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A B S T R A C T

The impact of space on ecosystem dynamics has been a matter of debate since the dawn of theoretical ecology.
Several studies have revealed that space usually involves an increase in transients’ times, promoting the so-
called supertransients. However, the effect of space and diffusion in transients close to bifurcations has not
been thoroughly investigated. In non-spatial deterministic models such as those given by ordinary differential
equations transients become extremely long in the vicinity of bifurcations. Specifically, for the saddle–node
(s–n) bifurcation the time delay, 𝜏, follows 𝜏 ∼ |𝜇 − 𝜇𝑐 |

−1∕2; 𝜇 and 𝜇𝑐 being the bifurcation parameter and the
bifurcation value, respectively. Such long transients are labeled delayed transitions and are governed by the
so-called ghosts. Here, we explore a simple model with intra-specific cooperation (autocatalysis) and habitat
loss undergoing a s–n bifurcation using a partial differential equations (PDE) approach. We focus on the effects
of diffusion in the ghost extinction transients right after the tipping point found at a critical habitat loss
threshold. Our results show that the bifurcation value does not depend on diffusion. Despite transients’ length
typically increase close to the bifurcation, we have observed that at extreme values of diffusion, both small
and large, extinction times remain long and close to the well-mixed results. However, ghosts lose influence
at intermediate diffusion rates, leading to a dramatic reduction of transients’ length. These results, which
strongly depend on the initial size of the population, are shown to remain robust for different initial spatial
distributions of cooperators. A simple two-patch metapopulation model gathering the main results obtained
from the PDEs approach is also introduced and discussed. Finally, we provide analytical results of the passage
times and the scaling for the model under study transformed into a normal form. Our findings are discussed
within the framework of ecological transients.
1. Introduction

The importance of transients in ecological systems has been high-
lighted by a multitude of authors due to the relevant timescales in
ecological dynamics [1–5] and their importance in applications, for
instance in adaptive management of renewable resources [2] or sus-
tainment of ecosystems after tipping points [6,7]. Transient phenomena
have been described in marine and terrestrial ecosystems and in exper-
imental research [4]. Here, mathematical concepts such as bifurcations
i.e. tipping points [8], saddles [1], and the role of processes operating
on different timescales [9], among others (see below) play a crucial role
in transients’ behaviors.

Ecological systems typically have different timescales, and such
dynamics on multiple scales make transients likely to appear [9–11].
For instance, if the fast-timescale dynamics are on an ecologically-
relevant scale and the slow-time scale is fast enough, then transients
will be ecologically relevant [2]. A clear example of this is found in
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spruce-budworm dynamics [12], where insect dynamics occur on a very
short timescale with population changes within a few years. However,
the population of forest trees changes significantly over a period of
decades. This interaction can be considered as a constant number of
trees and consider the insect dynamics, to finally consider that the
population dynamics of trees respond to the average population density
of insects rather than to the annual insect density.

Saddles have been suggested as another mechanism causing tran-
sients. Saddles are unstable equilibria with some stable directions
and the orbits slow down while approaching a saddle, causing long
transients. A multitude of ecological dynamical models has revealed
the presence of saddles, including simple models for two-species prey–
predator [9], competition [13], or quantitative genetics [2,14]. In fact,
some transient dynamical outcomes in experimental studies with the
flour beetle suggested the pass through a saddle towards a period-
two fixed point [1]. Several food chain models have also shown long,
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complex transients due to another class of saddle-like sets: the chaotic
saddles. These involve orbits entering into this (fractal) set that behaves
chaotically for a finite amount of time, giving place to a chaotic tran-
sient towards another stable state [15–19]. Other transient-generator
mechanisms have been suggested for ecological systems, including
coupled oscillators, stochasticity, saddle–node ghosts (firstly proposed
in [20]), and spatial systems (see [4] for a review). Regarding spatial
models, integro-difference equations with alternating reproduction and
dispersal have revealed long transients [21], also illustrating that spa-
tial and temporal scales may be intimately connected [2]. Spatial mod-
els based on coupled map lattices [21–23] and on metapopulations [5]
have revealed both the presence of very long transients.

Bifurcations are responsible for qualitative changes in dynamics as
parameters are varied [24,25], and they are currently a hot topic of
research in Ecology within the context of so-called tipping points, crit-
ical transitions, transients, and early warning signals [26–31]. For the
saddle–node (s–n) bifurcation, clearly identified in laboratory experi-
ments for electronic circuits [32], solid-state lasers [33], and yeast cell
cultures [34], extremely long transients arise just after the bifurcation.
These transients are labeled as delayed transitions or ghosts [25,35].
In short, the s–n bifurcation involves the collision and consequent
annihilation of equilibrium points. This annihilation actually involves
the jump of these two equilibria to the complex phase space [36–
38], and, despite they are not found in the real numbers phase space,
they still continue influencing the flows therein. This is why the or-
bits’ delays right after this bifurcation are said to be governed by
a ghost [6,7,20,25,36,37,39]. Transients close to bifurcations follow
well-defined scaling laws relating the length of these transients with
how far the bifurcation parameter is to its bifurcation value [25,40].
Such scaling properties are found both in continuous-time (flows) and
discrete-time (maps) dynamical systems. For instance, the length of
transients, 𝜏, for the s–n scale as 𝜏 ∼ |𝜇 − 𝜇𝑐 |

−1∕2 for flows and
maps [25,36,37], where 𝜇 and 𝜇𝑐 are the bifurcation parameter and
ifurcation value, respectively. Remarkably, this scaling law has been
dentified experimentally in an electronic circuit [32].

S–n bifurcations typically arise in dynamical systems with strong
onlinearities such as positive feedbacks due to facilitation [7,8,20]
r intra-specific cooperation (i.e., autocatalysis) [20,36,38,39,41,42].
pecifically, facilitation processes occurring in plants in dryland is
ypothesized to be the key-mechanism leading to their tipping points,
aking them abrupt and not smooth [43–46]. Typically, cooperation
rovides a fitness benefit [47] which often depends on the size of
he population i.e., Allee effect [48]. Intra-specific cooperation [49]
s found in a multitude of species including food sharing in social
nsects [49,50], vampire bats [49], and primates [51], in the repro-
uction of marine species such as urchins, sponges, or cnidarians [52],
here fertilization between individuals largely depends on population
ensity. Other autocatalytic processes can be found in the growth
nd reproduction of yeast cells [34], in cancer cell populations via
utocrine signaling [53], and in recovery dynamics after mass extinc-
ions [54]. Other mathematical models have revealed s–n bifurcations
n apoptotic switches in Drosophila [55], host-endosymbionts dynamics
n arthropods [56], or gene regulatory networks [20], to cite a few.

Despite the extensive research on transients in ecological dynami-
al systems, there are still some unanswered questions. As previously
entioned, several modeling approaches point to the direction that

pace typically makes transients longer [57], but, is this the case for
ear-to-bifurcation transient phenomena? What are the properties of
host transients in spatially-extended systems? How does diffusion
ffect transients’ scaling laws compared to the predictions by well-
ixed models? How does the initial spatial distribution of cooperators

mpact ghosts? Despite previous numerical attempts using metapopu-
ation [20] and cellular automata [58] models have identified spatial
hosts, how spatial correlations and diffusion shape transients’ lengths
2

nd scaling laws right after a s–n bifurcation remain poorly explored.
n this article, we investigate these questions by studying a dynam-
cal system of autocatalytic cooperators under habitat loss. Previous
esearch indicated that this system, in the well-mixed setting, suffers a
–n bifurcation towards a monostable, extinction state [38,59]. Here,
e have built a one-dimensional spatial model of this system using
artial differential equations (PDEs). We focus on the effect of diffusion
n the extinction transients and their scaling properties close to the s–n
ifurcation and on the role of the initial distribution of cooperators in
uch transients. The most remarkable results of the PDE approach are
hown to be explained by a simple two-patch metapopulation model.
e also introduce a normal form for the spatial s–n bifurcation and

nalytically calculate transients’ properties.

