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Abstract: Agriculture has been experiencing a difficult situation because of limiting factors in its
production processes. Natural biostimulants (NBs) have emerged as a novel alternative. This study
reviews NBs produced through solid-state fermentation (SSF) from organic waste, focusing on
processes and production methods. The aim is to highlight their potential for improving agricultural
productivity and promoting sustainable agriculture. Through a literature review, the effects of NBs on
crops were summarized, along with the challenges associated with their production and application.
The importance of standardizing production processes, optimizing fermentation conditions, and
assessing their effects on different crops is emphasized. Furthermore, future research areas are
introduced, such as enhancing production efficiency and evaluating the effectiveness of SSF-produced
NBs in different agricultural systems. In conclusion, SSF-produced NBs offer a promising alternative
for sustainable agriculture, but further research and development are needed to maximize their
efficacy and to enable large-scale implementation.

Keywords: natural biostimulant; solid-state fermentation; organic waste; sustainable agriculture;
crop improvement

1. Introduction

One of the main challenges in agriculture is achieving global zero hunger [1]. There-
fore, sustainable agriculture is a viable method to ensure food security. In this regard,
the Food and Agriculture Organization of the United Nations (FAO) envisions providing
nutritious and accessible food for all while preserving natural resources to meet current and
future needs. Sustainable agriculture also aims to benefit producers in terms of economic
development [1]. In conventional agriculture, reducing the intensive use of agrochem-
icals is a significant challenge that negatively impacts soil health, water scarcity, and
biodiversity [2]. In this context, natural biostimulants (NBs) have emerged as alternatives
to sustainable agriculture. NBs are derived from products such as microorganisms, plant
extracts, and seaweed extracts and can be classified into three main groups based on their
source and content: humic substances (HS), hormone-containing products (HCP), and
amino-acid-containing products (AACP). HCP, such as seaweed extracts, contain various
active substances for plant growth, including auxins, cytokinins, and their derivatives [3].
These products contain biologically active compounds that stimulate plant physiolog-
ical processes and promote growth, development, and resistance to biotic and abiotic
stresses [4–7]. NBs offer significant advantages because they are derived from natural
sources, such as waste materials, plant extracts, and microorganisms [8,9], making them
more environmentally sustainable than chemical products based on synthetic compounds.
Furthermore, NBs are generally safer for the environment and human health than chemical
products, which can be harmful [10]. NBs also have the potential to promote beneficial
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interactions with soil microorganisms, unlike chemical products that lack this capacity [11].
Additionally, NBs can serve as an easier alternative to chemicals in order to comply with
regulations and restrictions in many countries [6,12,13]. Given these issues, NBs present
themselves as a promising alternative in agriculture.

Various production methods exist, including solid-state fermentation (SSF), a tech-
nology conducted in the absence or near absence of free water, allowing the use of solid
materials as substrates for enhanced biotransformation. SSF has been reported as a promis-
ing eco-technology for the production of bio-based products, and studies have demon-
strated the successful pilot-scale production of NBs using plant biomass as a support and
carbon source for different microorganisms. These production processes are performed
under controlled conditions, including temperature, humidity, and airflow, to optimize NB
synthesis [14,15]. Furthermore, the utilization of organic waste as a substrate in the SSF
process has gained attention, primarily involving various solid biodegradable materials
derived from agricultural and forestry byproducts and waste [16]. NBs obtained through
SSF have shown biostimulant effects on crop development, including physical parameters
such as germination, growth, stem length, leaf count, root dry weight, leaf area, biomass
production, macronutrients, and micronutrients [17]. They have also demonstrated posi-
tive effects on root development in forest species [18]. Therefore, NBs produced through
SSF represent an emerging alternative to the limitations of conventional biostimulants,
including their negative impact on agricultural sustainability, the need to reduce the impact
of waste on the environment, and the desire to limit the use of synthetic compounds in
agriculture [19].

This review addresses the production of NBs through SSF using organic waste as a
promising approach for sustainable agriculture. Furthermore, these NBs have the potential
to enhance plant growth and development while reducing reliance on conventional chemi-
cal products. To achieve this, the existing literature was reviewed to assess the effectiveness
and limitations of NB production through SSF.

