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Abstract
In statistical modeling, it is important to know the
mechanisms that cause underdispersion. Several mech-
anisms that lead to underdispersed count distributions
are revisited from new perspectives, and new ones
are introduced. These include procedures based on
the number of arrivals in arrival processes, such as
renewal and pure birth processes and steady-state dis-
tributions of birth-death processes, like queues with
state-dependent service rates. Weighted Poisson and
other well-known underdispersed distributions are also
related to birth-death processes. Classical and vari-
able binomial thinning mechanisms are also viewed
as important procedures for generating underdispersed
distributions, which can also generate bivariate count
distributions with negative correlation. Some example
applications are shown, one of which is related to Bio-
dosimetry.
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1 INTRODUCTION

The Poisson distribution is by far the most widely recognized and commonly used type of
distribution for count data analysis. One of its key properties is that the population variance
equals the population mean. However, in practice, many count data are overdispersed, that is,
the variance is greater than the mean. Conversely, the case of underdispersion (variance lower
than the mean) is also common but less frequent. In practice, dispersion is measured with
the Fisher dispersion index, defined as the ratio of variance to mean. There have also been
some attempts to generalize this index to multivariate count distributions (see Kokonendji &
Puig, 2018).

Why does over(under)dispersion occur? Of course, there are many count distribu-
tions in the literature that are over or underdispersed, but we are not interested in these
distributions themselves but in the mechanisms leading to them. There are many mech-
anisms explaining overdispersion. For instance, the mechanism of compounding (or
clustering) leads to the large family of Compound-Poisson distributions. Similarly, the
mechanism of mixing (or clustering) leads to the other large family of Mixed-Poisson
distributions. Both mechanisms are understandable and meaningful in many practical
situations.

In contrast, the mechanisms leading to underdispersion are few, not very well-known, and
not always able to explain the cause of the underdispersion observed in a particular dataset.
Consider for instance the biodosimetry data described in Pujol et al. (2014). The authors stud-
ied the number of a certain type of chromosome aberrations, called dicentrics, in samples of
blood lymphocytes when exposed to several doses of X-rays. Table 1 shows the frequency of
dicentrics for three different doses. Note that the variances are lower than their respective means.
Underdispersion is an extraordinary occurrence in Biodosimetry, as explained by the manual
of the International Atomic Energy Agency (IAEA) (IAEA, 2011) on p. 48: Biologically, under-
dispersion is very unlikely to occur…(underdispersion) may be indicative of a problem in data
sampling.

However, Pujol et al. (2014) claimed that the underdispersion detected in their datasets was
caused by a real and unexplained phenomenon, and was not due to a sampling problem. They
used a weighted-Poisson distribution to fit their data as an empirical solution, but they were
unable to explain why underdispersion occurred.

In this paper, we will revisit some previously considered mechanisms leading to under-
dispersion in the literature, as well as introduce some new ones. Section 2 reviews such
mechanisms connected with arrival processes, in particular those based on renewal and
pure-birth processes. These are the best known mechanisms although, as we shall see, some
of their results have not been correctly understood. Procedures based on the steady state
distributions of birth-death processes are analyzed in Section 3. We show that an almost
unknown and forgotten proposition by Wise (1962) can explain many of the underdispersed
count distributions studied in the past by several authors, including the COM-Poisson and
weighted-Poisson distributions (see Sellers & Morris, 2017). Thinning mechanisms and their
relation with underdispersion are analyzed in Section 4. In particular, Proposition 6 presents
a very meaningful variable thinning mechanism leading to underdispersion. In addition,
Section 4.2 explores the relationship between variable thinning, underdispersion and nega-
tive correlation. Finally, some conclusions, comments and further research are presented in
Section 5.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12677 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [24/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



PUIG et al. 3

T A B L E 1 Frequencies of dicentrics among cells for several doses of rays.

