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Abstract
We prove the Hardy–Littlewood theorem in two dimensions for functions whose
Fourier coefficients obey general monotonicity conditions and, importantly, are not
necessarily positive. The sharpness of the result is given by a counterexample, which
shows that if one slightly extends the considered class of coefficients, the Hardy–
Littlewood relation fails.

Keywords Fourier series · General monotone coefficients · Hardy–Littlewood
theorem

Mathematics Subject Classification 42B05 · 42B35

1 Introduction

Establishing interconnections between integrability of functions and summability of
their Fourier coefficients is the problem which occupies a special place in harmonic
analysis. The celebrated Parseval’s identity enables us to reduce a wide class of prob-
lems concerning functions to those concerning their Fourier series, and vice versa.
Although we do not have such equalities for the spaces L p, p �= 2, we can still
obtain equivalences of norms of functions and norms of their Fourier series if we
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impose some additional requirements. Results of this kind are important, in the first
place, due to the fact that once such a relation is found, one becomes free to choose if
it is handy to deal with functions or with coefficients in this or that case, as if having
Parseval’s identity (see, e.g. [4, Chs. 4–6, 12–13] and [15, Sect. 7] for applications).
The following result by Paley [26] can be considered the starting point for the research
in this direction.

Theorem A (Paley, 1931) Let {φn(x)} be an orthonormal system on [a, b] with
|φn(x)| ≤ M for all x ∈ [a, b] and n ∈ N. Then

(a) If p ∈ (1, 2], then for any f ∈ L p(a, b) with Fourier coefficients {cn} there holds
∞∑

n=1

|cn|pn p−2 �p,M ‖ f ‖p
p. (1)

(b) If p ∈ [2,∞), then, for any sequence {cn} with
∑∞

n=1 |cn|pn p−2 < ∞, there
exists a function f ∈ L p(a, b) that has {cn} as its Fourier coefficients and

∞∑

n=1

|cn|pn p−2 �p,M ‖ f ‖p
p. (2)

Throughout the paper, for two functions f and g, the relation f � g (or g � f ) means
that there exists a constantC such that f (x) ≥ Cg(x) for all x , and the relation f � g
is equivalent to f � g � f (if we write f �a g, this means that the corresponding
constant is allowed to depend on a). From now on, we discuss Fourier series only with
respect to the trigonometric system.

The ranges of p in TheoremAare sharp, therefore to have both (1) and (2) true for all
p ∈ (1,∞), one has to impose some additional requirements. Hardy and Littlewood
[17] showed that if we restrict ourselves to sine or cosine series withmonotone tending
to zero coefficients, then both relations (1) and (2) hold for all p ∈ (1,∞). In this
regard, a natural question to ask was: how much can we release the requirement of
monotonicity to have

∞∑

n=1

|cn|pn p−2 �p ‖ f ‖p
p (3)

still true? This question in turn motivated creation of various extentions of the class
of monotone sequences satisfying (3). One of these classes, the so-called general
monotone or just GM class [28, Th. 4.2], consists of all sequences {an} fulfilling the
condition

2n∑

k=n

|ak − ak+1| � |an| (4)

for all n. Thus, now we dropped not only the monotonicity condition but even the
basic requirement of positivity, keeping though some regularity of our sequences. One
can see that GM class can yet be generalized (see [29, Th. 6.2(B)] and [32, Th. 1]) by
putting a mean value on the right-hand side of (4) instead of |an| as follows:
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2n∑

k=n

|ak − ak+1| �
λn∑

k= n
λ

|ak |
k

(5)

for some λ > 1 (see also [14] for some properties of such sequences). Note that these
classes and several other ones, defined as (4) but with some other majorants on the
right-hand side, in different sources can be also called GM . For a comprehensive
survey on the concept of general monotonicity, we refer the reader to [21].

One more direction of extending the obtained results (see [1, 18, 32]) is proving
them for weighted spaces. Define weighted Lebesgue spaces Lq

w(p,q), p, q ∈ (0,∞],
on [−π, π ], as the set of all measurable functions f with finite norm

‖ f ‖Lq
w(p,q)

:=

⎧
⎪⎪⎨

⎪⎪⎩

( π∫
−π

|t | qp −1| f (t)|qdt
) 1

q
, if 0 < p, q < ∞,

ess sup
t∈[−π,π ]

|t 1
p f (t)|, if 0 < p ≤ ∞, q = ∞.

The discrete weighted Lebesgue space lqw(p,q) is to be defined in the same way.
Now, a weighted version of relation (3) is

‖{cn}‖qlq
w(p′,q)

:=
∞∑

n=1

|cn|qn
q
p′ −1 � ‖ f ‖q

Lq
w(p,q)

, (6)

where p′ stands for the conjugate to p, that is, 1/p+1/p′ = 1. Note that if we put q =
p, we get the standard Hardy–Littlewood relation (3). From now on, writing Hardy–
Littlewood type relations we will omit the dependence on p of the corresponding
constants, so this dependence will be taken for granted. The following theorem for
weighted Lebesgue spaces was obtained by Sagher [27].

Theorem B (Sagher, 1976) If the sequences {an} and {bn} are monotone and vanishing
at infinity and the function f has the Fourier series

a0
2

+
∞∑

n=1

(an cos nx + bn sin nx),

then for p ∈ (1,∞), q ∈ [1,∞], there holds

‖ f ‖Lq
w(p,q)

� ‖{an}‖lq
w(p′,q)

+ ‖{bn}‖lq
w(p′,q)

.

It turns out that the same holds if we release the monotonicity condition in the theorem
above to (5), thus withdrawing the requirement of positivity. This result, along with
the similar statement proved for Lorentz spaces, was given by Dyachenko et al. [9].

So, in the one-dimensional case we have quite a complete picture.
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The whole scenario becomes more complicated if we step out from the one-
dimensional setting to the multidimensional one, and the first question we face
is to determine what we should mean by monotonicity if we deal with multiple
sequences. The usual one-dimensional monotonicity is characterized by the inequal-
ities an ≥ an+1, or equivalently, �an := an − an+1 ≥ 0. These two ways of writing
the same property give rise to the following fundamentally different multidimensional
monotonicity concepts. Our focus will be on the two-dimensional case.

Monotonicity in EachVariable

Likewise an ≥ an+1 in one dimension, we can require coordinatewise monotonicity,
that is, in two-dimensional case the condition will be

amn ≤ am′n′, for all m ≥ m′, n ≥ n′. (7)

It turns out, however, that for such sequence the Hardy–Littlewood relation (3) does
not hold for some values of p > 1, namely, we have the following result proved by
Dyachenko [6, 8].

Theorem C (Dyachenko, 1986)

(a) [6, Th. 1] If {amn}∞m,n=1 satisfying (7) and

amn → 0, as m + n → ∞, (8)

is the sequence of the Fourier coefficients with respect to one of the orthonor-
mal systems {einxeimy}∞m,n=1, {sin nx sinmy}∞m,n=1, and {cos nx cos ny}∞m,n=1, of
a function f , then for any p ∈ (1,∞),

∞∑

m,n=1

a p
mn(mn)p−2 � ‖ f ‖p

p.

(b) [8,Cor. 2]Let p > 4/3and the sequence {amn} satisfy (7)and∑∞
m,n=1 a

p
mn(mn)p−2

< ∞ (therefore, (8) as well). Then, for any of the systems above, there exists a
function f having {amn} as its Fourier coefficients and satisfying

∞∑

m,n=1

a p
mn(mn)p−2 � ‖ f ‖p

p. (9)

(c) [6, Ths. 8, 8’] For p ∈ (1, 4/3), there exists a sequence {amn} satisfying (7) and
(8) with

∑∞
m,n=1 a

p
mn(mn)p−2 < ∞ such that the corresponding trigonometric

series diverges by squares almost everywhere on (0, 2π)2.

Note that it was shown by Fefferman [13] that for any p > 1 and any f ∈ L p(0, 2π)2,
the Fourier series of f converges by squares almost everywhere on (0, 2π)2, thus, the
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third part of the theorem means that (9) is no longer true for p ∈ (1, 4/3). We also
remark that in general d-dimensional case the critical value is 2d/(d + 1) (see [7, Th.
1, Th. 4] and [8, Cor. 2]).

