56 (−0.72, −0.44) 1.75 (1.46, 2.03) 0.50 <0.001 0.027

weathered −0.92 (−1.34, −0.63) 1.59 (1.24, 1.93) 0.92 0.002
P concentration-

N/P fresh −0.47 (−0.63, −0.35) 0.76 (0.69, 0.83) 0.26 0.002 −0.54 (−0.69, −0.39) 0.12 0.79 a

weathered −0.73 (−1.27, −0.42) 0.79 (0.67, 0.91) 0.82 0.012 0.77 a
C/N-C/P fresh 1.32 (0.98, 1.78) −0.97 (−1.79, −0.15) 0.25 0.002 1.25 (0.95, 1.70) 0.33 −0.82 a

weathered 0.76 (0.25, 2.37) 0.12 (−0.94, 1.18) 0.01 0.99 −0.35 a
C/N-N/P fresh −1.11 (−1.42, −0.86) 2.06 (1.91, 2.20) 0.47 <0.001 −1.05 (−1.36, −0.83) 0.20 2.0 a

weathered −0.61 (−1.58, −0.23) 0.91 (0.72, 1.11) 0.36 0.21 0.97 b
C/P-N/P fresh 0.84 (0.60, 1.16) 1.76 (1.60, 1.91) 0.08 0.097 0.83 (0.62, 1.11) 0.89 1.8 a

weathered 0.80 (0.37, 1.72) 0.87 (0.68, 1.06) 0.63 0.060 0.87 b

Different lowercase letters indicate significance between the fresh and weathered bedrock at p < 0.05 level.

4.3. Petrology, Mineral Composition

Both fresh and weathered sandstone samples are poorly to moderately sorted
(Figure 5a). The framework grains are mainly composed of quartz (80% to 90%) and
feldspar (10% to 15%) (Figure 5b,c). Quartz grains are low spherical or angular to subangu-
lar in shape with grain size generally ranging from 20 × 50 µm to 100 × 250 µm (Figure 5a).
Feldspar includes plagioclase and microcline. Plagioclase grains are subangular to rounded
in shape and usually 20 × 50 µm to 100 × 150 µm in size with clear polysynthetic twin-
ning (Figure 5b). Microcline grains are subangular to rounded in shape and generally
50 × 100 µm to 100 × 150 µm in size. The microcline grains can be divided into two groups:
the first group is characterized by tartan twinning, which can be found in fresh samples
(Figure 5c), while the second is dirty on their surface due to kaolinite alteration (Figure 5d),
which can be observed in some weathered samples. Calcite cementations that are char-
acterized by rhombic cleavage (Figure 5e) can be found in pore spaces or gaps between
mineral grains in fresh samples (Figure 5f) and can be hardly found in weathered samples.
Apatite can be observed in both fresh and weathered samples as columnar inclusions in
mineral fissures (Figure 5g) or individual grains (Figure 5h). Additionally, organic matter
can be found in fresh and weathered samples and hematite can be found in fresh samples.
Through reflected light, hematite is brownish-red in color while the organic matter is black
in color (Figure 5i).
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5. Discussion
5.1. C, N, and P Stoichiometry of Fresh and Weathered Rocks

Rock weathering is a common geological evolution process on the earth’s surface. It
occurs in the critical zone, where the geosphere, biosphere, hydrosphere, and atmosphere
interact with each other, and is an important link in the biogeochemical cycling of ele-
ments [32]. As shown in Figures 2 and 3, C concentration was much higher in the fresh
sandstone compared with those after weathering (p < 0.001). A similar trend was observed
in C/N and C/P (p < 0.001). However, N, P, and N/P concentrations did not change
remarkably before and after weathering. It is clear that weathering significantly reduced
rock C concentration (Figures 2 and 3)—namely, the residual C in the weathered rock can be
very small, and the high C concentration for some rock weathering products may be caused
by other biological processes. During decarbonation, most C from carbonate is lost as CO2,
and only a part remains as bicarbonate that mostly is dissolved and leached out of the soil.
Due to the drastic reduction of the C content in weathered rock, the rock C/N and C/P ratio
also decreased sharply by weathering. It was well-proven that carbonate dissolution is fast
under acid and humid conditions in the study areas [33]. In addition, the metal elements of
carbonates may be retained in soil by the inner- and outer-sphere-exchangeable complex
(clays + humus) and can effectively, at least in part, be taken up by microbes and plants.