Number of dicentrics

Dose (grays) 0 1 2 3 4 5 6 7 8 9 x s2

3 213 192 85 9 1 0.786 0.641

5 3 23 58 38 15 10 2 1 2.547 1.578

7 4 23 35 35 29 10 9 4 1 4.027 2.697

2 MECHANISMS BASED ON ARRIVAL PROCESSES

An arrival process is a sequence {Tn} of nonnegative and increasing random variables 0 < T1 <

T2 <…, representing the times when some phenomenon occurs, called arrival times. Interarrival
times are defined as X1 = T1, and Xi = Ti − Ti−1 for i > 1. The process starts at time 0 and, in
principle, multiple arrivals cannot occur at the same time. Let N(t) be the number of arrivals in
the interval (0, t]. This count random variable will be our source of interest. The literature on
arrival processes and the distribution of N(t) is extensive; see, for example, Cox and Isham (1980)
and Ross (1995). We are going to focus on two specific arrival processes that will be described in
the following subsections.

2.1 Renewal processes

A renewal process is an arrival process in which the interarrival times Xi are iid random variables.
Let F be the distribution of X0, and let F(k) be the distribution of the kth arrival time Tk = X0 + X1 +
· · · + Xk−1. It is clear that F(k) is the k-fold convolution of F with itself. Consider N(t), the number
of arrivals in the interval (0, t]. Note that N(t) < k ⇔ Tk ≥ t. Then, P(N(t) < n) = 1 − F(n)(t), and
the probability function of the number of arrivals or events is,

P(N(t) = n) = P(N(t) < n + 1) − P(N(t) < n) = F(n)(t) − F(n+1)(t). (1)

To be coherent with this notation we define F(0)(t) = 1 for t ≥ 0 and F(0)(t) = 0 otherwise. Accord-
ing to (1), the distribution of the interarrival times determines the probability function of the
number of arrivals. On the other hand, knowledge of the probability function also determines the
distribution of the interarrival times because P(N(t) = 0) = 1 − F(t).

When the interarrival times are exponentially distributed, the number of arrivals follows
a Poisson distribution and, in fact, this is an important and meaningful characterization of
the Poisson process. Other distributions have been used for the interarrival times, like Gamma
(Winkelmann, 1995; Zeviani et al., 2014), Weibull (McShane et al., 2008; Moriña et al., 2019) or
Inverse Gaussian (Levine, 1991; and Seshadri, 1998). In general, if F belongs to a family of distri-
butions closed under convolutions (like Gamma and Inverse Gaussian), then the expression for
the probability function (1) is tractable.

The hazard function (or failure rate function) of an interarrival time distribution F is
defined as,

r(t) =
f (t)

1 − F(t)
,
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4 PUIG et al.

where f (t) is the density of F. It is worth mentioning that the hazard function r(t), as well
as F(t) and f (t), characterizes the distribution. This function, widely used in Reliability and
Survival Analysis, expresses the force of occurrence of events at time t. Distributions where r(t)
is increasing(decreasing) for all t, are called Increasing(Decreasing) Failure (or Hazard) Rate dis-
tributions, denoted as IFR(DFR). Exponential distribution has a constant hazard function, and
hence belongs to both families IFR and DFR.

There is an interesting relationship between the behavior of the hazard function of F and the
overdispersion or underdispersion of the number of arrivals, stated in the following proposition
(Barlow & Proschan, 1965, p. 54):

Proposition 1. If F is IFR (DFR), then Var(N(t)) ≤ (≥)E(N(t)).

A similar result was rediscovered by Winkelmann (1995), which is only valid asymptotically,
and uses different proof. In fact, this proof is very interesting because it permits a different and
useful proposition based on the coefficient of variation of F:

Proposition 2. Let 𝜇 and 𝜎 be the expectation and standard deviation of F, and
c = 𝜎∕𝜇 its coefficient of variation. Then, if c < (>)1, there exists t0 ≥ 0 such that
Var(N(t)) ≤ (≥)E(N(t)), for t > t0.