Monotonicity by Hardy

The next approach to the multiple concept of monotonicity is to consider the mono-
tonicity in the so-called sense of Hardy (or Hardy–Krause, see [16] and [19], where
this concept initially arises). That is, to introduce the following differences

�10amn := amn − am+1,n, �01amn := amn − am,n+1,

�11amn := �01(�10amn) = �10(�01amn) = amn − am+1,n − am,n+1 + am+1,n+1,

and recalling the one-dimentional condition �an ≥ 0, generalize it in the following
way

�11amn ≥ 0 for all m, n. (10)

Note that under the natural requirement (8), condition (10) implies

amn ≥ 0, �10amn ≥ 0, �01amn ≥ 0.

Here comes the result obtained by Móricz [23, Th. 1,2, Cor. 1].

Theorem D (Móricz, 1990) Let p ≥ 1 and the sequence {amn} satisfy (8) and (10).

(a) If
∑∞

m,n=1 a
p
mn(mn)p−2 < ∞, then the double sine or cosine series with coeffi-

cients {amn} is the Fourier series of its sum f and

∞∑

m,n=1

a p
mn(mn)p−2 � ‖ f ‖p

p.

(b) If {amn} is the sequence of double sine or cosine Fourier coefficients of f ∈ L p,
then

∞∑

m,n=1

a p
mn(mn)p−2 � ‖ f ‖p

p.

The reader can find Theorem D proved for Vilenkin systems (and hence for the Walsh
system) in [30, Sec. 6.3] and [31].

Condition (10) is quite restrictive and one of the closest generalizations of it in, say,
GM spirit is the following one

∞∑

m=k

∞∑

n=l

|�11amn| � |amn|.
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Note that if the sequence satisfies (10), then the left-hand side above becomes just
equal to amn . The next result [10, Th. 6B] (see [11] for the proof) extends the one of
Móricz.

Theorem E (Dyachenko, Tikhonov, 2007) If a nonnegative sequence {amn} satisfy (8)
and the so-called GM2 condition

∞∑

m=k

∞∑

n=l

|�11amn| � |akl | +
∞∑

m=k

|aml |
m

+
∞∑

n=l

|akn|
n

+
∞∑

m=k

∞∑

n=l

|amn|
mn

, (11)

then the corresponding double sine, cosine, or exponential series converges every-
where on (0, 2π)2 and is the Fourier series of its sum. Besides, for any p ∈ (1,∞),

∞∑

m,n=1

a p
mn(mn)p−2 � ‖ f ‖p

p.

It isworthmentioning that the�partwas provedwithout assumingamn ≥ 0,moreover,
it was shown that if

∑∞
m=k

∑∞
n=l |�11amn| � βkl , then

∑∞
m,n=1 β

p
mn(mn)p−2 �

‖ f ‖p
p. However, in the proof of the counterpart the requirement of nonnegativity

plays a crucial role. It was noted in [12, Th. 4.1] that following the lines of this proof
one can adapt it for a more general class of sequences for which the right-hand side
of (11) is replaces by

∑∞
m=�k/λ�

∑∞
n=�l/λ� |amn|/mn, λ > 1.

Further, it was shown [33] that some otherGM type nonnegative sequences happen
to obey the two-sided Hardy–Littlewood relation. We present the result from [33] for
weighted spaces.

Theorem F (Yu, Zhou, Zhou, 2012) Let {amn} be a nonnegative sequence satisfying
(8) and the following GM type conditions

2k∑

m=k

|�aml | �
λk�∑

m=λ−1k�

|aml |
m

,

2l∑

n=l

|�akn| �
λl�∑

n=λ−1l�

|akn|
n

,

2k∑

m=k

2l∑

n=l

|�amn| �
λk�∑

m=λ−1k�

λl�∑

n=λ−1l�

|amn|
mn

for some λ ≥ 2, and let f (x, y) := ∑∞
m,n=1 amn sinmx sin ny. Then, for any p ∈

[1,∞), for any function φ ∈ � with either φ
− 1

p−1 ∈ L if p > 1, or φ−1 ∈ L∞, if
p = 1, we have

φ| f |p ∈ L ⇔
∞∑

m,n=1

a p
mnφ(1/m, 1/n)(mn)p−2 < ∞.
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In the above result� stands for some class of power-like positive functions, which we
are not going to specify here. A similar result with a more general GM type positive
sequences and some other (not comparable) class of power-like functionswas obtained
in [5].

The main purpose of this work is to show that for some kinds of double GM
sequences we can prove the Hardy–Littlewood theorem without restricting ourselves
only to positive sequences. We present two GM type classes for which the two-sided
Hardy–Littlewood inequality holds true.

We write that {amn} ∈ GMc
1 if it satisfies (8) and

2k∑

m=k

∞∑

n=l

|�11amn| +
∞∑

m=k

2l∑

n=l

|�11amn| ≤ C |akl |, (12)

and {amn} ∈ GMc
2 , if it satisfies (8) and

2k∑

m=k

∞∑

n=l

|�11amn| +
∞∑

m=k

2l∑

n=l

|�11amn| ≤ C |a2k,l |, (13)

for all k, l ∈ N and some constant C depending only on the sequence {amn}. We
remark that the letter c in GMc comes from the word “corner”, since a set of the kind
[k, 2k] × [l,∞) ∪ [k,∞) × [l, 2l] generates a corner on the plane. Note that GMc

1
sequences obey the one-dimensional GM conditions (4) in each variable (see (14) in
the proof of Lemma 1), while GMc

2 in one variable satisfy (4), and in another one, the
“backward” GM condition.

Note that for [−π, π ]2 the Lq
w(p,q)-norms take the form

‖ f ‖Lq
w(p,q)

:=

⎧
⎪⎪⎨

⎪⎪⎩

( π∫
−π

π∫
−π

|ts| qp−1| f (t, s)|qdt ds
) 1

q
, if 0 < p, q < ∞,

ess sup
(t,s)∈[−π,π ]2

|(ts) 1
p f (t, s)|, if 0 < p ≤ ∞, q = ∞.

From now on, for convenience, we adopt the following notation: using that
(sin x)(1) = (sin x)′ = cos x and (sin x)(0) = sin x , we will write a two-dimensional
trigonometric series as

1∑

i, j=0

∞∑

m,n=0

ai jmn sin
(i) mx sin( j) ny

and we will say that {ai jmn}∞m,n=1, i, j = 0, 1, is the sequence of its coefficients.
The main result of the paper is the following.

Theorem 1 Let p ∈ (1,∞), q ∈ [1,∞], and let each of the sequences
{ai jmn}∞m,n=1, i, j = 0, 1, belong either to GMc

1 or to GMc
2 .
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(a) If {ai jmn}∞m,n=1, i, j = 0, 1, is the sequence of Fourier coefficients of f ∈
L(−π, π), then

‖ f ‖q
Lq

w(p,q)

�
1∑

i, j=0

∞∑

m,n=1

|ai jmn|q(mn)
q
p′ −1

.

(b) If
∑1

i, j=0
∑∞

m,n=1 |ai jmn|q(mn)
q
p′ −1

< ∞, then the corresponding trigonometric

series converges everywhere on (0, 2π)2 and is the Fourier series of its sum,
moreover,

‖ f ‖q
Lq

w(p,q)

�
1∑

i, j=0

∞∑

m,n=1

|ai jmn|q(mn)
q
p′ −1

.

Sharpness of Theorem 1 for GMc
2 sequences is provided by a counterexample in

Theorem 2, which shows that if we restrict the sum on the left-hand side of (13) to
the rectangle (that is, to the intersection and not the union of the two corresponding
strips), which is one of the most natural generalizations of the left-hand side of the
GM condition (4), then the � part fails for p > 2 and q ≥ p.

2 Proof of the Hardy–Littlewood Theorem forGMc Sequences

For a sequence {amn}∞m,n=1, we define

Amn := max
(k,l)∈Qm,n

|akl | := max
(k,l)∈[2m ,2m+1]×[2n ,2n+1]

|akl |.

