
Parallel Computing 116 (2023) 103019

A
0

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

GPU acceleration of Levenshtein distance computation between long strings
David Castells-Rufas ∗

Department of Microelectronics & Electronic Systems, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Spain
Barcelona Supercomputing Center, Barcelona, 08034, Spain

A R T I C L E I N F O

Keywords:
Levenshtein distance
Edit distance
WFA algorithm
GPU
Parallel processing

A B S T R A C T

Computing edit distance for very long strings has been hampered by quadratic time complexity with respect
to string length. The WFA algorithm reduces the time complexity to a quadratic factor with respect to the
edit distance between the strings. This work presents a GPU implementation of the WFA algorithm and a
new optimization that can halve the elements to be computed, providing additional performance gains. The
implementation allows to address the computation of the edit distance between strings having hundreds of
millions of characters. The performance of the algorithm depends on the similarity between the strings. For
strings longer than million characters, the performance is the best ever reported, which is above TCUPS for
strings with similarities greater than 70% and above one hundred TCUPS for 99.9% similarity.
1. Introduction

The Levenshtein distance [1] measures the number of edit op-
erations (insertion, deletion, and substitution) required to convert a
string P into a string T. Levenshtein distance is also known as edit
distance (ED). It is used in several computing domains, including text
analysis [2], music analysis [3], and bioinformatics [4]. Computer
Science uses the concepts of time complexity and space complexity [5]
to be able to compare algorithms. These concepts refer to the relation
between the problem size (𝑛) and the execution time and the required
memory, respectively. Wagner–Fischer (WF) [6] proposed a dynamic
programming (DP) algorithm to compute ED with an O (𝑚 × 𝑛) time
and space complexity, where 𝑚 = |𝑃 | and 𝑛 = |𝑇 | (i.e. the lengths of
the strings). The space complexity is given by the need to store the DP
table to be able to back-trace the alignment sequence between the two
strings. If only the distance score is required, time complexity remains
the same but space complexity can be reduced to O (𝑚).

The Wavefront Alignment Algorithm (WFA) is a DP technique that
reduces the time and space complexity to O

(

𝑑2
)

, where 𝑑 is the
edit distance between both strings. WFA was originally proposed to
compute Smith-Waterman (SW) gap-affine global alignment [7] but it
can be adapted to compute other distance or similarity scores based on
computing a DP table. In [8], it was adapted to compute Levenshtein
distance for limited strings lengths up to a thousand characters. The
problem of using DP algorithms on very long strings has historically
been hindered by the difficulty of managing the high memory demand
and excessive computing time. This paper proposes several optimiza-
tions to compute the Levenshtein distance between very long strings

∗ Correspondence to: Department of Microelectronics & Electronic Systems, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Spain.
E-mail address: david.castells@uab.cat.

using the WFA algorithm with O (𝑑) space complexity on Graphical
Processing Units (GPUs) for fast execution times and limited memory
use.

This paper is organized as follows. In Section 2 we analyze previous
work. In Section 3 we analyze the fundamentals of the WFA algorithm
and its adaptation to the computation of Levenshtein distance. The
adaptation to GPU architectures is presented in Section 4, where we
follow an iterative improvement process to get the maximum perfor-
mance. Finally, we analyze the results and contrast them with other
works from the state of the art in Section 5 before concluding.

2. Previous work

The classic WF algorithm is based on building a DP table 𝐷 using
Eq. (1).

𝐷𝑖,𝑗 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑖 , if 𝑗 = 0
𝑗 , if 𝑖 = 0

min

⎧

⎪

⎨

⎪

⎩

𝐷𝑖−1,𝑗 + 1
𝐷𝑖,𝑗−1 + 1
𝐷𝑖−1,𝑗−1 + [𝑃 [𝑖 − 1] ≠ 𝑇 [𝑗 − 1]]

, otherwise
(1)

The ED between 𝑃 and 𝑇 is determined by the cell 𝐷𝑚,𝑛 from the
table. This algorithm can be considered a brute-force approach where
all possible edit operations are considered but it uses memoization to
avoid repeating the same computing for several results. Eq. (1) can be
found in the literature in different ways. In our case, we use the Iverson
vailable online 3 April 2023
167-8191/© 2023 The Author. Published by Elsevier B.V. This is an open access art

https://doi.org/10.1016/j.parco.2023.103019
Received 4 October 2022; Received in revised form 16 March 2023; Accepted 30 M
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

arch 2023

https://www.elsevier.com/locate/parco
http://www.elsevier.com/locate/parco
mailto:david.castells@uab.cat
https://doi.org/10.1016/j.parco.2023.103019
https://doi.org/10.1016/j.parco.2023.103019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2023.103019&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Parallel Computing 116 (2023) 103019D. Castells-Rufas

u
a
t

𝐷

i

bracket notation for the extra value when characters do not match. In
Iverson bracket notation [9], if the expression inside the brackets is true
the value is considered 1, and zero otherwise.

The ED is not the only interesting result that can be obtained
with the WF algorithm. Many applications recover the sequence of
operations required to transform P into 𝑇 by analyzing the elements
of the 𝐷 table. This sequence can be represented as an alignment
string, where M is used to denote a match, and I,D, and X are used
to denote insert, delete, and substitution operations respectively. There
can be multiple valid alignment strings, as different edit operations
can result into the same ED. The following example illustrates one
alignment string obtained from two short strings,

P: -ACCATGGACTG-
||| || |||

T: CACC-TG-ACTTA
alignment: IMMMDMMDMMMXI
distance: 5

The backtrace method to obtain the alignment string is based on
recovering the active branches of the conditional statements of Eq. (1).
When dealing with very long strings, the cost of storing the table is
prohibitive, and piece-based strategies (such as the one proposed by
Hirschberg [10]) are required to be able to obtain an alignment string.
This work focuses on obtaining the distance between the input strings.
Obtaining the alignment string is left for future works.

There have been many attempts to improve the performance of
matrix-based DP algorithms. The DP matrix offers a very regular layout
that seems adequate for a parallel implementation at a first glance.
However, the conditional branches appearing in Eq. (1) imply an
irregular data dependency among the cells, and makes the contribution
of many of the computed cells irrelevant to the final result. Hence,
the methods to speed up the algorithm are focused on two aspects:
(1) speeding up the process computation of the cells. (2) avoiding
computing some of the cells of the DP matrix.

In the first group, parallel processing is usually applied. The ex-
isting data dependency requires to use of an anti-diagonal approach
which is hard to parallelize since multiple threads receive an irregular
workload. On the other hand, other approaches target the speedup
of the single-threaded execution. The BPM Myers algorithm [11] is a
remarkable example. It uses bit-vectors and lookup tables to reduce
the computational load by a factor related to the word length of the
computing architecture. In the second group, Ukkonen [12] proposed
a banded approach, which was later combined with Myers’ bit vectors
by Hyyrö [13].

These two different strategies make comparing the performance of
different works tricky. We know that DP algorithms’ time complexity is
O(𝑚×𝑛). Hence, many works report the number of computed cells from
the DP table in cell updates per second (CUPS), which are defined as
Eq. (2).

CUPS = 𝑚 × 𝑛
𝑡

(2)

However, when using algorithms from the second group, the CUPS
nit could be misleading as they do not require computing all cells but
subset of them. Nevertheless, we think that CUPS are still valid as a

hroughput measure as it maintains an inverse relation (i.e. 1∕𝑥) with
execution time.

The Edlib library [4] is a popular implementation of the BPM
algorithm, which exploits the intrinsic parallelism of the add instruction
in carry propagation to compute several cells from the table in a single
instruction execution. With the end of Denard’s scaling regime, comput-
ing platforms have been forced to embrace parallel architectures. The
2

BGSA [14] is a remarkable extension to benefit from the vectorization
and multi-threading opportunities available on modern CPUs to get
performance above 100 GCUPS.