Proof. The proof, outlined in Winkelmann (1995), is a direct consequence of the fact
that, as t tends to infinity, E(N(t)) ≈ t∕𝜇 and Var(N(t)) ≈ t𝜎2∕𝜇3. ▪

Proposition 1 can be directly applied to explore the number of arrivals when F is Gamma or
Weibull distributed because their hazard functions are monotone, IFR or DFR being dependent
on the value of their shape parameter. However if F follows an Inverse Gaussian distribu-
tion, its hazard function is not monotone, because its profile first increases and then decreases
(Seshadri, 1998), so Proposition 1 cannot be applied. However, its coefficient of variation has a
simple expression so Proposition 2 is useful in this case.

Although Proposition 1 only shows a sufficient condition for underdispersion of the num-
ber of arrivals, this condition is physically very meaningful and highly explanatory: When the
events are more likely to happen as the time between occurrences passes, an underdispersed
number of arrivals (occurrences) is produced. Unfortunately, in general, the probability func-
tion of the number of arrivals (1) associated with this mechanism does not have a closed form.
On the other hand, it is not always possible to express any count distribution as the number of
arrivals (for instance at t = 1) of a certain renewal process, and, even when possible, it is very
difficult.

2.2 Pure birth processes

A pure birth process is an arrival process where the interarrival times Xi are independent and
exponentially distributed random variables with parameters 𝜆i (the mean is 1∕𝜆i). Note that
the case where 𝜆0 = 𝜆1 = · · · = 𝜆 corresponds to the Poisson process. A remarkable result of
Ball (1995), previously conjectured by Faddy (1994), establishes that the distribution of the
number of arrivals is under(over)-dispersed depending on the behavior of the rates 𝜆i:

Proposition 3. If the sequence 𝜆0, 𝜆1,…is decreasing (increasing) then,
Var(N(t)) < (>)E(N(t)).
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PUIG et al. 5

The probabilities of the number of arrivals can be calculated from the Kolmogorov forward
differential equations, obtaining P(N(t) = 0) = exp(−𝜆0t) and for n ≥ 1,

P(N(t) = n) =
∫

t

0
𝜆n−1 exp(−𝜆n(t − x))P(N(x) = n − 1) dx.

Considering that time scale is arbitrary and fixing t = 1, we denote pn = pn(1) = P(N(1) = n). This
distribution can be expressed in terms of an exponential matrix of the form:

(p0, p1,…, pn) = (1, 0, 0,…, 0) exp(Q), (2)

where,

Q =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−𝜆0 𝜆0 0 ⋅ 0
0 −𝜆1 𝜆1 ⋅ 0
0 0 −𝜆2 ⋅ 0
⋮ ⋮ ⋮ ⋮

0 0 0 · · · −𝜆n

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

It is clear that any sequence of 𝜆n’s determines a count distribution of the number of arrivals
pn’s. For instance, a linearly increasing sequence of the form 𝜆n = a(b + n) generates the Negative
Binomial distribution. A linearly decreasing sequence of the form 𝜆n = a(M − n), n = 0,…,M,
generates a Binomial distribution with size parameter M. Unfortunately, except for these linear
sequences, the distribution of arrivals pn does not generally have a closed form for any arbitrary
sequence of 𝜆n’s. However, a simple two-parameter distribution can be obtained considering a
simple pure-birth process with rates 𝜆0 = a and 𝜆1 = 𝜆2 = · · · = b (Ball (1995)). When a = b this
is a Poisson process and, according to Proposition 3, when a > (<)b the distribution of the number
of arrivals is under(over)dispersed. Straightforward calculations show that,

p0 = e−a
, p1 = a

a−b
(e−b − e−a)

pn = −b
a−b

pn−1 + abn−1e−b

(a−b)(n−1)!
, n ≥ 2.