2. Materials and Methods
Methodology

This review article involved the selection of scientific articles from the following
scientific databases: SpringerLink (https://link.springer.com/, accessed on 25 May
2023), Science Direct (https://www.sciencedirect.com/, accessed on 25 May 2023), Wiley
(https://onlinelibrary.wiley.com, accessed on 25 May 2023), ProQuest (https://www.proquest.
com/, accessed on 25 May 2023), Patent Inspiration (https://www.patentinspiration.com/,
accessed on 25 May 2023), and Web of Science (https://www.webofscience.com/, accessed
on 25 May 2023). Boolean operators (AND and OR) were used to obtain more accurate
results. The following keywords were used: “solid state fermentation and biostimulant”,
“solid state fermentation and auxins”, “solid state fermentation and biostimulant name”.
Literature from the past 30 years was included in the article review.

Articles were selected based on the following inclusion criteria: relevance of the
publication to the topic and selected years. The following criteria were considered: type
of NB, substrate, microorganisms, optimal conditions, and effects on crops. We aimed to
address these research questions by collecting and analyzing relevant studies, considering
the latest trends in NB production through SSF using organic waste.

3. Relevant Sections
3.1. Definition and Types of Biostimulants

NBs are derived from natural sources such as microorganisms, plant residues, and
seaweed, among others [20]. These products contain biologically active compounds that
stimulate plant physiological processes, promoting plant growth, development, and resis-
tance to biotic and abiotic stresses [10]. However, biostimulants include a wide range of
compounds, as highlighted by the European Biostimulants Industry Council (EBIC) and the
Biological Products Industry Alliance (BPIA) [14]. The EBIC defines plant biostimulants as

https://link.springer.com/
https://www.sciencedirect.com/
https://onlinelibrary.wiley.com
https://www.proquest.com/
https://www.proquest.com/
https://www.patentinspiration.com/
https://www.webofscience.com/
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substances or microorganisms that stimulate natural processes to enhance nutrient uptake,
efficiency, stress tolerance, and crop quality. They do not a have direct pesticidal action
and are not regulated by pesticide laws. BPIA defines biostimulants as diverse materials
that improve crop vigour, quality, yield, and tolerance to abiotic stresses by facilitating
nutrient uptake, enhancing soil microorganism development, and stimulating root growth
to increase water-use efficiency [12,13]. This growth is in line with an increase in scientific
support for the use of biostimulants as agricultural inputs for various plant species [21].

Currently, there are various types of NBs, including those produced by SSF, which can
serve as a starting point for future research (Table 1).

Table 1. Types of NBs, mode of action, and effects produced by SSF.

Natural Product Type of NB Molecules
Present Action Mode Biostimulant Effect SSF-Relevant

Origin Refs.

Hormone-
Containing

Products (HCP)

Auxins 3-indoleacetic
Acid (IAA)

Promotes cell
elongation

Stimulates cell elongation
and rooting

Produced by
SSF [22,23]

Indole
Propionic Acid

(AIP)

Promotes vegetative
growth and cell division

Stimulates growth,
flowering, and rooting in

plants

Not produced
by SSF [24,25]

Cytokinins

Zeatin Stimulates cell division
and vegetative growth

Promotes growth and
development of plants

Not produced
by SSF [26–28]

Kinetin Stimulates cell division
and vegetative growth

Improves the quality of
the crops, increasing the
size and weight of the

fruits

Produced by
SSF and

vermicompost
[29–31]

Abscisic Acid
(ABA) ABA

Regulates stress
responses and plant

development

Improves stress tolerance
and fruit ripening

Produced by
SSF [32,33]

Gibberellins

Gibberellin A3
(GA3)

Stimulates growth and
vigor in plants

Inducts germination and
flowering

Produced by
SSF [34–36]

Gibberellin A4
(GA4)

Promotes plant growth
and development

Stimulates germination,
development of lateral
shoots, and flowering

Produced by
SSF [37,38]

Seaweed Extract
(AM)

Alginic Acids

Improves nutrient
absorption and

stimulates enzyme
activity

Increases growth and
resistance to abiotic stress

Produced by
SSF [39–41]

AM Fucoidan Improves the defense
mechanisms of plants

Increases resistance to
abiotic stress

Produced by
SSF [42–45]

Oligosaccharides Stimulates physiological
responses in plants

Improves immune
response and growth

Produced by
SSF [46–49]

Humic Substances
Humic and

Fulvic Acids
(AHF)

Humic Acids Improves soil structure
and nutrient availability

Stimulates root growth
and nutrient absorption

Produced by
SSF [50–53]

Humic Acids Stimulates plant growth
and development

Improves nutrient uptake
and stress resistance.