. Reaction–diffusion model

In this section, we introduce the model we use to investigate the
ransients and their scaling properties right after a saddle–node (s–
) bifurcation considering spatial correlations. To do so, we use a
eaction–diffusion system which is a generalization, taking space into
ccount, of a mean-field model considering cooperation in growth
ecological facilitation or autocatalysis) and intra-specific competition.
he mean-field model (the reaction function) reads:
𝑑𝑢
𝑑𝑡

= 𝑘𝑢2(1 − 𝜃 − 𝑢) − 𝜖𝑢 = 𝑓 (𝑢), (1)

where 𝑢 denotes the population numbers of a self-cooperative species.
Note that the intrinsic growth term here is 𝑘𝑢2 (with 𝑘 > 0), which
involves hyperbolic growth (faster than growth of the form 𝑘𝑢, typi-
cally considered in populations with exponential reproduction). This
nonlinear growth has been widely used to model autocatalytic and
cross-catalytic dynamics in species with intra-specific cooperation [8,
38,59] and in hypercycles [58,60], respectively. The growth of the
population is constrained by a logistic function with carrying capacity
equal one and including the fraction of habitat destroyed 𝜃 ∈ [0, 1].
Note that when 𝜃 = 1 no available space is found and the population
cannot grow. The population is assumed to decay exponentially pro-
portionally to 𝜖 > 0. The dynamics of Eq. (1) has been widely studied
n Refs. [8,38,59]. Roughly, this system has three equilibrium points
iven by 𝑝0 = 0, and the pair

± = 1
2

(

1 − 𝜃 ±
√

(1 − 𝜃)2 − 4𝑟
)

,

with 𝑟 = 𝜖∕𝑘. Before the bifurcation, 𝑝0 is locally asymptotically stable
while he equilibrium points 𝑝+ and 𝑝− are a stable node and a saddle
point. These interior equilibria collide at the bifurcation value 𝜃𝑐 =
−2

√

𝑟 in a s–n bifurcation. Right after the bifurcation, extremely long
transients (governed by so-called ghosts) for large enough population
values are found towards the single remaining equilibrium, the origin,
which is globally asymptotically stable [59] (see Fig. 1b). These long
transients, labeled as delayed transitions [25,35], are known to follow
the inverse square-root scaling law in the deterministic limit, which
involves a power law decay of the transient times as the bifurcation
parameter is tuned above the bifurcation value (see the upper panels in
Fig. 1b). The same model, transformed into a map, has been recently
analyzed using holomorphic dynamics i.e., dynamics in the complex
plane, to investigate the properties of the node and the saddle having
jumped at the complex phase space after the bifurcation. This study re-
vealed that these two equilibria become unstable spirals in the complex
plane [38].

The model above is here studied considering a one-dimensional con-
tinuous space (Fig. 1a). We denote by 𝑢(𝑥, 𝑡) the density of individuals
at spatial position 𝑥 at time 𝑡 and we assume that the dynamics of
the population are given by the following reaction–diffusion equation
(partial differential equation, PDE) in one spatial dimension
𝑢𝑡 = 𝐷𝑢𝑥𝑥 + 𝑓 (𝑢), 𝑥 ∈ (0, 1) (2)
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Fig. 1. (a) Schematic diagram of the system studied, which considers cooperators interacting in a one-dimensional spatial domain under habitat destruction. (b) Phase diagram
showing the saddle–node bifurcation curve (blue line) in the parameter space (𝑘, 𝜃) with 𝜖 = 0.05 for 𝑑𝑢∕𝑑𝑡 = 𝑓 (𝑢), Eq. (1). The area below the green surface denotes the parameter
region of bistability, where 𝑢± ∈ R+, and the system can either persist or become extinct depending on 𝑢(0). At the bifurcation curve the node and the saddle collide, and beyond
this curve 𝑢± ∈ C, 𝑢0 being a global attractor. Right after this bifurcation, the extinction times experience bottlenecks causing delays that follow an inverse square-root scaling law
with respect to the bifurcation distance (small upper plots, computed numerically with a fourth-order Runge–Kutta method with time stepsize 0.1). (c) Characteristic extinction
dynamics considering Eq. (2) with 𝐷 = 0, here with 𝜖 = 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
with diffusion coefficient or dispersal rate 𝐷 > 0 and Neumann
boundary conditions assuming that the individuals do not leave when
they reach the boundary,

𝑢𝑥(0, 𝑡) = 𝑢𝑥(1, 𝑡) = 0 (3)

and where the reaction term is given by Eq. (1).

3. Results

3.1. PDE model: Analytical results

First, we study the steady states of the initial boundary value
problem

⎧

⎪

⎨

⎪

⎩

𝑢𝑡 = 𝐷𝑢𝑥𝑥 + 𝑓 (𝑢), 𝑡 > 0 𝑥 ∈ (0, 1),
𝑢𝑥(0, 𝑡) = 𝑢𝑥(1, 𝑡) = 0, 𝑡 > 0,
𝑢(𝑥, 0) = 𝑢0(𝑥).

(4)

The stationary problem associated with (4) can be written as
{

𝐷𝑢′′ + 𝑓 (𝑢) = 0,
𝑢′(0) = 𝑢′(1) = 0.

(5)

where ′ denotes the derivative with respect to 𝑥. This second-order ODE
can be transformed into a first-order system, given by:

⎧

⎪

⎨

⎪

⎩

𝑑𝑢
𝑑𝑥

= 1
𝐷
𝑣,

𝑑𝑣
𝑑𝑥

= −𝑓 (𝑢),
(6)

which is a conservative system with total energy

𝐸(𝑢, 𝑣) = 𝑣2

2𝐷
+ 𝐹 (𝑢)

with

𝐹 (𝑢) ∶= ∫

𝑢

0
𝑓 (𝑠)d𝑠.

The stationary solutions of (4) are given by trajectories of system (6)
beginning and ending (at ‘‘time" 1) on the 𝑢 axis and thus contained
in level curves of 𝐸(𝑢, 𝑣). Eqs. (6) share the same three equilibrium
3

points of the mean field model, here given by 𝑃0 = (0, 0), and the pair
𝑃± = (𝑢±, 0), with

𝑢± = 1
2

(

1 − 𝜃 ±
√

(𝜃 − 1)2 − 4𝜖
𝑘

)

. (7)

provided that (1 − 𝜃)2 > 4𝜖∕𝑘, (i.e. 𝜃 < 𝜃𝑐 being 𝜃𝑐 the bifurcation
value). The constant functions on [0, 1] with values 0, 𝑢− and 𝑢+ are
the three (possible) constant stationary solutions of (4). It can be seen
that when the discriminant of (7) is zero the fixed points 𝑢± collide
in a center-saddle bifurcation (see below for the stability conditions).
The bifurcation value making the discriminant equal to zero defines a
critical value of the habitat degradation parameter (which is the same
as the one of the mean field model), given by:

𝜃𝑐 = 1 − 2
√

𝜖
𝑘
. (8)

That is, the equilibria 𝑃± collide when 𝜃 = 𝜃𝑐 . The local stability
of the equilibrium points can be computed from det | (𝑃0,±) − 𝜆𝐼| = 0,
being  the Jacobian matrix of Eqs. (6), given by:

 =
(

0 𝐷−1

𝑘𝑢(2(𝜃 − 1) + 3𝑢) + 𝜖 0

)

,

with eigenvalues

𝜆± = ±
√

𝐷−1(𝑘𝑢(2(𝜃 − 1) + 3𝑢) + 𝜖).

𝑃0 is a saddle point since 𝜆±(𝑃0) = ±
√

𝜖∕𝐷. On the other hand, a
straightforward computation using (7) gives

𝜆±(𝑢+) = ±
√

𝑘
2𝐷

√

√

(1 − 𝜃)2 − 4 𝜖
𝑘

(

1 − 𝜃 +
√

(1 − 𝜃)2 − 4 𝜖
𝑘

)

implying that 𝑢+ is also a saddle, and

𝜆±(𝑢−) = ±
√

𝑘
2𝐷

√

√

(1 − 𝜃)2 − 4 𝜖
𝑘

(

1 − 𝜃 −
√

(1 − 𝜃)2 − 4 𝜖
𝑘

)

𝑖,

which, together with the conservative character of the system, ensures
that 𝑢− is a center.