Lemma 1 (a) For any sequence {akl}∞k,l=1 ∈ GMc
1 , there exist c, v > 0 such that

for any (m, n) with Am−1,n−1 ≤ T Am,n there exist a rectangle Q′
m−1,n−1 ⊂

Qm−1,n−1 of size 2m−v × 2n−v satisfying

∣∣∣∣
∑

k,l∈ Q′
m−1,n−1

akl

∣∣∣∣ > c2m+n Amn,

where c and v depend only on C and T .
(b) For any sequence {akl}∞k,l=1 ∈ GMc

2 , there exist c, v > 0 such that for any (m, n)

with Am+1,n−1 ≤ T Am,n there exist a rectangle Q′
m+1,n−1 ⊂ Qm+1,n−1 of size

2m−v × 2n−v satisfying

∣∣∣∣
∑

k,l∈ Q′
m+1,n−1

akl

∣∣∣∣ > c2m+n Amn,

where c and v depend only on C and T .
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Proof Note that (8) and (12) imply that

2k∑

m=k

|�10amt | +
2l∑

n=l

|�01asn| ≤ C |ak,l | (14)

for any k, l ∈ N and (s, t) ∈ [k, 2k]× [l, 2l]. Similarly, (8) along with (13) imply (14)
with a2k,l instead of ak,l on the right-hand side. In particular, (14) yields that

|as,t | − |ak,l | = |as,t | − |ak,t | + |ak,t | − |a2k,l | ≤ C |ak,l |,

so

|as,t | ≤ (C + 1)|ak,l | ≤ (C + 1)2|as′t ′ |

for any (s′, t ′) ∈ [0.5k, k] × [0.5l, l]. Considering k = 2m, l = 2n, we get for any
(s, t) ∈ Qm−1,n−1

|ast | ≥ (C + 1)−2Amn =: αAmn . (15)

For conditions (8) and (13), the same arguments give

|as,t | − |a2k,l | = |as,t | − |a2k,t | + |a2k,t | − |a2k,l | ≤ C |a2k,l |,

and

|as,t | ≤ (C + 1)|a2k,l | ≤ (C + 1)2|as′t ′ |

for any (s′, t ′) ∈ [2k, 4k] × [0.5l, l]. Once more, considering k = 2m, l = 2n, we
get (15) for (s, t) ∈ Qm+1,n−1 instead of Qm−1,n−1.

Thus, any sequence {akl} ∈ GMc
1 satisfies |akl | ≤ (C + 1)|ak′l ′ | for (k′, l ′) ∈

[0.5k, k] × [0.5l, l] as well as any {akl} ∈ GMc
2 does for (k′, l ′) ∈ [k, 2k] × [0.5l, l].

InLemma1(a), due to condition (14) and inequality (15), for any (k, l) ∈ Qm−1,n−1,
eachoneof the sequencesa2m−1,l , a2m−1+1,l , . . . , a2m ,l andak,2n−1 , ak,2n−1+1, . . . , ak,2n
can have at most

C max
(k,l)∈Qm−1,n−1

|akl |
2αAmn

= CAm−1,n−1

2αAmn
≤ CT

2α
=: b (16)

changes of sign.
The same holds for Qm+1,n−1 in place of Qm−1,n−1 in Lemma 1(b).
Focus nowonLemma1(a). Consider the rectangle R := Qm−1,n−1 = [2m−1, 2m]×

[2n−1, 2n] on the plane and draw all the segments [(k, l), (k + 1, l)] such that ak,l−1
and ak,l have different signs and all the segments [(k, l), (k, l + 1)] such that ak−1,l
and ak,l have different signs (call them marked segments). Then our rectangle R is
divided by the marked segments into several connected parts corresponding to the
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terms of {akl} of the same sign. The interior part of the union of their boundaries has
at most b2n−1 vertical marked segments and at most b2m−1 horizontal ones. Take a
positive integer u such that

2u > 8bτ, (17)

where τ := 4
√
T (C + 1)2 + 1. Divide R into 22u equal rectangles of size 2m−1−u ×

2n−1+u and consider a half of them in a checkerboard pattern. Suppose that there is
no rectangle among them containing at most 2n−1−u/τ vertical marked segments and
at most 2m−1−u/τ horizontal ones. Then we must have

22u−1 ≤ b2m−1τ

2m−1−u
+ b2n−1τ

2n−1−u
= 2u+2bτ ≤ 4bτ2u,

which contradicts (17). So, there is a rectangle r = [α1, α2] × [β1, β2] of size
2m−1−u × 2n−1−u with at most 2n−1−u/τ vertical marked segments and at most
2m−1−u/τ horizontal ones inside it. Consider the parts corresponding to the terms
of {akl} of the same sign inside r . Call the parts whose boundaries intersect the bound-
ary of r by A-parts, the other ones, by B-parts. Note that there is no marked segment
of an A-part inside the rectangle r ′ := [ 3α1+α2

4 , α1+3α2
4

] × [ 3β1+β2
4 ,

β1+3β2
4

]
. Indeed,

otherwise there would exist a broken line of marked segments with either at least
0.25(α2 − α1) = 2m−3−u horizontal segments or at least 0.25(β2 − β1) = 2n−3−u

vertical ones. But this is impossible, since τ > 4. The area of all B-parts does not
exceed 2m+n−2−2u/τ 2. Thus, there are at least 2m+n−4−2u(1 − 4τ−2) terms of the
same sign in r ′, so the absolute value of the sum of the terms {akl} in r ′ is at least

2n+m−2u−4
(
1 − 4

τ 2
− 4

τ 2
T (C + 1)2

)
αAmn > 2n+m−2u−5αAmn,

which concludes the proof of Lemma 1(a) with c := 2−2u−5α and v := u + 1.
A similar argument is valid for Qm+1,n−1 in Lemma 1(b), which completes the

proof. ��
Remark 1 In the proof of Lemma 1, for GMc

1 class we only used its one-dimensional
GM properties (14), and forGMc

2 , the corresponding nonsymmetric relations (namely,
(14) with a2k,l in place of ak,l ).

Remark 2 The claim of Lemma 1(a) is no longer true if we substitute the GMc
1 con-

dition (12) for

2k∑

m=k

2l∑

n=l

|�11amn| ≤ C |akl |. (18)

Proof Indeed, consider the sequence

amn := (−1)m

m
fm(n),



Journal of Fourier Analysis and Applications (2023) 29 :60 Page 11 of 30 60

where fm(n) we define as follows:

fm(n) =
{
2−m+1, log2 n <

m(m+1)
2 ,

2−m−t ,
(m+t)2+m−t

2 ≤ log2 n <
(m+t+1)2+m−t−1

2 , t ∈ Z+.

For such a sequence, condition (8) obviously holds. Consider a rectangle Smn of the
form [m, 2m) × [n, 2n). The only nonzero �11akl in this rectangle are �11am′−1,n′
and�11am′n′ , where n′ ∈ [n, 2n) : log2(n′)� = log2(n′ −1)�+1, i.e. n′ is a power
of two, and

m′ := min
{
m ∈ N : m = log2 n

′ − k(k + 1)

2
, k ∈ Z+

}
.

Note that |akl | ≤ |amn| for k ≥ m, l ≥ n, so |�11am′n′ | ≤ |am′n′ | + |am′+1,n′ | ≤
2|amn|, which yields condition (18) with C = 2.

Assume that the assertion of Lemma 1 holds. Then there must exist a constant c
such that for at least cmn squares [k, k + 2) × [l, l + 2) in any Smn there holds

|akl + ak,l+1 + ak+1,l + ak+1,l+1| ≥ c|akl |. (19)

Consider a rectangle Smn with

t(t + 1)

2
+ 2m ≤ log2 n ≤ (t + 1)(t + 2)

2
− 2,

where t > 4m is a positive integer. For any akl in Smn , we have

akl = 2−t−1 (−1)k

k
,

whence for any 2 × 2 square [k, k + 2) × [l, l + 2) ⊂ Smn

|akl + ak,l+1 + ak+1,l + ak+1,l+1| = 2−t−1 · 2
(
1

k
− 1

k + 1

)
= 2

k + 1
|akl | <

2

m
|akl |

= o(|akl |),

as m → ∞, which leads to a contradiction. ��
Lemma 2 For a function f ∈ L(−π, π), given the representation

f (x, y) =
1∑

i, j=0

f i j (x, y), f i j (−x, y) = (−1)i f i j (x, y), f i j (x,−y)

= (−1) j f i j (x, y),
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for any p ∈ (1,∞), q ∈ [1,∞], we have

‖ f ‖Lq
w(p,q)

�
1∑

i, j=0

‖ f i j‖Lq
w(p,q)

.