Produced by
SSF [54,55]

Amino-Acid-
Containing

Products (AACP)

Amino Acids L-proline Regulates plant stress
and development

Enhances stress tolerance
and resistance

Produced by
SSF [56–58]

Peptides
Low Molecular

Weight
Peptides

Stimulates plant growth
and development

Improves plant nutrition
and growth

Produced by
SSF [59–61]

Other NBs

Siderophores Siderophores Binds to Fe and is
solubilized

Improves absorption and
mobilization of Fe

Produced by
SSF [62–64]

Chitosan
Fungal

Chitosan
Fungal

Promotes plant growth,
cell division, increases
enzyme activity, and

improves nutrient
transport

Presents biostimulant
activity in seed

germination

Produced by
SSF [65,66]
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3.2. Advantages of Natural Biostimulants over Conventional Ones

In this regard, NBs obtained through SSF have emerged as an alternative to con-
ventional biostimulants, primarily because of their positive impact on agricultural sus-
tainability, reduced environmental waste, and limited use of synthetic compounds in
agriculture [46].

NBs obtained by SSF from organic waste are gaining interest because of their numer-
ous advantages over conventionally synthesized biostimulants [47]. This article reviews
and compares the advantages of NBs in terms of effectiveness, safety, sustainability, and
environmental benefits. Among these advantages, the following can be highlighted.

3.2.1. Sustainability and Environmental Impact

The importance of NBs as a sustainable option in agriculture lies in their renewable
origin and lower environmental impact than chemical biostimulants [21].

Generally, the use of NBs has a positive environmental impact [19,48,49]. They can
help to reduce or rationalize the amount of synthetic fertilizers and pesticides needed
to grow plants [67–69]. For example, some NBs can have a positive effect on microbial
communities in the soil and can be beneficial for agricultural practices [11]. In terms of
environmental impact, NBs extracted from microorganisms are non-toxic and do not pollute
the environment [70,71]. In addition, because they are obtained from natural sources, their
production is more sustainable than that of chemical biostimulants.

3.2.2. Security

In contrast to the risks associated with the chemicals used in chemical biostimulants,
NBs tend to be safer for both the environment and human health [72].

3.2.3. Broad Spectrum of Activity

NBs have a wide spectrum of activities, which implies multiple benefits for plants in
terms of growth, nutrient absorption, stress resistance, flowering, and fruiting quality [20,73].

3.2.4. Positive Interactions

NBs promote beneficial interactions with soil microorganisms, improving soil health
and favoring more balanced and productive agricultural systems [49,74].

3.2.5. Regulatory Compliance

NBs offer an easier option for complying with government regulations and restric-
tions on the use of chemicals in agriculture, which has become more relevant in many
countries [6].

3.3. Production Processes of NBs by SSF

Thus, SSF is a promising method for NBs production. SSF produces a variety of
bioactive products that promote plant growth, development, and responses to abiotic
and biotic stress conditions [75,76]. In this chapter, the processes used to obtain natural
biostimulants through SSF were explored, highlighting their importance and efficacy in
sustainable agriculture.

3.3.1. Substrate Selection in NB Production by SSF

The appropriate choice of substrates is a crucial step in the production of NBs by
SSF [77]. Substrates provide a source of nutrients, energy, and bioactive compounds
for microorganisms during fermentation. [78]. The most commonly used substrates in
SSF include agricultural residues, agro-industrial waste, food industry by-products, and
lignocellulosic materials [16]. These substrates are rich in nutrients and can be degraded by
microorganisms, allowing the production of beneficial metabolites [79].



Processes 2023, 11, 2300 5 of 22

3.3.2. Substrate Pretreatment

Pretreatment of substrates is necessary to improve their composition and nutrient
availability. Pretreatment may involve steps such as crushing, grinding, sieving, pH
adjustment, sterilization, and addition of nutritional agents [75,80,81]. These steps aim to
optimize the conditions for microbial growth and production of desired metabolites [82].
Pretreatment can also facilitate the degradation of substrates and increase fermentation
efficiency [83].

3.3.3. Microorganisms for NB Production by SSF and Inoculation

Microorganisms play a fundamental role in the production of NBs by SSF, as they
are responsible for substrate degradation and synthesis of bioactive metabolites [84]. In
this section, we will focus on the different microorganisms used in this process and their
relevance to NB production.

Examples of microorganisms used in SSF for NB production include bacteria, fungi,
and yeasts. Each type of microorganism possesses specific characteristics that can influence
biostimulant production.

