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Abstract An important step to incorporate information in the second law of thermodynamics was done by Landauer, showing
that the erasure of information implies an increase in heat. Most attempts to justify Landauer’s erasure principle are based on
thermodynamic argumentations. Here, using just the time-reversibility of classical microscopic laws, we identify three types of the
Landauer’s erasure principle depending on the relation between the two final environments: the one linked to a logical input 1 and
the other to logical input 0. The strong type (which is the original Landauer’s formulation) requires the final environments to be in
thermal equilibrium. The intermediate type giving the entropy change of kB ln 2 occurs when the two final environments are identical
macroscopic states. Finally, the weak Landauer’s principle, providing information erasure with no entropy change, when the two final
environments are macroscopically different. Even though the above results are formally valid for classical erasure gates, a discussion
on their natural extension to quantum scenarios is presented. This paper strongly suggests that the original Landauer’s principle
(based on the assumption of thermalized environments) is fully reasonable for microelectronics, but it becomes less reasonable for
future few-atoms devices working at THz frequencies. Thus, the weak and intermediate Landauer’s principles, where the erasure of
information is not necessarily linked to heat dissipation, are worth investigating.

1 Introduction

For more than a century, important efforts have been devoted to understand the entropic and energetic costs of manipulating
information. The first attempt for incorporating information into thermodynamics was as early as 1871 when James Clerk Maxwell
presented the gedanken experiment, now known as Maxwell’s demon [1] (a demon in the middle of a container with a trapdoor
could transfer the fast and hot particles from a cold side to a hot one, in apparent violation of the second law of thermodynamics,
if he had enough information about the particle velocities and positions). An analysis of Maxwell’s demon was conducted by
Szilard [2] as early as 1929 when he studied an idealized heat engine with one particle gas and directly associated the information
acquired by measurement with the physical entropy. Any practical implementation of the Maxwell’s demon requires a finite memory
to store information about decisions whether, for each particle, the trapdoor will be open or closed. Charles Bennett [3], and
independently Oliver Penrose [4], clarified that the erasure of each bit of information in the memory requires a dissipation of heat in
the environment, thus recovering the validity of the second law when the memory (demon) and its environment are properly included
into the thermodynamic discussion. Bennett’s and Penrose’s conclusions were based on the previous work of Rolf Landauer [5]
in 1961, showing that the erasure of information requires dissipation of a (minimum) amount of heat equal to kBT ln 2, where kB

is the Boltzmann’s constant and T is the temperature. The work of Landauer is considered a key element on what Bennett named
thermodynamics of computation [3, 6–8] or what nowadays is known by the more general term of information thermodynamics
[9–12] as seen in Fig. 1.

For the great majority of scientists, the seminal work of Landauer is a masterpiece of science [3, 13–25] connecting information
and thermodynamics. Nevertheless, after more than 60 years, it is still accompanied by controversies. From a theoretical side, some
scientists have persistently argued that the Landauer’s principle is not a pertinent way of discussing dissipation in computing devices
[26–34]. From the experimental side, apart from recent successful experiments validating of the Landauer’s erasure principle [14,
35–40], there are few works suggesting some type of drawbacks [41, 42].

The original motivation of Landauer’s work as a part of his job as a researcher at the International Business Machines Corporation
(IBM), however, was not devoted to establish a link between information and thermodynamics, but just to find the minimal (if any)
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Fig. 1 Solid symbols denote the number of times cited as a function of year for the keywords Landauer’s erasure principle (red), Information thermodynamics
(green) and Thermodynamics of computation (orange). Open symbols denote the same information for some of the relevant papers mentioned in the references
of this manuscript. The seminal work of Landauer reached a maximum of attention in the literature when its first experimental validation by Berut et al. [14].
The data are extracted from Ref. [43]

amount of heat dissipated by an ideal computer. He brilliantly anticipated the minimum dissipation of kBT ln 2 per bit. The heat
dissipated in computers is nowadays much larger, and it is the real bottleneck that prevents further progress. The power dissipated
in electron devices is directly proportional to the working frequency. Thus, the higher frequency at which we make computations,
the more heat is dissipated. The overall amount of power that can be dissipated from the chip imposes a limit on the operating
frequency around 5 GHz for real computers, as seen in Fig. 2. In other words, the technology to build a single transistor working at
frequencies as high as 1 THz is well developed, but not the technology to extract the amount of heat generated in a chip with 1010

of such transistors [44]. In Fig. 2, we indicate the power dissipation for the first computer built in 1945. It was named Electronic
Numerical Integrator And Computer (ENIAC) [45], and it required 174 kilowatts of power to run 5000 simple addition or 300
multiplications per second, with a clock rate of 100 kHz. The typical measure of computer performance is given in floating point
operations per second (FLOPS). Although the ENIAC did not work with bits, we can estimate its computer performance around
500 Flops with a power efficiency of 3 × 10−12 gigaflops/watt (see lower green dot Fig. 2). We compare ENIAC with nowadays
supercomputers. In the November 2020 ranking of supercomputers in terms of energy efficiency [46], the NVIDIA DGX SuperPOD
was the most energy-efficient supercomputer with 26.2 Gigaflops/watt. This demonstrates an awesome improvement of 12 orders
of magnitude in energy efficiency during last 75 years. We can compare such numbers with Landauer’s prediction by noticing that a
floating-point operation reads in two numbers and returns one. If this is done on a computer with finite memory capacity, eventually
the number which is being returned must erase another number in memory. Thus, according to Landauer’s erasure principle stating
that a dissipation of kBT ln 2 ≈ 2.8 × 10−22 Joules is required by bit erased, one Joule of energy for an ideal Landauer computer
would enable to re-write 3.6 × 1020 bits. Using 64 bits for a floating-point number, one Joule of energy would allow about 6 × 1018

floating point operations, which means 6 × 109 Gigaflops/watt. See the frequency-independent result in the orange line in Fig. 2.
Certainly, the fact that even the most energy-efficient computers today are still 8 orders of magnitude below the Landauer limit
implies that the electronic industry needs to solve many problems before the Landauer’s erasure principle becomes a relevant issue.1

The overall message of the Landauer’s erasure principle is that, even after developing the best technology in the future that will
minimize the problems of heat dissipation in computers by 8 orders of magnitude, we will still be faced with the fact that some heat
dissipated (kBT ln 2 per bit) will not be an unnecessary nuisance, but a fundamental part of data erasure that cannot be avoided in
any way, independently of the details of the computing device.

The central topic of our paper is how fundamental is the Landauer’s erasure principle and if some type of extension (or gener-
alization) is possible. In general, the Landauer’s erasure principle is presented (and understood) in the literature as a fundamental
result that cannot be avoided in any way. But, is it universally true that, independently of the details of the computing device, a
heat dissipation of kBT ln 2 per bit cannot be avoided when data are erased? We anticipate that the fact that the Landauer limit

1 Certainly, nowadays, the logical information in electronic devices is linked to different potential energies (a low voltage is assigned to a logical 0 and a
high voltage to logical 1). Thus, the operation 1 → 0 implies an unavoidable dissipation of energy (to transform a high voltage into a low voltage). In the
Landauer’s erasure protocol, and in our example in “Appendix 2”, however, the logical information is linked to another macroscopic property different from
the energy, so that 0 and 1 can be defined for macroscopic states with the same energy.
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Fig. 2 Solid green symbols denote the power efficiency of different CPU’s as a function of the processor speed. The orange line denotes the power efficiency
limit of the strong (original) Landauer’s erasure principle. The blue shaded region corresponds to processor speeds (operating frequencies) close or above
1 THz where the assumption of thermal environment is less evident. The yellow dashed line shows the tendency in last decades, indicating that computers
will reach the non-thermal equilibrium before reaching the Landauer limit, so that predictions of computing efficiency based on non-thermal reservoirs will
become more relevant than the strong (original) Landauer’s erasure limit

in Fig. 2 is independent of the frequency (processor speed) is suspicious because the process of thermalization (the change from
a non-equilibrium to an equilibrium thermodynamic state) is a dynamical process that requires some time in either classical or
quantum reservoirs.

Since the Landauer’s erasure principle is based on a thermodynamic explanation of computations, at first sight, it seems that the
preliminary question that we have to answer is: how fundamental is thermodynamics? Thermodynamics is a scientific discipline
that explains complex systems through macroscopic properties, avoiding a need to discuss microscopic details. Historically, the
thermodynamic laws were developed only for systems in the so-called thermodynamic equilibrium. In recent years, however,
thermodynamics as a scientific theory has evolved to systems outside of thermodynamic equilibrium [47]. The so-called classical
irreversible thermodynamics, under the hypothesis of local equilibrium, borrows most of the concepts and tools of equilibrium
thermodynamics to non-equilibrium systems. Nowadays, even systems outside of local equilibrium are being studied in different
branches of thermodynamics [47]. Thus, whether a computing device represents a system that can be studied with some branch
of thermodynamic is not a question. By the own flexibility of thermodynamics as a scientific discipline, it is always possible to
construct a branch of thermodynamics with the ability to predict the macroscopic behavior of computing devices, even outside
of thermodynamic equilibrium. Thermodynamics is becoming a science of everything [48], including a science of information
thermodynamics.

The path followed in this paper to understand the universality (or the lack thereof) of the Landauer’s erasure principle is a study
of the erasure of information from a microscopic (mechanical) point of view, just by assuming the time-reversibility of microscopic
laws, and then checking whether our general results (independent of any thermodynamic concepts) coincide or not with the original
Landauer’s erasure principle. We show that depending on the type of final environment involved in the erasure of a logical 1
or a logical 0, three results can be established. The original Landauer’s erasure principle, which we refer to as a strong type of
Landauer’s erasure principle, is recovered when the final state of the environment is in a thermodynamic equilibrium. Alternatively,
an intermediate relation between manipulation of information and entropy change can be deduced when the only (macroscopic)
condition imposed on the final environment is that they look indistinguishable (from a macroscopic point of view) when different
logical inputs are involved. Such an intermediate relation gives the well-known limit kB ln 2 of entropy change when applied to an
erasure gate. Finally, for states of environment that look distinguishable we establish the weak type of Landauer’s erasure principle
which imply no entropy change for erasure computations.

