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Abstract
Genotyping individuals using forensic or non-invasive samples such as hair or fecal samples increases the risk of allelic 
amplification failure (dropout) due to the low quality and quantity of DNA. One way to decrease genotyping errors is to 
increase the number of replicates per sample. Here, we have developed the software SNP+ to estimate the dropout prob-
ability and the subsequent required number of replicates to obtain the reliable genotype with probability 95%. Moreover, the 
software predicts the minor allele frequency and compares two competing models assuming equal or allele-specific dropout 
probabilities by Bayes factor. The software handles data from one SNP to high density arrays (e.g., 100,000 SNPs).
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Introduction

Single nucleotide polymorphisms (SNPs) are biallelic mark-
ers largely abundant in most genomes and with low mutation 
rate (~ 10−9 per generation) (Brumfield et al. 2003; Morin 
et al. 2004). SNPs can be associated to diseases, susceptibility 
to environmental factors or quantitative trait locus (Erichsen 
and Chanock 2004; Amos et al. 2008; Casellas et al. 2008; 
Nickels et al. 2013). In forensic medicine, SNPs can be useful 
to identify individuals from non-invasive samples by using 
short amplicons (Sobrino et al. 2005). However, individual 
identification using degraded samples with less than 100 cop-
ies of gDNA may cause genotyping errors (Giardina et al. 
2009; von Thaden et al. 2020). Allelic amplification failure, 
or dropout is the most common error caused by stochastic 
effects of the PCR reaction (Taberlet and Luikart 1999). To 
reduce dropout ratio, multiplex pre-amplification or increased 
replicates per sample could be performed (Bellemain and 
Taberlet 2004; Sastre et al. 2009). However, both solutions 
increase time and cost for genotyping individuals. In order to 

reduce genotyping errors using non-invasive samples without 
cost, we decided to develop a software (SNP+) to predict the 
dropout probability of each SNP from a sample of replicated 
genotypes. Moreover, two alternative parametrizations were 
compared by a Bayes factor to check for within-SNP homo-
geneous dropout probability against different dropout prob-
abilities for each allele.

Material and methods

The SNP+ software analyzes each SNP independently, tak-
ing as a starting point a vector y of n genotypes ordered by 
individual (m) and replicates within individual (y’ = [y’1 y’2 
… y’m]), where n1 is the number of replicates for the first 
individual, and n = n1 + n2 + … + nm. Assuming two alleles, 
A and B, the Bayesian joint posterior distribution general-
izes to

and focuses on estimating the allele frequency (fA), as well 
as the dropout probability for allele A (εA) or B (εB). Taking 
a particular genotype yi with possible outcomes AA, AB, 
BB and missing genotype (miss.), its Bayesian likelihood 
is computed as

p(fA, �A, �B|�) ∼ p(�|fA, �A, �B)p
(
fA
)
p(�A)p(�B),

p(yi = AA|fA, �A, �B) = p(AA|AA)p(AA) + p(AA|AB)p(AB)
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where

And p(AA) = f 2
A
, p(AB) = 2fA

(
1 − fA

)
 , and p(BB) = f 2

B
 . 

Note that the model assumes that a BB individual cannot be 
genotyped as AA (the probability of false alleles is zero). 
A priori distributions for fA, εA and εB were assumed flat 
between 0 and 1.

p(yi = AB|fA, �A, �B) = p(AB|AB)p(AB)

p(yi = BB|fA, �A, �B) = p(BB|AB)p(AB) + p(BB|BB)p(BB)

p(yi = miss.|fA, �A, �B) = p(miss.|AA)p(AA)
+ p(miss.|AB)p(AB) + p(miss.|BB)p(BB),

p(AA|AA) = (1−�A)
2

p(AA|AB) = �B

p(AB|AB) = (1−�A)(1−�B)

p(BB|AB) = �A

p(BB|BB) = (1−�B)
2

p(miss.|AA) = �
2
A

p(miss.|AB) = �A�B

p(miss.|BB) = �
2
B

For each SNP, the model was solved by a Metropo-
lis–Hastings sampling process (Metropolis et al. 1953) with 
500,000 iterations after a burn-in period of 10,000 iterations. 
Two alternative parameterizations ( �A = �Bvs.�A ≠ �B ) were 
compared by Bayes factor (Kass and Raftery 1995). The 
minimum number of within-individual replicates required 
to predict the reliable genotype with probability 95% was 
calculated as log(0.05)/log(εA). All these procedures have 
been implemented in the SNP+ software, available at http://​
www.​casel​las.​info/​softw​are.​html.

