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1. Introduction

In 2015, the United Nations adopted the 17 Sustainable Development Goals (SDGs),
aiming at ending poverty, protecting the planet, and ensuring peace and prosperity. The
SDG framework included 169 targets to be achieved by 2030 and 232 numerical indicators
to measure the progress towards the targets. Indicators are classified by the Inter-agency
and Expert Group on SDG indicators into three tiers based on their level of methodological
development and the availability of data at the global level. In tier 1, an internationally
established methodology to compute the indicator is available, and data needed as input
for the methodology are regularly produced by countries for at least 50 per cent of the
countries. Indicators in tier 2 have well established methodologies, but there is lack of data
to execute the methodology. While there were some in the past, currently no indicator falls
in tier 3, where no internationally established methodology exists. Initially, the indicators’
calculation methodology was defined using mainly statistical agencies data. For those
SDGs targeting the protection of the planet, Earth Observation, and particularly remote
sensing, is an alternative data source to compute the indicators defined by the SDGs. The
SDG indicators can be interpreted and measured through direct use of geospatial data itself
or through integration with statistical data. Remote sensing data can be used as inputs
for modeling and evaluation of measures in a variety of SDGs and targets (urban climate,
water balance, soil protection, etc.) [1]. In addition, Earth Observation adds the benefit of
measuring indicators at different levels of granularity, making it possible to find hot spots
where the situation is further apart from the targets and more action is required.

This Special Issue intends to capture the latest research advances regarding Earth
Observation technologies and their applications for computing the SDG indicators. Twelve
original research articles, authored by seventy-two researchers, have been published in this
Special Issue. Papers provide insights about SDGs and their indicators for SDGs 2, 3, 6, 11,
13, 14, and 15. Some are demonstrated at continental scale (e.g., Arctic region), regional
scale (e.g., Hokkaido island), and at the local scale (e.g., inside cities or in gold mining).
In the case of remote sensing, satellites used are mainly Sentinel 1, 2, and 5p, Landsat,
and MODIS. The articles span multidisciplinary perspectives and methodologies. One
paper, in particular, excels to demonstrate the capacity of Earth Observation for national
reporting demonstrated in applications, such as water quality, phenological status, and
crop production forecast to support the Bulgarian agriculture sector modernization [1].
The papers can be mainly clustered into four applications, each of them described in the
following subsections.

2. Applications in Air Quality

One of the main benefits of Earth Observation for computing SDG indicators is the
capability to define the spatial distribution below national scale. This is particularly
important when studying air quality, as some pollutant distributions are very dependent
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on human activities, more present in industrial areas and cities. The SDG 11.6.2 indicator
“Annual mean levels of fine particulate matter (e.g., PM2.5 and PM10) in cities (population
weighted)” has huge implications on human health and climate. Current official reporting
systems, based on in-situ monitoring networks (i.e., United Nations, Eurostat), are not able
to represent the actual diversity of urban conditions and are not covering smaller cities.
One paper proposes to supplement official reporting with Earth Observation, to enable
calculating more representative and holistic values for the indicator, based on population
density, as opposed to differing city definitions [2]. Another important aspect is that Earth
Observation studies, similar to this one, not only support the monitoring of the SDG
indicator, but also attempt to tackle the actual problem related to the SDG targets: in this
particular case, to reduce city concentrations of particulate matter and, subsequently, the
exposure of citizens to harmful substances.

While the previous cited paper has the focus in individual cities, remote sensing allows
elaborating air quality analysis at the scale of a country, even if the country is as big as
China [3]. Indeed, heavy air pollution caused by particulate matter (PM2.5) and nitrogen
dioxide (NO2) can be analyzed by remote sensing. This data, when combined with census
data from the Organization for Economic Co-operation and Development (OECD), can
be used to estimate the SDG indicator 3.9.1: “Mortality rate attributed to household and
ambient air pollution”. Moreover, the beneficial effects of the lockdowns imposed by the
authorities on the population to reduce the propagation of the COVID-19 are demonstrated
as concentrations of PM2.5 decreased by an average of 17% and of NO2 by an average of
57%, reducing the number of premature deaths in almost 100,000 people.

To be able to calculate these and other SDGs indicators, such as SDG 11.3.1 and SDG
11.2.1 at intra-urban scale, better data on population distribution and density, and popula-
tion internal migrations at city scale, are needed. Previous data about population numbers
and population density were improved by adding building height information extracted
from LIDAR and using height for site-specific weight values for population density cor-
rection [4]. By doing so, results presented an 8.6% decrease in previous estimations of
population density in the region of Bari in southern Italy.