Proof The � part is clear, so we have to prove the reverse.
We start with the case q < ∞. Noting that for any pair of functions g1, g2 there always
holds |g1|q + |g2|q � |g1 + g2|q + |g1 − g2|q and recalling that the weight is an even
in each variable function, we obtain

‖ f i0(x, ·)‖q
Lq

w(p,q)

+ ‖ f i1(x, ·)‖q
Lq

w(p,q)

� ‖( f i0 + f i1)(x, ·)‖q
Lq

w(p,q)

+ ‖( f i0 − f i1)(x, ·)‖q
Lq

w(p,q)

� ‖( f i0 + f i1)(x, ·)‖q
Lq

w(p,q)

for i = 0, 1. Similarly,

1∑

i, j=0

‖ f i j‖q
Lq

w(p,q)

� ‖ f 00 + f 01 + f 10 + f 11‖q
Lq

w(p,q)

+ ‖ f 00 + f 01 − f 10 − f 11‖q
Lq

w(p,q)

�
∥∥∥

1∑

i, j=0

f i j
∥∥∥
q

Lq
w(p,q)

= ‖ f ‖q
Lq

w(p,q)

.

For q = ∞, the claim follows from the equalities

4 f i j (x, y) ≡ f (x, y) + (−1)i f (−x, y) + (−1) j f (x,−y) + (−1)i+ j f (−x,−y).

��
Next we prove a two-dimensional analogue of [9, L. 2.2] (see also the one-

dimensional result [27, Th. 2.4] for Lorentz spaces). Note that similar multidimen-
sional results for Lorentz spaces were obtained in [24] and [25].

Lemma 3 Let {ai jmn}∞m,n=1, i, j = 0, 1, be the sequence of Fourier coefficients of
f ∈ L(−π, π). Then for any p ∈ (1,∞), q ∈ [1,∞], there holds

1∑

i, j=0

∞∑

m,n=1

(
sup

k≥m, l≥n

1

kl

∣∣∣
k∑

s=1

l∑

t=1

ast
∣∣∣
)q

(mn)
q
p′ −1 � ‖ f ‖q

Lq
w(p,q)

.

Proof of Lemma 3 Note that if we prove the statement of the lemma for odd in each
variable functions f ∈ L(−π, π), then it will be true for any integrable f . Indeed,
the relation for such functions implies the same for all functions that are either odd
or even in each variable due to the boundedness of the Hilbert transform in weighted
Lebesgue spaces. The general case follows then by Lemma 2. Thus, we can assume
that ai jmn = 0 if (i, j) �= (0, 0) and omit the upper indices of a00mn .
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According to [9, (2.4), (2.7)], for any 1 < p < ∞, 1 ≤ q ≤ ∞, and m ∈ N, there
holds

‖Im(x)‖l p,q :=
∥∥∥∥
cos x

2 (1 − cosmx)

m sin x
2

+ sinmx

m

∥∥∥∥
l p,q

� m− 1
p .

Therefore, for any 1 < p1, p2 < ∞, 1 < q ≤ ∞, and m, n ∈ N, by Hölder’s
inequality

1

mn

∣∣∣
m∑

k=1

n∑

l=1

akl
∣∣∣ ≤

∫ π

0

∫ π

0
| f (x, y)Im(x)In(y)|dxdy

≤
∫ π

0
|In(y)|

( ∫ π

0
x

q
p1

−1| f (x, y)|qdx
) 1

q
( ∫ π

0
x

q′
p′1 |Im(x)|q ′

dx
) 1

q′
dy

� m
− 1

p′1
∫ π

0
|In(y)|

( ∫ π

0
x

q
p1

−1| f (x, y)|qdx
) 1

q
dy

≤ m
− 1

p′1
( ∫ π

0

∫ π

0
x

q
p1

−1
y

q
p2

−1| f (x, y)|qdxdy
) 1

q
( ∫ π

0
y

q′
p′2

−1|In(y)|dy
) 1

q′

� m
− 1

p′1 n
− 1

p′2
( ∫ π

0

∫ π

0
x

q
p1

−1
y

q
p2

−1| f (x, y)|qdxdy
) 1

q

=: m− 1
p′1 n

− 1
p′2 ‖ f ‖Lq

w((p1,p2),q)
. (20)

Similarly, if q = 1,

1

mn

∣∣∣
m∑

k=1

n∑

l=1

akl
∣∣∣ ≤

∫ π

0

∫ π

0
| f (x, y)Im(x)In(y)|dxdy

≤ sup
x∈[0,π ]

x
1
p′1 |Im(x)| · sup

y∈[0,π ]
y

1
p′2 |In(y)|

·
∫ π

0

∫ π

0
x

1
p1

−1
y

1
p2

−1| f (x, y)| dxdy � m
− 1

p′1 n
− 1

p′2 ‖ f ‖L1
w((p1,p2),1)

.

Thus, for any 1 < p1, p2 < ∞, 1 ≤ q ≤ ∞, and m ∈ N, we obtain

m
1
p′1 sup

n∈N
n

1
p′2 sup

k≥m, l≥n

1

kl

∣∣∣
k∑

s=1

l∑

t=1

ast
∣∣∣ ≤ C‖ f ‖Lq

w((p1,p2),q)
, (21)

where the constant C does not depend on m.
Now, in order to prove the desired inequality, we will invoke interpolation theory.

Recall that the norm of a sequence c := {ck}∞k=1 in the discrete Lorentz space l p,q , for



60 Page 14 of 30 Journal of Fourier Analysis and Applications (2023) 29 :60

p ∈ (1,∞) and q ∈ (0,∞], is defined as follows

‖c‖l p,q :=

⎧
⎪⎨

⎪⎩

( ∑∞
k=1 k

q
p −1|c∗

k |q
) 1

q
, if q < ∞,

sup
k≥1

k
1
p |c∗

k |, if q = ∞,

where {c∗
k } stands for the decreasing rearrangement of c. It follows from [3, Th.

5.3.1] that for θ ∈ (0, 1) and q ∈ (0,∞], for the discrete Lorentz spaces l p1,∞ and
l p2,∞, 0 < p1 < p2 ≤ ∞, with θ/p1 + (1 − θ)/p2 = 1/p, we have

(l p1,∞, l p2,∞)θ,q = l p,q . (22)

For the Lebesgue spaces Lq
w((p11,p21),q) and Lq

w((p21,p22),q), q ∈ (0,∞], (see (20)),
with θ/p11 + (1− θ)/p12 = 1/p1, θ/p21 + (1− θ)/p22 = 1/p2, [3, Th. 5.4.1] gives

(Lq
w((p11,p21),q), L

q
w((p12,p22),q))θ,q = Lq

w((p1,p2),q). (23)

For any fixed m0 ∈ N, in light of the monotonicity of sup
k≥m0, l≥n

1
kl

∣∣∣
k∑

s=1

l∑
t=1

ast
∣∣∣ in n,

(21) is equivalent to

m
1
p′1
0

∥∥∥
{

sup
k≥m0, l≥n

1

kl

∣∣∣
k∑

s=1

l∑

t=1

ast
∣∣∣
}∞
n=1

∥∥∥
l p′2,∞

≤ C‖ f ‖Lq
w((p1,p2),q)

. (24)

Fix now p1, p2 ∈ (1,∞) and q ∈ [1,∞]. Take θ ∈ (0, 1) and p11 < p12, p21 < p22
such that θ/p11 + (1− θ)/p12 = 1/p1 and θ/p21 + (1− θ)/p22 = 1/p2. Note that,
for any fixed m0, the operator

Tm0 f =
{

sup
k≥m0, l≥n

1

kl

∣∣∣
k∑

s=1

l∑

t=1

ast
∣∣∣
}∞
n=1

is sublinear and that due to (24)

Tm0 : Lq
w((p1,p21),q) → l p′

21,∞ and Tm0 : Lq
w((p1,p22),q) → l p′

22,∞,

where the involved constants do not depend on m0. Then it follows from [22, Th. 6],
(22), and (23) that