On the other hand, GPUs offer a massively parallel execution plat-
form. DP algorithms have been adapted to GPUs in search of scalability.
In [15], they reached a significant performance speed (above 1 TCUPS)
using the Myers BPM algorithm on strings up to 1k characters. Longer
sequences (8k and 22.5k) were targeted by Balhalf in [16,17] using an
anti-diagonal parallel approach with modest throughput results under 1
GCUPS. Tiling [18] is a general strategy to increase data locality in GPU
workloads. It is used in [19,20], and [21] to address longer strings of up
to 2 M with a peak performance of 50 GCUPS. FPGAs also offer a good
implementation platform for applications with a regular data layout.
Our recent work [22] achieves more than 5 TCUPS for short genomics
strings (<300 characters). Computer clusters have not been generally
used to speed up this problem. Sadiq and Yousaf [23] is one of the few
works trying to parallelize ED for clusters with modest results.

The low research attention given to ED between long strings con-
trast with the enormous interest of other related DP algorithms such
as SW [24] and their variants. The reason for this is its superlative
impact in bioinformatics, especially genomics, which always demands
faster methods to compare long DNA strings. The advances in this
algorithm are making possible genome-wide string comparisons. The
human genome length is approximately 3 G. Many parallel strategies
have been studied to compare at that scale [25].

Some of the most relevant results on accelerating SW for long
strings with GPUs have been achieved by the several versions of the
CUDAlign library [26–29]. Their goal is to recover the full alignment.
Their approach is based on sampling some of the rows during DP table
computation to later refine the alignment in a piece-wise approach
using massive parallelism. A large part of the execution time is devoted
to the first phase of the algorithm, which is the building of the DP
table. Its complexity is comparable to computing the ED. Thus, we will
use datasets from SW works to compare the execution time of our ED
solution.

3. WFA algorithm

The wavefront algorithm (WFA) [7] belongs to the second group of
algorithms, which avoid to compute cells to speed-up the computation
of the DP table. WFA only computes the cells from the diagonals of the
DP table where the distance is incremented. As the algorithm is based
on diagonals, it is convenient to define a coordinate system that refers
to the elements of the matrix 𝐷 in terms of diagonals and displacements
within the diagonals.

Several coordinate systems could be used to identify the cells of the
matrix as a displacement within the diagonals. In Fig. 1 we show the
four coordinate systems we foresee: offset, radius, row, and column. We
can describe the 𝐷 table using any of these coordinate systems. In the
original Marco-Sola’s paper [7] a column coordinate system is used. In
the rest of this paper we will use a radius coordinate system, which
might be more intuitively understood by the reader. Using a different
coordinate system has an impact on the definition of the equations used
by the algorithm, which we will introduce below. However, they can
be easily adapted to all coordinate systems.

The transformation between matrix (Cartesian) 𝐷 and pyramid
(radius) �̂� coordinate systems is described with Eqs. (3) and (4), which
also use the Iverson bracket notation. An example 𝐷 table with its
corresponding �̂� pyramid are shown in Figs. 2(a) 2(b) respectively.

𝐷𝑖,𝑗 = �̂�𝑗−𝑖,[𝑖>𝑗]𝑗+[𝑖≤𝑗]𝑖 (3)

̂𝑘,𝑟 = 𝐷[𝑘<0](−𝑘)+𝑟,[𝑘≥0](𝑘)+𝑟 (4)

We define the wavefront pyramid 𝑊 as the pyramid that contains
n 𝑊 the farthest displacement in the diagonal 𝑘 of the original
𝑘,𝑟

Parallel Computing 116 (2023) 103019D. Castells-Rufas
Fig. 1. Possible diagonal coordinate systems using an index to identify the diagonal
and another index to identify the displacement within the diagonal. In the figures,
the arrows define the diagonal coordinates, and the values on the boxes refer to the
displacement value within the diagonal.

�̂� pyramid having ED 𝑟. 𝑊 can be formally derived from �̂� using
Eq. (5).

𝑊𝑘,𝑟 = max
∀𝑞

𝑞 ∣ �̂�𝑘,𝑞 = 𝑟 (5)

The great advantage of the WFA algorithm is that it finds an alter-
native way of building the 𝑊 pyramid without computing �̂�. Instead,
it uses two additional pyramids 𝐶 and 𝐸 as described in Eq. (6). These
pyramids are described below.

𝑊𝑘,𝑟 = 𝐶𝑘,𝑟 + 𝐸𝑘,𝐶𝑘,𝑟
(6)

The compute pyramid 𝐶 is built by selecting the maximum values
from the depending cells of the 𝑊 pyramid as described in Eq. (7).

𝐶𝑘,𝑟 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 , if 𝑘 = 0 ∧ 𝑟 = 0

max

⎧

⎪

⎨

⎪

⎩

𝑊𝑘+1,𝑟−1 + [𝑘 < 0]
𝑊𝑘,𝑟−1 + 1
𝑊𝑘−1,𝑟−1 + [𝑘 > 0]

, otherwise
(7)

The extend pyramid 𝐸 is the pyramidal form of the extend table 𝐸
as defined in Eq. (8), which contains the length of the longest common
prefixes of P and 𝑇 starting at positions 𝑖 and 𝑗 respectively.

𝐸𝑖,𝑗 = 𝐿𝐶𝑃 (𝑃𝑖, 𝑇𝑗) (8)

In practice, only a small subset of values from 𝐸 are usually needed
as the radius of the accessed elements depend on the values of the
previously computed elements of 𝐶 pyramid as shown in Eq. (6).
Moreover, the data dependency allows to avoid storing the pyramids
𝐶, 𝐸, which are computed as needed. Fig. 2 depicts an example of a 𝐷
matrix, its pyramidal form �̂�, and the wavefront pyramid 𝑊 .
3

3.1. Algorithm optimizations derived from data dependency

In the WF algorithm, the solution to the ED problem is found in
𝐷𝑚,𝑛. However, in WFA, we can only ensure that the solution is in the
diagonal 𝑘𝑠𝑜𝑙 = 𝑛−𝑚, and that its radius is 𝑟𝑠𝑜𝑙 ≤ 𝑚𝑎𝑥(𝑚, 𝑛). From Eq. (7),
it is obvious that 𝐶𝑘𝑠𝑜𝑙 ,𝑟 only depends on the neighbors of the cell in
previous radius (i.e. 𝐶𝑘𝑠𝑜𝑙−1,𝑟−1, 𝐶𝑘𝑠𝑜𝑙 ,𝑟−1, and 𝐶𝑘𝑠𝑜𝑙+1,𝑟−1). These cells, in
turn, will depend on their neighbors from the previous radius, and so
forth.

Therefore, in the worst case, the only required cells to compute the
𝐶 pyramid, and hence, the 𝑊 pyramid, will be the cells inscribed inside
the diamond shaped parallelogram described by Eq. (9).

𝑟 ∈ [0, 𝑟𝑠𝑜𝑙0]

𝑘 ∈ [𝑚𝑖𝑛(𝑟, 𝑘𝑠𝑜𝑙0 − (𝑟𝑠𝑜𝑙0 − 𝑟)), 𝑚𝑖𝑛(𝑟, 𝑘𝑠𝑜𝑙 + (𝑟𝑠𝑜𝑙0 − 𝑟))]
(9)

Unkkonnen and later Myers [11] and Hyyrö [13] exploited the fact
that, in ED, the increments on the diagonals can only be 0 or +1. In
the worst case (having no match between 𝑃 and 𝑇), the values of the
solution diagonal in both �̂� and 𝑊 will increase from 0 to 𝑟𝑠𝑜𝑙 in +1
increments. In case of a single match in the diagonal, all increments
will be +1 except a single value being zero, and then, the resulting ED
will be 𝑟𝑠𝑜𝑙 − 1. After this observation, we can generally state that after
computing a value of the solution diagonal, 𝑓 = 𝑊𝑘𝑠𝑜𝑙 ,𝑟, the new worst
case radius must be 𝑟𝑠𝑜𝑙𝑟 ≤ 𝑟𝑠𝑜𝑙0 − (𝑓 − 𝑟).