The inoculation of microorganisms is a crucial step in the production of NBs by SSF [18].
Beneficial microorganism strains such as bacteria, fungi, and yeast are selected for their
ability to degrade substrates and produce bioactive metabolites. These microorganisms
were pre-cultivated under optimal conditions and then inoculated into substrates to initiate
SSF [78,84]. The choice of suitable microorganisms and their interactions during SSF
influence the composition and final quality of the biostimulant [18].

3.3.4. Control of SSF Conditions

Control of SSF conditions is essential for obtaining high-quality biostimulants through
SSF. Parameters such as the temperature, humidity, pH, C/N ratio, moisture content, and
process duration must be monitored and adjusted accordingly. These conditions affect the
growth and metabolism of microorganisms [15,18]. The precise control of SSF conditions
ensures the optimization and quality of the biostimulant.

The production of natural biostimulants through SSF involves the selection of suitable
substrates, pretreatment of substrates, inoculation of microorganisms, and control of SSF
conditions. These processes are crucial for obtaining high-quality NBs that can promote
plant growth.

3.3.5. SSF Bioreactors in NB Production

The use of SSF bioreactors has proven to be a promising technique for improving NB
production. These systems allow for better control of fermentation conditions and higher
efficiency in obtaining high-quality biostimulants [15].

SSF bioreactors can be designed to maintain optimal cultivation conditions, including
temperature, humidity, aeration, and water content [85]. The appropriate selection of the
bioreactor depends on various factors, such as the type of microorganism, substrate used,
and desired production scale [86]. Common types of SSF bioreactors include fixed-bed,
fluidized-bed, and packed-bed bioreactors [79]. The implementation of SSF bioreactors
in NB production represents a significant improvement in the efficiency and quality of
biostimulants, contributing to a more sustainable and productive agriculture [87,88]. Table 2
presents examples of substrates commonly used in the production of NBs by SSF, together
with their characteristics and advantages, microorganism selection, production mode, and
bioreactor type.
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Table 2. Comparison of substrates, microorganism selection, production mode, and ioreactor type in
NB production by SSF.

Substrate Characteristics and
Advantages of Substrate

Microorganism
Selection

Production
Mode Bioreactor Type Refs.

Crop Residues
Abundant local availability,

nutrient source, and
microorganism support

Bacteria, Fungi
Batch,

Continuous,
Fed-Batch

Fixed-Bed,
Packed-Bed [89–91]

Agroindustrial
Waste

Waste valorization and reduced
environmental impact Filamentous Fungi Batch,

Continuous
Fluidized-Bed,

Packed-Bed [47,92]

Food Residues Rich in nutrients and organic
matter, avoids food waste

Bacteria,
Filamentous Fungi Batch, Fed-Batch Fixed-Bed,

Packed-Bed [37,93]

Plant Residues
High content of bioactive

compounds and
phytohormones

Bacteria,
Filamentous Fungi

Batch,
Continuous

Fluidized-Bed,
Packed-Bed [94,95]

Algal Biomass Rich in bioactive compounds
and auxins Microalgae Batch, Fed-Batch Bubble-Column [96,97]

Wood Residues Sustainable source with
lignocellulosic content Filamentous Fungi Fed-Batch,

Continuous
Fluidized-Bed,

Packed-Bed [98,99]

Residual Sludge Reduces waste volume and
provides rich source of nutrients

Bacteria,
Filamentous Fungi

Batch,
Continuous

Plug-Flow,
Packed-Bed [100,101]

Fishery Waste Utilization of waste from the
fishing industry Filamentous Fungi Batch,

Continuous Packed-Bed [102,103]

Brewery Waste Valorization of waste from
brewing processes Filamentous Fungi Continuous Packed-Bed [104,105]

Citrus Waste Abundant source of bioactive
compounds and antioxidants Filamentous Fungi Batch, Fed-Batch Fixed-Bed,

Packed-Bed [33,106]

Coffee Residues Rich in bioactive compounds
and promotes soil health Filamentous Fungi Batch,

Continuous Packed-Bed [107]

Rice Husk Rich in organic matter and
bioactive substances Filamentous Fungi Fed-Batch,

Continuous Packed-Bed [108]

4. Methods of NB Production

In this section, the production methods used to obtain NBs through SSF are addressed.
The type of biostimulant, microorganisms used in this process, and the optimal conditions
of SSF for its production will be described.