Tm0 : Lq
w((p1,p2),q) = (Lq

w((p1,p21),q), L
q
w((p1,p22),q))θ,q → (l p′

21,∞, l p′
22,∞)θ,q = l p′

2,q
,

so we arrive at

m
1
p′1

∥∥∥
{

sup
k≥m, l≥n

1

kl

∣∣∣
k∑

s=1

l∑

t=1

ast
∣∣∣
}∞
n=1

∥∥∥
l p2,q

� ‖ f ‖Lq
w((p1,p2),q)

, (25)
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for any m. Now we note that

∥∥∥
{

sup
k≥m, l≥n

1

kl

∣∣∣
k∑

s=1

l∑

t=1

ast
∣∣∣
}∞
n=1

∥∥∥
l p2,q

=
( ∞∑

n=1

n
q
p2

−1
(

sup
k≥m, l≥n

1

kl

∣∣∣
k∑

s=1

l∑

t=1

ast
∣∣∣
)q)1/q

is decreasing in m for any p2 ∈ (1,∞) and that the operator

T f =
{( ∞∑

n=1

n
q
p2

−1
(

sup
k≥m, l≥n

1

kl

∣∣∣
k∑

s=1

l∑

t=1

ast
∣∣∣
)q)1/q}∞

m=1

is sublinear. Since according to (25) we have

T : Lq
w((p11,p2),q) → l p′

11,∞ and T : Lq
w((p12,p2),q) → l p′

12,q
,

we can once again apply [22, Th. 6] and obtain

T : Lq
w((p1,p2),q) = (Lq

w((p11,p2),q), L
q
w((p12,p2),q))θ,q → (l p′

11,∞, l p′
12,∞)θ,q = l p′

1,q
.

The latter means that

∥∥∥
{( ∞∑

n=1

n
q
p2

−1
(

sup
k≥m, l≥n

1

kl

∣∣∣
k∑

s=1

l∑

t=1

ast
∣∣∣
)q) 1

q
}∞
m=1

∥∥∥
l p1,q

� ‖ f ‖Lq
w((p1,p2),q)

,

whence the claim follows by putting p1 = p2 = p. ��

Proof of Theorem 1 In light of Lemma 2 it suffices to prove the theorem only for either
odd or even in each variable functions, omitting therefore the upper indices of amn .

We start with the part a). Due to Lemma 3 there holds

‖ f ‖q
Lq

w(p,q)

�
∞∑

m,n=1

(
sup

k≥m, l≥n

1

kl

∣∣∣
k∑

s=1

l∑

t=1

ast
∣∣∣
)q

(mn)
q
p′ −1

�
∞∑

m,n=0

2
(m+n)

q
p′

(
sup

k≥2m , l≥2n

1

kl

∣∣∣
k∑

i=1

l∑

j=1

ai j
∣∣∣
)q =:

∞∑

m,n=0

Pmn . (26)

Denote

Wmn :=
2m+1−1∑

k=2m

2n+1−1∑

l=2n
|akl |q(kl)

q
p′ −1

.
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Consider first GMc
1 sequences. Let us fix some T > 1. We call a pair (m, n) good

(we write (m, n) ∈ G), if either mn = 0 or Am−1,n−1 ≤ T Amn . We have

∞∑

k,l=1

|akl |q(kl)
q
p′ −1 =

∞∑

m,n=0

Wmn ≤
∞∑

m=0

Wm0

+
∞∑

n=0

W0n +
∑

(m,n)∈G∩N2

Wmn +
∑

(m,n)∈G

∑

(k,l)∈Bmn

Wkl

=: J1 + J2 + J3 + J4,

where Bmn, (m, n) ∈ G, stands for the set of all pairs (k, l) /∈ G such that k =
m + t, l = n + t for some t ∈ N.

According to the one-dimentional Hardy–Littlewood theorem for GM sequences
[9, Th. 1.2], we obtain

J1 =
∞∑

m=0

Wm0 =
∞∑

k=1

|ak1|qk
q
p′ −1 � ‖g‖q

Lq
w(p,q)

� ‖ f ‖q
Lq

w(p,q)

, (27)

where g(x) = ∫ π

−π
f (x, y) sin y dy. A similar estimate is valid for J2.

Consider a pair (m, n) ∈ G ∩N
2. Denote the rectangles we constructed in Lemma

1a) [s1mn, s
2
mn] × [t1mn, t

2
mn], so we have

Pm−1,n−1 = 2
(m+n−2) q

p′
(

sup
k≥2m−1, l≥2n−1

1

kl

∣∣∣
k∑

i=1

l∑

j=1

ai j
∣∣∣
)q

� 2
(m+n)

q
p′ −(m+n)q

⎛

⎝
∣∣∣
s1mn−1∑

i=1

t1mn−1∑

j=1

ai j
∣∣∣
q +

∣∣∣
s1mn−1∑

i=1

t2mn∑

j=1

ai j
∣∣∣
q

+
∣∣∣
s2mn∑

i=1

t1mn−1∑

j=1

ai j
∣∣∣
q +

∣∣∣
s2mn∑

i=1

t2mn∑

j=1

ai j
∣∣∣
q

⎞

⎠

� 2
(m+n)

q
p′ −(m+n)q

∣∣∣
s2mn∑

i=s1mn

t2mn∑

j=t1mn

ai j
∣∣∣
q

� 2
(m+n)

q
p′ Aq

mn � Wmn .

Here we used the inequality

|x + y + z + t | + |x + y| + |x + z| + |x | ≥ |z + t | + |z| ≥ |t |,

valid for any x, y, z, t ∈ C.
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Hence, using (26), we obtain

J3 =
∑

(m,n)∈G∩N2

Wmn �
∑

(m,n)∈G∩N2

Pm−1,n−1 ≤ ‖ f ‖q
Lq

w(p,q)

. (28)

Finally, combining (27), the similar estimate for J2, and (28), we derive

J4 ≤
∑

(m,n)∈G
Wmn

∞∑

j=1

T− j ≤ 1

1 − T−1 (J1 + J2 + J3) � ‖ f ‖q
Lq

w(p,q)

,

which concludes the proof of the first part for the case of GMc
1 .

If we replace GMc
1 by GMc

2 , i.e. (12) by (13), we change the definition of a good
pair of numbers to the following one: we call a pair (m, n) good, if either mn = 0 or
Am+1,n−1 ≤ T Amn . The rest of the proof is the same in light of Lemma 1b) with the
only changes: now Bmn, (m, n) ∈ G, stands for the set of all pairs (k, l) /∈ G such
that k = m − t, l = n + t for some t ∈ N and Pm−1,n−1 in (28) becomes Pm+1,n−1.

Turnnow to thepart b).Note that if {amn}∈GMc
1∪GMc

2 and
∑∞

m,n=1 |amn|q(mn)
q
p′ −1

< ∞, then we have
∑∞

k=1
∑∞

l=1 |�11akl | < ∞, which implies that the corresponding
trigonometric series converges in the Pringsheim sense everywhere on (0, 2π)2 and
is the Fourier series of its sum (see [6, L. 4]). Indeed, under condition (12) we have
by (15) and Hölder’s inequality

∞∑

k,l=1

|�11akl | �
∞∑

k=0

|a2k ,2k | �
∞∑

k=0

|a2k ,2k |
2k∑

m=2k−1

2k∑

n=2k−1

(mn)−1 �
∞∑

m,n=1

|amn |(mn)−1

=
∞∑

m,n=1

|amn |(mn)
1
p′ − 1

q (mn)
− 1

p′ − 1
q′ �

( ∞∑

m,n=1

|amn |q (mn)
q
p′ −1

) 1
q
( ∞∑

m,n=1

(mn)
− q′

p′ −1
) 1

q′
< ∞,

and similarly under (13),

∞∑

k=1

∞∑

l=1

|�11akl | �
∞∑

k=0

|a2k+1,2k | �
∞∑

k=0

|a2k+1,2k |

2k+2∑

m=2k+1

2k∑

n=2k−1

(mn)−1 �
∞∑

m,n=1

|amn|(mn)−1 < ∞.

We will provide the proof only for the system {sinmx, sin ny}, the other cases will
follow then from boundedness of Hilbert transform in weighted Lebesgue spaces.