We found that there was no significant change in N concentration between the fresh
rock and weathered rock (Figures 2 and 3). Previous studies stated that bedrock is a
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nitrogen source that rivals atmospheric nitrogen inputs across major sectors of the global
terrestrial environment [24]. Nitrogen in sedimentary rock exists in two forms: one is
in silicate mineral particles and the other is in the form of organic matter in the pores
between mineral particles [26]. This study indicated that the organic matter and silicate
minerals such as microcline grains were found in the fresh and weathered rocks and that
some substantial concentrations of N can exist in these materials. N can be in the form of
NH4+ and can replace K in microcline [34]. In other words, a lot of rock N will be kept in
weathering products and may serve as the original N source of soil [33,35].

Chemical weathering plays a crucial part in the biogeochemical cycle of P [6]. Weath-
ering can produce secondary minerals and liberate plant-essential nutrients into the soil
solution. The mineral-derived macronutrients are essential for plants; P is required in the
highest concentrations relative to its abundance in the upper continental crust [21], and P
is also the most common rock-derived limiting nutrient in terrestrial ecosystems [21,36].
Hahm et al. [21] found that differences in forest cover can be explained by variations in the
geochemical composition of bedrock, and bedrock geochemistry is a regulator of vegetation
in the Sierra Nevada. Nutrient supply from a regolith depth of several meters is critical
for the forest ecosystem function [22]. The forest floor nutrient losses are not necessarily
balanced by supply from external atmospheric dust deposition but rather through nutrient
uptake from a deep reservoir that is rich in biologically available mineral nutrients—the
“geogenic nutrient pathway” [22]. Uhlig et al. [37] also found that P becomes recycled,
i.e., remineralized from organic litter and then utilized. Major P inputs are atmospheric
deposition and release from rock by chemical weathering. Weathering from rocks is the
most important source of P, a study stated that weathering releases 5.5 × 1010 moles of P
per year on a global scale [38]. Meybeck [39] also assumed that P is input into the global soil
phosphorus reservoir via rock weathering in order to balance outputs from this reservoir.
If P removal mechanisms and rates remain approximately constant, increasing atmospheric
deposition will enlarge the P pool of the forest ecosystem over decades to centuries [40].
However, our results show that there is no significant difference in P concentration before
and after weathering; yet it is interesting that the P concentration of rock slightly increased
after rock weathering. One possible explanation is that the dissolved P of parent rocks was
subject to incorporation into solid phases of weathered rock [6]. In particular, phosphorus
was converted from the dissolved form into organic or particulate inorganic forms and
hence fixed in weathered rock [6]. As the leaching rate of apatite is lower compared with
other minerals abundant in the studied rocks, such as carbonates, and despite the fact
that some P can be released, the rock loses in proportion more of the other elements, and
thus P concentration remains stable or even increases despite the potential release of some
P. On the other hand, within the weathered rock, the mineral voids (including fissures)
were replaced by apatites, which showed significant enrichment of P within weathered
minerals [33]. The enrichment of P is more likely due to the transformation of apatite-
bound P into more stable secondary P forms [41]. P released from primary apatite can
precipitate with dissolved calcium to form secondary apatite, thereby preventing P loss.
This slow, effective release from rocks assures a long-time permanence of P in the system.
Furthermore, due to the change in N and P concentration, there was no distinct difference
in the N/P ratio between fresh and weathered rocks.

5.2. Allometric Relationship of Rock C, N, and P Stoichiometry Response to Weathering

The SMA slopes of the relationship between C and P concentration were statistically
different from |1.00|, and the steepest slope was in the fresh sandstone. Although there
was a positive correlation between C concentration and C/N and C/P ratios in the fresh
sandstone (p < 0.001), but there was no such pattern in weathered rock, indicating that
weathering changed the distribution pattern of rock nutrient concentration. With rocks
weathering chemically, the mineral constituents converted to more stable new assemblages,
and much of the contained elements were preserved in resistant minerals, partly reallocated
into new minerals, or taken into other parts of the weathering profile [33]. These slopes for
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the relationships between C concentration and C/N and between C concentration and C/P
were nearly equal among the two types of rocks, which indicated that the relationships were
stable. The two type rocks had common slopes for the relationship between N concentration
and C/N, between N concentration and N/P, between P concentration and N/P, between
C/N and C/P, between C/N and N/P, which demonstrated a strong covariant ability.
The slopes for the relationship of C concentrations and C/P ratio in weathered rock were
significantly greater than those in fresh rocks. The results suggest that rock nutrients
showed flexible allometric relationships, and changes in C concentration may result in a
larger change in rock stoichiometry in weathered rock than in fresh rocks. This indicated
that the rate and type of weathering can vary depending on the stability of the minerals
in the regolith and underlying bedrock [33]. The reduction of C concentration in the rock
results in great changes in the stoichiometric equilibrium of C with other elements [42]. In
a sense, these studies do manifest that the rate of weathering (dissolution) of rock depends
on the detailed nature of the mineral itself, e.g., element concentration [43].