Fig. 2 shows the phase plane (with space as the independent vari-
able) of system (6) for different values of 𝜃. Nonconstant stationary
solutions of (4) correspond to trajectories of (6) with initial condition
on the 𝑢 axis (so 𝑣(0) = 𝐷𝑢′(0) = 0) which are part of periodic orbits
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𝜃
H

Fig. 2. Dynamics of Eqs. (6) setting 𝑘 = 1, 𝜖 = 0.1 (with 𝜃𝑐 = 0.3675444⋯) and: (a) 𝜃 = 0.32; (b) 𝜃 = 0.3291796 = 1 − 3
√

𝜖∕2; (c) 1 − 3
√

𝜖∕2 < 𝜃 = 0.335 < 1 − 2
√

𝜖; (d) 𝜃 = 𝜃𝑐 ; (e)
= 𝜃𝑐 + 10−6; and (f) 𝜃 = 𝜃𝑐 + 10−1. The arrows indicate the direction of the orbits. Big solid dots denote equilibria: saddle points (red and dark green) and center (light green).
ere, we show the homoclinic orbit of 𝑢0 (red) in (a); the heteroclinic orbit connecting 𝑢0 and 𝑢+ (dashed red line over blue) in (b); and the homoclinic orbit of 𝑢+ (blue) in (c).

Panels (d–f) show the orbits after the s–n bifurcation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of the center with half period equal to the inverse of a natural number
(thus ending at ‘‘time’’ 1 on the 𝑢 axis, so 𝑣(1) = 𝐷𝑢′(1) = 0). They
can only exist for 𝜃 < 𝜃𝑐 (Fig. 2a–c). Since the boundary of the region
of the phase plane where all trajectories are periodic is a homoclinic
orbit of one of the saddle points (Figs. 2a,c) or, for a critical value of
the parameter, two heteroclinic orbits joining these two saddle points
(Fig. 2b), we can always find orbits of periods as long as we want
(those that pass close to the saddle points). On the other hand, the
periodic orbits close to the center point 𝑢− have a period which tends
to 2𝜋∕ℑ(𝜆+(𝑢−)) (see Theorem 9 in [61]).

Hence, the continuity of the period function (see for example [62])
implies that the center will have orbits of any period in the interval
(

2𝜋∕ℑ(𝜆+(𝑢−)),∞
)

, guaranteeing the existence of (at least) a number
of nonconstant stationary solutions of (6) equal to twice the integer
part of ℑ(𝜆+(𝑢−))∕𝜋 unless this is an integer in which case, the number
of nonconstant stationary solutions is two units lower. The fact that
there are no more solutions follows from the monotonicity of the period
function for our 𝑓 (see Proposition 3.1 in [63]). The graph of the period
function, some trajectories, and the corresponding stationary densities
are depicted in Fig. S1.

The study of the equilibria and stability of scalar reaction–diffusion
equations has a long history [64–67]. In particular, Chafee showed that
any isolated non-constant stationary solution of (4) is unstable [62].
This result was later generalized to higher dimensions in convex do-
mains [68,69]. Thus, the only possible stable steady states of (4) are
constant (independent of the spatial position).

Denoting by �̂� a constant steady state of (4), the linearization of (2)
with Neumann boundary conditions in a neighborhood of �̂� is
{

𝑤𝑡 = 𝐷𝑤𝑥𝑥 + 𝑓 ′(�̂�)𝑤,
𝑤𝑥(0, 𝑡) = 𝑤𝑥(1, 𝑡) = 0.

(9)

Looking for exponential solutions 𝑤(𝑥, 𝑡) = 𝑒𝜆𝑡𝑧(𝑥), we obtain the
following problem for 𝑧(𝑥):

𝐷𝑧′′ = (𝜆 − 𝑓 ′(�̂�))𝑧, 𝑧′(0) = 𝑧′(1) = 0,
4

which implies 𝜆𝑘 = 𝑓 ′(�̂�) − 𝑘2𝐷, 𝑘 = 0, 1.... Taking into account the
sign of 𝑓 ′ at the steady states, we obtain that 𝑢0 and 𝑢+ are locally
asymptotically stable whereas 𝑢− is unstable. Moreover, for 𝜃 > 𝜃𝑐 ,
since

𝑉 (𝑡) = 1
2 ∫

1

0
𝐷𝑢2𝑥(𝑥, 𝑡)d𝑥 − ∫

1

0
𝐹 (𝑢(𝑥, 𝑡))d𝑥

s a Lyapunov function of (4) the trivial steady state is globally asymp-
otically stable (see [65] where the problem with Dirichlet boundary
onditions is studied).

Once 𝑢− and 𝑢+ have collided in a saddle–node bifurcation (at 𝜃 =
𝑐 , involving no equilibria in the PDE except for 𝑢0 for any 𝜃 > 𝜃𝑐),

the flows get curved and spend long times around the 𝑣 axis. This
can be observed in panels (d) and (e) in Fig. 2. When the distance
to the bifurcation is large, the flows travel straighter in the phase
plane, spending a lower amount of time (Fig. 2f). These changes in the
geometry of the vector field may be related to the delays we observe
in the spatial system.

In Appendix A.1, we consider the normal forms of (2) with 𝐷 = 0
nd 𝐷 > 0 in a neighborhood of the point (𝜃𝑐 , 𝑢𝑐 ), understood as an
lement of the parameter space times the state space, for 𝜃 > 𝜃𝑐 . Here
𝑐 stands for the steady state at the bifurcation, i.e., 𝑢𝑐 = (1 − 𝜃𝑐 )∕2.

More precisely, the rescaling 𝑡 ∶= (𝜖𝑘)1∕4𝑡; �̂� ∶= (𝜖𝑘)1∕4(𝑢 − 𝑢𝑐 ); and
∶= 𝜖(𝜃 − 𝜃𝑐 ) (remember that neither 𝜖 nor 𝑘 are assumed to be small)

transforms Eq. (2) with 𝐷 = 0 into

̂′ = −𝜇 − �̂�2 + 𝑂
(

𝜇�̂�, �̂�3
)

and Eq. (2) with 𝐷 > 0 into

̂𝑡 = −𝜇 − �̂�2 + �̂��̂�𝑥𝑥 + 𝑂
(

𝜇�̂�, �̂�3
)

here �̂� = (𝜖𝑘)−1∕4𝐷. We obtain bounds of the solution of (2) of
the form ‖�̂�‖∞ ≤

√

𝜇 + 𝐶𝜇, i.e. ‖𝑢 − 𝑢𝑐‖ ≤ (𝜖𝑘)−
1
4
(√

𝜇 + 𝐶𝜇
)

for
a time interval of length of the order of 1∕

√

𝜇 (see Eqs. (24) and
(27)), where 𝐶 depends on how far from a constant function is the
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𝑢
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initial condition. Moreover, in (27) the constant 𝐶 tends to 0 when the
diffusion coefficient increases.

Remark 3.1. Standard comparison principles (see e.g. Theorem 4.10
in [66]) guarantee that two solutions to (2) maintain order if they are
initially ordered. Therefore, a solution to (2) with initial condition with
a minimum value 𝑢𝑚 larger or equal (or even slightly smaller) than 𝑢𝑐
will ‘‘notice" the ghost and thus will behave with an extinction time
larger than the one of the homogeneous solution with initial condition
𝑢𝑚.

3.2. PDE model: Numerical results

Here, we illustrate the properties of spatial ghost transients towards
extinction by means of numerical simulations of the solutions for the
initial value problem (4). The method used to obtain these numerical
solutions is described in Appendix A.2. Most of the numerical analyses
consider the initial condition 𝑢(𝑥, 0) = 0.35+0.15 sin(4𝜋𝑥) (Fig. 3). Since
we are also interested in the impact of the initial spatial distribution of
the replicators (which may result crucial in cooperative species) other
initial conditions are investigated. The solutions for the spatial system
indicate that space makes transients not only depend on the distance
to the bifurcation value (𝜃𝑐), but also on the diffusion coefficient (𝐷),
as shown in Fig. 3a. Fixing the fraction of habitat loss right after
the bifurcation, transients for large diffusion constants become similar
to the ones obtained for the mean-field model, showing the inverse
square-root scaling law (Fig. 3b). This is due to the fast homogenization
of the system (see the panel on the left in Fig. 3c). Moreover, when
diffusion is extremely small the system behaves as an uncoupled lattice
showing a heterogeneous extinction pattern (see the mid and right
panels in Fig. 3c).