We can use the new upper bound to dynamically define the range of
cells to compute from the 𝑊 pyramid as the algorithm progresses along
the pyramid columns. This approach, that we name dynamic diamond,
reduces even more the number of the required cells to compute.

In the example illustrated in Fig. 2, 36 cells from 𝑊 are computed
to get the final result using the classic WFA algorithm illustrated by
Fig. c. With the Dynamic Diamond approach illustrated by Fig. d, we
require to compute 24 cells, which represents a factor 1.5 × of savings.
Actually, the savings of this approach will be between 1× and 2×, being
higher as the distance between 𝑃 and 𝑇 is higher.

If the alignment path is not required, we can reduce the storage
to just two columns from the 𝑊 pyramid, as the whole pyramid is
only required to perform the backtrace. In this case, when computing
a column, only the information from the previous column as can be
observed by the data dependency pattern. We will have to dimension
the column as the worst case, which corresponds to the final column of
the pyramid containing 𝑚 + 𝑛 + 1 elements.

4. GPU implementation

GPUs offer a massively parallel execution platform based on a
large number of processing elements (PEs) and a multi-ported memory
hierarchies with high memory bandwidth. One difference of GPU archi-
tectures with respect to general purpose chip multiprocessors (CMP) is
that, at a given time, a large number (if not all) PEs execute the same
program (called kernel), which is typically small in size. By doing this,
instruction fetch can be shared among a large number of PEs in a SIMD
fashion. To maximize the efficiency of instruction execution among
the PEs, control flow divergence is minimized with several techniques,
such as predicated conditionals, stack memory avoidance, low latency
context switching, and large number of in-flight threads and memory
access latency hiding techniques.

Several programming frameworks can be used to program GPUs.
NVIDIA favors CUDA and OpenACC but it also supports OpenCL, which
offers a wider platform support for other accelerator technologies like
FPGAs. Our implementation is mainly based on OpenCL, although
we also code some variants in CUDA because of the richer available
profiling tools. Before going further into the implementation, we should
introduce some GPU programming concepts.

The GPU has a global memory external to the chip. This is usually a
multi-ported big memory implemented in several banks of some of the

Parallel Computing 116 (2023) 103019D. Castells-Rufas
Fig. 2. Visual example of how the classic DP approach is transformed into the WFA approach and the dynamic diamond optimization presented in this paper. (a) DP 12 × 12
table 𝐷 to compute the distance between the example strings P = ‘‘CACCTGACTTA’’ and T = ‘‘ACCATGGACTG’’. (b) Pyramidal form �̂� of the DP table in radius coordinates. (c)
Pyramidal form of the WFA algorithm. (d) Dynamic-diamond optimization presented in 4.3 to reduce the number of computed cells. The arrows represent the farthest pyramid
column that the algorithm considers. As the algorithm computes more columns from left to right, the furthest pyramid column is reduced and less cells must be computed thanks
to the diamond shaped data dependency.
Table 1
Equivalence among different terminology in OpenCL and CUDA.
Concept OpenCL CUDA

Processor Compute unit Streaming multiprocessor
Workload unit Workitem Thread
Group of workload units executed in the same processor Workgroup Thread block
Batch of workload units computed in a kernel invocation NDRange Grid
latest DRAM technologies. ‘‘Single Instruction Multiple Data’’ (SIMD)
processing elements (PEs) are grouped into computing units (CU).
NVIDIA calls them Streaming Multi-processors (SM). PEs in the same
CU can be synchronized by means of specific synchronization primitives
and they can share some on-chip memory. When invoking kernels in a
GPU device, the host specifies the number of workitems required to
execute the workload. A workitem is a unit of work associated to an
invocation of the kernel with a unique identifier that can be a 1D, 2D,
or 3D index. Workgroups are groups of workitems, and they can be
used to ensure that a range of workitems are executed in the same
CU. A scheduler distributes the workitems among the available PEs.
Once a workitem starts executing in a PE it can be context-switched,
but it generally will not be retired from the CU until it has completed its
execution. Contrary to what happens in a normal preemptive multitask-
ing system, there might be workitems (threads) not starting until there
are available PEs for execution. This behavior prevents from having
global synchronization primitives among all workitems participating
in a kernel invocation. Global synchronization can only occur by host
kernel invocations, as the host can ensure that the whole batch of
workitems launched are completed and cache memories are flushed.
The CUDA framework from NVIDIA uses a different terminology, but
the equivalence is shown in Table 1.

As stated in the previous section, WFA space complexity can be
reduced by just storing two columns of the pyramid: the currently being
computed and the previous one. An easy GPU parallelization strategy is
to devote one workitem to every cell of the pyramid column currently
computed. As depicted in Fig. 3, each workitem computing a cell must
access three cells values (𝑏, 𝑐, 𝑑) from the previous column to obtain
the 𝐶𝑑,𝑟 value and must access one or several values from the 𝑃 and 𝑇
strings to finally assign the 𝑎 value to the 𝑊𝑑,𝑟 pyramid.

The probability to have a run of 𝑢 consecutive matches in the sub-
strings from 𝑃 and 𝑇 during the extension phase can be approximated
4

Fig. 3. Data dependency to compute a cell (a) from the 𝑊 pyramid. For each cell,
three cells from the previous column are accessed (b,c,d), as expressed in Eq. (7). One
or more characters from the 𝑃 and 𝑇 strings are also accessed to compute the LCP
(corresponding to Eq. (8)).

by Eq. (10), where 𝛴 is the alphabet of the strings being compared.

𝑃 (run 𝑢) ≈
(

1
|𝛴|

)𝑢
(10)

Thus, in practice, the majority of accesses will require very few iter-
ations during the extension phase, which will result in a low divergence
between workitems. Moreover, we expect a large number of cache hits
as workitems access nearby positions.

When working with short strings, the workload is relatively small
compared to the large number of processing elements (PEs) available on
a GPU, resulting in low GPU occupancy. To address this, it is common
practice to group a large number of short string pairs and process
them in parallel, as described in [8]. However, when dealing with
large strings, even with a pyramidal data structure, the amount of work

Parallel Computing 116 (2023) 103019D. Castells-Rufas

f
s

W
G
c
g
s

t
I
n

Fig. 4. Performance achieved in NVIDIA GeForce RTX 3090 with different kernel invocation strategies as a function of the workgroup size. GCUPS are computed as defined
in Eq. (2). (a) Baseline. (b) Adapting the number of workitems as the algorithm progresses along the columns has a beneficial impact in performance. (c) However, the biggest
additional benefit is achieved when we reduce the frequency at which the host reads the memory positions that indicate the processing is complete.
required to compute a single column can far exceed the available PEs
after the initial iterations.

Several strategies can be used trying to maximize the throughput
of the system. In the following subsections we will iteratively analyze
some implementation alternatives and measure their impact on the
system performance. To demonstrate these approaches, we will use two
files from the National Center for Biotechnology Information (NCBI),
with each file being over 3 million characters long, corresponding to
accessions BA000035.2 and BX927147.1. The ED between these files
exceeds 1.5 million, providing an opportunity to achieve significant
performance improvements. We will report performance in GCUPS.