Thus, we conclude that the original (strong) Landauer’s erasure result is not universal because thermal reservoirs are not universal.
As we shall discuss in the last part of this paper, there are modern reservoirs/environments that never thermalize. Moreover, in case
of thermalization, the dynamical transition from non-thermal to thermal reservoirs requires some time. In other words, as depicted
by the shaded region of Fig. 2, the thermal reservoir assumption of the strong Landauer’s erasure principle cannot be accepted
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uncritically for computing devices that switch from one state to the other faster than the time required to thermalize the reservoir. In
the modern language of open systems [49], these fast changing gate involve non-Markovian environments. As previously indicated, it
is important to clarify that the limitations of the Landauer’s erasure principle are not limitations of the information thermodynamics
itself because it is always possible to include some type of macroscopic effects of such non-Markovianity in thermodynamic
formulations of computation, beyond the original Landauer’s erasure principle.

The structure of the rest of the paper is as follows. In Sect. 2, we define microscopic and macroscopic states, the physical
characteristics of a logical gate and the requirements imposed by the time-reversibility of microscopic laws (Liouville theorem).
In Sect. 3, we define three types of the relation between manipulation of information and entropy change: strong, weak and an
intermediate one, corresponding to three different types of final environments. Finally, we provide a discussion on how the above
results can be extended to quantum systems in Sect. 4. We conclude in Sect. 5. We also add two appendixes with technical details.

2 Definitions

In this section, we provide detailed definitions of microscopic and macroscopic states in a general classical erasure gate. The proper
understanding of when a set of microscopic states is (or is not) identical to a macroscopic state will be the key-element in the
developments of Sect. 3.

2.1 Defining microscopic states

We consider a closed (or isolated in the thermodynamic language) system with N degrees of freedom. We distinguish the NS degrees
of freedom of the system (the active region of the computing gate) and the NE � N − NS environment degrees which represent
all the other degrees of freedom. The degrees of freedom of the system are represented by the vector x with 6NS components
corresponding to three position and three momenta of each particle in the physical space. Similarly, the degrees of freedom of the
environment are represented by y as a vector in the 6NE -dimensional phase space of the environment2. The interaction between all
degrees of freedom is determined by the (time-independent) Hamiltonian H(x, y), which fully describes the physical implementation
of the logical gate.

Definition 1 (Microscopic state) We define a microscopic state of the gate and environment at time t by the point x ( j)(t), y( j)(t) in
the 6N-dimensional phase space �, where the superscript j labels different solutions (corresponding to different experiments) from
the same Hamiltonian H(x, y).

In general, we will consider j � 1, . . . , M with M large enough (but not infinite) so that the set of x ( j)(t), y( j)(t) is statistically
meaningful.

2.2 Defining macroscopic properties and macroscopic states

After the definition of microscopic states, we define here macroscopic properties and macroscopic states.

Definition 2 (Macroscopic property) We define a macroscopic property as a function A : � → R that assigns a real value to each
point in the phase space �. Two phase-space points x ( j)(t), y( j)(t) and x (k)(t), y(k)(t) are macroscopically identical (according to
this property A) if and only if A(x ( j)(t), y( j)(t)) � A(x (k)(t), y(k)(t)).

Notice that there are no anthropomorphic implications in the definition of a macroscopic property. No human observation is
needed. In our case, A can be a the logical information of the system denoted by the logical symbols 0 and 1. One can define these
macroscopic properties as a result of a large-scale resolution of the apparatus involved in the identification of such property A. There
is a large set of microscopic states at the output of the gate that are correctly interpreted as, for example, belonging to the logical
0 in the input of another subsequent gate. For a simple and objective definition, for example, a maximum distance from a central
phase space point can be used to specify which microscopic states belong to a given macroscopic property.

Once we have a defined macroscopic property, we can define a macroscopic state.

Definition 3 (Macrostate) We define the macroscopic state (or macrostate) A at time t as the set of all microscopic states
x ( j)(t), y( j)(t) that have the same macroscopic property A at that time, namely

A � {All x ( j)(t), y( j)(t) ∈ � so that A(x ( j)(t), y( j)(t)) � A}.
Notice that A is a subspace of �, while (bold) A is just a number in real space.

We are now interested in defining the phase-space volume VA of the macrostate A.

2 The division between system and environment degrees of freedom is arbitrary, but such arbitrariness will have no effect at all to the discussion. In this sense,
the typical division found in the literature between information-bearing degrees of freedom and non-information-bearing degrees of freedom is artificial too.
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Definition 4 [volume of macrostate A] We define the volume of the macrostate A by counting the number of microscopic states that
satisfy the condition A(x ( j)(t), y( j)(t)) � A in Definition 3 as

VA � �� × MA with MA �
M∑

j�1

δA(x ( j)(t),y( j)(t)),A,

where δa,b is the Kronecker delta function (that becomes one when A(x ( j)(t), y( j)(t)) � A) and �� is an irrelevant phase-space
volume small enough to accommodate zero or one microstate (see “Appendix 1”). We remind that M is large enough (but not infinite)
so that the results are statistically meaningful.

We will also be interested in identifying those degrees of freedom of the system alone that belong to the set A. We define the
system subspace X A as the set of microscopic points in the system phase space �S that belong to A, as X A � { All x ( j)(t) ∈
�S so that x ( j)(t), y( j)(t) ∈ A}. Similarly, for the points in the environment phase space �E , we define the Environment subspace as
YA � { All y( j)(t) ∈ �E so that x ( j)(t), y( j)(t) ∈ A} where the whole phase space is just the product of the system and environment
phase spaces, � � �S × �E .

2.3 Physical gate as a transition between microscopic states

For each j-experiment, the Hamiltonian H(x, y) determines the trajectory in the 6N-dimensional phase space between the initial
values x ( j)(ti ), y( j)(ti ) and the final values x ( j)(t f ), y( j)(t f ).

Definition 5 [operation] We define an operation or evolution of the states due to the Hamiltonian H(x, y) as a bijective (one-to-one
and onto) map h(t f , ti ) from the phase space � at time ti (domain) to the same phase space � at time t f (range)

h(t f , ti ) : A → B.

where B, as the image of A under the bijective mapping h(t f , ti ), is defined as

B � {All x ( j)(t f ), y( j)(t f ) ∈ � so that x ( j)(ti ), y( j)(ti ) ∈ A}
We notice that no macroscopic property B is used in the description of B as image of A in the Definition 5. In other words, the

set of microscopic states at the initial time ti , that define a macroscopic state A, does not need to be a macroscopic state of the same
macroscopic property A at the latter time t f .

Proposition 1 The phase-space volume vB(t f ) of B, defined as image of A, satisfies vB(t f ) ≡ VA(ti ).
The proof is simple. By construction, the states that belong to B at t f are just the states that belonged to A at time t f .

vB(t f ) ≡ VA(ti ) ≡ �� × MA with MA �
M∑

j�1

δA(x ( j)(ti ),y( j)(ti )),A.

This is, in fact, a simpler way of stating the Liouville theorem [50].

We insist that the (non-capital) volume vB (t f ) do not need to be the volume of a macroscopic state A at the final time t f defined
as VA(t f ). It is possible that VA(t f ) �� VA(ti ) if the microscopic states that satisfy A(x ( j)(ti ), y( j)(ti )) � A at the initial time ti are
not the same states that satisfy the condition A(x ( j)(t f ), y( j)(t f )) � A at the final time t f .

Obviously, such evolution of microscopic states encodes an evolution of the logical information as well.

Definition 6 (Physical gate) We define a gate at the physical level (with one bit of information that can take two initial logical
values) as the following two maps:

• A map h0(t f , ti ) when the involved initial microscopic states A are those belonging to the information 0
• A map h1(t f , ti ) when the involved initial microscopic states A′ are those belonging to the information 1.

By construction, such a composed map is also a bijective (one-to-one and onto) map from � × � to � × �

h0(t f , ti ) × h1(t f , ti ) : A × A′ → B × B ′.

In fact, the bijective maps h0(t f , ti ) or h1(t f , ti ) mean, at the physical level, that microscopic classical laws are time-reversible
[50]. If two phase-space trajectories coincide at one time, then such trajectories are identical at all times. This time-reversibility has
important consequences on the type of physical transitions that are allowed.

We are now in conditions to present the following proposition that will be important along the paper:
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Proposition 2 If two different operations, A → B and A′ → B ′ (where B and B ′ are the images of A and A′, respectively), have a
null intersection at the initial time, then they have a null intersection at any time. In other words,

if A ∩ A′ � ∅ then B ∩ B ′ � ∅.

The demonstration is simple. Let us imagine that B ∩ B ′ �� ∅ because x ( j)(t f ), y( j)(t f ) � x (k)(t f ), y(k)(t f ). Then, because of
time-reversibility, such trajectories are identical at the initial time too, i.e., x ( j)(ti ), y( j)(ti ) � x (k)(ti ), y(k)(ti ), so that A ∩ A′ �� ∅
too.

Notice that we have used in the Proposition 2 the fact that different trajectories, for example x ( j)(t f ), y( j)(t f ) and x (k)(t f ), y(k)(t f ),
do not cross in phase-space at any time. This will be the condition that we will check in any proposal of a gate. Notice that physical
systems defined from the Hamiltonian H(x, y) do always satisfy this Proposition 2. But, the Proposition 2 is also true for any (non-
Hamiltonian) dynamical system that preserves phase-space volumes. As a consequence, the three Landauer’s erasure principles
presented in this paper can be relevant, not only for the physical gates linked to H(x, y) studied in this paper, but for applications in
other areas outside physics described from divergenceless models.

2.4 Logical gate as transition between macroscopic states

From the logical information alone (forgetting about the microscopic state), we define the gate from a logical point of view as:

Definition 7 (Logical gate) We define a logical gate as a map i(t f , ti ) from the logical space L � {0, 1} at time ti (domain) to the
same logical space L at time t f (range) as

i(t f , ti ) : A, A’ → C, C’.

The logical information (or macroscopic property) A or A’ can be perfectly identified with the macroscopic state A or A′ in the
Definition 6 of a physical gate. However, the logical information (or macroscopic property) C or C’ in this new definition of a logical
gate cannot be identified with the image states B or B ′ as defined in 6.