For (x, y) ∈ (
π

m+1 ,
π
m

] × (
π

n+1 ,
π
n

]
, we have

| f (x, y)| =
∣∣∣

∞∑

k=1

∞∑

l=1

akl sin kx sin ly
∣∣∣ ≤ xy

m∑

k=1

n∑

l=1

kl|akl |

+ x
m∑

k=1

k
∞∑

l=n

|akl − ak,l+1||D̃l (y) − D̃n(y)|
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+ y
n∑

l=1

l
∞∑

k=m

|akl − ak+1,l ||D̃k(x) − D̃m(x)|

+
∞∑

k=m

∞∑

l=n

|�11akl | · |(D̃k(x) − D̃m(x))(D̃l (y) − D̃n(y))| � 1

mn

m∑

k=1

n∑

l=1

kl|akl |

+ n

m

m∑

k=1

k
∞∑

l=n

|akl − ak,l+1| + m

n

n∑

l=1

l
∞∑

k=m

|akl − ak+1,l | + mn
∞∑

k=m

∞∑

l=n

|�11akl |.

Applying condition (12), we derive

| f (x, y)| � 1

mn

m∑

k=1

n∑

l=1

kl|akl | + n

m

m∑

k=1

k
∞∑

t=0

|ak,2t n| + m

n

n∑

l=1

l
∞∑

t=0

|a2tm,l |

+ mn
∞∑

t=0

|a2tm,2t n|

� 1

mn

m∑

k=1

n∑

l=1

kl|akl | + n

m

m∑

k=1

k
∞∑

l=�n/2�

|akl |
l

+ m

n

n∑

l=1

l
∞∑

k=�m/2�

|akl |
k

+ mn
∞∑

k=�m/2�

∞∑

l=�n/2�

|akl |
kl

.

In turn, (13) yields

| f (x, y)| � 1

mn

m∑

k=1

n∑

l=1

kl|akl | + n

m

m∑

k=1

k
∞∑

t=0

|ak,2t n| + m

n

n∑

l=1

l
∞∑

t=0

|a2t+1m,l |

+ mn
∞∑

t=0

|a2t+1m,2t n|

� 1

mn

m∑

k=1

n∑

l=1

kl|akl | + n

m

m∑

k=1

k
∞∑

l=�n/2�

|akl |
l

+ m

n

n∑

l=1

l
∞∑

k=2m

|akl |
k

+ mn
∞∑

k=2m

∞∑

l=�n/2�

|akl |
kl

.

Hence, in both cases we get

| f (x, y)| � 1

mn

m∑

k=1

n∑

l=1

kl|akl | + n

m

m∑

k=1

k
∞∑

l=�n/2�

|akl |
l

+ m

n

n∑

l=1

l
∞∑

k=�m/2�

|akl |
k

+ mn
∞∑

k=�m/2�

∞∑

l=�n/2�

|akl |
kl

=: I 1m,n + I 2m,n + I 3m,n + I 4m,n . (29)
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Thus, for q < ∞, denoting α := 1 − q/p, we obtain

‖ f ‖q
Lq
p,q

�
π∫

0

π∫

0

(xy)−α| f (x, y)|q dxdy

�
∞∑

m=1

∞∑

n=1

π
m∫

π
m+1

π
n∫

π
n+1

(xy)−α(I 1m,n + I 2m,n + I 3m,n + I 4m,n)
q dxdy

�
∞∑

m=1

∞∑

n=1

(mn)α−2((I 1m,n)
q + (I 2m,n)

q + (I 3m,n)
q + (I 4m,n)

q).

Recall the Hardy-type inequalities for power weights (see, for instance, [20, (0.6),
(0.10), (1.102)]) for q ≥ 1:

∞∑

n=1

nγ
( n∑

k=1

ak
)q

�q

∞∑

n=1

nγ+qaqn , for γ < −1, (30)

and its dual,

∞∑

n=1

nγ
( ∞∑

k=n

ak
)q

�q

∞∑

n=1

nγ+qaqn , for γ > −1. (31)

Using (30) in each variable we arrive at

∞∑

m=1

∞∑

n=1

(mn)α−2(I 1m,n)
q =

∞∑

m=1

mα−2−q
∞∑

n=1

nα−2−q
( n∑

l=1

l
m∑

k=1

k|akl |
)q

�
∞∑

n=1

nα−2+q
∞∑

m=1

mα−2−q
( m∑

k=1

k|akn|
)q

�
∞∑

m=1

∞∑

n=1

(mn)α−2+q |amn|q

and

∞∑

m=1

∞∑

n=1

(mn)α−2(I 2m,n)
q =

∞∑

m=1

mα−2−q
∞∑

n=1

nα−2+q
( ∞∑

l=�n/2�

1

l

m∑

k=1

k|akl |
)q

�
∞∑

m=1

mα−2−q
∞∑

n=1

nα−2+q
( ∞∑

l=n

1

l

m∑

k=1

k|akl |
)q

�
∞∑

n=1

nα−2+q
∞∑

m=1

mα−2−q
( m∑

k=1

k|akn|
)q

�
∞∑

m=1

∞∑

n=1

(mn)α−2+q |amn|q ,
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where we used inequality (15). The similar estimate holds for I 3. And finally, due to
(31)

∞∑

m=1

∞∑

n=1

(mn)α−2(I 4m,n)
q =

∞∑

m=1

mα−2+q
∞∑

n=1

nα−2+q
( ∞∑

l=�n/2�

1

l

∞∑

k=�m/2�

|akl |
k

)q

�
∞∑

m=1

mα−2+q
∞∑

n=1

nα−2+q
( ∞∑

l=n

1

l

∞∑

k=m

|akl |
k

)q

�
∞∑

m=1

mα−2+q
∞∑

n=1

nα−2+q
( ∞∑

k=m

|akn|
k

)q

�
∞∑

m=1

∞∑

n=1

(mn)α−2+q |amn|q ,

which completes the proof for the case q ∈ [1,∞). For q = ∞, using (29) we can
write

sup
(x,y)∈( π

m+1 , π
m ]×( π

n+1 , π
n ]

(xy)
1
p | f (x, y)| ≤ (mn)

− 1
p (I 1m,n + I 2m,n + I 3m,n + I 4m,n).

Next,

(mn)
− 1

p I 1m,n = (mn)
− 1

p −1
m∑

k=1

n∑

l=1

kl|akl |

≤ (mn)
− 1

p−1
m∑

k=1

n∑

l=1

(kl)
1
p sup

k,l

(
(kl)

1
p′ |akl |

)
� sup

k,l

(
(kl)

1
p′ |akl |

)
.

We also have

(mn)
− 1

p I 2m,n = (mn)
− 1

p
n

m

m∑

k=1

∞∑

l=�n/2�

k

l
|akl | � sup

k,l

(
(kl)

1
p′ |akl |

)
,

and the similar estimate for I 3. Finally,

(mn)
− 1

p I 4m,n = (mn)
− 1

p mn
∞∑

k=�m/2�

∞∑

l=�n/2�

|akl |
kl

� sup
k,l

(
(kl)

1
p′ |akl |

)
,

which completes the proof of the theorem. ��
Remark 3 For the spaces Lq

w(p,q)(0, 2π) in place of Lq
w(p,q)(−π, π), the assertion of

Theorem 1 still holds for q ≤ p but fails for q > p.
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Indeed, for q > p it suffices to consider the one-dimensional sine series

f (x) :=
∞∑

k=1

k
− 1

p′ log− 1
p (k + 2) sin kx =:

∞∑

k=1

ak sin kx .

We have
∑ |ak |pk p−2 = ∑

k−1 log−1(k + 2) = ∞, so by the Hardy–Littlewood
theorem f /∈ L p, whence ‖ f ‖Lq

w(p,q)
(0,2π) � ‖ f ‖L p(π,2π) = ∞. On the other hand,

‖ f ‖Lq
w(p,q)

(−π,π) �
∑

|ak |qk
q
p′ −1 =

∑
k−1 log− q

p (k + 2) < ∞.

However, for q ≤ p, there holds xq/p−1 � 1, so that

‖ f ‖Lq
w(p,q)

(0,2π) � ‖ f ‖Lq
w(p,q)

(0,π) + ‖ f ‖Lq
w(p,q)

(π,2π) � ‖ f ‖Lq
w(p,q)

(0,π) � ‖ f ‖Lq
w(p,q)

(−π,π).