Underdispersion occurs (a > b) when the first birth arises at a higher rate than those coming after.
Faddy (1997) considered a family of count distributions given by sequences of the form,

𝜆n = a(b + n)c. When c = 0 this is a constant sequence leading to a Poisson distribution. When
c < 0(c > 0), the sequence is decreasing(increasing) and pn is underdispersed(overdispersed).
The case of c = 1 corresponds to the Negative Binomial distribution. Podlich et al. (2004) used
this family to construct semi-parametric count models that can describe several examples like
the number of surviving fetal implants, and the number of cases of Toxoplasmosis.

Faddy (1997) showed that for any count distribution 𝜋n there is a sequence of 𝜆n’s such that
𝜋n = P(N(1) = n). This allows us to represent any count distribution by the number of arrivals of
a pure birth process. From the empirical version of Equation (2) we have the system of equations,

(p̂0, p̂1,…, p̂n) exp(−Q) = (1, 0, 0,…, 0),
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6 PUIG et al.
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Faddy’s representation
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Dose 7
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Dose 3
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F I G U R E 1 Representation of the distributions of dicentrics for three doses. The error bars represent the
first and third quartiles of the bootstrap values.

which can be solved numerically for the estimated rates �̂�n’s. Figure 1 shows the values of �̂�n’s
obtained for the distributions of dicentrics shown in Table 1. The uncertainty of the �̂�n’s is esti-
mated by resampling with 1000 replications. The vertical bars in Figure 1 extend from the first to
the third quartiles of the bootstrap values. Note that the interquartile range is large for those �̂�n’s
corresponding to low frequency observations.

In the example shown in Figure 1, Faddy’s representation provides no further information
other than a slightly decreasing trend for each dose, which is consistent with the observed under-
dispersion. Nonetheless, for other uses, Faddy’s representation can be a meaningful and valuable
modeling tool.

3 STEADY STATE DISTRIBUTIONS OF BIRTH-DEATH
PROCESSES

A birth-death process is a special case of a continuous-time Markov process where the states
take values equal to 0, 1, 2,…. These processes are used to describe the size of a population, or
the number of individuals in a queue, over time. When the process increases by 1, a birth event
happens, and when the process decreases by 1, a death event occurs. When the process is at state
k (the number of individuals in the queue is k) there are two independent exponential occurrence
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PUIG et al. 7

times running simultaneously: one with rate 𝜆k that will take us to state k + 1 (birth) if it happens
first, and the other with rate 𝜇k which will take us to state k − 1 (death) if it happens first. Let
pn(t) the probability that the birth-death process is in state n at time t. These probabilities satisfy
the infinite system of differential equations,

p′0(t) = 𝜇1p1(t) − 𝜆0p0(t)
p′n(t) = 𝜆n−1pn−1(t) + 𝜇n+1pn+1(t) − (𝜆n + 𝜇n)pn(t), n = 1, 2,…,

and the normalizing condition
∑∞

n=0pn(t) = 1. Analytical solutions of these differential equations
are difficult and often an impossible task. Nevertheless, it is possible to estimate the parameters
of a general birth-death process by observing data at discrete or continuous times (see Crawford
et al. (2014) and the references therein). However, consistently with our applications, we will
focus the attention on their steady state distributions.

A well known result of the theory of birth-death processes establishes that there is a stationary
distribution iff,

∞∑

n=1

𝜆0𝜆1…𝜆n−1

𝜇1𝜇2…𝜇n
< ∞. (3)

In this case, the probabilities of the stationary distribution are,

pn =
𝜆0𝜆1…𝜆n−1

𝜇1𝜇2…𝜇n
p0, (4)

and,

p0 =

(

1 +
∞∑

n=1

𝜆0𝜆1…𝜆n−1

𝜇1𝜇2…𝜇n

)−1

,

where pn = limt→∞ pn(t). In general, this distribution is overparameterized as it depends on the
ratios 𝜆n∕𝜇n+1. But when is this equilibrium distribution underdispersed? To answer this question
let us define