The difference between the physical and logical gate, which is the central point in our future discussion, can be translated to
saying that, contrary to the bijective mapping h(t f , ti ) for microscopic states, the new logical map for macroscopic states i(t f , ti ) is
not bijective. For example, we will be interested in two operations that define an erasure gate: the 0 → 0 operation and the 1 → 0
operation. Clearly, the map is not bijective. In the language of computation, it is said that the erasure gate is the simplest example of
logical irreversibility, because the final (logical) information 0 does not allow us to deduce what was the initial (logical) information
(either 0 or 1).

We want to clarify why we said in Definition 6 that A, A′ → B, B ′ is physically reversible (bijective), while we said in
Definition 7 that A, A’ → C, C’ can be logically irreversible (not bijective). The first refers to the evolution of microscopic states
and the second to the evolution of macroscopic states. By construction, it is possible to find two different phase-space points
{x ( j)(ti ), y( j)(ti )} �� {x (k)(ti ), y(k)(ti )} that have the same (logical) information A(x ( j)(ti ), y( j)(ti )) � A(x (k)(ti ), y(k)(ti )), but it is
not possible to find two identical (or very similar) phase-space points {x ( j)(ti ), y( j)(ti )} ≈ {x (k)(ti ), y(k)(ti )} that have different
(logical) information A(x ( j)(ti ), y( j)(ti )) �� A(x (k)(ti ), y(k)(ti )).

3 Three types of Landauer’s erasure principle

Next, we distinguish three types of the relation between the erasure of information and its energetic and entropic costs, corresponding
to three types of relation between the two final environments: the final environment belonging to the logical operation 1 → 0 and
the one to 0 → 0. Only the third type is the one developed originally by Landauer (in terms of a thermal reservoir). We still keep
the name (intermediate and weak) Landauer’s erasure principle for the other two because we believe that we follow the original
motivation of Landauer: encoding information in macroscopic properties and analyzing how the distribution of microscopic states
that build such macroscopic state change during the erasure procedure. But our approach differs from the original one in the sense
that we assume nothing more than time-reversibility of the microscopic laws.

We assume that the gate is characterized by the logical information 0 or 1 (or the corresponding macroscopic states A and A′ in
Definition 6), while the environment is characterized by another macroscopic property E0 or E1 (or its corresponding macroscopic
states E in Definition 3). Since a gate involves two operations, whenever needed we will specify which operation we are referring
to by using, for example in an erasure gate, the label 1 → 0 or 0 → 0. We will also specify the time at which we are defining the
macroscopic properties or states, by writing ti for the initial time and t f for the final one.

3.1 The weak Landauer’s erasure principle

We first consider erasure gates where the final environments are macroscopically different at the final time:

123



Eur. Phys. J. Plus         (2023) 138:250 Page 7 of 20   250 

• Condition C1 ENVIRONMENTS WITH DIFFERENT FINAL MACROSCOPIC PROPERTIES. For two different operations
involved in a gate with two initial environment states which have macroscopically identical properties at the initial time (e.g.,
E1→0(ti ) � E0→0(ti )), the two final environment states have different macroscopic properties E1→0(t f ) �� E0→0(t f )) at the final
time,3,4.

Let us analyze C1 for an erasure gate in Fig. 3. The initial logical states 1 in Fig. 3a and 0 in Fig. 3c are different macroscopically (being
in the left and in the right, respectively), while having the same environment macroscopic properties and states, E1→0(ti ) � E0→0(ti )
and Y0→0(ti ) � Y1→0(ti ). By contrast, the final logical states 0 in Fig. 3b and 0 in Fig. 3d are macroscopically identical (being both
on the right), X0→0(t f ) � X1→0(t f ), while having different environment macroscopic properties and states, E1→0(t f ) �� E0→0(t f )
and Y0→0(t f ) �� Y1→0(t f ). We clearly satisfy the Proposition 2 at all times so that such an erasure process is possible from our
mechanical point of view. Notice that condition C1 implies that the initial macroscopic information will effectively disappear from
the final state of the system, but it will appear in the final environment state. These results just show that, due to time-reversibility
of microscopic laws, information can never be erased at the microscopic level in a full closed system. We note that we have arrived
to the same conclusion as Hemmo and Shenker [30], but within a framework that will allow us to reach Landauer’s and Bennett’s
results in a general and compact unified framework.

Proposition 3 The erasure of information with a gate satisfying condition C1 is compatible with no entropy cost �S � 0.
For the proof, we use the Boltzmann entropy defined as the number of microstates that correspond to a macrostate (as discussed

in “Appendix 1”). We define V1→0(ti ) as the phase-space volume of the initial macrostate X1→0(ti ), Y1→0(ti ). Similarly, we define
V0→0(ti ) as the phase-space volume of X0→0(ti ), Y0→0(ti ). In the logical operation 1 → 0, the condition C1 is compatible with
defining the number of microstates of the final macrostate, V1→0(t f ), equal to the number of microstate of the image of the initial
macrostate vB,1→0(t f ) ≡ V1→0(ti ) � V1→0(t f ). Identically, in the logical operation 0 → 0, we define vB,0→0(t f ) ≡ V0→0(ti ) �
V0→0(t f ). Then,

�S � (p)�S1→0 + (1 − p)�S0→0

� (p)kB
(
ln (V1→0(t f )) − ln (V1→0(ti ))

)

+ (1 − p)kB
(
ln (V0→0(t f )) − ln (V0→0(ti ))

) � 0. (1)

We have assumed an arbitrary probability p for the 1 → 0 and 1 − p for 0 → 0 operations. The reason why �S � 0 is possible
is because the condition C1 itself imposes that the environments are microscopically different, so that v1→0(t f ) ∩ v0→0(t f ) � ∅ as
required from Proposition 2. Thus, the condition �S � 0 does not violate any fundamental microscopic law and a Hamiltonian
HC1(x, y) is possible.5

The proof is just a consequence that the initial and final macrostates (seen as light blue and light red regions for the initial and
final times, respectively, in Fig. 3) always have the same number of microstates. This fact is the well-known result given by the
Liouville theorem [50] when dealing with A and the image of A at a later time. We remind the reader that, in more general scenarios,
the number of microscopic points that are part of the macroscopic property A(ti ) at the initial time does not need to be equal to the
number of points that are part of the macroscopic property A(t f ) at the final time.

In fact, reading carefully the original works of Landauer and Bennett, one notices that the possibility of such types of erasure
gates, giving �S � 0, was already well known to Landauer and Bennett. Bennett mentioned what he thought was the problem
with such types of erasure gates in his 1973 paper [13]. He erroneously concluded that it was not possible to use such erasure gates
with condition C1 more than once, because the environment is different each time we use the erasure gate (see the macroscopic

3 The dissipation on a gate is a physical process that, obviously, happens independently of whether the humans observe it or not. The fact that the macroscopic
properties C1, C2 and C3 seems to be adapted to the anthropomorphic perceptions does not mean that those conditions are subjective or depending on human
observations. Macroscopic conditions on physical systems are objective (physical) conditions which have to be satisfied by the microscopic evolutions. One
can define these macroscopic properties as a result of a large-scale resolution of the apparatus which fixes the initial microscopic state or detects the final
one. The macroscopic properties can be redefined as a particular distribution of phase space points XC (t), YC (t). In turn, specifying such phase-space
points distribution is exactly equivalent to specifying the Hamiltonian HC (x, y). In other words, the Hamiltonian HC1 (x, y) satisfying C1 is different from
the Hamiltonian HC2 (x, y) and both are different from HC3 (x, y). The three Hamiltonians, by construction, can be designed to satisfy the same logical
input/output table, but they are physically different in the way they manipulate the environment degrees of freedom during the system plus environment
interaction. Thus, each of the Hamiltonians can have a different dissipation, even if they provide the same logical table. No human perception is involved in
the discussion at all.
4 The conditions C1, C2 and C3 are basically conditions on what types of natural macroscopic properties can be expected for the final (not initial)
environments. We consider that initial environments do not have any correlation/entanglement with the initial (1 or 0) logical property of the system and that
they satisfy E1→0(ti ) � E0→0(ti ) for most relevant macroscopic properties. Of course, one can envision the possibility of more exotic initial environments
so that exotic relations between initial and final entropies can be expected. Such engineering of the initial environment is far from the scope of this work and
the spirit of the Landauer’s erasure principle.
5 When dealing with a thermal environment, it is routinely assumed that the entropy variation of the environment is given by �Senv � �Q/T , so that only
the entropy variation of the system needs to be evaluated. This is the procedure in many classical and quantum developments [21]. By contrast, since we are
considering general (not only thermal) environments, we are discussing the variation of the Boltzmann entropy for the whole system plus environment. Our
procedure for the direct evaluation of the entropy of the whole system has the additional advantage of not having to assume that the whole entropy is equal
to the sum of the entropy of its parts, which is not obvious when the parts have strong correlations between them.
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Fig. 3 Schematic representation of the initial (left panels) and final (right panels) microscopic states (dark blue and red solid circles) and the volumes of
macrostates (light blue and red regions) in the system x plus environment y phase space. The upper panels correspond to the operation 1 → 0 and the lower
panels to 0 → 0. The macroscopic property of the system 1 means being on the left of the x axis, while the macroscopic property of the systems 0 means
being on the right of x axis. The initial macroscopic environment properties (in the left panels) are identical E1→0(ti ) � E0→0(ti ), while we can distinguish
the macroscopic properties of the environment at the final time (in the right panels) E1→0(t f ) �� E0→0(t f ). Even though the gate is logically irreversible,
it satisfies the time-reversibility of microscopic laws. The relevant point is that condition C1 shows that each operation of the erasure process can be done
without any change in the global entropy: the phase-space volumes (entropies) of the initial macroscopic states (in light blue regions in the left panels) are
equal to the phase-space volumes (entropies) of the final macroscopic states (in the light red regions in the right panels)

states of environment in Fig. 3b, d). Contrary to the Bennett’s conclusion, we argue here that such erasure gate with �S � 0 can
be used as many times as typical erasure gates can. It is erroneously argued in [13] that such an erasure gate will require a reset of
the environment to its initial state to make the erasure gate useful again. However, we notice that in a conventional gate, in fact, the
initial macroscopic state of environment is not identical to the final macroscopic state of environment: the final one contains more
heat than the initial one. And yet, no reset to the initial cooler environment is assumed each time the gate is used. Similarly, we
can assume that the change of state of the environment in the gate of Fig. 3 is small enough to be used again without reset6. See
also “Appendix 2” with a toy model of an erasure gate satisfying condition C1. This toy-model gate works properly without reset
more than 30 times despite the fact that the environment is modified each time in such a way that one can guess what was the initial
logical value by just looking at the environment variation.