4.1. Microorganisms Used in NB Production

In the production of NBs through SSF, various beneficial microorganisms play key roles
in substrate degradation and the synthesis of metabolites. Examples of microorganisms
used include bacteria, fungi, and yeast. Each type of microorganism possesses specific
characteristics that can influence biostimulant production. See Table 2.

4.2. Characteristics of SSF for NB Production

SSF is used to produce natural biostimulants. In this process, microorganisms are
cultivated on solid substrates, such as agricultural residues or by-products of the food
industry. During fermentation, microorganisms secrete enzymes and bioactive metabo-
lites that transform the compounds present in the substrate into forms that are readily
assimilated by plants [18].

The biological activity determines the production of NBs and warrants particular
attention in future research. Table 3 presents examples of substrate microorganisms used to
obtain different natural biostimulants (NBs) through SSF.
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Table 3. Methods of NB production by SSF.

NB Substrate Microorganism
Pretreatment Optimal SSF Conditions

Effect of NBs on
Crop Refs.

Trituration pH Sterilization Moisture
%

Temperature
◦C

IAA Pruning Waste
+ Grass Trichoderma harzianum 1 cm 6.8 2 times 74 25 [15]

IAA

Yuca Bagasse
Soy Bran

Wheat Bran
Sorghum Dried

Distiller’s Grains
Corn Dried Distiller’s

Grains

Aspergillus flavipes
Aspergillus ustus
Bacillus subtilis

Bacillus megaterium
Bacillus amyloliquefaciens

Trichoderma atroviride
Trichoderma koningii

Trichoderma harzianum

0.5, 1.0 y >
1.0 mm 50 Room

Temperature

Clon IPB2
Eucalyptus grandis

and Eucalyptus
urophylla

Increasing Rooting

[14,18]

Kinetin Cow Dung + Leaf Litter Selenomonas ruminantium 2–5 mm 6.9 70–75 25 ± 3 [29]

ABA Millet
Rice Botrytis cinerea Millet and Rice 1 time 26.5–25.5 [32]

GA3 Rice Bran Gibberella fujikuroi 50 ◦C 65.95% 28 ± 2 [109]

GA3 Corn Cob Residues Aspergillus niger 5.1 24% [110]

GA3 Citric Pulp Fusarium moniliforme LPB03 +
Gibberella fujikuroi 5.5–5.8 75 29 [91]

Alginic Acids Apple Peels Azotobacter vinelandii, NRRL-14641 0.1 mm 7 60 ◦C 70 37.5 [39]

Alginic Acids Sargassum Macroalgae
Cunninghamella echinulate

Aspergillus niger
Penicillium oxalicum

7–8.5 1 time
121 ◦C 65–75 28–30 [40]

Fucoida Seaweed Fucus
Vesiculosus

Aspergillus niger
Mucor sp 80 30 [42]

Oligosaccharides Soybean Meal - Room
Temperature

Effect on
Germination [111]

Chitin Oligosac-
charides

Powder of Molting of
Mealworms

Talaromyces allahabadensis Hi-4
Talaromyces funiculosus 6 40 [112]
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Table 3. Cont.

NB Substrate Microorganism
Pretreatment Optimal SSF Conditions

Effect of NBs on
Crop Refs.

Trituration pH Sterilization Moisture
%

Temperature
◦C

Humic Acid Oil Palm Empty Fruit
Bunch Trichoderma reesei 6 64–72 30 [50,113]

Fulvic Acid Sugarcane Bagasse Trichoderma Sp. 70 20 [114]

L-proline

Wheat Straw
Ice Straw

Wheat Bran
Corn Cob

Corn Stover

Fomitopsis sp. Small Pieces 5.5 25–30 [56]

Low Molecular
Weight Peptides Chickpeas Bacillus subtilis [60]

Siderophores Soybean Protein Meal Lactobacillus plantarum 37 [115]

Chitosan Fungal Sweet Potato Gongronella butleri USDB 0201 28 [66]
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4.3. Effect of the NBs on Crops

As detailed in previous chapters, NBs have a significant impact on crop growth,
development, and yield. The following are examples of observed effects on different
aspects of crop production, supported by scientific studies.

4.3.1. Improvement of Plant Growth and Development

The application of NBs promotes root growth, increases plant biomass, improves
plant architecture, and enhances seed germination and seedling emergence. These effects
are attributed to the presence of specific molecules in NBs, such as low molecular weight
peptides, gibberellic acid (GA3), and indole-3-acetic acid (IAA) [116–119].