𝜃r = (r + 1)pr+1∕pr = (r + 1)𝜆r∕𝜇r+1, r = 0, 1, 2,…. (5)

The behavior of 𝜃r has been used to characterize some families of distributions. For instance,
this is the case of the Katz family defined by a linear relationship of the form, 𝜃r = 𝛼 + r𝛽, which
comprises Poisson (𝛼 > 0, 𝛽 = 0), Binomial (𝛼 > 0, 𝛽 < 0) and Negative Binomial (𝛼 > 0, 0 < 𝛽 <
1) distributions. The sequence 𝜃r is also related to the Böhning (2016) ratio plot for the case of
Poisson distribution.

A little known result of Wise (1962) shows an important relationship between the behavior of
𝜃r and the dispersion of pn.

Proposition 4. Let N be a random variable following the equilibrium distri-
bution of the birth-death process, such that E(N) = 𝜇 and Var(N) = 𝜎2. Then,
cov(N, 𝜃N) = 𝜎2 − 𝜇.
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8 PUIG et al.

A direct consequence of Proposition 4 is a sufficient condition on 𝜃r (5) to assure
underdispersion:

Corollary 1. Consider a decreasing sequence 𝜃0 ≥ 𝜃1 ≥ 𝜃2 ≥…. Then, 𝜎2 ≤ 𝜇. When
the sequence is increasing the inequality gets reversed (𝜎2 ≥ 𝜇).

The Wise (1962) result can be used to model many of the underdispersed count distributions
studied in the past by several authors, as we shall analyze in the following subsections.

3.1 Queues with state-dependent service rates: the COM-Poisson
distribution and others

The classic and simplest queuing model, denoted as M/M/1, consists of a queue where a single
server attends to certain events (births, jobs, persons, etc) arriving according to a Poisson process
at a constant rate 𝜆. It is usually assumed that service times follow exponential distributions that
are independent of the interarrival times. Suppose that service times are state dependent, with
rates given by 𝜇n = f (n), where n indicates the number of events waiting in the queue.

Conway and Maxwell (1961) introduced a distribution that would later be called COM-Poisson
(named after R. W. Conway, W. L. Maxwell, and S. D. Poisson), considering f (n) = anc, being
studied later by Shmueli et al. (2005). According to (4), the probabilities take the form,

pn =
𝜌

n

(n!)c
p0, n ≥ 1,

and,

p0 =

( ∞∑

i=0

𝜌
i

(i!)c

)−1

,

where 𝜌 = 𝜆∕a. In this case, sequence (5) remains, 𝜃r ∝ (r + 1)1−c. Consequently, using Corol-
lary 1, for c > 1(c < 1) the distribution is underdispersed(overdispersed). Note that for c =
1 this is just the Poisson distribution, which has a linear service-rate function (f (n) = an).
Under(over)dispersion is therefore related with a more(less) stressed service-rate function than
that of Poisson distribution. Note that COM-Poisson distribution has the property that log(𝜃n)
and log(pn+1∕pn) are linear functions of log(n). In fact, Shmueli et al. (2005) proposed plotting the
logarithms of the ratios of successive frequencies against log(n), as a method of validation and
parameter estimation (using least squares) of the COM-Poisson distribution.