The true reason why the erasure gate depicted in Fig 3 and conventional gates can be used many times is because of the change in the
environment degrees of freedom y. In other words, it is mandatory to change the microscopic degrees of freedom of the environment
each time an erasure process takes place. Because of the time reversibility of Hamiltonian dynamics, two initially different trajectories
of the system alone without environment, x ( j)(ti ) � 1 and x (k)(ti ) � 0, cannot become identical later, x ( j)(ti ) � x (k)(t f ) � 0. A
way to use such erasure gates (with �S � 0 or with �S �� 0) is to require y(t) to be different each time we use the gate, but not
too different. Finally, notice that the role played by the environment y(t) in the gates under condition C1 are quite similar to the
role played by the control register in the gates of the reversible computation proposed by Bennett [15, 16, 23]. In both cases, the
environment or the control register is the additional degree of freedom y(t) needed to erase the system information x(t) without
violating the time-reversibility of the whole system. The difference is that the control register is an active element in reversible
computation, while the environment is interpreted here as a passive element without requiring any attention (reset).

Figure 3 shows an example on how to realize irreversible logic with reversible physics. We are requiring the final environments
to be slightly different at the macroscopic level. See also "Appendix 2" with a toy model of an erasure gate that works properly
without reset. Certainly, our simplified erasure gate has a limit on the number of times it can be used. But, in principle, it is not
different from conventional erasure gates in our computers, because they also have a limit on the number of times that they can be
consecutively used, which is related to the limit on the extra heat that can be absorbed by the environment when we take into account
that the number NE of environment particles is not strictly infinite.

6 Notice that Landauer and Bennett were right in their argumentation that an erasure gate designed to work only once is not a valid gate in the present
discussion of dissipation. Our disagreement here is on the implicit assumption in Landauer’s and Bennett’s argumentation that condition C1 could only be
satisfied for erasure gates that could work only once without reset. This last assumption is wrong because we can imagine gates that satisfy condition C1,
while they work many times (without reset), as far as the initial and final environments are quite similar (but not identical). As simple toy-model to show the
physical soundness of our proposal can be found in “Appendix 2”.
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Does the result obtained above, where the information is erased without entropy cost, violate the original Landauer’s prediction?
Is the exorcise of the Maxwell demon done by Bennett and Penrose, based on prior Landauer’s cost for erasing data, wrong? We
notice that our environments in C1, as plotted in Fig. 3, are not in thermodynamic equilibrium, so our results, as such, are not
pertinent to discussions about systems that have assumed the hypothesis of thermodynamic equilibrium. Arguments on why we
can expect non-thermal environment in some experiments will be discussed in more detail in Sect. 4. However, as discussed in the
introduction, thermodynamics is a scientific discipline flexible enough to accommodate these new results into a new (irreversible or
non-equilibrium) branch of thermodynamics.

Finally, the reader can argue that a fair discussion of the environment in present-day real computers has to involve a really large
number of degrees of freedom (NE � 1023) making almost impossible to distinguish final environments, contrary to what we have
stated in the C1 condition and in “Appendix 2”. Sure, there are many environments in our ordinary life that can be considered as
thermal environments. But, we will show in the last section of this paper that recent experiments in equilibration of closed quantum
systems show environments that never thermalize or that the transition from a non-thermal to a thermal reservoir (for those which
thermalize) needs some time. Thus, gates at very high frequency can imply (non-Markovian) environments that have not enough
time to thermalize (to become independent of their initial conditions 1 or 0). There is a huge difference between saying that condition
C1 is technologically difficult to reach, and saying that C1 is impossible to reach because it violates fundamental laws. In summary,
there is no fundamental reason to expect that only thermal reservoirs can be applied to computations, so there is no reason to expect
that the original Landauer limit will be impossible to be overcome in future nano-devices.

3.2 The intermediate Landauer’s erasure principle

The second type of relation between the erasure of information and entropic and energetic changes can be obtained by assuming
that the final macroscopic environments are identical at the macroscopic level:

• Condition C2 ENVIRONMENTS WITH IDENTICAL FINAL MACROSCOPIC PROPERTIES. For two different operations
involved in a gate with two initial environment states which have macroscopically identical properties at the initial time (e.g.,
E1→0(ti ) � E0→0(ti )), the two final environment states also have identical macroscopic properties (e.g., E1→0(t f ) � E0→0(t f ))
at the final time (See footnotes 4 and 5).

Notice that we are not imposing that the initial environment state is macroscopically identical to the final environment state in a
given operation (we have shown in the previous subsection that this is impossible for an erasure gate), but only that the two final
environment states of the different operations involved in a gate are macroscopically identical.

We analyze again an erasure gate7 in Fig. 4 with condition C2. The initial logical states 1 in Fig. 4a and 0 in Fig. 4c are
different macroscopically (being on the left and on the right, respectively), while having the same environment macroscopic states,
E1→0(ti ) � E0→0(ti ). The final logical states 0 in Fig. 4b and 0 in Fig. 4d are macroscopically identical (being on the right).
Interestingly, we cannot distinguish macroscopically the final environment macroscopic states, E1→0(t f ) � E0→0(t f ), as seen in
the light red regions in Fig. 4b, d. If we look microscopically at Fig. 4, we see that all the microscopic points (solid red points) in
the phase space � satisfy the time-reversibility imposed by the condition in 2, i.e., the solid red point of Fig. 4b never overlap with
the solid red points of Fig. 4d. As we have repetitively stressed, a gate which is physically time-reversible (at the microscopic level)
can be logically irreversible (at the macroscopic level). Notice that the distinguishability (or indistinguishability) between two final
macroscopic states can have an objective definition, for a example, by imposing a minimum (or maximum) phase space distance
between any two microscopic states belonging to different macroscopic states.

Proposition 4 The erasure of information with a gate satisfying condition C2 implies a minimum entropy cost �S � kB ln 2.
We define V1→0(ti ) as the phase-space volume of the initial macrostate X1→0(ti ), Y1→0(ti ). Identically for X0→0(ti ), Y0→0(ti ),

we define V0→0(ti ). From the Proposition in 1, we now have v1→0(t f ) � V1→0(ti ) and v0→0(t f ) � V0→0(ti ). How can we
achieve condition C2 if v1→0(t f ) ∩ v0→0(t f ) � ∅ ? The answer is accommodating v1→0(t f ) and v0→0(t f ), both, as microstates
states belonging to the macrostate E1→0(t f ) � E0→0(t f ). To satisfy condition C2, we assume V1→0(t f ) � V0→0(t f ) so that
V1→0(t f ) � V0→0(t f ) � v1→0(t f )+v0→0(t f ) � V1→0(ti )+ V0→0(ti ). Assuming that both initial phase-space macroscopic volumes
are identical,8 V0 � V1→0(ti ) � V0→0(ti ), we get,

�S � 1

2
�S0→0 +

1

2
�S1→0 � 2

1

2
(kB ln(2V0) − kB ln(V0)) � kB ln 2. (2)

We have assumed equal a priori probabilities for the 1 → 0 and 0 → 0 operations. The reason why the entropy increase is minimal
is because we can imaging v1→0(t f ) ∪ v0→0(t f ) smaller than the final macrostate, but v1→0(t f ) ∪ v0→0(t f ) cannot be larger than
the final macroscopic state. Again the fundamental microscopic Proposition 2 is satisfied and a Hamiltonian HC2(x, y) is possible
[55].

7 The fact that there is no entropy limit for reversible logic with condition C2 is a well-known result and even tested experimentally [37].
8 Notice that we can engineer systems with asymmetric phase space volumes for the initial 1 and 0 (or the associated environment phase spaces) so that,
in one of the operations, the entropy change can be lower than the value predicted by Landauer as explained in Ref. [12]. In any case, these exotic results
(validated experimentally in Ref. [41]) do not contradict the spirit of the original Landauer’s principle. One could also envision exotic entropy relations by
considering final 1 and 0 whose macroscopic system properties are different from the macroscopic system properties assigned to the initial 1 and 0.
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Fig. 4 Schematic representation of the initial (left panels) and final (right panels) microscopic states (dark blue and red solid circles) and the volumes of
macrostates (light blue and red regions) in the system x plus environment y phase space. The upper panels correspond to the operation 1 → 0 and the lower
panels to 0 → 0. The macroscopic property of the system 1 means being on the left of the x axis, while the macroscopic property of the system 0 means being
on the right of x axis. The initial macroscopic environment properties (in the left panels) are identical E1→0(ti ) � E0→0(ti ). The macroscopic properties
of the environment at the final time (in the right panels) are also identical E1→0(t f ) � E0→0(t f ), in the sense that their microscopic differences are not
seen in their macroscopic properties. Even though the gate is logically irreversible, it satisfies the time-reversibility of microscopic laws. The relevant point
is that condition C2 shows that each operation of the erasure process is done with an increase in entropy: the phase-space volumes (entropies) of the initial
macroscopic states (light blue regions in the left panels) are half of the phase-space volumes (entropies) of the final macroscopic states (red blue regions in
the right panels)

The proof is just a consequence that the number of microstates of the final macrostate is not equal to the number of microstates of
the image of the initial macrostate, as seen in Fig. 4. This result was already indicated by Landauer himself [5]. Notice, however, that
we have made no reference to thermodynamic equilibrium at all in the present development (just counting the number of microscopic
states that satisfy a macroscopic property). For this reason, we refer to the result Eq. (2) as the weak Landauer’s erasure principle,
because it is more general than the original Landauer limit which implicitly assumed that all the entropy increase was due to a
production of heat. In this regard, Bennett wrote [16] explicitly: ”Typically the entropy increase takes the form of energy imported
into the computer, converted to heat, and dissipated into the environment, but it need not be, since entropy can be exported in other
ways, for example by randomizing configuration degrees of freedom in the environment.”