Table 4 summarizes the effects of NBs on crop growth and development.

Table 4. Effect of NBs on improving plant growth and development.

Crop NB Type Effect Scale Refs.

Arabidopsis thaliana Low Molecular Weight Peptides Increase in plant biomass Laboratory [120]

Sesame GA3 Improvement of plant
architecture Laboratory [121]

Rice GA3 Improvement of plant
architecture Laboratory [122]

Tomato
Pepper Seed
Arabidopsis

Orchid

IAA Promotion of seed germination
and seedling emergence

Greenhouse
Laboratory [17,123,124]

4.3.2. Increased Resistance to Adverse Conditions

In addition to improving plant growth and development, NBs also enhance the re-
silience of crops against adverse conditions. It has been observed that certain molecules
present in NBs, such as ABA and seaweed polysaccharides, contribute to increased toler-
ance to abiotic stress, enhanced disease and pest resistance, and protection against oxidative
stress [125,126].

Table 5 summarizes some NBs and their effects on resistance to adverse conditions.

Table 5. Effect of NBs on resistance to adverse conditions.

Crop NB Type Effect Scale Refs.

Orange
Tobacco

Corn
ABA Abiotic stress tolerance Laboratory [127–129]

Strawberry
Bean
Vine

Cucumber

Seaweed
Polysaccharides

Resistance to diseases
and pests Field [130–133]

4.3.3. Effect of NBs on Improving Crop Quality

In this section, we will explore scientific studies that have investigated the influence of
different NBs on improving the quality of various crops. Aspects such as nutritional content,
physical appearance, shelf life, and resistance to stress will be addressed (Table 6). These
findings provide a solid foundation for understanding the potential of NBs for enhancing
crop quality and open new perspectives for their application in sustainable agriculture.
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Table 6. Effect of NBs on enhancing resistance to adverse conditions.

Crop NB Type Effect Scale Refs.

Gerbera
Tectona Grandis

Peas
Yarrow

Humic Acid
Increased
nutrient

concentration
Greenhouse [134–137]

Tomato
Apple Amino Acids

Improved
organoleptic

quality
Greenhouse [138–140]

Soy
Petunia Flowers

Lettuce
Cytokinins Delayed tissue

senescence Greenhouse [141–143]

4.3.4. Optimization of Nutrient Use Efficiency

In this section, we focus on optimizing nutrient use efficiency in crops through the
use of NBs. Nutrient use efficiency is a key factor in agricultural production as it directly
influences the absorption, assimilation, and utilization of nutrients by plants. NBs have
been demonstrated to be an effective tool for improving this efficiency and maximizing
crop yield. Table 7 presents evidence of how NBs enhance nutrient use efficiency.

Table 7. Effect of NBs on optimal nutrient use.

Crop NB Type Effect Scale Refs.

Tomato
Strawberries

Peanut
Alginic Acids

Improvement of
nutrient availability

in the soil
Greenhouse [144–146]

French Marigold Oligosaccharides Reduced nutrient losses Greenhouse [147,148]

4.3.5. Effect NBs on Agricultural Productivity

NBs are a promising tool for enhancing crop efficiency and productivity as well as ad-
dressing current challenges in agriculture. In this section, examples of studies demonstrat-
ing the positive effects of natural biostimulants on agricultural productivity are presented,
highlighting the results obtained in different crops and the NBs involved (Table 8).

Table 8. Effect of NBs on agricultural productivity.

Crop NB Type Effect of Productivity on Crops Scale Refs.

Corn Seaweed Extract Increases grain yield, crop residue, and improves
nutritional quality Field [149–151]

Grapes Seaweed Extract Increases grape production, improves stress resistance,
and increases polyphenol content Greenhouse [152–154]

Tomato Seaweed Extract Increases fruit yield and quality Greenhouse [155–157]
Lettuce Seaweed Extract Higher yield increase and increases shoot growth Greenhouse [158–160]

Strawberries Seaweed Extract Improves fruit quality and flavor, higher yield Greenhouse [132,161]
Onion Seaweed Extract Increases bulb diameter and weight Field [162,163]
Potato Seaweed Extract Increases tuber yield and quality Field [164,165]

Corn IAA Stimulates vegetative growth and increases
grain production Greenhouse [166–168]

Lettuce IAA Increases biomass Greenhouse [169]
Potato IAA Promotes tuber growth and improves yield Greenhouse [170–172]

Onion IAA Increases bulb size and enhances production Greenhouse
Laboratory [173–175]

Quinoa IAA Boosts grain yield and improves quality Field [176,177]
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Table 8. Cont.