4.1. Kernel invocation strategies

Memory requirements are some of the fundamental aspects that
influence the performance of an implementation. In the worst case sce-
nario of the strings being completely different (i.e. not a single match),
the size of the required pyramid is the same than the DP table, i.e. 𝑛2
or same-length strings. Therefore, the supported maximum length of
ame-length strings is determined by the expression 𝑛𝑚𝑎𝑥 <

√

𝑀𝐺𝑃𝑈∕𝑤,
where 𝑀𝐺𝑃𝑈 is the global memory size of the GPU and 𝑤 is the size
of the data type used to store the pyramid values (both measured in
bytes). In our case, we use an NVIDIA RTX 3090 with 𝑀𝑅𝑇𝑋3090 = 24
GB and a 𝑤 = 4 B, so 𝑛𝑚𝑎𝑥−𝑅𝑇𝑋3090 < 77 k. Therefore, using the standard

FA algorithm, the pyramid for longer strings would not fit into the
PU memory. For longer strings, we have to use the two column
omputation optimization presented at the end of Section 3.1. In the
eneral case, we are not restricted to same-length strings. We allocate
pace in global memory to store two columns of length 𝑚+𝑛+1, which

corresponds to the maximum possible number of rows of the pyramid.
Note that we generally use a fraction of the cells of the two columns,
since the full column will be completely used in the right-most column
of the pyramid. Although dynamically allocating memory required by
each column as the algorithm progresses may be considered as a space-
saving measure, it is counterproductive due to the requirement for the
host to coordinate the memory allocation process, which is known to
be slow. With the fixed size strategy, the number of cells required for
same-length strings is 2(2𝑛+1). So, in this case the maximum supported
string length would be determined by the expression 𝑛𝑚𝑎𝑥 < 𝑀𝐺𝑃𝑈∕4𝑤.
Hence, 𝑛𝑚𝑎𝑥−𝑅𝑇𝑋3090 < 1.5 G. 32 bit numbers are sufficient to store
he pyramid values as ED cannot be bigger than the string length.
gnoring the amount of memory of the GPU, our implementation does
ot support strings longer than 232. Longer strings would require a

piece-wise strategy and the use a bigger integer types.

4.1.1. Baseline
In a first baseline version, we implement a kernel in which each

workitem computes only one cell from the column. Every kernel in-
vocation computes a column from the pyramid. The algorithm has a
dependency between columns, so we must wait until a whole column
5

is computed to start the next one. We use kernel invocation as a global
synchronization method. For every column, we invoke the kernel with
an NDRange to compute all the possible cells of the column, which
correspond to the worst case (𝑚 + 𝑛 + 1 elements). Each workitem
determines whether the cell has to be executed or not. In the later case,
it finishes early.

Although there is no local memory sharing or fine-grain synchro-
nization among workitems, the workgroup size has an influence in the
execution time, since the GPU benefits from having multiple workitems
executing the same instruction in a SIMD fashion and workitems are
scheduled in multiples of the SIMD lanes of the GPU. Fig. 4(a) shows
the achieved performance as a function of the workgroup size. The
workgroup size is known to influence performance and exhibit a zig-
zag pattern [30]. The fluctuations are explained by changes in the
amount of used hardware and occupancy of the SIMD units. The
figure considers the total execution time of the application, not just
a single kernel invocation. The maximum performance (156 GCUPS) is
achieved with a workgroup size of 380 workitems, and corresponds to
an execution time of 65.8 s. In this strategy, the host invokes the kernel
as many times as the number of required columns from the 𝑊 pyramid.

We analyze how the kernel execution varies as the algorithm pro-
gresses in column radius. The blue line in Fig. 5 depicts the execution
time of kernel invocations. Although invocations are launched with the
worst case number of workitems (the rows from the pyramid column),
early detection of useless computation in the OpenCL kernel code will
make many threads to exit in few instructions. The 𝑥 axis of the figure
represents the radius of the column in the kernel invocation. For low
values, the execution time remains constant and many workitems exit
by checking early exit conditionals. At a certain threshold the number
of useful workitems are involved in slightly more complex code that
increases the overall execution time. As the cells invocations reach the
end point many workitems from distant diagonals will already reach
early exit conditions making a decrease on the overall execution time
of those kernel invocations. This approach obviously has an overhead,
since it launches more workitems than are really necessary.

4.1.2. Dynamic number of workitems
In a second implementation we invoke the kernel with a dynamic

number of workitems in the NDRange. In the first invocation it just
contains 1 cell. In the second invocation 3, and the 𝑛 column, 2𝑛 + 1.
In the previous approach it seems a waste of resources to have most
of the 𝑚 + 𝑛 + 1 workitems working in useless computations. With this
change, the test-case execution time is reduced from 65.85 to 54.24 s,
which represents 190 GCUPS and a speedup factor of almost 1.21× with
respect to the baseline.

We could expect that the execution time of the baseline is propor-
tional to 𝑑 × (𝑚 + 𝑛 + 1), where d is the ED between 𝑃 and 𝑇 . We
also could expect that the dynamic workitems improvement execution
time is proportional to (𝑑 + 1)2. Using this estimations we compute the
expected speedup factor from our files, which is 4.2 ×. But, in reality,

Parallel Computing 116 (2023) 103019D. Castells-Rufas
Fig. 5. Kernel execution time to compute 𝑊 ’s columns on the motivating example as a
function of column number (radius) for 3 different kernel invocation strategies. Baseline
and dynamic strategies suffer a constant overhead caused by the additional time used
doing unnecessary memory transfers to check for the final condition. In addition, the
baseline shows a greater execution time than the dynamic version because it always
creates more workitems than the other.

we observe that execution time is not exactly linear with the number of
workitems as radius progresses (see cyan line in Fig. 5). What happens
is that read operations dominate over kernel execution slowing the
overall execution.

However, we can see that, in the worst execution time regime, for
the same number of active cells the baseline kernel still takes more time
to execute. This is because it always launches the worst case distance
number of workitems, while the dynamic always launches less.

4.1.3. Minimizing reads
To check if a solution is found, the host must check if the furthest

reaching radius computed by the kernel on the solution diagonal al-
ready reached the final point. This requires to perform an OpenCL
read transaction to transfer memory from the device to the host. As
depicted in Fig. 6(a), the transaction time can be of the same order, or
even longer, than the kernel execution time, becoming a bottleneck. In
addition, the memory transactions introduce a delay 𝑑𝑖𝑘 that prevents
the streaming execution of successive kernel invocations.

To reduce the impact of read transactions, we can enqueue several
kernel invocations before reading the furthest reaching value in the
solution diagonal. This strategy increases the number of executed invo-
cations by a constant value but this becomes irrelevant when dealing
with very long strings. Fig. 6(b) illustrates how the execution time is
reduced by grouping kernel invocations before a read operation.

When using this strategy in the example, the execution time is
reduced from 55.53 to 37.18 s, which is a 1.49× factor with respect
to the execution time of the previous optimization. The performance is
increased to 277 GCUPS with a workgroup size of 128 workitems. This
has an impact, since the GPU is active more time without waiting for
the host to interpret the data. The green line in Fig. 5 shows how now
the execution time of the kernel basically depends on the number of
elements of each column.

We analyze how the performance is affected by the reduction of read
operations with several string lengths (see Fig. 7). After the analysis we
decide that 1 read transaction every 100 kernel invocations is a good
tradeoff to get a good performance on various string lengths. Higher
values do not provide additional gains.

4.2. Strategies to reduce access to global memory

From the programmer perspective, previous designs access the pyra-
mid 𝑊 with read and write transactions to global memory. The GPU’s
cache hierarchy effectively prevents to pay the price of long latencies
to global memory, as many accesses result in cache hits. However,
the cache hierarchy acts in a transparent way without an specific
6

Fig. 6. Conceptual time-line of the interaction between host and OpenCL kernel
depending on the number of final condition checks. Blue areas depict kernel execution
in the GPU. Red areas depict the host code manages kernel invocation, while orange
areas depict the host code that determines the final condition of the algorithm. Arrows
depict memory transfers in both directions (host-to-device, and device-to-host). (a)
Baseline, where final condition is checked after every kernel invocation. (b) Reducing
the number of final condition checks reduces the number of memory transactions and
eliminates the delay between successive kernel executions 𝑑𝑖𝑘.

Fig. 7. Effect of reducing the number of read transactions on performance for various
string lengths. Reducing the number of read transactions per kernel invocation below a
factor 1/100 does not provides any significant additional benefit for all string lengths.

knowledge of the algorithm. In the following subsections we analyze
some strategies to try to increase data locality and, as a result, achieve
better performance.

4.2.1. Pre-fetching to shared memory
As illustrated in Fig. 3, the processing of a pyramid cell requires

to access three cells from the previous pyramid column. Hence, each
computed cell (which is stored in global memory) is accessed 3 times
when computing the following column.