Insufficient attention has been paid to this fruitful methodology for generating underdis-
persed count distributions. For instance, consider now service rates of the form f (n) = aebn.
Using (4) we obtain the probabilities,

pn =
𝜌

n

e
n(n+1)

2
b

p0 = e𝛽0n−𝛽1n2 p0, n ≥ 1, (6)

and,

p0 =

( ∞∑

i=0
e𝛽0i−𝛽1i2

)−1

,
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PUIG et al. 9

where 𝜌 = 𝜆∕a, 𝛽0 = log(𝜌) − b∕2 and 𝛽1 = b∕2. The domain of the parameters is 𝛽1 > 0 and
𝛽0 ∈ R, with the boundary case 𝛽1 = 0 and 𝛽0 < 0, corresponding to the geometric distri-
bution. This distribution was first introduced by Gelfand and Dalal (1990), although they
wrongly commented that this distribution was always overdispersed. Observe that the sequence
𝜃r ∝ (r + 1)e−2𝛽1r, r = 0, 1,…, is decreasing for 𝛽1 > log(2)∕2, so, according to Corollary 1, the dis-
tribution is underdispersed for this range of 𝛽1. For 𝛽1 ≤ log(2)∕2 the sequence is not monotonic
so Corollary 1 cannot be applied. Anyway, numerical calculation show that when 𝛽1 is close to
0 the distribution is overdispersed. Of course the boundary case 𝛽1 = 0 and 𝛽0 < 0 corresponds
to the geometric distribution that is overdispersed. Note that for this distribution the log-ratio
log(pn+1∕pn) is just a linear function of n.

The following example considers service rates of the form f (n) = anebn, which increase with
n much more than in the preceding example. According to (4) we calculate the probabilities,

pn =
𝜌

n

n!e
n(n+1)

2
b

p0 =
e𝛽0n−𝛽1n2

n!
p0, n ≥ 1, (7)

with,

p0 =

( ∞∑

i=0
(e𝛽0i−𝛽1i2)∕i!

)−1

.

In this case the domain of the parameters is 𝛽1 > 0 and 𝛽0 ∈ R, with the boundary case 𝛽1 = 0
and 𝛽0 < 0, corresponding to the Poisson distribution. Now the sequence 𝜃r ∝ e−2𝛽1r, r = 0, 1,…, is
always decreasing except for the boundary case 𝛽1 = 0, so the distribution is underdispersed. This
distribution has the property that log(𝜃n) is a linear function of n. Figure 2 shows the empirical
version of log(𝜃n) against n, for the distributions of dicentrics described in Table 1. The corre-
sponding least-squares regression lines point out their linear trends. Consequently, we have fitted
the data using the probability function in (7), obtaining the maximum likelihood estimates and
the chi-square statistics shown in Table 2. In order to avoid expected frequencies of less than
one, the two last cells within doses 5 and 7 were collapsed in the chi-square computation. As
usual, the degrees of freedom (df) are calculated as the number of cells minus 1, minus 2 (the
number of estimated parameters). If the model does not fit with experimental data, the valid-
ity of the assumed service rates is put into question. Observe that 𝛽0 increases and 𝛽1 decreases
with dose. It is interesting to point out that the MLE of the population mean and variance are
exactly equal to the sample mean and variance. It happens because the distribution (7) used in
this example, and the distribution (6) by Gelfand and Dalal (1990), are two-parameter exponential
families with sufficient statistic for both the sum and the sum of the squares of the observations.
For characterizations of distributions where the MLE of the population mean is the sample mean
see Puig (2003) and Puig and Valero (2006) and the references therein. To include the dose as a
covariate, we would need to analyze more experiments with a wide range of doses to investigate
the dose dependence of the coefficients 𝛽0 and 𝛽1. To guarantee that 𝛽1 > 0, a suitable link func-
tion could be used. Anyway, the interpretation of these results from the point of view of queues
with state-dependent service rates is very meaningful. This is the summary:

1. When the cell is irradiated, the particles (x rays) arrive following a Poisson process, producing
damages in the cell.

2. The cell repair mechanism (service) tries to repair the damages.
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10 PUIG et al.
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F I G U R E 2 Empirical log(𝜃n) of the distributions of dicentrics against n, with least-squares regression
lines, for three X-ray doses.

T A B L E 2 MLE of the parameters with standard errors (in brackets) and expected frequencies of the
distribution of dicentrics, using the probability function (7); values of the 𝜒2 statistic and df (in brackets) for
several doses.