3. Applications in Ecosystems and Forestry

Ecosystem health can be monitored from remote sensing using Gross Primary Pro-
ductivity (GPP). While there are global products derived from remote sensing, such as the
MODIS GPP global product (MOD17), the resolution of those products does not allow for
precise local studies. Deriving GPP from Sentinel 2 MSI data was tested in the Doñana
National Park (DNP) as a contribution to the SDG targets 6.6 and 15.1 [5]. Results show
the potentiality of Sentinel-2 data for the estimation of GPP at a finer scale. High spatial
resolution products allow more detailed description of the distribution of GPP over the
heterogeneous ecosystems, improving the understanding of ecosystem functions, which are
highly correlated to their health condition. While some papers in this Special Issue focus
on the calculation of indicators for SDGs, [6] goes beyond the SGD indicators for forest
ecosystem (e.g., indicators 15.1.1 and 15.2.1) to look for ways to measure the ecosystem
health in forests. This review found that the major stressor for the forest ecosystem is
“climate change”, followed by “insect infestation”, while, for grasslands, it is “grazing”,
followed by “climate change”. “Biotic interactions, composition, and structure” is the most
important ecological attribute for both ecosystems. “Fire disturbance” is the second most
important for forests, while, for grasslands, it is “Soil chemistry and structure”.

4. Applications in Land Cover

Land cover maps are one of the common datasets used to filter particular land cover
types before calculating SDGs indicators (e.g., SDG 2.4.1, SDG 15.1.1, SDG 15.3.1, etc.).
Time series of land cover maps derived from remote sensing imagery can be used to assess
projections of future land cover distribution [7]. In this study, Landsat data is used to
analyze the temporal and spatial changes of land use in Hokkaido from 2000 to 2019. Three
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scenarios—natural development scenario (ND), cultivated land protection scenario (CP),
and forest protection scenario (FP)—were made available to policy makers.

5. Applications in Climate

While climate is covered by the SDG 13, the indicator framework acknowledges that
the United Nations Framework Convention on Climate Change is the primary international,
intergovernmental forum for negotiating the global response to climate change and SDG 13
proposes only a limited number of indicators related to deaths due to climatic disasters and
the development of strategies and finance to climate change, both not measurable by Earth
Observation techniques. However, two papers in this Special Issue are related to climate
and its impact.

One study synthesizes the key contributions of satellite observations into characteriz-
ing effects of the climate change in the Arctic and their amplification [8]. The study reveals
that the satellites captured a number of important environmental transitions in the Arctic
region. Additional efforts are needed to improve cross-sensor calibrations and retrieval
algorithms, as well as to reduce uncertainties.

Secondly, another paper studies the additional injection of black carbon (BC) aerosol
in the Amazon atmosphere that was produced in September 2019 due to the uncommonly
extensive wildfires used to clear the land [9]. This injection was visible in MODIS imagery
and forced a significantly change in the radiative balance and reduced the radiation reach-
ing the top-of-atmosphere (TOA) in a 30% across the whole of South America continent
compared to 2018. Most likely, this reduced the rainfall due to the cooling surface and
enhanced thermodynamic stability of atmosphere due to the atmospheric heating effect.

6. Other Applications

An article in this Special Issue reviews the opportunities of using remote sensing
technologies in addressing the persistent global challenges related to the artisanal and
small-scale gold mining sector [10]. Case studies performed in the Democratic Republic
of Congo and in Colombia using Open Data Cube demonstrate the identification and
quantification of impacts of gold mining on land degradation and water turbidity. The
article encourages governments to adopt remote sensing methods into their small-scale
gold mining monitoring plans and policies.

Many SDGs indicators are related to human activities. Some of these activities are
visible as small features that can be detected by remote sensing imagery, can be counted,
and the evolution of their quantities with time can be studied. A paper in this special
issue discusses the current capabilities and a modification of the YOLOv5 methodology for
extracting objects from a bird’s eye perspective of satellite photographs [11]. The modified
YOLOv5 improves the mean Average Precision (mAP) by 0.071 on the DOTA dataset. The
proposed method does not fully utilize spectral information, and the subsequent fusion of
RGB images with multispectral data can be explored in the future.

In most papers of this Special Issue, the computation of SDG indicators using remote
sensing data shows great potential. The use of remote sensing generates needs and re-
quirements for in situ data that can be used for calibrating and validating remote sensing
products and numerical models. It is important to collect these requirements in a systematic
and centralized way to secure the continuous production of the necessary in situ data [12].
A database to collect in situ data requirements is proposed as an additional component for
the GEOSS infrastructure.

This collection of articles addresses some of the knowledge gaps in the field of ‘Earth
Observations for Sustainable Development Goals’ in general, and the potential for comple-
menting the statistical methodologies for computing SDGs indicators. We hope this will
encourage further investigation in this area and thus improve the performance of remote
sensing technologies and data analysis techniques, as well as widen applications in research
related to sustainable development, monitoring, and impact assessment.
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