Pre-fetching is an optimization strategy [31] that involves copying
necessary data from a slower, distant memory to a faster, closer mem-
ory. When multiple accesses are made to the same data, the overhead
of the initial copy is offset by the faster subsequent memory accesses on
the faster memory. In our case, we try to reduce the memory bandwidth
to global memory by using an strategy based on pre-fetching data from
global memory to shared memory. Fig. 8 depicts this strategy. Each
workitem works with a row of the pyramid and only fetches data from
the cell in the previous column. But for each cell, the algorithm needs to
access 2 additional neighboring cells. The benefit of pre-fetching is that
these additional accesses are done on shared memory rather than global
memory. A corner case happens in the workitems on the boundaries of
the workgroup. They have to do an extra access to global memory since
one of the neighboring cells is not computed in the workgroup.

Parallel Computing 116 (2023) 103019D. Castells-Rufas
Fig. 8. Strategy to fetch elements from global memory to shared memory before
computing pyramid cells. Workitems in a workgroup can reuse the data fetched by
their sibling workitems after being sure that everyone completed the fetch with a
synchronization barrier (illustrated by a blue vertical line). Workitems at the boundaries
of the workgroup require an extra access to global memory.

This approach reduces the memory accesses to global memory
by three but requires to synchronize workitems in the workgroup.
After fetching their related cell from global memory, all workitems
execute a barrier instruction (syncthreads in CUDA) to ensure
that neighboring workitems in the workgroup already fetched their
data. Workitems at the boundary of the workgroup must access global
memory, since one of the neighboring cells is part of another work-
group.

Fig. 10(a) shows the that this strategy is counterproductive. The ex-
pected benefit from reducing accesses to global memory does not occur
because of two reasons. First, because in the original version, cells that
are accessed from multiple workitems are already present in the cache
hierarchy of the GPU, so there is no significant difference between the
global memory bandwidth used by both versions. Secondly, because
the shared memory version introduces a synchronization primitive that
delays the execution of some workitems.

4.2.2. Tiling
The previous shared memory approach suffers from too much syn-

chronization. A way to reduce the synchronization needs is to increase
the amount of work that a workitem is processing. Tiling is used in
most GPU solutions addressing the SW DP algorithm [25]. The goal of
tiling is to improve data locality.

A tiled approach is designed by identifying the data dependencies
of the application and extracting the blocks that, after some initial
data fetching, can be computed without additional accesses to the
distant data store. In our case we can divide the pyramid in diamond
shaped tiles that, after fetching data from the tile boundary, can be
computed independently. We define tiles by a tile length 𝑡 parameter,
which corresponds to the length of the side of the parallelogram. The
number of cells in the tile is 2𝑡2. Tile length can set arbitrarily, while it
might be limited by the required local memory. Increasing tile length
increases the work done by a workitem and minimizes accesses to
global memory. It also results in launching less workitems, less kernel
invocations, and an increase the computation/communication factor,
which is usually beneficial to increase throughput.

When using tiling, compared with the non-tiled approach, the host
must do less invocations and each invocation must use less workitems.
Each kernel invocation computes a vertical tile band instead of the
column computed in previous approaches. In the computation of a tile
7

Fig. 9. Example of a tiling approach with 𝑡 = 3 where a workitem computes all cells
in a tile. Colored cells depict the cells that must be shared with the workitems in the
next vertical band.

band, the number of addressed columns is 2𝑡, which is higher than the
2 columns addressed in previous approaches. At a first sight this could
impose a significantly higher memory demand. However, we notice
that only two columns following a zig-zagged pattern are effectively
accessed. In Fig. 9, we highlight the ziz-zag data dependencies from
previous tiles with blue and yellow colors. The kernel prefetchs all the
depending cells from the previous tile band boundary, computes the tile
using the local storage, and stores the boundary cells back into global
memory.

In GPUs, the obvious local storage is shared memory. The shared
memory is not very big (128 kB per SM in RTX 3090), but is faster
than global memory because it is located on-chip. As multiple threads
will be executed in the SM (the workgroup), a code using the shared
memory should divide its use among threads of the workgroup. This
means that we must allocate 2𝑡2 × 𝑤𝑔𝑠 bytes for the tiles, where 𝑤𝑔𝑠
is the workgroup size, and then use the workitem local index to index
the tile we have to use.

In addition to the use of shared memory, we also investigate two
additional options for the local storage: global memory and registers.
The use of global memory can be interpreted as contradictory with our
goal, but we want to analyze if the memory access pattern inside the
tile has a beneficial effect in the cache hierarchy fetching policies. The
use of the register file as a memory store can be somewhat challenging.

The register file of a GPU is a big memory (compared with classic
processors register files) used to store registers associated with threads.
Every thread has its own set of registers, which allow a swap-free
context switch between threads. In addition, the number of registers
of a thread is not defined by the architecture (as in most processors
like RISC-V having 32) but dynamically defined when kernel code is
compiled. As a result, the register file is divided by the number of
registers required by a thread to know the number of simultaneous on-
flight threads in a SM. In RTX 3090 every block has 65 536 registers.
The use of registers to store the local tile memory is more intricate as
it requires to describe all tile cells as variables in the source code and
implementing additional addressing functions to write and read them.

The results of these analyses are shown in Figs. 10(b), 10(c), 10(d).
The 𝑥 axis of the figures describe the number of workitems in the

Parallel Computing 116 (2023) 103019D. Castells-Rufas
Fig. 10. Performance achieved in NVIDIA GeForce RTX 3090 with different methods that try to reduce access to global memory as a function of the workgroup size. GCUPS are
computed as defined in Eq. (2). (a) Pre-fetching in shared memory does not provide a significant with respect to the previous approach due to synchronization overheads. Tiling
using one workitem per tile does not provide significant gains as well. Diagrams (b), (c), (d) show multiple tests using different tile lengths (𝑡). Performance for tile lengths greater
than 3 decreases due to thread divergence and shared memory is the best option for this tiling approach. (e) Having multiple workitems collaborating in a tiled approach provides
significant gains. (f) A substantial gain is obtained with the dynamic diamond algorithmic optimization.
workgroup. This has an impact on GPU occupancy as higher workgroup
sizes require more memory. Multiple tile lengths are tested, starting
from a tile length of 2 increasing tile lengths are drawn with lighter
color. It can be observed than generally bigger tile lengths perform
worse.

The use of global memory for local storage does not provide any
benefit over previous approaches. The achieved best performance is
256 GCUPS with a tile length of 2 and 128 workitems per workgroup. A
profiling analysis reveals that memory accesses are dispersed in mem-
ory reducing the chance to coalesce memory operations and increasing
the chance to have threads waiting for long memory operations. As a
result, the number of non-available threads in the GPU scheduler is
increased.

When using registers for the local store, we use conditionals to
implement the equivalent to address decoding. Due to the diamond
shape of the tile, some diagonals are more frequently accessed than
others, so it is convenient that they are checked before less frequent
ones. A convenient conditional ordering provides a 10 GCUPS gain with
respect to a naive approach. However the best achieved performance
with the register-based local store is 267.2 GCUPS with a tile length of
3 and a workgroup size of 128 workitems.

Although not being very significant, the shared memory local store
provides an improvement with respect to previous designs. The best
achieved performance is 289.6 GCUPS with a tile length of 2 and a
workgroup size of 224 workitems.

4.2.3. Parallel workgroup
In previous tiling strategies, a whole tile was computed by every

workitem. Another approach is studied, where several workitems to
collaborate to compute a tile. The principle of this approach is that each
workitem within the workgroup is responsible to fetch the memory and
compute the cells of a single diagonal. Fig. 11 depicts the strategy. In a
first step, all workitems fetch the two dependent positions from global
memory and store them in a local store using shared memory. Notice
that this requires 2𝑡 + 1 workitems (and not 2𝑡 − 1) because the cells
in the extremes of the tile access cells from upper and lower diagonals.
Then, a loop of 2𝑡 iterations is required to compute the tile values using
8

the local memory. In these iterations, some workitems will do useless
work since they do not have anything to compute. Finally, the local
memory is transferred to global memory. The execution of the steps
is synchronized with the workitems collaborating in the computation
done by the workgroup by using a barrier.