In between these two extremes sharing similar transients’ behaviors,
there exists a region where transients become much faster and thus the
ghost effect is lost. With the initial spatial distribution of cooperators
used in Fig. 3, this acceleration in extinction transients is found at
10−5 ≲ 𝐷 ≲ 10−2.5, showing the fastest extinctions times for 𝐷 ≈ 10−3.
Note that these values of diffusion are not affected by how far the
system is from the bifurcation value. It is important to notice that the
results obtained for the non-spatial model (dashed line in Fig. 3b) seem
to be the upper limit for these transient times, contrarily to some results
on spatial ecology showing that space enlarges transients [5,21–23].
Panels in Fig. 3b illustrate some of the extinction dynamics for different
values of diffusion, showing the rapid homogenization at large diffusion
values and the heterogeneity in population numbers at extremely small
diffusion values (see also Fig. S2).

Up to now, we have used a single initial spatial distribution of the
species by using a sinusoidal function involving that, in some spatial
regions, the population of cooperators is below the bottleneck i.e., the
region of the phase space where the saddle and the node collided. This
involves that, in such regions, the flows start at population values far
away from the ghost thus not being influenced by it (see red arrow in
Fig. 3c). That is, our results on diffusion showing shorter transients are
found when the population values are below the bottleneck in some
spatial regions. When all (or almost) all the population remains above
the bottleneck, the ghost effect is recovered, as shown in Fig. S3.

In order to evaluate how general are the results discussed above,
we investigate different initial spatial configurations of cooperators.
Firstly, we use the same sinusoidal function tuning the ordinary fre-
quency given by 𝜔 in 𝑈 (𝑥, 0) = 0.35 + 0.15 sin(2𝜋𝜔𝑥), as shown in
Fig. 4b. For low frequencies, the faster extinction times are found at
higher diffusion rates (Fig. 4a) compared to the largest frequencies.
Similar results, showing that for intermediate diffusion values extinc-
tion transients become faster, have been obtained for random initial
populations (see Figs. 5a and Fig. S4c). Here, the −1∕2 scaling law for
extinction times is also found for extremely large and small diffusion

−7 −4
5

rates. The scaling law is lost for 10 ≲ 𝐷 ≲ 10 , where times become
much shorter (Fig. 5c). The same qualitative results have been obtained
for linear (Fig. S4a), step (Fig. S4b), and high-amplitude sinusoidal
(Fig. S4c) functions, for which the values of 𝐷 displaying the fast
extinctions slightly changed. For all these cases, as mentioned above,
the transient times never overcame the predictions of the mean-field
model for extreme diffusion values, either large or small. Finally, we
have evaluated ghost extinction transients under different scenarios
where the initial population of cooperators is demoted, simulating a
further spatial fragmentation occurring once the threshold of habitat
loss has been surpassed. To do so, we have computed extinction times
at increasing random gap frequencies (Figs. S5 and S6). Generically, the
extinction times decrease at increasing gap frequencies. Despite that
for both extreme diffusion values, ghost transients are recovered, the
response to this initial spatial fragmentation is shown to be largely
asymmetric for these extreme values. For instance, large diffusion
values favor long ghost transients with 𝜃 = 𝜃𝑐 + 10−5 (Fig. S5c). The
same analyses, showing that for 𝜃 = 𝜃𝑐+10−3 ghost transients are faster,
are displayed in Fig. S6.

3.3. A two-patch model explains short transients at intermediate diffusion
values

We here analyze one of the simplest spatial models for the system
previously studied considering a two-compartment, metapopulation
model described by ODEs coupled through dispersal (diffusion) see
Fig. 6a. This approach is inspired in the classical works by Levin [70],
where the study of complex spatial dynamics [71] was simplified by
modeling colonization-extinction dynamics among different patches.
Our aim here is to shed light on the impact of diffusion in extinction
transients by using this simple approach, which reproduces some of
the properties identified in the PDE model. That is, that extremely
short transients are found for some intermediate diffusion values (see
Figs. 3a, 4a, 5a, S4, and S5a). The simplified version of the previous
model (2) can be written as:
𝑑𝑢1
𝑑𝑡

= 𝑘𝑢21(1 − 𝜃 − 𝑢1) − 𝜖𝑢1 −𝐷
(

𝑢1 − 𝑢2
)

(10)
𝑑𝑢2
𝑑𝑡

= 𝑘𝑢22(1 − 𝜃 − 𝑢2) − 𝜖𝑢2 −𝐷
(

𝑢2 − 𝑢1
)

, (11)

with 𝑢1 and 𝑢2 being the population densities of the autocatalytic
species in compartments 1 and 2, respectively. The dynamics of this
model without habitat loss (𝜃 = 0) were previously studied [20]. Here,
we will focus on the phenomena observed at intermediate diffusion
values causing extremely short transients. This is due to the changes
in the vector field induced by diffusion rates after the bifurcation (see
Fig. 6 and Fig. S8) and even before the bifurcation (Fig. S7). The
nullclines are given by

𝑑𝑢1
𝑑𝑡

= 0 ⟶ 𝑢2(𝑢1) = 𝑢1 −
𝑘𝑢21(1 − 𝜃 − 𝑢1) − 𝜖𝑢1

𝐷
, (12)

𝑑𝑢2
𝑑𝑡

= 0 ⟶ 𝑢1(𝑢2) = 𝑢2 −
𝑘𝑢22(1 − 𝜃 − 𝑢2) − 𝜖𝑢2

𝐷
. (13)

The crossings between these nullclines determine the equilibrium
oints, which are found at the origin (where both species become
xtinct i.e., 𝑢1 = 𝑢2 = 0) and the other appear in pairs at the phase

plane [20], including those in the diagonal. This means that, depending
on the initial conditions, the orbits will be attracted towards the ghost
in the diagonal having homogeneous extinction (𝑢1 = 𝑢2) or will pass
very close to the axes, involving a delay and a heterogeneous extinc-
tion. Given that this system is symmetric, combining both nullclines
enables intersections near to the axes (the heterogeneous conditions)
provided 𝐷 is small. The points where the nullclines cross the axes are
= 0 and

= 𝑢± = 1 − 𝜃 ±

√

(1 − 𝜃)2
− 𝐷 + 𝜖 .
2 4 𝑘



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 166 (2023) 112915À. Calsina et al.
Fig. 3. Ghost delays in continuous space not only depend on the parametric distance to the bifurcation but also on the diffusion rate 𝐷. (a) Times to extinction computed in the
space (𝐷, 𝜃 − 𝜃𝑐 ) in logarithmic scales. The scaling relations of the extinction time with bifurcation distance are shown in (b) using the values highlighted with the color lines in
(a). (c) Extinction time series setting 𝜃 = 𝜃𝑐 + 10−7 for diffusion rates 𝐷 = 10−2 (left); 𝐷 = 10−4 (middle); 𝐷 = 10−7 (right). The blue rectangle in panels (c) indicate the value of 𝑢
at which the saddle and the node collide in the s–n bifurcation i.e., bottleneck. The red arrow points to a spatial region where the population is below the bottleneck. In all plots
we have used 𝜖 = 0.1 and 𝑢(𝑥, 0) = 0.35 + 0.15 sin(4𝜋𝑥) as initial spatial distribution of cooperators. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
For this model, there will be a s–n bifurcation occurring when the
equilibria at the diagonal (homogeneous case) collide, at

𝜃𝑐 = 1 − 2
√

𝜖
𝑘
,

which coincides with the bifurcation value of the mean field model.
On the other hand, depending on the diffusion parameter (large 𝐷), the
nullclines will never be close to the axis, making completely impossible
the heterogeneous behavior. This phase plane structure makes it pos-
sible to find two bottleneck regions causing extremely long transients:
the ghosts from the homogeneous and the heterogeneous case.