The reason of the failure of the Hardy–Littlewood relation here is that the function
in case is supposed to be periodic, while a power weight is not. Thus, if one deals with
weighted Lebesgue spaces on [0, 2π ]2, it makes more sense to consider a weight of
the type | sin x |α in place of |x |α , which was in fact done by many authors. Note that
for a power weight, weighted integrability at 2π is equivalent to integrability at zero
without weight, so, as in the example above, one has to additionally check integrability
at zero.

3 Sharpness of the Result

Theorem 2 For p > 2, q ≥ p, the claim of Theorem 1(a) does not hold if we replace
the GMc

2 condition (13) by

2k∑

m=k

2l∑

n=l

|�11amn| ≤ C |a2k,l |. (32)

Proof Assume that p > 2 and consider the sequence

amn := (−1)δm

mγ
gm(n),

where γ > 0, δm ∈ {0, 1} are to be chosen later, and gm(n) = gm(n, p′) we define as
follows

gm(n) :=
{

(−1)δmm−3n
− 1

p′ , log2 n < m(m + 1)p′,
2−(m+t)2−3(m+t), ((m + t)2 + m − t)p′ ≤ log2 n < ((m + t)2 + 3m + t)p′, t ∈ Z+.
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Fig. 1 Scheme of changes of absolute values of gm (n)

In other words, the functions gm are constructed in the following way. First, we divide
[1,∞) into intervals I j , j = 0, 1, . . . , so that I j := {x : 2p′ j ≤ log2 x < 2p′( j +
1)}. After that consider the lower-triangular infinite down and to the right matrix that
is filled by all positive integers in increasing order going down and to the right.

1
2 3
4 5 6
7 8 9 10
...

...
...

...

Next, for any j we asign it the integer i = i( j) if it is i th column that contains the
element j . Fix somem and consider the values gm(1), gm(2), . . .. While i( j) �= m, we
have gm(n) = (−1)δmm−3n−1/p′

for n ∈ I j . Once i( j) becomes equal tom for the first

time, that is, when log2 n ≥ m(m + 1)p′ for the first time, we get gm(n) = 2−m2−3m

and this value does not change till i( j) becomes equal tom again andn ∈ I j .When i( j)

becomes equal tom for the (s+1)th time, the value gm(n) changes for 2−(m+s)2−3(m+s)

(see Fig. 1 for a scheme of changes of absolute values of gm(n)).
Fix n ∈ I j for some j and consider g1(n), g2(n), . . . Let k be such that gm(n) has

type 1 if 1 ≤ m ≤ k and type 0 if m ≥ k + 1. Then
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|gm(n)| � |gm′(n)|, for k + 1 ≤ m < m′ ≤ 2m. (33)

Denote m0 := i( j + 1). If m0 = k + 1, then g1(n) = g2(n) = · · · = gk(n) =
2−(k+1)2−3(k+1), otherwise, gm(n) = 2−(k+1)2−3(k+1) for m ≤ m0 − 1 and gm(n) =
2−k2−3k for m0 ≤ m ≤ k. Let us compare gk(n) and gk+1(n). There are two cases.

Case 1. m0 = i( j + 1) = k + 1. Then

|gk+1(n)| = (k + 1)−3n
− 1

p′ � (k + 1)−32−(k+1)(k+2) � 2−(k+1)2−3(k+1) = gk(n).

Case 2. m0 = i( j + 1) < k + 1. Then

|gk+1(n)| = (k + 1)−3n
− 1

p′ � (k + 1)−32−k(k+1)−m0 � 2−k2−3k = gk(n).

Thus, in both cases we obtain 0 < g1(n) ≤ g2(n) ≤ · · · ≤ gk(n) � |gk+1(n)|,
whence in light of (33),

|gm(n)| � |gm′(n)|, for all m < m′ ≤ 2m. (34)

It remains to note that for a fixed m, we have for nm := �2m(m+1)p′ � − 1 that

|gm(nm)| = m−3n
− 1

p′
m � m−32−m(m+1) � 2−m3−3m = gm(nm + 1)

and for other n there holds gm(n) ≥ gm(n + 1). So, over all |amn| in rkl := [k, 2k] ×
[l, 2l], the maximal is up to a constant |a2k,l |.

Further we note that the constructed sequence clearly satisfies (8).
To prove that our sequence belongs toGMc

2 , let us estimate
∑2k

m=k
∑2l

n=l |�11amn|.
Consider a quadruple

am,n+1 am+1,n+1
amn am+1,n

with (m, n) ∈ rkl . Note that it can be only of the following five types

0 0
0 0

1 0
1 0

1 0
0 0

1 1
1 0

1 1
1 1

where 0 stands for the terms with log2 n < m(m + 1)p′, while 1, for those with
log2 n ≥ m(m + 1)p′. We will write (m, n) ∈ Ti , i = 1, . . . , 5, if the corresponding
quadruple is of the i th type. Note that if (m, n) ∈ T3, then (m − 1, n) ∈ T1 and
(m + 1, n) ∈ T2, while if (m, n) ∈ T4, then (m − 1, n) ∈ T2 and (m + 1, n) ∈ T5. By
the construction, quadruples of the three last types with nonzero �11amn can appear
at most four times in rkl , since any (m, n) ∈ T3 ∪ T4, as well as (m, n) ∈ T5 with
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nonzero �11amn , satisfies n ∈ I j , n + 1 ∈ I j+1, for some j , which cannot happen
twice in [l, 2l]. If there exists a quadruple of the first type, then

∑

(m,n)∈T1∩rkl
|�11amn| =

∑

(m,n)∈T1∩rkl
�11amn

<
∑

m≥k, n≥l

�11(m−3−γ n
− 1

p′ ) = k−3−γ l
− 1

p′ � max
(m,n)∈rkl

|amn|.

As for (m, n) ∈ T2∩rkl , they all belong to a strip [k′, k′+1]×[l, 2 l] for some k′. Indeed,
otherwise there are m1 and m2 ≥ m1 + 2 belonging to [k, 2k], and n1, n2 ∈ [l, 2 l]
such that (m1, n1), (m2, n2) ∈ T2. But it follows from (m1, n1) ∈ T2 that am1+1,k , and
hence am2,k , has type 0, while (m2, n2) ∈ T2 implies that am2,2k , and hence am1+1,2k ,
has type 1. Thus, there exist two pairs of the form (n, n + 1) inside [l, 2 l] such that
n ∈ I j , n+1 ∈ I j+1, for some j , which cannot be true. Therefore, all (m, n) ∈ T2∩rkl
do belong to a strip [k′, k′ + 1] × [l, 2 l], whence using

|�11amn| ≤ |�01amn| + |�01am+1,n| = �01|amn| + �01|am+1,n|,

which is true as long as (m, n) ∈ T2 ∩ rkl , we deduce that the sum of |�11amn| over
(m, n) ∈ T2∩rkl is bounded above by four times the maximal |amn| in rkl . Combining
the observations above, we arrive at

2k∑

m=k

2l∑

n=l

|�11amn| � max
(m,n)∈rkl

|amn| � |a2k,l |,

which proves (32).
Further, for any q > 0,

∞∑

m,n=1

|amn|q(mn)
q
p′ −1

�
∞∑

m=1

m
q
p′ −1−γ q

∞∑

t=0

2−((m+t)2+3m+3t)q2
((m+t)2+3m+t)p′( q

p′ −1
)
2((m+t)2+3m+t)p′

�
∞∑

m=1

m
q
p′ −1−γ q = ∞,

if we set γ = 1/p′.
Note that our sequence generates the Fourier sine (or cosine) series of an odd (or

even) function f that converges in the Pringsheim sense everywhere on (0, 2π)2 to f
according to [6, L. 4]. To prove this, since the sequence fulfils (8), it suffices to show
that the following sum is finite
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∞∑

m,n=1

|�11amn| ≤
∑

(m,n)∈T1
�11amn +

∑

(m,n)∈T2∪T5
(|�01amn| + |�01am+1,n|)

+
∑

(m,n)∈T3∪T4
(|amn| + |am,n+1| + |am+1,n| + |am+1,n+1|)

� 1 +
∑

(m,n)∈T2∪T5
(�01amn + �01am+1,n) +

∞∑

m=1

m−3−γ 2−m(m+1)

� 1 +
∞∑

m=1

∞∑

t=0

2−(m+t)2−3(m+t) +
∑

(m,n)∈T2
�01am+1,n

� 1 +
∞∑

m=1

m−3−γ 2−m(m−1) < ∞.