The ‘performance of this design is influenced by the workgroup size,
which is determined to the tile size 𝑤 = 2𝑡+ 1. This approach provides
a significant gain with respect to previous designs. The maximum
achieved performance is 372 GCUPS, when using 381 workitems per
workgroup, which corresponds to tile length of 190.

4.3. Dynamic diamond

We left the dynamic diamond approach for the final step, as the
code to control the elements of the pyramid the must be processed
has a higher complexity. When applying this approach, we basically
reduce the number of tiles that are computed. This reduction factor
is not constant and depends on the distance between both strings. In
this case, the maximum achieved performance is 516 GCUPS, when
using the configuration used in the last iteration (381 workitems per
workgroup, which corresponds to tile length of 190).

4.4. Summary

After an iterative improvement process, we have achieved a 3.4×
speed-up factor with respect to the initial WFA design. The main
elements that make it possible to achieve this speedup factor are: an
appropriate kernel invocation strategy that minimizes memory trans-
actions between the host and the device, the use of tiling to increase
data locality within the kernel, and leveraging the diamond-shaped
data dependency to reduce the amount of data to compute.

Fig. 12 illustrates the improvements of each step by reporting the
maximum achieved performance (in GCUPS) of every method when
computing the distance between the strings of the illustrating example.

The presented implementation is open-source, and its code is pub-
licly available at https://github.com/davidcastells/WavefrontVariants.

https://github.com/davidcastells/WavefrontVariants

Parallel Computing 116 (2023) 103019D. Castells-Rufas
Fig. 11. Parallel computation of a tile of 𝑡 = 3. In a first step values are pre-fetched from global memory to shared memory. The computation of tile columns is synchronized
with barrier primitives (depicted in blue).
Table 2
Execution time of this work on a NVIDIA GeForce RTX 3090 compared with the results from Sadiq and Yousaf [23] (2020) in a cluster running an hybrid MPI OpenMP application.

Exp. String A Size String B Size Distance Similarity Reference This work

Execution time (s) GCUPS Execution time (s) GCUPS Speed-up factor

1 gbgss201 156,931 gbpln104 79,314 91,590 41% 42.44 0.29 0.12 100.22 353.7×
2 gbgss201 156,931 gbhtg11 606,452 450,982 25% 83.44 1.14 0.86 109.92 97.0×
3 gbhtg11 606,452 gbgss116 1,517,819 969,770 36% 606.71 1.51 4.81 191.11 126.1×
4 gbuna1 308,453 gbinv32 3,424,429 3,116,517 5% 553.04 1.90 6.04 111.83 91.5×
Table 3
Execution time of this work on a NVIDIA GeForce RTX 3090 compared with the first-phase of MASA-Cudalign on the same platform.

Exp. String A Size String B Size Distance Similarity Reference This work

Execution
time (s)

GCUPS Execution
time (s)

GCUPS Speed-up
factor

1 NC_000898.1 162,114 NC_007605.1 171,823 92,254 46% 0.05 557.10 0.13 202.50 0.4×
2 NC_003064.2 542,868 NC_000914.1 536,165 271,907 49% 0.55 529.21 0.79 366.20 0.7×
3 CP000051.1 1,044,459 AE002160.2 1,072,950 549,784 48% 2.00 560.33 2.73 409.05 0.7×
4 BA000035.2 3,147,090 BX927147.1 3,282,708 1,528,200 53% 20.00 516.55 20.81 496.39 1.0×
5 AE016879.1 5,227,293 AE017225.1 5,228,663 2,595 99% 36 759.22 0.34 78,734.09 103.7×
6 NC_005027.1 7,145,576 NC_003997.3 5,227,293 3,700,051 48% 78.00 478.87 103.38 361.28 0.8×
7 NT_033779.4 23,011,544 NT_037436.3 24,543,557 12,565,054 48% 1,200.00 470.65 1,310.61 430.93 0.9×
8 BA000046.3 32,799,110 NC_000021.7 46,944,323 15,700,576 66% 2,258.00 681.90 2,159.39 713.03 1.0×
chr1 NC_000001.10 249,000,000 NC_006468.3 228,000,000 50,882,030 79% 92,162.00 616.00 32,060.21 1,775.17 2.8×
chr19 NC_000019.9 59,128,983 NC_006486.3 63,644,993 15,090,152 76% 6,557.00 573.93 2,779.20 1,354.08 2.3×
chr20 NC_000020.10 63,025,520 NC_006487.3 61,729,293 7,609,553 87% 5,933.00 655.74 889.55 4 373.53 6.6×
chr21 NC_000021.8 48,129,895 NC_006488.2 46,489,110 4,000,655 91% 3,290.00 680.10 167.85 13,330.27 19.8×
chr22 NC_000022.10 51,304,566 NC_006489.3 49,737,984 6,818,507 86% 3,827.00 666.78 681.13 3,746.37 5.6×
23M NT_033779.4 23,011,544 NT_037436.3 24,543,557 12,565,054 48% 1,196.00 472.23 1,309.54 431.28 0.9×
10M NC_017186.1 10,236,779 NC_014318.1 10,236,715 374 99.9% 136.00 770.52 0.65 161,216.91 209.2×
5M AE016879.1 5,227,293 AE017225.1 5,228,663 2,595 99% 36.00 759.22 0.33 82,823.50 109.0×
Fig. 12. Maximum performance achieved by the analyzed approaches on the
motivating example.
9

5. Results

In this section, we evaluate our best design and compare it with
the state of the art. Since very few works are addressing ED on very
long strings we compare our results with the only work fulfilling this
requirement and with the first step of the MASA-Cudalign [29] which
has a complexity similar to ED.

To base our experiments, we use the test files used by [23] and the
CUDAlign project publications [26,28] which cover enough differences
in terms of string similarity and length. In the case of [23] the files
are not exactly the same reported in the original paper as they were
the result of concatenating multiple genomic sequences combined in
a .seq file, and it has been evolving over time. We have repeated
the process with the same sequences files and similar string lengths.
The results are similar but not exactly the same reported in the paper.
The execution platform consist of a Intel® Xeon® W-2155 CPU with 10
cores running at 3.30 GHz, and a NVIDIA™ GPU GeForce RTX 3090,
with 82 SMs running at 1.6 GHz. All GPU measurements are using a
single GPU.

Parallel Computing 116 (2023) 103019D. Castells-Rufas
Table 4
Maximum length and performance of works in the literature computing the ED between two strings.

Work Method/Platform Max reported length Max performance (GCUPS)

[22] (2021) Banded-BPM/FPGA 300 5076.00
[8] (2022) WFA/GPU 1000 (90% sim.) 10,060.30

(98% sim.) 25,062.60
[15] (2014) BPM/GPU 1000 2300.00
[32] (2018) BPM/CPU ? 1620.00
[17] (2017) ED/GPU 22,500 0.88
[20] (2015) ED/GPU 128,000 20.48
[23] (2020) ED/CPU 3,424,429 1.90
This work WFA/GPU 249,000,000 (41% sim.) 100.22

(79% sim.) 1775.17
(99.9% sim.) 161.216.91
Fig. 13. Our implementation performance (in GCUPS) depends on the similarity of the
strings being compared.

The Table 2 compares the results of the proposed method in ex-
ecution platform with Sadiq and Yousaf’s results reported in the pa-
per [23]. The input strings have a rather low similarity below 50%, but
Sadiq and Yousaf’s top performance is below 2 GCUPS. Our achieved
speed-up factor (using a single GPU) is always above two orders of
magnitude with respect to Sadiq and Yousaf’s work (which is using
a computing cluster), achieving up to a 353× factor for the higher
similarity file.