Following this simple model, two possible ways of going to ex-
tinction can be found: via homogenization of the system and through
heterogeneous extinction dynamics (results that remind us of the ones
observed for the PDE system, see Fig. 3). As it can be seen in Fig. 6d,
diffusion only affects the heterogenizing phenomena by increasing
the speed towards global extinction. In this case, increasing diffusion
makes the bottleneck that produces the heterogeneous ghost disappear
(see Fig. S10). Moreover, for extremely high values of diffusion, the
homogenization is rapid enough to capture all the possible initial
conditions. This explains why for extreme values of diffusion the system
recovers the −1∕2 scaling law, but, in between there are faster ways to
go to extinction depending on the initial conditions (see Fig. S9 and
S10). In summary, depending on the initial populations there are three
possible extinction scenarios: getting trapped by the homogenizing
ghost, getting trapped by the heterogeneous one, or being attracted
by both delaying states. This latter condition may produce that some
trajectories avoid getting stacked at the ghost making thus trajectories
become extinct faster than expected by the −1∕2 scaling law. However,
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for particular initial populations where one of the species is just below
the bottleneck region and the other one is at larger population values,
the orbits could visit two ghosts experiencing longer delays than the
one caused by a single bottleneck.

Extrapolating the same results to the continuum model, the same
rationale could be behind the phenomena observed during the whole
article, for extreme diffusion values all the trajectories get trapped by
the homogeneous or heterogeneous ghosts while intermediate diffusion
values allow some initial conditions to avoid both ghosts conditions.

4. Conclusions

Since the seminal work by Alan M. Turing on morphogenesis [72],
the impact of spatial diffusion in the dynamics of complex biological
systems has been an important matter of debate in different fields such
as ecology [70,71,73–75], epidemiology [76,77], and origin of life [58,
78–81], among others. It is known that spatial correlations can involve
the emergence of novel phenomena in nonlinear systems including
spatial self-structuring [78,80,82], diffusion-induced chaos [83,84], or
resistance of hypercycles to parasites [78,80,85,86]. Mathematical and
computational models have also revealed that space typically enlarges
transients towards equilibria [5,21–23]. Here, we have addressed a
poorly investigated phenomenon. That is, what is the impact of local,
spatial correlations in the transients found right after a bifurcation,
focusing on the saddle–node (s–n) bifurcation (or, equivalently, close
to a first-order phase transition [58]). We have addressed this question
by using a one-variable model describing the population dynamics of
a self-cooperative (i.e., intra-specifically cooperative or autocatalytic)
species. Examples of positive feedback are found in a multitude of
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Fig. 4. (a) Time to extinction (in logarithmic scale) for different values of diffusion and initial conditions of the form 𝑈 (𝑥, 0) = 0.35+0.15 sin(2𝜋𝜔𝑥), 𝜔 being the ordinary frequency
(some examples of these initial conditions are shown in (b) with different colors). The plot below displays how ghost extinction transients change at increasing diffusion (each
color corresponds to the values of 𝜔 represented with the color lines at the bottom of the 3D plot above and in panel (b)). Here, we use 𝜃 = 𝜃𝑐 + 10−3. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
biological systems, including i.a., mechanisms of cancer cells’ prolifera-
tion [53], reproduction of marine species [52], plants facilitation [43–
46], or cooperative dynamics between animals [49–51]. Together with
intra-specific cooperation, we have considered intra-specific competi-
tion and two processes related to species’ survival: habitat loss and
decay (see Refs. [38,59] for details on the mean-field dynamics for this
system).

The results presented in this article correspond to a species extended
and cooperating in a one-dimensional, continuous spatial domain as-
suming determinism. Mean-field models have revealed that the inverse
square-root scaling law is locally found close to a s–n bifurcation,
independently of its dimension [25,38,59]. By local, we mean that
this scaling law appears tied to the flows starting close to the re-
gion of the phase space where the saddle and the node collided: the
bottleneck region. Initial conditions far away from this bottleneck
in high-dimensional systems give place to anomalies in the scaling
law [39,87]. The model studied here presents a s–n bifurcation, and
we have focused on transients arising right after the critical fraction of
habitat loss is surpassed. The same results may be found using other
model parameters as bifurcation parameters. We have focused on a
case where the initial amount of population is spatially-heterogeneous
and jeopardized in some places, mimicking an endangered ecosystem in
which the density of the species is below the bottleneck in some spatial
regions.

We have found that for extreme values of diffusion, both large and
small, the system as a whole is able to get trapped into the bottleneck of
the ghost, and the inverse square-root scaling law is found. However,
7

for intermediate values of diffusion, transients become faster and the
species rapidly extinct. That is, despite some of the spatial regions
having population values that may be locally captured by the ghost bot-
tleneck, the whole population do not experience the delayed transition.
These results have been found robust for a multitude of different initial
spatial distributions of cooperators, and we have introduced a simple
two-patch metapopulation model also capturing these dynamics found
at intermediate diffusion values. Together with the reaction–diffusion
model, we have provided multitude of numerical evidence for this
phenomenon making transients faster and thus accelerating extinctions
at intermediate diffusion values. The theoretical basis explaining this
effect remains an open question that should be addressed in the future.

We have identified different mechanisms behind extinction tran-
sients in the metapopulation model, one of them involving passing close
to two bottleneck regions. The idea of the concatenation of ghosts was
recently proposed in Ref. [8]. We emphasize that these concatenations
could be a new mechanism behind supertransients [57], beyond the
other mechanisms discussed in the introduction e.g., varying time
scales, stochasticity, etc. This topic should be investigated in future
research using simple models (or normal forms) having two or more
ghost bottlenecks influencing the orbits. Finally, we have provided
estimates of the extinction times for the studied model transformed into
a spatially-explicit, normal form for the s–n bifurcation.

Finally, we want to emphasize that the spatial bifurcation value
does not depend on diffusion and that the results obtained for the
non-spatial model (see e.g., the dashed line in Fig. 3b) seem to be
the upper limit for these transient times, contrarily to some results
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Fig. 5. (a) Mean extinction times of the whole population depending on the distance to the bifurcation and the diffusion constant (in triple logarithmic scale). The results are
obtained from an ensemble of 102 random initial conditions (gray lines), with population densities 𝑈 (𝑥, 0) distributed uniformly around the bottleneck (blue line) (b). (c) Box plots
showing how all of the realizations are distributed depending on their distance to the bifurcation. Even with this ensemble of random initial conditions, the scaling law is recovered
in the diffusion extremes (either large 𝐷 > 10−3 or small 𝐷 < 10−9). In the other cases, saturation or even a complete insensitivity to the parameter value can be observed. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
on spatial ecology showing that space makes transients longer [5,21–
23]. It would be interesting to see if this is a universal property for
other bifurcations, both local and global. Moreover, recent research
has focused on the impact of intrinsic noise in the statistics of ghost
transients and the associated scaling laws for the mean extinction times,
�̄� right after the stochastic s–n bifurcations. Such investigations have
revealed that (i) ghosts remain robust to demographic fluctuations,
(ii) the length of the transients increases at increasing noise levels
(decreasing the system’s size), (iii) the scaling law for �̄� follows more
complex functions than simple power laws [42]. As mentioned, we here
have restricted to a spatial, deterministic approach. Future research
should also investigate the interplay between space and demographic
fluctuations in the properties of ghost transients and scaling.
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Fig. 6. (a) Schematic representation of the two compartments model studied in Section 3.3. (b) Dependence of times to extinction on diffusion rate and the distance to the
bifurcation. (c) Changes in the scaling law for the diffusion values shown in panel (b) using the same line colours. For intermediate diffusion rates, the extinction becomes much
faster than in both extremes. (d) Phase portraits for different diffusion rates close to bifurcation with 𝜃 = 𝜃𝑐 +10−8. Here, the flow is displayed with white arrows, and the nullclines
with green [Eq. (12)] and blue [Eq. (13)] lines. The black marble denotes the only stable fixed point. For panels (b) and (c) the initial condition chosen is 𝑢1 = 0.1 and 𝑢2 = 0.65.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
𝑢

A.1. Spatial normal form: transients’ scaling

We start by reducing Eq. (2) to its normal form. Let us remind that
𝜃𝑐 = 1−2(𝜖∕𝑘)1∕2. This gives 𝑢𝑐 = (1−𝜃𝑐 )∕2 = (𝜖∕𝑘)1∕2. Now we introduce
the rescaling 𝑡 = (𝜖𝑘)1∕4𝑡, �̂� = (𝜖𝑘)1∕4(𝑢 − 𝑢𝑐 ) and rename 𝜇 = 𝜖(𝜃 − 𝜃𝑐 )
and �̂� = (𝜖𝑘)−1∕4𝐷. We have

𝑢 = 𝑢𝑐 + (𝜖𝑘)−1∕4�̂� = ( 𝜖
𝑘
)1∕2 + (𝜖𝑘)−1∕4�̂� (14)

and

𝜃 = 𝜃𝑐 + 𝜇∕𝜖 = 1 − 2( 𝜖
𝑘
)1∕2 + 𝜇∕𝜖.