Results and discussion

The program generates the following text delimited output 
files:

(1)	 Summary table of the probability of error, confidence 
interval, replications, and Bayes factor of all the SNPs 
(output file example in Fig. 1).

(2)	 SNP-by-SNP report of dropout probabilities with their 
confidence intervals, minimum number of replicates, 
Bayer factor comparing a single dropout probability 
against two independent dropout probabilities.

(3)	 Predicted genotypes for each individual and SNP, and 
probability of error, if any.

(4)	 Pairwise comparison between individuals and the prob-
ability to have an identical genotype.

(5)	 SNP-by-SNP report of the minor allele frequency 
(MAF) and probability of identity (PI).

The software has been extensively tested on simulated 
data with appealing results. Figure 2 illustrated SNP+ ability 
to detect allele-specific departures in dropout probabilities, 

Fig. 1   Output file generated by the SNP+ software for each analyzed 
SNP, its alleles, allele-specific or joint dropout probability (and mini-
mum number of replicates to guarantee a 95% genotype probability), 

and the Bayes factor comparing the models with allele-specific and 
joint dropout probability

http://www.casellas.info/software.html
http://www.casellas.info/software.html
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as well as the increase in statistical relevance (i.e., Bayes fac-
tor) as estimated dropout differences increase. The U-shaped 
scatter plot misidentified a common dropout probability in 
less than 3% of the simulated data sets, and this percentage 
reduced below 1% with seven replicates per sample (results 
not shown). Sample size does not modify the dropout prob-
ability but the accuracy of the (dropout probability) estimate 
we obtain with SNP+.

Moreover, we have used SNP+ to evaluate two panels 
using Open Array® technology (Thermo Fisher Scientific 
Inc). We analyzed 22 fecal samples and 114 hair samples 
from Iberian brown bears (Ursus arctos) using first a 120 
SNP panel (data prepared for publication but not submitted). 
To decrease the cost of the analysis, we selected 60 SNPs 
out of 120 SNPs with the lowest dropout probabilities, and 
we repeated our analysis with SNP+ using 164 fecal sam-
ples and 173 hair samples. All samples were replicated four 
times, and about 25% and 20% of low-quality DNA fecal 

Fig. 2   Predicted dropout probabilities on simulated data sets with 50 
individuals and 5 replicate genotypes per individual. Genotypes were 
simulated under Hardy–Weinberg equilibrium (0.5 allele frequency) 
and dropout probabilities for each allele were 0.1 and 0.2, respec-
tively. The Bayes factor compared the model with allele-specific 
dropout probabilities against the same dropout probability for both 
alleles
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Study A: 22 fecal samples; 120 SNPs
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Study B: 114 hair samples; 120 SNPs
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Study D: 173 hair samples; 60 SNPs

Dropout probability

X0

10

20

30

40

50

60

0.
00

0.
04

0.
08

0.
12

0.
16 0.

2
0.

24
0.

28
0.

32
0.

36 0.
4

0.
44

0.
48

0.
52

0.
56 0.

6
0.

64
0.

68
0.

72
0.

76 0.
8

Study C: 164 fecal samples; 60 SNPs
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Fig. 3   Histograms showing the relative frequencies (%) of dropout probability in bear samples using the SNP+ software in four cases 
(“X” = average dropout probability)
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and hair samples, respectively (call rate < 25%) were not 
included in both analyses. Figure 3 shows the relative fre-
quencies of the dropout probability for the four studies. The 
dropout probability was clearly low after selecting the panel 
of 60 SNPs using two types of non-invasive samples, on 
average 0.05 (studies C and D; 60 SNPs) versus 0.2 (studies 
A and B; 120 SNPs). In terms of variability and distribution 
mode, the study that obtains lower dropout probabilities is 
the study C, after SNP selection. The study with the highest 
probability of dropout is the study B probably because hair 
samples were hair-trapping collected and therefore, not all 
samples contained roots or enough hair quantity to obtain 
high DNA quality. To summarize, SNP+ calculates the drop-
out likelihood, the Bayes factor, PI and MAF, and can be 
used to select the best arrays from low density arrays up to 
high density arrays, avoiding those SNPs that require many 
replicates because they lead to error. Moreover, SNP+ shows 
the number of replicates needed per sample to reach a 95% 
of genotyping reliability per SNP.
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