Crop NB Type Effect of Productivity on Crops Scale Refs.

Wheat IAA Stimulates plant growth and increases yield Field [178,179]

Tomato IAA Improves rooting, increases fruit production, and
enhances antioxidant content Greenhouse [180,181]

Soybean IAA Improves root development and increases production Greenhouse [182,183]
Rice IAA Promotes rooting and improves yield Field [184,185]

Broad Beans IAA Stimulates vegetative growth and increases production Greenhouse [183,186]
Grapes IAA Enhances root formation and increases yield Greenhouse [187–189]
Corn Cytokinins Stimulates cell division and increases yield Greenhouse [190,191]
Rice Cytokinins Promotes grain growth and improves yield Greenhouse [192,193]

Wheat Cytokinins Increases the number of grains per spike and
improves production Field [194–196]

Soybean Cytokinins Improves vegetative growth and increases production Greenhouse [197,198]
Tomato Cytokinins Stimulates flower formation and increases yield Greenhouse [28,199]
Potato Cytokinins Promotes tuber development and improves yield Field [200,201]
Grapes Cytokinins Enhances cluster size and quality Greenhouse [202,203]

Strawberry Cytokinins Increases stolon formation and improves production Greenhouse [204,205]
Strawberry Cytokinins Stimulates bud break and improves yield Greenhouse [206]

Citrus Cytokinins Increases fruit size and improves production Greenhouse [207,208]

Onion Humic Acids Enhances bulb yield, improves quality and
disease resistance Greenhouse [209,210]

Corn Humic Acids Improves nutrient absorption and increases yield Greenhouse [28,211]
Wheat Humic Acids Increases grain size and weight Greenhouse [212,213]

Rice Humic Acids Boosts the number of spikes and improves production Greenhouse [214,215]
Tomato Humic Acids Enhances fruit quality and increases yield Greenhouse [216,217]
Beans Humic Acids Improves vegetative growth and increases production Field [218]
Onion Humic Acids Increases bulb size and quality Greenhouse [219,220]
Carrot Humic Acids Promotes root development and improves production Greenhouse [221]
Lettuce Humic Acids Stimulates leaf growth and increases yield Greenhouse [222]

4.4. Limitations and Challenges of NBs by SSF

Despite the benefits of NBs in sustainable agriculture, some limitations and challenges
need to be considered. These aspects can affect their practical application and widespread
adoption in agricultural production. Some of the main limitations and challenges of this
study are as follows.

4.4.1. Standardization Issues in NB Production by SSF

In this section, we address some standardization issues that may arise in the process
of NB production by SSF. Although SSF offers advantages in terms of cost, efficiency,
and small-scale production, there are challenges that need to be addressed to achieve
standardized and consistent production of high-quality biostimulants [223]. The following
are some common limitations.

Substrate variability: the choice of substrate used in SSF can vary depending on the
type of microorganism and production objective. However, the chemical composition and
physical properties of substrates can vary, which could affect the quality of NBs.

Control of SSF conditions: SSF conditions, such as temperature, humidity, pH, and
substrate/microorganism ratio, are crucial for the growth and activity of microorganisms.
Without proper control of these conditions, there may be variations in the production of
bioactive metabolites and enzymes [79], which can affect the quality and efficacy of NBs.

Scalability of production: the large-scale production of NBs by SSF can be challenging
because of the need to maintain optimal fermentation conditions and ensure the quality of
the final product. Scalability of production requires optimization of fermentation param-
eters, selection of suitable equipment, and design of efficient processes that meet quality
standards and market demands [47].
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Addressing these standardization issues in the production of NBs by SSF will require
a combination of scientific research, development of new methodologies, collaboration be-
tween academia, industry, and regulatory bodies, and the adoption of good manufacturing
practices. These efforts will contribute to ensuring the quality, consistency, and efficacy
of NBs produced by SSF, thereby facilitating their reliable and sustainable application
in agriculture.

4.4.2. Challenges in the Application of NBs from SSF in Sustainable Agriculture

In this chapter, we explore some difficulties that may arise in the application of NBs
produced by SSF in sustainable agriculture. Although NBs offer numerous benefits for
improving crop performance and quality, as shown in Table 7, there are still specific
challenges related to their application in sustainable agricultural systems. The following
are some possible difficulties.