The main conclusion of this subsection is that the increase in entropy can be translated into other types of entropies different
from thermodynamic entropy. We note that the same conclusion was reached by the works of Vaccaro and Barnett [51, 52]. They
explicitly generalized the Landauer’s erasure principle to new scenarios showing that the costs of erasure depend on the nature of
the gate and of the environment with which it is coupled. Their papers were inspired by the enlightening previous work of Jaynes
[53] that introduced the concept of the generalized second law instead of the usually called second law of thermodynamics, to
emphasize that the concept of entropy (as a way of counting how many microstates belong to a given macrostate, as we have done
here) does not belong to (equilibrium) thermodynamics only, but can be applied to any system where macroscopic properties matter.
We emphasize that, after accepting that the result �S � k ln 2 has, in general, nothing to do with heat or temperature, new type of
gates can be envisioned by looking for new types of entropy different from thermodynamic entropy converted into heat. Such new
possibilities will violate the original Landauer’s erasure principle in terms of heat and temperature, without violating Eq. (2) when
C2 is assumed.

3.3 The strong Landauer’s erasure principle

The strong relation between manipulation of information and entropy change leads to the original Landauer’s erasure principle. To
arrive to it, we invoke the following condition on the final state of environment EB :

• Condition C3 MACROSCOPICALLY IDENTICAL FINAL THERMAL ENVIRONMENTS. The final states of environment of
different processes of a gate (e.g., Y1→0(t f ) and Y0→0(t f )) are described by the same thermal bath (See footnotes 4 and 5).

This condition should be understood as a supplement to C2, i.e., in condition C3 we assume that condition C2 is already satisfied. We
are not only imposing that the final states of environment are macroscopically identical, but also that the final states of environment
can be described by a state in thermodynamic equilibrium with a well-defined temperature T .
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Proposition 5 For an erasure gate satisfying C3 (which implies satisfying C2 too), the erasure of information implies an increment
of heat given by �Q � kT ln 2 in the final environments.

For an environment in thermodynamic equilibrium, it is well known that the increment of heat �Q is related to the increment of
entropy �S through the thermodynamic relation �Q � T �S. Hence, since the increment of entropy is given by Eq. (2), we finally
have

�Q � kT ln 2. (3)

Here, from the macroscopic property T, it is easy to understand how the conditions Y1→0(t f ) ∩ Y0→0(t f ) � ∅ (imposed by the
Proposition 2) and E0→0,B � E1→0,B can be satisfied simultaneously. The first refers to microscopic variables (particle positions
and momenta) in the phase space, while the second refers to the macroscopic temperature. In statistical mechanics, there are many
different microscopic states corresponding to the same temperature. Again a Hamiltonian HC3(x, y) is possible.

Expression (3) is exactly the original Landauer’s erasure principle [5], which we call the strong Landauer’s erasure principle to
be distinguished from the previous weak and intermediate ones. The universality of the strong Landauer’s erasure principle in Eq.
(3) is based on the assumption that all final states of environments are indeed thermal baths (condition C3). Following the arguments
in previous sections and in the next section, the condition C3 is a good approximation for many real environments in Nature, but
not necessarily valid for all of them (especially if we deal with very fast computations).

At this point, the reader can wonder why do we insist in the failure of the strong (original) Landauer’s erasure principle when
its limit has been validated by several relevant experiments [14, 35–40], as indicated in Fig. (1)? All these experiments [14, 35–40]
have carefully make an effort to ensure that the environment is in thermal equilibrium. Then, for thermal environments, the strong
Landauer’s principle is a universal result. Loosely speaking, the experiments are designed to explain the strong Landauer’s erasure
principle, rather than the other way around. In fact, the mentioned experiments have been developed imposing adiabatic conditions
on the performance of the erasure processes which justify that the environment can be treated as a thermal bath. In this regard, the
physical transitions seen as left and right distribution of particles in Fig. 4 cannot be done instantaneously. They require some time
to thermalize, to change form two distinguishable macrostates to two indistinguishable macrostates. Therefore, it seems obvious
that in the race for faster computing devices, at some point, the assumption that the environments of an electron devices are always
thermalized will not be accurate enough because the reservoir will not have enough time to thermalize. This very point is in fact
what we will discuss in the next section, taking profit of the vast literature on thermalization (or equilibration) in closed quantum
systems.

4 Can the previous results be extended to the quantum regime?

In this paper, we have shown that the original (strong) Landauer’s erasure principle cannot be considered a universal result because it
is not true that only thermal reservoirs are available for computations. The key element in our discussion is the fact that it is possible
to envision final environments for the 1 → 0 and 0 → 0 operations with different macroscopic environment properties. But, can
we generalize these results to the quantum regime? Below we provide arguments to justify that it is reasonable to expect that, what
we have explicitly demonstrated to be valid for classical erasure gates, is also valid for quantum ones. We note that it is far from the
scope of this paper to provide such rigorous quantum extension; here, we only give qualitative evidence of that.

In the quantum regime, the difference between microscopic and macroscopic levels of description is even more important than
in classical physics. Microscopic quantum laws seem to be very different from the microscopic classical laws. There is still a strong
disagreement in the scientific community on how to define a quantum microscopic state (if it exists at all). In other words, the
definition of microscopic states is a rather subtle and controversial issue, because it highly depends on the interpretation of quantum
mechanics, on which there is no consensus among physicists [54]. A straightforward demonstration that the developments done
in Sects. 2 and 3 can be extended into the quantum regime will be done in “Appendix 1” (after selecting a proper interpretation
of quantum mechanics). Fortunately, a simple understanding of why condition C3 is not universal in the quantum regime, and
why there is a plenty of room to design erasure gates with conditions C2 and even C1, can be formulated in an (more or less)
interpretation-neutral manner (in terms of expectations values) by reusing the recent advances on the process of thermalization of
closed quantum systems [55–61].

Let us suppose that the two operations of the erasure gate are defined by the wave functions �1(x, y, 0) for the input logical state
1 and �0(x, y, 0) for the input logical state 0. Notice that we are using the variables x and y in the quantum regime as the degrees
of freedom of the positions of the system and the positions of the environment, respectively. In this sense, x, y represent a point in
the configuration space, while x, y represented a point in the phase-space in the classical regime. The use of the same notation will
simplify the comparison of classical and quantum microstates done in “Appendix 1”9.

9 Let us clarify whether the degrees of freedom y include all the positions of the rest of the Universe or not. In principle, it seems that we would have to
consider y as the rest of the Universe, but it is not needed. The mentioned experiments [56–61] on closed quantum systems do not include the whole Universe
because the time scale dictating the equilibration between the system and the nearby degrees of freedom of the environment can be much shorter than the
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Since the total Hamiltonian H(x, y) is time-independent, the pure states �1(x, y, 0) and �0(x, y, 0) can be described at all times
by a unitary evolution |�α(t)〉 � ∑

n cn,αe−i En t/�|n〉, with α � {1, 0} indicating the initial logical state. The ket |n〉 is an energy
eigenstate of the global Hamiltonian H(x, y) mentioned in Sect. 2 with eigenvalue En . Here, cn,α � 〈n|�α(0)〉, which depends on
the initial wave function, keeps memory of the initial conditions. The density matrix in the energy representation of such global
states can be written as

ρ̂α(t) � |�α(t)〉〈�α(t)|� cm,αc∗
n,αei(En−Em )t/�|m〉〈n|� ρα,m,n(t)|m〉〈n|. (4)

The diagonal elements of the density matrix ρα,n,n � |cn,α|2 are called populations. They forget the phase of cn,α , and they are
time-independent. On the other hand, the off-diagonal elements ρα,m,n(t) � cm,αc∗

n,αei(En−Em )t/� are called coherences. They are
time-dependent and they quantify the coherence between the eigenstates |n〉 and |m〉 by keeping memory of the phase of cm,αc∗

n,α .
See10 for a discussion of the initial energies.

By construction of an erasure gate, at the final time t f , the macroscopic properties linked to the system are identical so that we
can identify such macroscopic properties of both quantum states with same final logical sate 0. Then, we assume that a macroscopic
property of the environment can be defined from an expectation value [62] of a arbitrary observable Â of the environment that can
be written as11:

〈A〉ρ̂α(t) �
∑

n

|cn,α|2 An,n +
∑

n,m ��n

cm,αc∗
n,α Am,nei(En−Em )t/�, (5)

where Am,n � 〈m| Â||n〉. Thus, the discussion on whether 〈A〉ρ̂1(t) �� 〈A〉ρ̂0(t) or 〈A〉ρ̂1(t) ≈ 〈A〉ρ̂0(t) is a discussion on whether
the off-diagonals elements of the density matrix cm,αc∗

n,αei(En−Em )t/� (that keep the memory of the initial state) are relevant in the
evaluation of (5).

But such issues have been clarified during the last years in theoretical and experimental works on thermalization of closed
quantum systems. In principle, the second term of the right hand side of (5) is a quasi-periodic function different from zero. There
are experiments, for example in ultracold quantum gases trapped in ultrahigh vacuum by means of (up to a good approximation)
conservative potentials [63, 64], that can be considered to be of the type of systems described above, with off-diagonal elements
always relevant. The near unitary dynamics of such systems has been observed in beautiful experiments on collapse and revival
phenomena of bosonic [65, 66] and fermionic [67] fields, without the relaxation phenomena predicted with traditional ensembles of
statistical mechanics [68, 69]. Thus, as we have argued along the paper, there are computing scenarios where the condition C1 that
environments are macroscopically distinguishable is physically viable. In fact, all these works on quantum thermalization of closed
systems have been motivated to understand the recent constructions of several prototypes of the so-called quantum simulations
where the behavior of a quantum system, which cannot be solved numerically due to the many-body problem of the Schrodinger
equation, is empirically realized in the laboratory by studying the evolution of another controlled quantum system that mimics the
first one. Obviously, in such (analog) quantum simulations, and also in (digital) quantum computations dealing with qubits, the need
of controlled (non-thermal) environments is mandatory for minimization of decoherence phenomena.