For the files used in [26,28] we compare with a compilation in
our execution platform of the latest version of MASA-Cudalign soft-
ware available at https://github.com/edanssandes/MASA-CUDAlign.
The original papers were reporting a performance between 20 and
30 GCUPS using a single GPU. But, as shown in Table 3, our tests
reveal that the performance in latest GPUs goes up to the region of 600
GCUPS. In this case, our implementation performs slightly worse when
similarity is low, as our performance for similarities lower than 70%
falls in the range of 200 to 700 GCUPS. However, for higher similarity
strings we easily jump above the TCUPS range reaching a top value of
161 TCUPS for almost identical files. This dependence of performance
on similarity is depicted in Fig. 13, which collects all the results from
the table. String length also has some impact on performance. For the
same similarity value, longer sequences will generally provide higher
throughput.

We compare our obtained performance with previous works on the
literature specifically addressing ED. Table 4 shows the results sorted
by the maximum reported length. For short strings (below thousands
of characters) a high performance in the order of TCUPS is generally
achieved by processing multiple strings concurrently. In this case,
the problem becomes embarrassingly parallel and the performance is
10

limited by the communication bandwidth to access input data.
6. Conclusions

In this paper, we have presented a GPU implementation of the
WFA algorithm adapted to the computation of the ED problem for
very long strings. To the best of our knowledge this is the first work
considering the problem of computing the ED for strings longer than
one hundred million characters. Our baseline GPU implementation is
already orders of magnitude faster than previously reported alterna-
tives specifically targeting ED. In addition, we present a tiled approach
together with the dynamic diamond optimization that contribute to
increase the performance by a factor of 3.4× with respect to our
baseline implementation.

For low similarity strings MASA-Cudalign results suggest that its
adaptation to the ED problem would provide a competitive perfor-
mance. However, for long strings with similarities above 70%, to the
best of our knowledge, our results are the best ever reported. In this
work we have focused on obtaining the ED value. In future works, we
will focus on obtaining the ED alignment.

Declaration of competing interest

One or more of the authors of this paper have disclosed potential or
pertinent conflicts of interest, which may include receipt of payment,
either direct or indirect, institutional support, or association with an
entity in the biomedical field which may be perceived to have poten-
tial conflict of interest with this work. For full disclosure statements
refer to https://doi.org/10.1016/j.parco.2023.103019. David Castells-
Rufas reports financial support was provided by European Regional
Development Fund.

Data availability

The data used is available from public repositories (data sources
have been already described in the paper)

Acknowledgments

This research was supported by the European Union Regional De-
velopment Fund (ERDF) within the framework of the ERDF Operational
Program of Catalonia 2014–2020 with a grant of 50% of the total
cost eligible under the Designing RISC-V based Accelerators for next
generation computers project (DRAC) [001-P-001723], in part by the
Catalan Government under grant 2017-SGR-1624, and in part by the
Spanish Ministry of Science, Innovation and Universities under grant
RTI2018-095209-B-C22.

References

[1] V.I. Levenshtein, et al., Binary codes capable of correcting deletions, insertions,
and reversals, Sov. Phys. Dokl. 10 (8) (1966) 707–710.

[2] J. Wang, Y. Dong, Measurement of text similarity: a survey, Information 11 (9)

(2020) 421, http://dx.doi.org/10.3390/info11090421.

https://github.com/edanssandes/MASA-CUDAlign
https://doi.org/10.1016/j.parco.2023.103019
http://refhub.elsevier.com/S0167-8191(23)00025-X/sb1
http://refhub.elsevier.com/S0167-8191(23)00025-X/sb1
http://refhub.elsevier.com/S0167-8191(23)00025-X/sb1
http://dx.doi.org/10.3390/info11090421

Parallel Computing 116 (2023) 103019D. Castells-Rufas
[3] F. Foscarin, F. Jacquemard, R. Fournier-S’niehotta, A diff procedure for music
score files, in: 6th International Conference on Digital Libraries for Musicology,
2019, pp. 58–64, http://dx.doi.org/10.1145/3358664.3358671.

[4] M. Šošić, M. Šikić, Edlib: a C/C++ library for fast, exact sequence alignment
using edit distance, Bioinformatics 33 (9) (2017) 1394–1395, http://dx.doi.org/
10.1093/bioinformatics/btw753.

[5] S. Arora, B. Barak, Computational Complexity: A Modern Approach, Cambridge
University Press, 2009.

[6] R.A. Wagner, M.J. Fischer, The string-to-string correction problem, J. ACM 21
(1) (1974) 168–173, http://dx.doi.org/10.1145/321796.321811.

[7] S. Marco-Sola, J.C. Moure, M. Moreto, A. Espinosa, Fast gap-affine pairwise
alignment using the wavefront algorithm, Bioinformatics 37 (4) (2021) 456–463,
http://dx.doi.org/10.1093/bioinformatics/btaa777.

[8] Q. Aguado-Puig, S. Marco-Sola, J.C. Moure, D. Castells-Rufas, L. Alvarez, A.
Espinosa, M. Moreto, Accelerating edit-distance sequence alignment on GPU
using the wavefront algorithm, IEEE Access 10 (2022) 63782–63796, http:
//dx.doi.org/10.1109/ACCESS.2022.3182714.

[9] K.E. Iverson, A programming language, in: Proceedings of the May 1-3, 1962,
Spring Joint Computer Conference, 1962, pp. 345–351.

[10] D.S. Hirschberg, A linear space algorithm for computing maximal common
subsequences, Commun. ACM 18 (6) (1975) 341–343, http://dx.doi.org/10.
1145/360825.360861.

[11] G. Myers, A fast bit-vector algorithm for approximate string matching based on
dynamic programming, J. ACM 46 (3) (1999) 395–415, http://dx.doi.org/10.
1145/316542.316550.

[12] E. Ukkonen, Algorithms for approximate string matching, Inf. Control 64 (1–3)
(1985) 100–118, http://dx.doi.org/10.1016/S0019-9958(85)80046-2.

[13] H. Hyyrö, A bit-vector algorithm for computing levenshtein and damerau edit
distances, Nordic J. Comput. 10 (1) (2003) 29–39.

[14] J. Zhang, H. Lan, Y. Chan, Y. Shang, B. Schmidt, W. Liu, BGSA: a bit-parallel
global sequence alignment toolkit for multi-core and many-core architec-
tures, Bioinformatics 35 (13) (2019) 2306–2308, http://dx.doi.org/10.1093/
bioinformatics/bty930.

[15] A. Chacón, S. Marco-Sola, A. Espinosa, P. Ribeca, J.C. Moure, Thread-
cooperative, bit-parallel computation of levenshtein distance on GPU, in:
Proceedings of the 28th ACM International Conference on Supercomputing, 2014,
pp. 103–112, http://dx.doi.org/10.1145/2597652.2597677.

[16] K. Balhaf, M.A. Shehab, T. Wala’a, M. Al-Ayyoub, M. Al-Saleh, Y. Jararweh,
Using gpus to speed-up levenshtein edit distance computation, in: 2016 7th
International Conference on Information and Communication Systems (ICICS),
IEEE, 2016, pp. 80–84, http://dx.doi.org/10.1109/IACS.2016.7476090.

[17] K. Balhaf, M.A. Alsmirat, M. Al-Ayyoub, Y. Jararweh, M.A. Shehab, Accelerating
levenshtein and damerau edit distance algorithms using GPU with unified mem-
ory, in: 2017 8th International Conference on Information and Communication
Systems (ICICS), IEEE, 2017, pp. 7–11, http://dx.doi.org/10.1109/IACS.2017.
7921937.

[18] Y. Li, L. Schwiebert, Memory-optimized wavefront parallelism on GPUs, Int. J.
Parallel Program. 48 (6) (2020) 1008–1031, http://dx.doi.org/10.1007/s10766-
020-00658-y.
11
[19] A. Tomiyama, R. Suda, Automatic parameter optimization for edit distance
algorithm on GPU, in: International Conference on High Performance Computing
for Computational Science, Springer, 2012, pp. 420–434, http://dx.doi.org/10.
1007/978-3-642-38718-0_38.

[20] M. Kruliš, D. Bednárek, M. Brabec, Improving parallel processing of matrix-based
similarity measures on modern gpus, in: International Conference on Similarity
Search and Applications, Springer, 2015, pp. 283–294, http://dx.doi.org/10.
1007/978-3-319-25087-8_27.