Then, we can write

1 − 𝜃 − 𝑢 =
( 𝜖
𝑘

)1∕2
−

𝜇
𝜖
− (𝜖𝑘)−1∕4�̂�

and

𝑢2 = 𝜖
𝑘
+ 2𝜖1∕4𝑘−3∕4�̂� + (𝜖𝑘)−1∕2�̂�2.

Hence,

𝑘(1 − 𝜃 − 𝑢)𝑢2 = 𝑘
(

( 𝜖
𝑘

)3∕2
+ 2𝜖3∕4𝑘−5∕4�̂� + 𝑘−1�̂�2 −

𝜇
𝑘

−𝜖3∕4𝑘−5∕4�̂� − 2𝑘−1�̂�2 + 𝑂(𝜇�̂�, �̂�3)
)

,

and

𝑘(1 − 𝜃 − 𝑢)𝑢2 − 𝜖𝑢 = 𝜖3∕2𝑘−1∕2 + 𝜖3∕4𝑘−1∕4�̂� − 𝜇 − �̂�2 + 𝑂(𝜇�̂�, �̂�3)

− 𝜖
(

( 𝜖
𝑘
)1∕2 + (𝜖𝑘)−1∕4�̂�

)

= −𝜇 − �̂�2 + 𝑂(𝜇�̂�, �̂�3).

On the other hand,

𝑑𝑢 = 𝑑 (𝑢 + (𝜖𝑘)−1∕4�̂�)𝑑𝑡 = (𝜖𝑘)−1∕4 𝑑�̂� (𝜖𝑘)1∕4 = 𝑑�̂� ,
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𝑑𝑡 𝑑𝑡 𝑐 𝑑𝑡 𝑑𝑡 𝑑𝑡
and, for the diffusion operator,

𝐷 𝜕2𝑢
𝜕𝑥2

= (𝜖𝑘)−1∕4𝐷 𝜕2�̂�
𝜕𝑥2

= �̂� 𝜕2�̂�
𝜕𝑥2

.

Therefore Eq. (2) transforms in

̂𝑡 = −𝜇 − �̂�2 + �̂��̂�𝑥𝑥 + 𝑂(𝜇�̂�, �̂�3).

Next, we study the normal form of the equation to exemplify the
behavior of the solutions close and above to the bifurcation value
of the parameter i.e., when the model equation has no coexistence
equilibrium. Notice that we suppress the hats in the following to
simplify notation.

To begin with, and before adding the diffusion operator, we have
the following ODE which is the normal form of the saddle–node (s–n)
bifurcation,

𝑢′(𝑡) = −𝜇 − 𝑢(𝑡)2

for small 𝜇 > 0, implying that 𝑢 = 0 is near to an equilibrium point (a
‘‘ghost" equilibrium). In the following, we will consider 𝑢0 > 0 as fixed
and obtain estimates which depend on 𝜇. The equation above can be
explicitly solved for an initial condition 𝑢(0) = 𝑢0, giving

�̃�(𝑡) =
√

𝜇 tan

(

arctan

(

𝑢0
√

𝜇

)

−
√

𝜇 𝑡

)

, 𝑡 ∈ (𝑡1, 𝑡2),

where

𝑡1 ∶=
1

√

𝜇

(

arctan

(

𝑢0
√

𝜇

)

− 𝜋
2

)

< 0

< 𝑡2 ∶=
1

√

𝜇

(

arctan

(

𝑢0
√

𝜇

)

+ 𝜋
2

)

.
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Alternatively one can isolate 𝑡 as a function of 𝑢 and 𝑢0 as

(𝑢, 𝑢0, 𝜇) ∶=
arctan

(

𝑢0
√

𝜇

)

− arctan
(

𝑢
√

𝜇

)

√

𝜇

which gives the time needed to travel from 𝑢0 to −𝑢0

𝜏(−𝑢0, 𝑢0, 𝜇) = 2
arctan

(

𝑢0
√

𝜇

)

√

𝜇
,

hich is twice the time needed to go from 𝑢0 to the origin. Moreover,
�̃� vanishes at

̄ =
arctan

(

𝑢0
√

𝜇

)

√

𝜇

nd �̃�(𝑡 + 𝑠) = −�̃�(𝑡 − 𝑠), as can be seen by direct substitution.
We define the delay time as the leading term in the expansion of

he function 𝜏(−𝑢0, 𝑢0, 𝜇) around 𝜇 = 0 which is 𝜋
√

𝜇
(see [36]). More

recisely, 𝜏(−𝑢0, 𝑢0, 𝜇) = 𝜋
√

𝜇
− 2

𝑢0
+ 2𝜇

3(𝑢0)3 + 𝑂(𝜇2). On the other hand,
since �̃� is decreasing and an odd function with respect to 𝑡 we have,

|�̃�(𝑡)| ≤ �̃�
(

𝑡
2

)

=
√

𝜇 tan

(

1
2
arctan

(

𝑢0
√

𝜇

))

= 𝑢0
√

(𝑢0)2
𝜇 + 1 + 1

=

√

𝜇
√

1 + 𝜇
(𝑢0)2 +

√

𝜇
(𝑢0)2

≤
√

𝜇̇min

(

1, 𝑢0

2
√

𝜇

)

(15)

on the (restricted) interval
(

𝑡
2 ,

3
2 𝑡

)

, where we have used tan( 𝛼2 ) =
tan 𝛼

1+
√

1+tan2 𝛼
.

We now consider the initial value problem for the reaction–diffusion
version of the above ODE with Neumann boundary conditions on the
interval (0, 1) and an initial condition 𝑢(𝑥, 0) that we write 𝑢(𝑥, 0) =
𝑢0 + 𝑣(𝑥).

𝑢𝑡(𝑥, 𝑡) = −𝜇 − 𝑢(𝑥, 𝑡)2 +𝐷𝑢𝑥𝑥(𝑥, 𝑡),
𝑢𝑥(0, 𝑡) = 𝑢𝑥(1, 𝑡) = 0,
𝑢(𝑥, 0) = 𝑢0 + 𝑣0(𝑥).

(16)

We will obtain estimates on the solution of (16) of the form
√

𝜇+𝐶𝜇
valid for a time interval of length 𝑡, of the order 1∕

√

𝜇 as we already
know. In the first one, (24), 𝐶 depends on 𝑢0 and the sup norm of 𝑣0.

he second one, (27), is finer because it exploits the fact that, given
(𝑥, 0), 𝑢0 can be taken as the integral of 𝑢(𝑥, 0) in such a way that the
ntegral of 𝑣0(𝑥) vanishes, 𝐶 depends on the 𝐿2 norm of the derivative
f 𝑣0(𝑥) and it is of the order of 1 over the diffusion coefficient 𝐷.
or example, Fig. 3 and Fig. S2 show that only diffusion coefficients
elatively large (𝐷 ∼ 10−2, 10−3) allow to ‘‘see’’ the ghost equilibrium
s predicted by (27).

Let �̃� still denote the solution of the ODE with initial condition 𝑢0.
otice that then 𝑣(𝑥, 𝑡) ∶= 𝑢(𝑥, 𝑡) − �̃�(𝑡) solves the problem

𝑣𝑡(𝑥, 𝑡) = −2�̃�(𝑡)𝑣(𝑥, 𝑡) − 𝑣(𝑥, 𝑡)2 +𝐷𝑣𝑥𝑥(𝑥, 𝑡),
𝑣𝑥(0, 𝑡) = 𝑣𝑥(1, 𝑡) = 0,
𝑣(𝑥, 0) = 𝑣0(𝑥).