It is true that a system satisfying condition C1 requires an important technological effort on engineering the behavior of the
environment. In fact, there are other quantum closed systems that do thermalize and such processes have been reasonably well-
understood too. At the initial time t � 0, it is clear that 〈A〉ρ̂1(0) �� 〈A〉ρ̂0(0) because we start from macroscopically different states.
But, after some time we can find 〈A〉ρ̂1(0) ≈ 〈A〉ρ̂0(0) if the off-diagonal terms become irrelevant. A simple argument can clarify the
need for a delay to reach equilibration in a closed quantum system. Even if none of the terms cm,α , c∗

n,α and Am,n are exactly zero
at any time, it is possible to envision a scenario in which the whole sum of the right hand side of (5) is close to zero because the
off-diagonals terms cancel each other due to adding of effectively random complex numbers. However, such randomization requires
some time, which is called equilibration time teq in the literature. Then, the time evolution of 〈A〉 after the equilibration time t > teq,
when the off-diagonal elements of the density matrix are no longer relevant, can be described by a time-independent diagonal density
matrix in the energy representation ρ̂diag � ∑

n |〈n|cn〉|2|n〉|〈n|. In the literature, it is said that a quantum system suffers equilibration

time-scales introduced by the coupling of the system to the rest of the Universe. Thus, we have the right to discuss our system plus nearby degrees of freedom
as a closed quantum system, as far as we are not looking for its behavior at very long times [55]. The whole topic of thermalization of (well-approximated)
closed quantum systems [56–61] is based on this reasonable separation between a nearby environment and the rest of the Universe.
10 In our discussion of an erasure gate with minimum dissipation, it makes no sense to consider initial states �1(x, y, 0) and �0(x, y, 0) with different
expectation values of the total energy, because the energy is a macroscopic constant of motion that would be different from the operations 1 → 0 and 0 → 0.
Obviously, in a erasure process, we do not want any macroscopic property that allow us to differentiate the final states [47]. The expectation value of the
energy will be 〈E〉ρ̂1(t) � ∑

n |cn,1|2 En � 〈E〉ρ̂0(t) � ∑
n |cn,0|2 En , which does not involve the off-diagonal elements of the density matrix. Then, if we

consider a large number of eigenstates with similar (but not exactly identical) energies, it seems reasonable to assume that the condition 〈E〉ρ̂1(t) � 〈E〉ρ̂0(t)
implies that the diagonal elements of both density matrices are similar ρ1,n,n ≈ ρ0,n,n for all n. The differences between �1(x, y, 0) and �0(x, y, 0) are
kept in the differences between the phases of cn,1 and cn,0.
11 Notice that linking a macroscopic property to an expectation value implies that such macroscopic property is evaluated over an ensemble of identically
prepared experiments. In the classical case, macroscopic properties are linked to only one experiment. As seen in the appendix, linking a macroscopic
property to only one experiment is also possible in the quantum regime (after properly selecting the quantum interpretation). In any case, the link of a
macroscopic property to an ensemble-over-experiments allows to provide an interpretation-neutral explanation on how the non-universality of Landauer’s
erasure principle is also true in the quantum regime.
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when the expectation value in (5) satisfies tr{ Âρ̂} ≈ tr{ Âρ̂diag} for the overwhelming majority of times (allowing for some sporadic
revivals) larger than the equilibration time teq. Notice that the diagonal matrix, after that, does not yet need to be a (micro-canonical,
canonical or grand-canonical) thermal density matrix. In any case, we get macroscopically identical properties of the environments,
〈A〉ρ̂1(t) ≈ 〈A〉ρ̂0(t). This corresponds to condition C2, where the environments are indistinguishable but not thermal yet. Again, a lot
of experimental work on such quantum equilibration scenarios is present in the literature [56–59]. When ρ̂diag is roughly equal to the
micro-canonical (canonical or grand-canonical in open systems) density matrix, then the quantum system is said to be thermalized.
This corresponds to condition C3.

In the literature [56–61], one can find equilibration times teq ranging from few femtoseconds to picoseconds, depending on the
details and complexity of the systems at hand. If we define θn,α as the phase of cn,α , a simple (but not rigorous) estimation of teq can be
obtained by noting that at t � 0 all phases of the off-diagonal elements (coherences) satisfy ei(θn,α−θm,α )ei(En−Em )0/� � ei(θn,α−θm,α ),
so that all phases of the off-diagonal elements together perfectly keep memory of the initial sate �α(x, y, 0). To forget such memory,
we require that the sum of all coherences in (5) vanishes after an equilibration time teq. If such equilibration occurs, all relevant
phases ei(En−Em )teq/� have to reach a value equal or larger than 2π to ensure that ei(θn,α−θm,α )ei(En−Em )teq/� are randomly distributed.
If we define �Eeq � min(En − Em) of all relevant energies of the system, a simple estimate of the equilibration time is given by

teq ≈ h

�Eeq
, (6)

where h is the Planck constant. For a reservoir of length L � 100 nm, with a parabolic relation between energy and momentum,
we can estimate a minimal energy gap between energy eigenstates equal to �E ≈ 10−3 or 10−4 eV. If we use �E ≈ 10−4 eV in
expression (6), we get an approximate value of the equilibration time teq ≈ 1 ps. Even though the formula (6) is not rigorous at all, it
clarifies that process of thermalization, in our case changing from different macroscopic properties 〈A〉ρ̂1(0) �� 〈A〉ρ̂0(0) to identical
macroscopic properties 〈A〉ρ̂1(teq) � 〈A〉ρ̂0(teq), cannot be instantaneous but requires a time to occur. This conclusion can alternatively
be reached from the definitions of Markovian and non-Markovian open quantum systems [49]. An open quantum system interacting
with an environment is, in principle, a non-Markovian system. The evolution of the system (together with the environment) can
only be considered Markovian if we consider the evolution in (coarse-grained) time steps larger than the time interval needed for
the environment to relax. Thus, the transition from non-Markovian to Markovian relaxation time also requires a time related to the
relaxation of the environment. In conclusion, even in typical environments where the assumption of thermalization is reasonable,
we cannot have an instantaneous thermalization process. This delay in the thermalization provides an unquestionable limit on the
speed of computations to satisfy the basic assumption of the strong (original) Landauer limit. This limit is also shown in Fig. 2.
Beyond THz frequencies, the assumption that environments are always macroscopically identical to a thermal bath is not admissible
and the original Landauer dissipation seems not applicable.

5 Conclusions

After more than 60 years, the Landauer’s erasure principle is still accompanied by controversies. In this regard, Landauer himself
wrote [70]. ”The path to understanding in science is often difficult. If it were otherwise, we would not be needed. This field
[fundamental physical limits of information handling], however, seems to have suffered from an unusually convoluted path.” What
we find especially unfortunate during the recent developments in this field is linking the result of the dissipation in computing
gates to equilibrium thermodynamics12. This link is unfortunate because it is not only unnecessary (as we have seen in our paper),
but it has the undesired effect of unnecessarily limiting the imagination of many researchers. An exception that has overcome this
limitation has recently been published in Ref. [71], where erasure gates using squeezed thermal environments are proposed.

Thus, at first sight, it seems that any attempt to discuss possible extensions of the Landauer’s erasure principle beyond thermo-
dynamic equilibrium requires the flexible tools of non-equilibrium thermodynamics. Such non-equilibrium tools will certainly still
require some notion of equilibrium to be able to define what is heat, work, etc. As we mentioned, this is the typical path followed
for most investigations on Landauer’s extensions. But, this is not the path we have followed in our paper. Can we use a description
of the erasure process based exclusively on the mechanical (not thermodynamic) laws of physics? Yes, of course. An erasure gate is,

12 There are many "demonstrations” of the Landauer’s erasure principle in the literature that invoke the idea of identifying the change of Shannon information
entropy with the change of negative Boltzmann entropy. This identification, even though it can give an extremely simple (even magical) demonstration of
Eq. (2), is misleading because it suggests a wrong conclusion that dissipation by a physical gate only depends on the logical (not physical) gate. This exact
point was mentioned by Vaccaro and Barnett [51, 52] when they emphasized that the costs of erasure depend on the nature of the gate and the on the reservoir
(environment) with which it is coupled. Let us discuss an example of how, of course, the dissipation have to be linked to the type of physical Hamiltonian
used to design the logical gate. One can easily imagine a horrible erasure gate that dissipates a lot of heat (whatever the Shannon entropy says). Such horrible
erasure gates can be, for example, whatever of the green points plotted in Fig. 2 referring to computers nowadays whose dissipation is, at least, eight orders
of magnitude larger than the Landauer limit. Certainly, for such horrible gates, the Shannon entropy cannot be identical to the Boltzmann entropy. Having
said this, one could still argue that the Shannon entropy is related to the Boltzmann entropy under the assumption that one only considers physical gates that
take the minimum value of entropy change allowed by the intermediate Landauer’s principle (condition C2). Such an argument for linking Shannon and
Boltzmann entropy would be correct,but it would seem as useless as saying that the Shannon entropy is equal to the Boltzmann entropy whenever such a
relation is true. Our overall argumentation in this point coincides with the title of the work of Kish and Ferry [31]: ”Information entropy and thermal entropy:
apples and oranges”.
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at the end of the day, a physical system whose performance follows the fundamental microscopic laws of physics. As an example,
in “Appendix 2”, we have shown a toy model of an erasure gate whose performance during several repetitions is evaluated by
numerically solving the fundamental microscopic laws that simultaneously govern the degrees of freedom of the system and the
environment.

The reader can (erroneously) argue that we have used some thermodynamics concepts, not only microscopic laws, along the
paper because we have included entropy argumentations. We have only used a definition of entropy as the number of microstates
that are present in a given macrostate. By construction, such concept of entropy is perfectly adequate in a microscopic description
of any system (independently on whether it is used in thermodynamic discussions too). It only requires the proper definition of a
macroscopic state in terms of microscopic states, as we have done in Sect. 2. Then, of course, in Sect. 3.3 we have invoked the
equilibrium thermodynamics concepts of heat and temperature, but only to reach the original Landauer formulation, which is nothing
but a special case of our general formulation.