[21] D. Bednárek, M. Brabec, M. Kruliš, Improving matrix-based dynamic program-
ming on massively parallel accelerators, Inf. Syst. 64 (2017) 175–193, http:
//dx.doi.org/10.1016/j.is.2016.06.001.

[22] D. Castells-Rufas, S. Marco-Sola, Q. Aguado-Puig, A. Espinosa-Morales, J.C.
Moure, L. Alvarez, M. Moretó, OpenCL-based FPGA accelerator for semi-global
approximate string matching using diagonal bit-vectors, in: 2021 31st Interna-
tional Conference on Field-Programmable Logic and Applications (FPL), IEEE,
2021, pp. 174–178, http://dx.doi.org/10.1109/FPL53798.2021.00036.

[23] M.U. Sadiq, M.M. Yousaf, Distributed algorithm for parallel edit distance com-
putation, Comput. Inform. 39 (4) (2020) 757–779, http://dx.doi.org/10.31577/
cai_2020_4_757.

[24] T.F. Smith, M.S. Waterman, et al., Identification of common molecular subse-
quences, J. Mol. Biol. 147 (1) (1981) 195–197, http://dx.doi.org/10.1016/0022-
2836(81)90087-5.

[25] Z. Xia, Y. Cui, A. Zhang, T. Tang, L. Peng, C. Huang, C. Yang, X. Liao, A review
of parallel implementations for the Smith–Waterman algorithm, Interdiscip. Sci.:
Comput. Life Sci. (2021) 1–14, http://dx.doi.org/10.1007/s12539-021-00473-0.

[26] E.F.O. Sandes, A.C.M. de Melo, CUDAlign: using GPU to accelerate the com-
parison of megabase genomic sequences, in: Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2010,
pp. 137–146, http://dx.doi.org/10.1145/1693453.1693473.

[27] E.F.d.O. Sandes, A.C.M. de Melo, Retrieving smith-waterman alignments with
optimizations for megabase biological sequences using GPU, IEEE Trans. Parallel
Distrib. Syst. 24 (5) (2012) 1009–1021, http://dx.doi.org/10.1109/TPDS.2012.
194.

[28] F.d.O. Edans, G. Miranda, A.C. de Melo, X. Martorell, E. Ayguadé, Cudalign
3.0: Parallel biological sequence comparison in large gpu clusters, in: 2014
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
IEEE, 2014, pp. 160–169, http://dx.doi.org/10.1109/CCGrid.2014.18.

[29] E.F. de Oliveira Sandes, G. Miranda, X. Martorell, E. Ayguade, G. Teodoro, A.C.M.
Melo, CUDAlign 4.0: Incremental speculative traceback for exact chromosome-
wide alignment in GPU clusters, IEEE Trans. Parallel Distrib. Syst. 27 (10) (2016)
2838–2850, http://dx.doi.org/10.1109/TPDS.2016.2515597.

[30] T. Allen, R. Ge, Characterizing power and performance of gpu memory access,
in: 2016 4th International Workshop on Energy Efficient Supercomputing (E2SC),
IEEE, 2016, pp. 46–53, http://dx.doi.org/10.1109/E2SC.2016.012.

[31] P. Hijma, S. Heldens, A. Sclocco, B. van Werkhoven, H.E. Bal, Optimization
techniques for GPU programming, ACM Comput. Surv. (2022) http://dx.doi.org/
10.1145/3570638.

[32] Y. Chan, K. Xu, H. Lan, B. Schmidt, S. Peng, W. Liu, Myphi: efficient levenshtein
distance computation on xeon phi based architectures, Curr. Bioinform. 13 (5)
(2018) 479–486, http://dx.doi.org/10.2174/1574893612666171122150933.

http://dx.doi.org/10.1145/3358664.3358671
http://dx.doi.org/10.1093/bioinformatics/btw753
http://dx.doi.org/10.1093/bioinformatics/btw753
http://dx.doi.org/10.1093/bioinformatics/btw753
http://refhub.elsevier.com/S0167-8191(23)00025-X/sb5
http://refhub.elsevier.com/S0167-8191(23)00025-X/sb5
http://refhub.elsevier.com/S0167-8191(23)00025-X/sb5
http://dx.doi.org/10.1145/321796.321811
http://dx.doi.org/10.1093/bioinformatics/btaa777
http://dx.doi.org/10.1109/ACCESS.2022.3182714
http://dx.doi.org/10.1109/ACCESS.2022.3182714
http://dx.doi.org/10.1109/ACCESS.2022.3182714
http://refhub.elsevier.com/S0167-8191(23)00025-X/sb9
http://refhub.elsevier.com/S0167-8191(23)00025-X/sb9
http://refhub.elsevier.com/S0167-8191(23)00025-X/sb9
http://dx.doi.org/10.1145/360825.360861
http://dx.doi.org/10.1145/360825.360861
http://dx.doi.org/10.1145/360825.360861
http://dx.doi.org/10.1145/316542.316550
http://dx.doi.org/10.1145/316542.316550
http://dx.doi.org/10.1145/316542.316550
http://dx.doi.org/10.1016/S0019-9958(85)80046-2
http://refhub.elsevier.com/S0167-8191(23)00025-X/sb13
http://refhub.elsevier.com/S0167-8191(23)00025-X/sb13
http://refhub.elsevier.com/S0167-8191(23)00025-X/sb13
http://dx.doi.org/10.1093/bioinformatics/bty930
http://dx.doi.org/10.1093/bioinformatics/bty930
http://dx.doi.org/10.1093/bioinformatics/bty930
http://dx.doi.org/10.1145/2597652.2597677
http://dx.doi.org/10.1109/IACS.2016.7476090
http://dx.doi.org/10.1109/IACS.2017.7921937
http://dx.doi.org/10.1109/IACS.2017.7921937
http://dx.doi.org/10.1109/IACS.2017.7921937
http://dx.doi.org/10.1007/s10766-020-00658-y
http://dx.doi.org/10.1007/s10766-020-00658-y
http://dx.doi.org/10.1007/s10766-020-00658-y
http://dx.doi.org/10.1007/978-3-642-38718-0_38
http://dx.doi.org/10.1007/978-3-642-38718-0_38
http://dx.doi.org/10.1007/978-3-642-38718-0_38
http://dx.doi.org/10.1007/978-3-319-25087-8_27
http://dx.doi.org/10.1007/978-3-319-25087-8_27
http://dx.doi.org/10.1007/978-3-319-25087-8_27
http://dx.doi.org/10.1016/j.is.2016.06.001
http://dx.doi.org/10.1016/j.is.2016.06.001
http://dx.doi.org/10.1016/j.is.2016.06.001
http://dx.doi.org/10.1109/FPL53798.2021.00036
http://dx.doi.org/10.31577/cai_2020_4_757
http://dx.doi.org/10.31577/cai_2020_4_757
http://dx.doi.org/10.31577/cai_2020_4_757
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1007/s12539-021-00473-0
http://dx.doi.org/10.1145/1693453.1693473
http://dx.doi.org/10.1109/TPDS.2012.194
http://dx.doi.org/10.1109/TPDS.2012.194
http://dx.doi.org/10.1109/TPDS.2012.194
http://dx.doi.org/10.1109/CCGrid.2014.18
http://dx.doi.org/10.1109/TPDS.2016.2515597
http://dx.doi.org/10.1109/E2SC.2016.012
http://dx.doi.org/10.1145/3570638
http://dx.doi.org/10.1145/3570638
http://dx.doi.org/10.1145/3570638
http://dx.doi.org/10.2174/1574893612666171122150933

	GPU acceleration of Levenshtein distance computation between long strings
	Introduction
	Previous Work
	WFA Algorithm
	Algorithm optimizations derived from data dependency

	GPU Implementation
	Kernel invocation strategies
	Baseline
	Dynamic number of workitems
	Minimizing reads

	Strategies to reduce access to global memory
	Pre-fetching to shared memory
	Tiling
	Parallel Workgroup

	Dynamic diamond
	Summary

	Results
	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