MLE Number of dicentrics: expected frequenciesDose
(grays) ̂

𝜷0 ̂
𝜷1 0 1 2 3 4 5 6 7 8 9

𝝌

2

(df )
3 0.1431 0.1613 208.6 204.8 72.8 12.5 1.2 3.93

(0.1331) (0.0542) (2)

5 1.6691 0.1288 5.4 25.1 45.3 42.1 22.7 7.6 1.6 0.2 9.30

(0.2179) (0.0381) (4)

7 1.9529 0.0642 6.5 18.8 32.1 36.1 28.5 16.5 7.2 2.4 0.6 6.41

(0.1940) (0.0221) (5)

3. If the mechanism is able to repair a damage, the corresponding aberration leaves the queue.
The chromosome aberrations that are finally observed (dicentrics) are the number of events
in the queue.

4. It is assumed that we have reached a point in the process where the distributions of the number
of events will no longer change with time.

Then, underdispersion means that the repair mechanism is strongly accelerated by the num-
ber of cases of damage. We conjecture that the cell-repair mechanism is then described through
function 𝜇n = f (n). In-depth experiments are required to prove this conjecture.
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PUIG et al. 11

3.2 Weighted Poisson distributions

A count random variable is weighted-Poisson distributed with weight w(k; b) if its probability
function has the form,

P(X = k) = w(k; b)
C(𝜆, b)

e−𝜆𝜆k

k!
, k = 0, 1, 2,…,

where C(𝜆, b) is a normalizing constant and b is a parameter (or a vector of parameters). The
weight w(k; b) can be interpreted as a kind of recording or sampling mechanism. In fact, it is
immediate to see that any arbitrary count distribution can be expressed as a weighted Poisson
distribution with a suitable weight. Weighted distributions go back a long way in the literature.
See, for instance, Patil et al. (2004) and the references therein.

Weighted Poisson distributions have been frequently used to model underdispersed data,
using weights for which the normalizing constant C(𝜆, b) takes a closed form. For instance,
Pujol et al. (2014) use the weight w(k; b) = 1 + bk2 leading to a normalizing constant C(𝜆, b) =
1 + b(𝜆 + 𝜆2), and Cameron and Johansson (1997) use amenable polynomial weights of the form
w(k;b) = (1 +

∑r
i=1biki)2. del Castillo and Pérez-Casany (2005) and Kokonendji et al. (2008), using

different methods and notation, state the following result:

Proposition 5. Let the weight w(x; b) be a log-concave(convex) function in x ∈ R.
Then, the corresponding weighted Poisson distribution is under(over)-dispersed.

Interestingly, Weighted Poisson distributions can also be viewed as stationary distributions of
birth-death processes, such that

𝜃r = (r + 1)𝜆r∕𝜇r+1 = 𝜆
w(r + 1; b)

w(r; b)
. (8)

Therefore, a new and simple proof of Proposition 5 arises from the fact that if w(x; b) is a
log-concave(convex) function then w(x + 1; b)∕w(x; b) is decreasing(increasing), and the corre-
sponding weighted Poisson distribution remains under(over)-dispersed, accordingly to Corol-
lary 1.

There is also a direct relation between Weighted Poisson distributions and queues with
state-dependent service rates, evidenced by considering 𝜆0 = 𝜆1 = · · · = 𝜆 in (8). Then we obtain,

𝜇n = f (n) = w(n − 1; b)n
w(n; b)

. (9)

In fact, any service rate function proportional to f (n)will lead to the same equilibrium distribution
family. Kokonendji et al. (2009) presented a nonparametric, kernel-based approach for estimat-
ing the weight function. It is important to note that this method would additionally provide a
nonparametric way to estimate the 𝜇n service-rate function using expression (9).