(17)

Let us denote 𝑔(𝑡) ∶= 𝑒−2 ∫
𝑡
0 �̃�(𝑠)𝑑𝑠. Notice that 𝑔(𝑡) has a unique minimum

at 𝑡 = 𝑡 and that 𝑔(𝑡 + 𝑠) = 𝑔(𝑡 − 𝑠). Moreover, a straightforward
computation gives an explicit form for 𝑔(𝑡), namely,

𝑔(𝑡) =
𝜇

0 2

(

1 +

(

tan

(

arctan

(

𝑢0
√

)

−
√

𝜇 𝑡

))2)

.

10

𝜇 + (𝑢 ) 𝜇
Hence, the following bound holds on the interval
(

𝑡
2 ,

3
2 𝑡

)

0 < 𝑔(𝑡) < 𝑔( 𝑡2 ) = 𝜇
𝜇+(𝑢0)2

(

1 +
(

tan
(

1
2 arctan

(

𝑢0
√

𝜇

)))2
)

= 2𝜇
(𝑢0)2+𝜇+

√

𝜇
√

(𝑢0)2+𝜇
< min

(

2𝜇
(𝑢0)2 , 1

)

,
(18)

where we used the trigonometric identity

tan2
(𝛼
2

)

=

√

tan2 𝛼 + 1 − 1
√

tan2 𝛼 + 1 + 1
.

Moreover, it is also possible to write explicitly ∫ 𝑡
0 𝑔(𝑠)𝑑𝑠, which will be

useful later

∫

𝑡

0
𝑔(𝑠)𝑑𝑠 =

𝑢0 −
√

𝜇 tan
(

arctan
(

𝑢0
√

𝜇

)

−
√

𝜇 𝑡
)

(𝑢0)2 + 𝜇

roviding the bound

∫ 𝑡
0 𝑔(𝑠)𝑑𝑠 ≤ ∫

3
2 𝑡

0 𝑔(𝑠)𝑑𝑠 =
𝑢0+

√

𝜇 tan
(

1
2 arctan( 𝑢0

√

𝜇
)
)

(𝑢0)2+𝜇

= 1
𝑢0

⎛

⎜

⎜

⎝

1 − 1
√

(𝑢0)2
𝜇 +1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1 + 2
√

(𝑢0)2
𝜇 +1

⎞

⎟

⎟

⎠

≤ 9
8𝑢0

(19)

for 𝑡 ∈ [0, 32 𝑡), which follows from an application of the formula
or tan( 𝛼2 ) and a direct computation of the maximum value of the

expression before the last inequality as a function of 𝜇.
On the other hand, 𝑤(𝑥, 𝑡) ∶= 𝑒2 ∫

𝑡
0 �̃�(𝑠)𝑑𝑠𝑣(𝑥, 𝑡) = 𝑣(𝑥,𝑡)

𝑔(𝑡) fulfills

𝑤𝑡(𝑥, 𝑡) = 𝐷𝑤𝑥𝑥(𝑥, 𝑡) − 𝑔(𝑡)𝑤(𝑥, 𝑡)2,
𝑤𝑥(0, 𝑡) = 𝑤𝑥(1, 𝑡) = 0,
𝑤(𝑥, 0) = 𝑣0(𝑥)

(20)

nd so it is the solution of the integral equation (the variation of
onstants equation)

(𝑥, 𝑡) =
(

𝑇 (𝑡)𝑣0
)

(𝑥) − ∫

𝑡

0

(

𝑇 (𝑡 − 𝑠)𝑔(𝑠)𝑤(⋅, 𝑠)2
)

(𝑥)𝑑𝑠, (21)

here 𝑇 (𝑡) stands for the solution semigroup of the (linear) diffusion
quation with diffusion coefficient 𝐷 and with homogeneous Neumann
oundary conditions on the interval (0, 1).

Let ‖⋅‖∞ denote the sup norm in the Banach space of the continuous
unctions on [0, 1]. 𝑇 (𝑡) is given in terms of the Fourier series as

𝑇 (𝑡)𝑧
)

(𝑥) =
∞
∑

𝑘=0
𝑒−𝐷𝑘2𝜋2𝑡𝑧𝑘 cos(𝑘𝜋𝑥), (22)

here 𝑧0 = ∫ 1
0 𝑧(𝑥)𝑑𝑥 and 𝑧𝑘 = 2 ∫ 1

0 𝑧(𝑥) cos(𝑘𝜋𝑥)𝑑𝑥 for 𝑘 = 1, 2,… 𝑇 (𝑡)
s contractive in the space of continuous functions by the maximum
rinciple, in fact, ‖𝑇 (𝑡)‖ = 1 (see [88]).

Let us assume ‖𝑣0‖∞ < 𝛼 exp
(

− 9𝛼
8𝑢0

)

for some 𝛼 > 0 to be chosen
later. Going back to (21), we have, as long as ‖𝑤(⋅, 𝑠)‖∞ ≤ 𝛼 for any
𝑠 ∈ [0, 𝑡),

‖𝑤(⋅, 𝑡)‖∞ ≤ ‖𝑣0‖∞ + ∫

𝑡

0
𝑔(𝑠)‖𝑤(⋅, 𝑠)2‖∞𝑑𝑠 ≤ ‖𝑣0‖∞

+ ∫

𝑡

0
𝛼𝑔(𝑠)‖𝑤(⋅, 𝑠)‖∞𝑑𝑠

hich, using Gronwall’s inequality and (19) yields

𝑤(⋅, 𝑡)‖∞ ≤ ‖𝑣0‖∞𝑒𝛼 ∫
𝑡
0 𝑔(𝑠)𝑑𝑠 ≤ ‖𝑣0‖∞ exp

(

9𝛼
8𝑢0

)

< 𝛼 (23)

for 𝑡 ∈ [0, 32 𝑡 ) as long as ‖𝑤(⋅, 𝑠)‖∞ ≤ 𝛼 for any 𝑠 ∈ [0, 𝑡). In fact, the
inequality ‖𝑤(⋅, 𝑠)‖∞ ≤ 𝛼 turns out to hold on the whole time interval
0, 32 𝑡) and so (23) holds on [0, 32 𝑡). Indeed, notice that ‖𝑤(⋅, 0)‖∞ =
‖𝑣0‖∞ < 𝛼 which implies the existence of a maximal positive 𝑡 ≤ 3

2 𝑡
uch that ‖𝑤(⋅, 𝑡)‖∞ < 𝛼 for 𝑡 ∈ [0, 𝑡). If 𝑡 were strictly less than 3

2 𝑡, then
‖𝑤(⋅, 𝑡 )‖ would be equal to 𝛼 contradicting (23).
∞
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‖

F

‖

f

p

(

a

‖

Note that the best choice of 𝛼 is 8
9 𝑢

0 for which, 𝛼 exp
(

− 9𝛼
8𝑢0

)

= 8
9𝑒 𝑢

0.
Thus, assuming ‖𝑣0‖∞ < 8

9𝑒 𝑢
0, and using (18) and (23) (with 𝛼 = 8

9 𝑢
0),

we get the following inequality for the solution of (16) on the interval
( 𝑡2 ,

3
2 𝑡 ):

‖𝑢(⋅, 𝑡) − �̃�(𝑡)‖∞ = ‖𝑣(⋅, 𝑡)‖∞ = 𝑔(𝑡)‖𝑤(⋅, 𝑡)‖∞ ≤ 2𝜇 𝑒
(𝑢0)2

‖𝑣0‖∞,

and, also, using ‖𝑣0‖∞ < 8
9𝑒 𝑢

0,

𝑢(⋅, 𝑡) − �̃�(𝑡)‖∞ ≤ 16𝜇
9𝑢0

.

Finally, using (15) we obtain for the solution of the reaction–diffusion
problem (16) where we assume ‖𝑣0‖∞ < 8

9𝑒 𝑢
0, the following bound

‖𝑢(⋅, 𝑡)‖∞ ≤ |�̃�(𝑡)| + ‖𝑢(⋅, 𝑡) − �̃�(𝑡)‖∞ ≤
√

𝜇 +
2 𝑒 ‖𝑣0‖∞

(𝑢0)2
𝜇 (24)

on the time interval ( 𝑡2 ,
3
2 𝑡 ) which is of length 𝑡 ≈ 𝜋

2
√

𝜇
.