Regulation and Standards: the lack of updated regulations in many countries regard-
ing the use of NBs can hinder their application in sustainable agriculture, as evidenced
by a critical analysis [224]. The lack of clear definitions and standards can create un-
certainty regarding dosing and the frequency of application, which could hinder their
widespread adoption.

Interaction with other inputs: the interaction of NBs with other inputs can be complex
and may require adjustments in application practices to avoid possible negative interactions
or decrease in product efficacy [225]. In sustainable agriculture, it is common to use multiple
inputs such as organic fertilizers, biological pesticides, and beneficial microorganisms.

Adaptability to different crops and agronomic conditions: NBs can have different
effects depending on crop type and agronomic conditions [20]. Some NBs may work
more effectively on certain crops or at certain phenological stages, requiring a detailed
understanding of their mode of action and proper adaptation to the specific conditions of
each crop.

Farmer capacity building: the adoption of NBs in sustainable agriculture may require
increased awareness and knowledge among farmers [226]. It is important to educate
farmers about the benefits and proper use of NBs, as well as providing training and
technical assistance to maximize their effectiveness on crops.

Overcoming these difficulties in the application of NBs produced by SSF in sustainable
agriculture requires a comprehensive approach involving researchers, farmers, businesses,
and the government. It is important to encourage the research and development of best
practices, establish clear regulations, and promote training and awareness among key
players in the agricultural supply chain.

4.4.3. Factors Limiting the Effectiveness of Natural Biostimulants Produced by SSF in
Different Crops

The effectiveness of NBs produced by SSF can be influenced by various factors in
different crops. Some of these factors include the genetic variability of crop varieties,
environmental conditions, such as temperature and humidity, and nutrient availability in
the soil. Additionally, NBs produced by SSF interact with other agricultural inputs, such
as fertilizers and pesticides. NBs are not a universal solution and should be combined
with good agricultural practices such as crop rotation and proper soil management, which
can affect their effectiveness [169,227]. Further research is needed to better understand
the response of different crops to NBs produced by SSF and to optimize SSF conditions,
valorizing waste to maximize their benefits in sustainable agriculture.

5. Conclusions and Future Research Perspectives
5.1. Conclusions

In this section, we present our conclusions and future research perspectives regarding
the production of NBs from SSF. In this review, we have analyzed the use of NBs in
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agriculture, their production by SSF, and their effects on crops. The main conclusions
derived from this study are as follows:

NBs are a promising tool to improve crop development and performance. Their use
can contribute to more sustainable agriculture by reducing reliance on synthetic chemicals.

SSF is an efficient technique for producing NBs from organic substrates. This method
offers several advantages, such as the valorization of agricultural and agro-industrial waste.

NBs act through various bioactive molecules, such as auxins, cytokinins, alginic acids,
humic acids, and other compounds. These molecules can modulate physiological and
metabolic processes in plants, improving nutrient uptake, rooting, biotic and abiotic stress
tolerance, and crop quality.

However, challenges and limitations still need to be addressed to maximize the effec-
tiveness of NBs. These include standardization of production, optimization of dosages and
application, adaptations to different crops and environmental conditions, and understand-
ing interactions with other agricultural inputs.

5.2. Future Research Prospects

The following are future research perspectives. A multidisciplinary approach is
required to advance the field of NBs from SSF. Some promising areas of research include
the following.

Further studies are needed on the mechanisms of action of NBs at the molecular and
cellular levels. This will help to better understand how they interact with plants and
modulate specific physiological processes.

Research on the optimization of NB production processes produced by SSF. This
involves improving the substrates, selecting efficient microorganisms, and optimizing SSF
conditions to obtain high-quality and consistent products.

Investigation of the effectiveness of NBs in different agricultural systems and environ-
mental conditions. This includes field and greenhouse studies that analyze the impact of
biostimulants on various crops, regions, and agricultural practices.

Research on the interaction of NBs with other agricultural inputs, such as bio-fertilizers
and bio-pesticides is needed to optimize their combined use and minimize potential
negative effects.

In conclusion, NBs produced by SSF have significant potential for improving agricul-
tural productivity and promoting sustainable farming practices. However, further research,
development, and innovation are needed to overcome these challenges and maximize their
efficacy for different crops and environmental conditions. An integrated approach that
combines scientific research, collaboration among different stakeholders, and the imple-
mentation of science-based agricultural practices is essential to fully harness the benefits of
NBs in sustainable agriculture.
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