The main advantage (and drawback) of our paper is that it uses classical microscopic physics. As such, it provides a mathematically
simple and physically rigorous understanding of the three types of Landauer’s erasure principle. But, strictly speaking, the results of
this paper have not been demonstrated to be valid in quantum scenarios. A rigorous quantum extension of the classical microscopic
explanation presented here is far from the scope of this paper. The main reason is because there is still a strong disagreement in
the scientific community on how to define a quantum microscopic state (if it exists at all). In fact, even the wave function (linked
to any definition of a microstate) is under a lively debate now (does it represent only epistemic knowledge about the outcomes of
future measurements? or, is it something ontologically real ?) [54]. Even, it is not clear if the wave function is enough to define a
microscopic state, since it is also argued that present quantum theory has to be understood as something emergent; as an average
description of an underlying more complicated quantum dynamics (with additional microscopic variables) [54]. Despite this poor
understanding of what quantum microscopic states are, in Sect. 4 we have provided some quite general evidences that it is reasonable
to expect that the classical results presented here do also apply in a quantum regime. Basically, even under the assumption that a
quantum environment will effectively reach some type of equilibrium (whatever it means), some time will be needed to reach it. In
addition, in “Appendix 1”, after selecting a particular interpretation of quantum mechanics, we also provided a natural extension of
the classical results of the main text to the quantum regime.

Finally, let us mention that the strong Landauer’s erasure principle has not been relevant yet for practical devices because nowadays
other larger sources of dissipation are present. It seems reasonable to expect that in the future, when the other sources of dissipation
disappear, the strong Landauer’s erasure principle will still not be relevant because future computing devices will work at frequencies
for which the assumption of environment in (classical or quantum) thermodynamic equilibrium will no longer be valid as shown in
the shaded region in Fig. 2.

We hope that the present work will help to develop new research avenues for engineering computing devices with environments
that satisfy condition C2 involving entropy change without heat dissipation, or even approaching condition C1 where the entropy
change can be reduced significantly.
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Appendix 1: Counting the number of microstates

In this “Appendix 1”, in the first subsection, we will show that the concept of entropy is a way to quantify the number of microstates
that belong to a given macrostate. Then, in the second subsection, we will show that the development done in the manuscript in
terms of well-defined trajectories can be extended into the quantum regime in a very simple and natural way by using quantum
(Bohmian) trajectories.

123

https://dataverse.csuc.cat/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. Plus         (2023) 138:250 Page 15 of 20   250 

Fig. 5 Schematic representation of the initial (left panels) and final (right panels) microscopic states (dark blue and red solid circles) and the volumes of
macrostates (light blue and red regions) in the system x plus environment y phase space (or in the system x plus environment y configuration space for a
quantum system). The upper and lower panels describe the coarse and fine graining, respectively, of the same initial and final microscopic states, explaining
why the volume of a macrostate can be quantified by just counting the number of microscopic states. In the upper panels, a large grid is assumed so that
the space is divided into cells. In a, the number of occupied cells is 5 and the number of microstates is MA � 10. In b, the number of occupied cells is
8 and the number of microstates is MA � 10. Since the Liouville theorem ensures that VA in (a) has to be equal to vB in (b), from 5 �� 8 we see that
such a grid does not allow us to identify the volume of the macrostate with the number of microstates. In the lower panels, a smaller grid is chosen, by
dividing the phase space into smaller cells so that only one microstate (or none) occupies each cell. In c and d, the number of cells is 10 and the number of
microstates is MA � 10. For such a grid, identifying the volume of the macrostate with the number of microstates is correct. If more microstates belonging
to the macroscopic property A are considered in the discussion, we can use a grid with even smaller cells until we satisfy again the requirement that only
one microstate (or none) occupies each cell

Classical procedure

We consider a classical system in an experiment described by the trajectory x ( j)(t), y( j)(t) that belongs to the macroscopic state A.
Then, the (Boltzmann) entropy [72] is defined as

S(t) � kB ln (VA), (A1)

where kB is the Boltzmann constant and VA is the volume in the phase space, Definition 4, for all M points of the phase space
that look macroscopically similar to x ( j)(t), y( j)(t), that is all the phase-space points of the macroscopic state A of the macroscopic
property A, according to Definition 3.

In Fig. 5, we have represented a Lx × L y region of the phase space � and the microscopic points of the macroscopic state MA at
the initial ti and final tf times. We have drawn 25 cells of area �� � Lx/5 × L y/5 � Lx × L y/25 in Fig. 5a, b. It seems from these
plots that phase-space volume of M is not proportional to the number of phase-space points (because it also depends on the size of
the cells). However, in Fig. 5c, d we select 225 smaller cells with an area ��′ � Lx/15 × L y/15 � Lx × L y/225 so that each cell
accommodates only one (or zero) point. Now, the phase-space volume becomes proportional to the ��′. Thus, we can define the
(Boltzmann) entropy for the MA � 10 points at the initial time ti as

S(ti ) � kB ln (MA��′) � kB ln (MA) + kB ln (��′). (A2)

Notice that the use of a smaller area than ��′ in (A2) (for example, ��′′ so that each cell still contain zero or one microstate) will
only modify the last constant, kB ln (��′) → kB ln (��′′), which is irrelevant when evaluating the entropy change between two
times (as far as both use the same cell grid). Similarly, increasing the number of points will only modify the same irrelevant constant
(as far as each cell accommodates only one or zero points). Thus, as it is well-known, the entropy linked to the macrostate A can be
computed from the number of microstates MA that belong to such macrostate.

Quantum procedure

As indicated in the manuscript, identifying the microscopic properties of a quantum systems is a rather subtle and controversial
issue, because it highly depends on interpretation of quantum mechanics, on which there is no consensus among physicists [54].
For example, in the standard interpretation of quantum mechanics, it is the many-body wave function in the configuration space that
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provides such microscopic description, while other interpretations may postulate additional variables or replace the wave function
with an entirely different object. Since each theory provides also its equation of motion for its microscopic state, the diversity
of quantum theories implies no consensus on the behavior of the quantum microscopic world. Some interpretations of quantum
mechanics claim that the quantum laws for such microscopic states are neither deterministic nor time-reversible. By contrast, other
interpretations claim that the microscopic quantum laws are deterministic and reversible, while indeterminism and irreversibility
emerge only at the macroscopic level. At this point, a quantum procedure to count the number of microstates requires specifying
which quantum theory is used to interpret quantum phenomena. The authors of this paper believe that the conceptually clearest way
to think about quantum physics, in general, and on quantum microscopic states, in particular, is to use the Bohmian interpretation
of quantum mechanics [73–76], in which the differences between classical and quantum microscopic physics look less radical than
in other interpretations. We choose in this “Appendix 1” this interpretation to explicitly show that all developments done in Sects. 2
and 3 for classical systems can be straightforwardly extended to the quantum regime.

The fundamental elements of the Bohmian theory are the many-body wave function �(x, y, t) of a closed quantum system,
together with the actual particle positions x ( j)(t) of the system and actual particle positions y( j)(t) of the environment [73, 75,
76]. The evolution in time of such positions x ( j)(t), y( j)(t) represents a trajectory in the configuration space. The many-body wave
function �(x, y, t) guides the particles by determining their velocities [73–75]. In the laboratory, at the initial time t � 0, one can
prepare the wave function �(x, y, 0), but one cannot prepare the initial positions [77]. Such initial positions x ( j)(0) and y( j)(0)
obey the probability distribution |�(x, y, 0)|2 when the identical experiment is repeated M → ∞ times, where the superindex j
labels each experiment j � 1, .., M . Thus, once x ( j)(0), y( j)(0) and |�(x, y, 0)|2 are fixed, the Bohmian interpretation of quantum
phenomena is deterministic and time-reversible at the microscopic (ontological) level, just like classical physics. However, since we
have no direct control over x ( j)(0) and y( j)(0), the Bohmian results are random at the empirical level [74–76]. As indicated in Sect. 4,
we are using the variables x and y in the quantum regime as a point in the configuration space, rather than as a point in the phase-space
as in Sects. 2 and 3 for classical particles. This is the only difference between the quantum (Bohmian) and classical description of
microstates. We have seen in the first part of this “Appendix 1” that such difference becomes irrelevant when discussing the three
types of Landauer’s erasure principle explained in the manuscript. Therefore, the use of the same notation for quantum and classical
versions will help in straightforwardly reusing the classical results for quantum systems.

First of all, if we want to count quantum microstates, we have to specify in detail what is the definition of a microscopic state in
the Bohmian theory. At first sight, it seems that a microscopic state is determined by trajectory x ( j)(t), y( j)(t) of the j-th experiment
plus the wave function �(x, y, t) that guides such trajectories. But, in fact, the Bohmian theory is a holistic theory in the sense that
its applicable to the whole Universe, not only to a part of it [75–77]. Therefore, strictly speaking, there is just one wave function for
describing any process in the Universe. For our practical example of an erasure gate, it means that the wave functions �1(x, y, t) for
the input logical state 1 and �0(x, y, t) for the input logical state 0 used in Sect. 4 can be substituted by a unique big wave function
of a closed system. This big wave function appears in a natural way in Bohmian mechanics by taking into account the rest of degrees
of freedom of the laboratory, labeled here as z, that determine whether we are a dealing with a initial logical 1 or 0. Such big wave
function is written as �(x, y, z, t), and we can define the wave function for 1 as the conditional (Bohmian) wave functions [74, 76,
77] of the big wave function as �1(x, y, t) ≡ �(x, y, z j1 (t), t). Identically, we define the wave function describing the initial logical
0 as �0(x, y, t) ≡ �(x, y, z j0 (t), t). Here, z j1 (t) can be any of the configurations of the positions z of the set-up of the laboratory
(excluding the environment and the system) that are linked to an initial logical state 1. Likewise, z j0 (t) for 0. The final result is that
a quantum (Bohmian) microstate is defined just by x ( j)(t), y( j)(t), z( j)(t) alone. We do not need to include the wave function in
our attempt to count quantum microstate because, despite the wave function is a fundamental ontological element of the Bohmian
theory, it is the same for all experiments of the erasure gate. By including z( j)(t) as part of the degrees of freedom of the environment,
the quantum (Bohmian) and classical definition of a microstate are almost identical (the first is a point in the configuration space,
while the second a point in the phase space). Once this small difference is accounted for, all definitions done in Sects. 2 and 3 for
counting the number of classical microstates can be reused for getting identical conclusions in the quantum regime. For example,
the concept of entropy in the quantum case just requires reinterpreting the phase-space axes in the figures (like Fig. 5) as the axes
in the configuration space. Such a change of axes is inessential because we have demonstrated in the first part of this “Appendix
1” that what matters in the discussion of entropy is just the number of microstates that belong to each macrostate. Importantly, the
non-crossing property of the classical trajectories in the phase-space in Proposition 2 is also satisfied by the quantum (Bohmian)
trajectories in the configuration space. Since all experiments deal with a unique wave function �(x, y, z, t) which is a single-valued
function, so only one velocity at position x, y, z and time t is possible. This implies that Bohmian trajectories cannot cross in the
configuration space [74, 76]).