The above estimates do not make use of the fact that, given an
initial condition 𝑢(𝑥, 0) we can always take 𝑢0 = ∫ 1

0 𝑢(𝑥, 0)𝑑𝑥 and thus
∫ 1
0 𝑣0(𝑥)𝑑𝑥 = 0. Taking advantage of this, which implies that the first

Fourier coefficient of 𝑣0 vanishes, alternatively we would have, from
(22),

(

𝑇 (𝑡)𝑣0
)

(𝑥) =
∞
∑

𝑘=1
𝑒−𝐷𝑘2𝜋2𝑡𝑣𝑘 cos(𝑘𝜋𝑥)

= 𝑒−𝜋
2 𝐷 𝑡

∞
∑

𝑘=1
𝑒−𝐷(𝑘2−1)𝜋2𝑡𝑣𝑘 cos(𝑘𝜋𝑥),

which allows to bound, using Schwartz inequality and Parseval iden-
tity,

|

(

𝑇 (𝑡)𝑣0
)

(𝑥)| ≤ 𝑒−𝜋2 𝐷 𝑡 ∑∞
𝑘=1 |𝑣𝑘|

= 𝑒−𝜋2 𝐷 𝑡 ∑∞
𝑘=1 𝑘|𝑣𝑘|

1
𝑘 ≤ 𝑒−𝜋2 𝐷 𝑡

(

∑∞
𝑘=1 𝑘

2
|𝑣𝑘|2

∑∞
𝑘=1

1
𝑘2

)
1
2

= 𝑒−𝜋2 𝐷 𝑡 𝜋
√

6
‖(𝑣0)′‖𝐿2 .

(25)

or any 𝛼 > 0, as long as ‖𝑤(⋅, 𝑠)‖∞ ≤ 𝛼 for any 𝑠 ∈ [0, 𝑡), we will have,
using (21),

‖𝑤(⋅, 𝑡)‖∞ ≤ 𝜋
√

6
‖(𝑣0)′‖𝐿2𝑒−𝜋

2 𝐷 𝑡 + ∫

𝑡

0
𝛼𝑔(𝑠)‖𝑤(⋅, 𝑠)‖∞𝑑𝑠,

and, by Gronwall’s inequality,

‖𝑤(⋅, 𝑡)‖∞ ≤ 𝜋
√

6
‖(𝑣0)′‖𝐿2

(

𝑒−𝜋
2 𝐷 𝑡 + ∫

𝑡

0
𝑒−𝜋

2 𝐷𝑠𝛼𝑔(𝑠)𝑒𝛼 ∫
𝑡
𝑠 𝑔(𝜎)𝑑𝜎𝑑𝑠

)

.

Using 𝑔(𝑠) ≤ 1 and (19), this implies

𝑤(⋅, 𝑡)‖∞ ≤ 𝜋
√

6
‖(𝑣0)′‖𝐿2

(

𝑒−𝜋
2 𝐷 𝑡 + 𝛼𝑒

9𝛼
8𝑢0

𝜋2𝐷

(

1 − 𝑒−𝜋
2 𝐷 𝑡

))

(26)

or 𝑡 ∈ [0, 32 𝑡) provided that ‖𝑤(⋅, 𝑡)‖∞ ≤ 𝛼 for any 𝑠 ∈ [0, 𝑡). We fix

𝐷0 and choose 𝛼 such that 𝛼𝑒
9𝛼
8𝑢0

𝜋2𝐷0
= 1. Then the right hand side of the

revious inequality is a decreasing function of 𝑡 whenever 𝐷 ≥ 𝐷0.
Further assume 𝜋

√

6
‖(𝑣0)′‖𝐿2 < 𝛼 which implies, by the Poincaré–

Wirtinger inequality (or by applying (25) with 𝑡 = 0), ‖𝑣0‖∞ < 𝛼. Then,
an analogous argument to the one above gives that ‖𝑤(⋅, 𝑡)‖∞ ≤ 𝛼 holds
on the whole interval [0, 32 𝑡) and therefore (26) too.

Finally, we can state: let 𝐷0 > 0 be fixed and 𝛼 > 0 be such that

𝛼𝑒
9𝛼
8𝑢0

𝜋2𝐷0
= 1

𝛼 can be given explicitly in terms of the Lambert function 𝑊 as
𝛼 = 8

9 𝑢
0 𝑊 ( 98

𝜋2𝐷
𝑢0

)). Let us assume 𝜋
√

6
‖(𝑣0)′‖𝐿2 ≤ 𝛼 and 𝐷 ≥ 𝐷0.

Then on the interval ( 12 𝑡,
3
2 𝑡) we have, from (26),

‖𝑤(⋅, 𝑡)‖∞ ≤ 𝜋
√

‖(𝑣0)′‖𝐿2

(

𝐷0 +
(

1 −
𝐷0

)

𝑒−𝜋
2 𝐷 𝑡

)

,

11

6 𝐷 𝐷
and, using (18),

‖𝑢(⋅, 𝑡) − �̃�(𝑡)‖∞ = ‖𝑣(⋅, 𝑡)‖∞ = 𝑔(𝑡)‖𝑤(⋅, 𝑡)‖∞

≤ 𝜋
√

6

2𝜇
(𝑢0)2

(

𝐷0
𝐷

+
(

1 −
𝐷0
𝐷

)

𝑒−𝜋
2 𝐷 𝑡

)

‖(𝑣0)′‖𝐿2 ,

nd, as above,

𝑢(⋅, 𝑡)‖∞ ≤ |�̃�(𝑡)| + ‖𝑢(⋅, 𝑡) − �̃�(𝑡)‖∞

≤
√

𝜇 + 2𝜋
√

6 (𝑢0)2

(

𝐷0
𝐷

+
(

1 −
𝐷0
𝐷

)

𝑒−𝜋
2 𝐷 𝑡

)

‖(𝑣0)′‖𝐿2 𝜇.

‖𝑢(⋅, 𝑡)‖∞ ≤ |�̃�(𝑡)| + ‖𝑢(⋅, 𝑡) − �̃�(𝑡)‖∞
≤
√

𝜇 + 2𝜋
√

6 (𝑢0)2

(

𝐷0
𝐷 +

(

1 − 𝐷0
𝐷

)

𝑒−𝜋2 𝐷 𝑡
)

‖(𝑣0)′‖𝐿2 𝜇

≤
√

𝜇 + 2𝜋
√

6 (𝑢0)2

(

𝐷0
𝐷 +

(

1 − 𝐷0
𝐷

)

𝑒−𝜋
2 𝐷 𝑡

2

)

‖(𝑣0)′‖𝐿2 𝜇,

(27)

where

𝑡 =
arctan 𝑢0

√

𝜇
√

𝜇
≈ 𝜋

2
√

𝜇
.

A.2. Numerical methods

The computation of the time solutions of the reaction–diffusion sys-
tem has been performed by means of a semi-implicit, finite differences
scheme based on the Crank–Nicolson method for the linear term and
an explicit choice for the nonlinear one, given by

−𝛼
2
𝑢𝑚+1𝑛−1 + (1 + 𝛼)𝑢𝑚+1𝑛 − 𝛼

2
𝑢𝑚+1𝑛+1 = 𝛼

2
𝑢𝑚𝑛−1 + (1 − 𝛼)𝑢𝑚𝑛 + 𝛼

2
𝑢𝑚𝑛+1 + 𝑓 (𝑢𝑚𝑛 ),

where 𝛼 = 𝐷𝑑𝑡∕𝑑𝑥2 (here 𝑑𝑡 and 𝑑𝑥 stand for time and space step sizes,
respectively). This has the advantage that avoids the repeated use of
Newton (or another) method to solve nonlinear systems of equations
while keeping stability even with large time steps. The need to use
a (relatively) inexpensive method in computer time and of large time
steps comes from the fact that we are interested in very large times,
especially when the ghost equilibrium is noticed by the solution of the
partial differential equation.

Moreover, the algorithm uses an adaptive time step method which
enlarges its length when the change of the solution (in the 𝐿1 norm in
a time step) is small while reduces its length when the change of the
solution in a time step is too large. This adaptive time stepping plays
an important role in reducing the computer time since the solution
typically behaves rapidly at the beginning of the computation (when
the diffusion operator acts on a nonhomogeneous density), slowly when
an already more or less homogeneous density passes in the vicinity of
a ghost, and again very rapidly when it is far from it.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.chaos.2022.112915.
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