5.3. Driving Mechanism of C, N, and P Stoichiometry and Allometric Relationship during
Rock Weathering

As shown in Table 1, C-N, C-P, and N-P are not statistically correlated in both fresh
and weathered sandstones. These situations are quite different from those in terrestrial
soils where C-N, C-P, and N-P show good correlations [44,45]. In the soil system, C, N, and
P exist in soil organic matter, plants, microbes, and humus, and even depend on biological
factors, such as C fixation by photosynthesis and N fixation by N fixers from atmospheric
N2. While in the sedimentary system, C and N exist in both organic matter and minerals,
and P mainly occurs in minerals. For example, C can exist in calcite and dolomite as
cement, some organic matter also contains C and N, and P can exist in apatite. In this study,
calcite, microcline, organic matter, and apatite were observed in micrographs of sandstones
(Figure 5), confirming the existence form of C, N, and P in sandstone.

Compared with the soil ecosystem, the coupling of rock C, N, and P nutrients did not
become further strengthened and complex, due to organisms derived from decomposing
organic matter or from the direct and indirect activities of soil microbes or plant roots [43].
However, the scaling exponents of C-N, N-P were indistinguishable among the fresh rocks
and weathered rocks, with a common slope, which indicated that no significant difference
in the change rate of C and N, and N and P in the two rock types. These observations imply
that the weathering product formed may be closely associated with the bedrock primary
mineral both compositionally and structurally [43]. For similar reasons, Wilson [43] also
found that the capillary water may be expected to be close to equilibrium with the primary
mineral in micro fissures and narrow solution channels of fresh rock and weathered rock
(slightly) at the base of the same lithologic bedrock. The fresh rock was found to have
a rapid decrease in C with increasing P than weathered rock—the phenomenon can be
attributed to calcite dissolution and resistance of apatite during the weathering process,
which is further supported by the microscope evidence that fresh sandstones have calcite
cement (Figure 5f), while weathered sandstones contain apatite (Figure 5g).

Our nutrient distribution and driving mechanism results show that C, N, and P in
rocks are mainly fixed in minerals and organic matter. The results show that weathering
plays an important role in decreasing C concentration, which is related to the dissolution of
carbonate and hydration of microplagioclase. They also show no significant differences
in N and P concentration between fresh rocks and weathered rocks. Maybe there are
two possible reasons: on the one hand, the hydration of microplagioclase may only occur
on the mineral surface and thus cannot release a large amount of N; on the other hand, the
resistance of apatite and the limited hydration of microplagioclase indicate that pure chem-
ical weathering may not lead to a large amount of N and P inputs. Therefore, weathering
mainly changed the rock C, N, and P stoichiometry and allometric relationship through
chemical mechanisms.
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6. Conclusions

Weathering has an effect on C, N, and P stoichiometry and allometric relationships
of sandstones. The C concentration and C/N, C/P of weathered rocks was significantly
smaller than the one in fresh rock, which demonstrated that rock C concentration was
affected by rock weathering. But the N/P ratio had no obvious change between the fresh
rock and weathered rock, due to weathering causing a slight increase in P concentration
in the rocks. Our study shows flexible allometric relationships in rocks, which is different
from soil systems. Changes in C concentration may result in a larger change in rock stoi-
chiometry in weathered rock than in fresh rocks. The results reveal that the existing form
of C, N and P, which mainly occurred in minerals and organic matter, changed through
chemical mechanisms during weathering in sandstone. P tends to accumulate during
rock leaching due to the transformation of apatite-bound P into more stable secondary P
forms. C disappears the fastest because it is an important component of carbonates that
are most susceptible to weathering, with N in between the two situations. In conclusion,
our measured stoichiometric data and allometric relationships have the potential to reflect
homeostatic regulation signals of weathering, and the C, N, and P concentration variation
can be used to assess the biogeochemical nutrient cycling from sandstones during weather-
ing. Taken together, we should strengthen the protection and management of sandstones
associated with the C, N, and P ecological stoichiometry and their allometric relationships.
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