Appendix 2: Toy model for the weak Landauer’s erasure principle

In this appendix, we describe a toy model of an erasure gate that satisfies the weak Landauer’s erasure principle (condition C1). The
model does not pretend to be realistic, but just exemplify the physical soundness of this weak version. We consider a 2D system
where each particle position has a horizontal rx and vertical ry location. Notice that, in this appendix, we use x and y as directions
in physical space which is different from the meaning assigned to them in main part of the paper.
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The number of particles of the environment, NE � 28, can be separated into two sets. The first set is formed by the 14 particles
indicated by the red solid circles in the top of Figs. 6 and 7. The second set of 14 particles is indicated by red solid circles in the
bottom of Figs. 6 and 7. The first set can be identified as a “top barrier”, while the second as a “bottom barrier”. Both “barriers”
will guide the system particle from the input toward the output of the gate. In order to minimize the movements of the particles of
the environment for the reasons that will become clear later, each particle in the environment has a mass of mi � 4000 m with m
the free electron mass and a charge qi � 0.04 q with q the electron charge (with sign). The initial velocity of the particles of the
environment is zero in both directions, vx,i (0) � 0 m/s and vy,i (0) � 0 m/s.

In fact, since we are interested in using the same erasure gate several times, there is just one environment (NE � 28 particles)
involved all the time, but several systems. We consider the system as a single particle that enters into the gate at rx � 0 nm encoding
an input logical value, travels inside, and exits the gate at rx � 11 nm encoding the output logical value. Using another time, the
same gate implies using the same environment but a new degree of freedom for the system encoding the new logical information. To
avoid a complicated notation, since only one system particle is interacting with the environment at each operation, we will assume
that each system particle is described by a degree of freedom label as n � 29. The mass of the particle of the system is m29 � 0.2m
and its charge q29 � 10q .

Then, the dynamics of all particles (environment plus system), at each operation, is determined by the following Hamiltonian.

HC1 �
29∑

i�1

(
p2

x,i

2mi
+

p2
y,i

2mi

)
+

1

2

29∑

i�1

29∑

j�1

1

4πε

qi q j√
(rx,i − rx, j )2 + (ry,i − ry, j )2

(A3)

with ε the vacuum permittivity and px,i � vx,i mi and py,i � vy,i mi the momentum components of the i-th particle in the horizontal
and vertical directions, respectively. Identically, rx,i and ry,i are the position components of the i-th particle in the horizontal and
vertical directions, respectively. Notice that the “top barrier” and “bottom barrier” are not external potentials, but just particles
interacting with the system particle. The numerical solution of the interacting N � 29 particles is done by time-integrating the
acceleration, computed from Newton’s laws, with a temporal step of 1 · 10−18 s.

In Fig. 6, apart from the initial positions of the environment in solid red circles, we plot the trajectory of the system particle in
solid red squares from the input of the gate (rx � 0 nm) till the output (rx � 11 nm). The initial state of the system corresponds to
the logical 0 described as {rx,29(0) � 0 nm, ry,29(0) � 3 nm} and initial velocity vx,29(0) � 2 × 106 m/s in the horizontal direction
and zero vy,29(0) � 0 m/s in the vertical direction. The particle of the system is initially repelled by the “bottom barrier”, and later by
the “top barrier”. Finally, at the horizontal position of rx � 11 nm, the system indicates the final logical value 0. As a consequence
of the interactions given by (A3), the particles of the environment have slightly modified their initial positions and velocities.

As it happens in a real gate, after the first operation, the gate is ready for a second operation. Such second operation happens
when another particle of the system is prepared identically to the first system particle, indicating the initial logical 0. However, now

Fig. 6 Erasure gate (toy model) representing several repetitions of the logical operations 0 → 0. Red solid circles denote original initial positions of the
NE � 28 particles of the environment during the first operation. Red solid squares denote the original trajectory of the single particle of the system, from
the input rx � 0 to the output rx � 11, plotted every 0.2 fs. During the first 0 → 0 operation, each particle of the environment interacts with the system
particle and with the other particles and modifies its position and velocity. When the first system particle leaves the gate, a new system particle enters into
the gate, and a repetition of the 0 → 0 logical operation is done with the initial conditions of the environment particles in this second operation equal to their
final conditions in the first operation. No reset of the environment is considered after each operation. The initial positions of the particles of the environment
at the 10, 20 and 30 repetitions are indicated with empty circles with different colors. The same colors are used to represent the corresponding trajectory of
the system at these repetition with empty squares
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Fig. 7 Erasure gate (toy model) representing several repetitions of the logical operation 1 → 0. All the details are identical to those of Fig. 6 except for the
initial position of the system at each repetition, which is here {rx,29(0) � 0 nm, ry,29(0) � 7 nm}, while it was {rx,29(0) � 0 nm, ry,29(0) � 3 nm} in
Fig. 6

the environment particles are not the solid red circles in Fig. 6, but the new initial conditions of the particles of the environment
in this second operation correspond to the final conditions of the environment after the first operation. The environment of the
second operation is different from the environment of the first one. This is exactly what happens in the strong Landauer’s erasure
principle. Each time an operation takes place, the final environment becomes hotter than before the operation. As far as the hotter
final environment is not much different from the initial one, no reset of the environment degrees of freedom is needed in real erasure
gates.

Since we are also interested in avoiding the reset of the environment in our toy model of the weak Landauer’s erasure principle,
we want an environment that suffers small perturbation. Now, it becomes evident why we select such heavy particles (mi � 4000m)
with such small charge (qi � 0.04 q) in the particles of the environment. In Fig. 6, we have plotted in circles of different colors the
final positions of the particles of the environment at different repetitions of the operation (without a reset in the environment). We
also plot the trajectories of the system with squares and with the same colors that we used for the environments.

In Fig. 7, we have repeated the results of Fig. 6, but now considering that the system corresponds to a logical 1 defined as
{rx,29(0) � 0 nm, ry,29(0) � 7 nm} with the same initial velocity of the system particle as before: vx,29(0) � 2 × 106 m/s in
the horizontal direction and zero vy,29(0) � 0 m/s in the vertical direction. The system particle is now initially repelled by the
“top barrier”, and later by the “bottom barrier”. Finally, at the horizontal position of rx � 11 nm, the system’s microscopic state
corresponds to the final logical state 0. As a consequence of the interactions given by (A3), the particles of the environment in Fig. 7
have a stronger modification of their initial positions and velocities than in Fig. 6. Roughly speaking, it is more “difficult” to convert
the initial 1 into a final 0 in Fig. 7, than to keep the initial 0 into a final 0 in Fig. 6. The perturbation of the conditions of the bottom
particles of the environment around the positions rx � 8 nm and rx � 9 nm is remarkable. The same happens to the top particles of
the environment around position rx � 12 nm. In any case, we see that the environment without reset is able to repeat the operation
1 → 0 correctly for more than 30 times.

In Fig. 8, we plot the initial and final total momentum of all (N � 29) particles in the y and x direction for each of the 40
repetitions, for the 1 → 0 and 0 → 0 operations. The first time that an operation takes place, the total momentum in the y direction
is zero because none of the particles have velocity in the y direction. The total momentum in the x direction coincides with the initial
velocity of the particle of the system (all particles of the environment have zero initial velocity in the x direction). Of course, the
final momentum after the operation coincides with the initial one because of the conservation of the total momentum in a closed
system. Because of the interactions between particles dictated by (A3), during the operation, different particles of the environment
acquire different velocities. Thus, in the second operation, the system has again the initial velocity vx,29 � 2 · 106 m/s, while the
environment particles have the initial conditions at the second operation that correspond to the final conditions of the first operation.
A new redistribution of the total momentum happens during the second operation again. All subsequent operations have a similar
behavior.

We clearly see in Fig. 8 that the redistribution of momentum in the 1 → 0 is different than in the 0 → 0 operations. In fact,
by just looking at the evolution of the momentum of the environment, without discussing the system dynamics, one can identify
which logical operation has occurred in the gate. The environment slightly modifies during each operation, but the modification
of the environment during the operation 0 → 0 is different from modification of the environment during the operation 1 → 0. In
particular, px is negative in 1 → 0 (green triangle and black circle in Fig. 8), while px is positive in 0 → 0 (blue circle and red
triangle in Fig. 8).
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Fig. 8 Total (initial and final) momentum pα � ∑29
n�1 pn,α with α � x (α � y) for the horizontal (vertical) direction divided by the mass of the system

particle (to get units of velocity) for 37 repetitions of the 0 → 0 operation of Fig. 6 or of the 1 → 0 operation of Fig. 7. The final positions and velocities
of each particle of the environment after finalizing one operation are the initial conditions of that particle in the next operation. At the beginning of each
operation, the system particle has a velocity vx,29 � 2e6 m/s and vy,29 � 0. Its initial positions are rx � 0 nm and ry � 3 nm for defining a 0 and rx � 0
nm and ry � 7 nm for defining a 1. The operation 1 → 0 provokes a greater detectable perturbation of the environment momentum than the operation 0 → 0

As said in Sect. 3.1, these differences between the environments seen in Fig. 8 are exactly what we meant by Condition C1
when describing “environments with different final macroscopic properties”. Of course, such definition can seem a bit ambiguous.
Another way of saying the same is that the phase space of the points belonging to the final state of the gate defined by (A3), when
dealing with operations 1 → 0 and 0 → 0, is much more similar to the phase space of Fig. 3 than to the phase space of Fig. 4 in
the main part of the paper. The later requires a type of chaotic or thermalized behavior of the environment (which can be typical of
thermal reservoirs), which is different from the well-defined behavior of the particles of the environment of the toy model that we
have worked in this appendix. Again, we conclude with one of the main messages of this paper: there is no need to assume only
chaotic (thermal) environments, since the type of the environments depicted in the phase space of Fig. 3 is also physically plausible
for a logical erasure gate, as seen in Fig. 8.
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