Let us stick to the case of an odd f , as for cosine series the argument is exactly the
same. Denote for m, n ≥ 1,

cmn :=
{
amn, if log2 n ≥ m(m + 1)p′,
0, otherwise,

,

and bmn := amn − cmn . Then

‖ f ‖Lq
w(p,q)

≤
∥∥∥

∞∑

m,n=1

bmn sinmx sin ny
∥∥∥
Lq

w(p,q)

+
∥∥∥

∞∑

m,n=1

cmn sinmx sin ny
∥∥∥
Lq

w(p,q)

.

Note that

M∑

m=1

N∑

n=1

bmn sinmx sin ny =
M∑

m=1

sinmx
( N−1∑

n=1

�01bmnDn(y) + bmN DN (y)
)

=
M−1∑

m=1

N−1∑

n=1

�11bmnDm(x)Dn(y) +
N−1∑

n=1

�01bMnDM (x)Dn(y)

+
M−1∑

m=1

�10bmN Dm(x)DN (y) + bMN DM (x)DN (y)

=:
M−1∑

m=1

N−1∑

n=1

�11bmnDm(x)Dn(y) + A1 + A2 + A3.

Since ‖Dk‖qLq
w(p,q)

� ∑k
l=1 l

q
p′ −1 � k

q
p′ by Theorem B, we have for N0 := max(N −

1, �2M(M+1)p′ � − 1),
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‖A1‖Lq
w(p,q)

�
N0∑

n=1

M−3−γ n
−1− 1

p′ (Mn)
1
p′ + M−3−γ N

− 1
p′

0 (MN0)
1
p′ � M−1−γ → 0

as M → ∞. For M0 := min{m : m(m + 1)p′ ≥ N },

‖A2‖Lq
w(p,q)

�
M−1∑

m=M0

m−4−γ N
− 1

p′ (mN )
1
p′ + M−3−γ

0 N
− 1

p′ (M0N )
1
p′ → 0

as N → ∞. And finally,

‖A3‖Lq
w(p,q)

� M−3−γ N
− 1

p′ (MN )
1
p′ → 0

as M → ∞. Thus,

∥∥∥
∞∑

m,n=1

bmn sinmx sin ny
∥∥∥
Lq

w(p,q)

=
∥∥∥

∞∑

m,n=1

�11bmnDm(x)Dn(y)
∥∥∥
Lq

w(p,q)

. (35)

Besides,

M∑

m=1

N∑

n=1

cmn sinmx sin ny =
M∑

m=1

sinmx
( N−1∑

n=1

�01cmnDn(y) + cmN DN (y)
)
,

where in light of the inequalities 0 < g1(n) ≤ · · · ≤ gM0(n) for M0 defined as above

∥∥∥
M∑

m=1

cmN sinmxDN (y)
∥∥∥
Lq

w(p,q)

�
M0∑

m=1

|cmN |N 1
p′ ≤ M0gM0(N )N

1
p′ � M−2

0 → 0

as N → ∞. Hence,

∥∥∥
∞∑

m,n=1

cmn sinmx sin ny
∥∥∥
Lq

w(p,q)

=
∥∥∥

∞∑

m,n=1

�01cmn sinmxDn(y)
∥∥∥
Lq

w(p,q)

. (36)

Combining (35) and (36) we arrive at

‖ f ‖Lq
w(p,q)

≤
∥∥∥

∞∑

m,n=1

�11bmnDm(x)Dn(y)
∥∥∥
Lq

w(p,q)

+
∥∥∥

∞∑

m,n=1

�01cmn sinmxDn(y)
∥∥∥
Lq

w(p,q)

=: S1 + S2.
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First, for nm = �2m(m+1)p′ �−1, we see that log nm � m2 and log nm+1−log nm � m,
so

S1 �
∞∑

m=1

m
1
p′

(nm−1∑

n=1

�11(m−3−γ n
− 1

p′ )n
1
p′

+
nm+1−1∑

n=nm

�01((m + 1)−3−γ n
− 1

p′ )n
1
p′ + (m−3−γ n

− 1
p′

m )n
1
p′
m

⎞

⎠

�
∞∑

m=1

m
1
p′

( nm−1∑

n=1

m−4−γ n−1 +
nm+1−1∑

n=nm

m−3−γ n−1 + m−3−γ
)

�
∞∑

m=1

m
1
p′ −2−γ

< ∞.

Second, denoting nmt := �2((m+t)2+3m+t)p′ � − 1, using cmn = (−1)δm |cmn| and the
fact that �01cmn �= 0 only if n = nmt for t ≥ −1, we get for q ≥ p,

Sq2 =
∥∥∥

∞∑

m=1

(−1)δm sinmx
∞∑

t=−1

�01|cm,nmt |Dnmt (y)
∥∥∥
q

Lq
w(p,q)

=
π∫

−π

|y| qp −1

π∫

−π

|x | qp−1
∣∣∣

∞∑

m=1

(−1)δm sinmx
∞∑

t=−1

�01|cm,nmt |Dnmt (y)
∣∣∣
q
dxdy

≤
π∫

−π

|y| qp −1

π∫

−π

∣∣∣
∞∑

m=1

(−1)δm sinmx
∞∑

t=−1

�01|cm,nmt |Dnmt (y)
∣∣∣
q
dxdy. (37)

By the Khintchine inequality (see e.g. [2, Rem. 1.4]) we have for any real sequence
{sk} ∈ l2 and the system of Rademacher functions {rn(t)} that

1∫

0

∣∣∣
∞∑

k=1

skrk(t)
∣∣∣
q �q

( ∞∑

k=1

s2k

) q
2
,

whence

1∫

0

π∫

−π

∣∣∣
∞∑

m=1

rm(t) sinmx
∞∑

t=−1

�01|cm,nmt |Dnmt (y)
∣∣∣
q
dxdt

�
1∫

0

∣∣∣
∞∑

m=1

rm(t)
∞∑

t=−1

�01|cm,nmt |Dnmt (y)
∣∣∣
q
dt

�
( ∞∑

m=1

( ∞∑

t=−1

∣∣∣�01|cm,nmt |Dnmt (y)
∣∣∣
)2) q

2
, (38)
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whenever the series on the right-hand side converges. Note that by the Minkowski

inequality and the fact that ‖Dnmt ‖Lq
w(p,q)

� 2
((m+t)2+3m+t)p′ 1

p′ , we have

π∫

−π

|y|
q
p −1

( ∞∑

m=1

( ∞∑

t=−1

∣∣∣�01|cm,nmt |Dnmt (y)
∣∣∣
)2) q

2 dy

�
∥∥∥

∞∑

m=1

( ∞∑

t=−1

∣∣∣�01|cm,nmt |Dnmt (y)
∣∣∣
)2∥∥∥

q
2

Lq/2
w(p/2,q/2)

�
( ∞∑

m=1

∥∥∥
∞∑

t=−1

∣∣∣�01|cm,nmt |Dnmt (y)
∣∣∣
∥∥∥
2

Lq
w(p,q)

) q
2

�
( ∞∑

m=1

m−2γ
(
2−m2−3m2m(m+1) +

∞∑

t=0

2−((m+t)2+3(m+t))2((m+t)2+3m+t)
)2) q

2

�
( ∞∑

m=1

m
− 2

p′
) q

2
< ∞. (39)

Thus, by (38) and (39), for almost all t , the sum
∑∞

m=1 rm(t) sinmx
∑∞

t=−1 �01|cm,nmt

|Dnmt (y) converges for almost all y uniformly in x , and moreover, (38) and (39) imply
that

π∫

−π

|y| qp −1

π∫

−π

∣∣∣
∞∑

m=1

rm(t) sinmx
∞∑

t=−1

�01|cm,nmt |Dnmt (y)
∣∣∣
q
dxdy < ∞

for almost all t (denote this set by E ⊂ (0, 1)). Taking any t0 ∈ E \{k2−l}k,l∈N,k<2l , so
that rm(t0) = ±1 for allm, and setting {δm} according to the equality (−1)δm = rm(t0),
we obtain in light of (37) that S2 < ∞. ��
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