As an example of how these concepts are related, let us consider the zero-modified Poisson
distribution (Johnson et al., 2005), with probability function,

p0 = 𝛾,

pk = (1 − 𝛾)
e−𝜆𝜆k

k!(1 − e−𝜆)
, k = 1, 2,…. (10)

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12677 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [24/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 PUIG et al.

This distribution is widely used to model both underdispersed and overdispersed data. When
𝛾 = e−𝜆, that is p0 is equal to the proportion of zeros of the Poisson distribution, (10) is just the Pois-
son probability function. Now the sequence (5) is 𝜃0 = 𝜙𝜆, 𝜃1 = 𝜃2 = · · · = 𝜃r = · · · = 𝜆, where
𝜙 = (1 − 𝛾)e−𝜆∕(𝛾(1 − e−𝜆)). When 𝛾 < (>)e−𝜆 it means zero-deflation(inflation),𝜙 > (<)1 and the
sequence is decreasing(increasing), and the distribution is under(over)dispersed accordingly to
Corollary 1. Note that the zero-modified Poisson distribution is a weighted-Poisson distribution
with weight function 𝜔(0) = 1∕𝜙 and 𝜔(k) = 1, k = 1, 2,…. Then, from (9), we find that 𝜇1 = 1∕𝜙
and 𝜇n = n, n = 2, 3,…. There is an interesting interpretation: Poisson distribution arises as the
equilibrium distribution of the number of customers in a queue, in a process with constant-rate
exponential arrival times and exponential service-time rates proportional to the number of indi-
viduals in the queue. The alteration in the service-time rate when there is only 1 individual in
the queue (n = 1) has significant consequences. When the service-time is reduced(augmented)
1∕𝜙 < (>)1, that is the rate is augmented(reduced), the equilibrium distribution is Poisson
zero-deflated(inflated), being under(over)dispersed.

In the following section we are going to present other mechanisms leading to underdispersion
that are not directly related with arrival or birth-death processes.

4 THINNING MECHANISMS

Many observations in experimental sciences are related to the problem of thinning a random
variable X . In this case X itself is not observed, rather a proportion 𝛼 or sampled version of X , X𝛼 ,
is observed. The standard binomial thinning is defined as follows,

Definition 1. Let X be a count random variable, and let 𝜉1, 𝜉2, …be iid Bernoulli
random variables with probability of success 𝛼 ∈ (0, 1], all of them independent of X .
The count random variable,

X𝛼 =
X∑

i=1
𝜉i (X𝛼 = 0 if X = 0),

is called a binomial 𝛼-thinning of X .

Note that X𝛼 condition on the value of X is binomially distributed, that is, X𝛼|X = x ∼
Bin(x, 𝛼). Poisson and Mixed-Poisson distributions are closed under independent binomial
𝛼-thinning, in the sense that if X is Poisson or Mixed-Poisson distributed, then X𝛼 belongs to the
same family. Several properties regarding closure under binomial thinning are shown in Puig and
Valero (2007). The expectation and variance of X𝛼 are,

E(X𝛼) = 𝛼𝜇, Var(X𝛼) = 𝛼2
𝜎

2 + 𝜇𝛼(1 − 𝛼), (11)

where E(X) = 𝜇 and Var(X) = 𝜎2.
It is plain to see that,

Var(X𝛼)
E(X𝛼)

= 𝛼
(
𝜎

2

𝜇

− 1
)

+ 1, ∀𝛼 ∈ (0, 1]

and consequently if X is underdispersed(overdispersed) so is X𝛼 . Moreover, the dispersion index
of X𝛼 shrinks toward 1.
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PUIG et al. 13

4.1 Variable thinning

Consider now a mechanism of sight such that the proportion of observed events,
recorded in the random variable Y , changes with respect to the true value of the hid-
den variable X . A simple model consists of assuming a variable binomial thinning as
follows,

Definition 2. Let X be a count random variable, and let𝜶 = {𝛼1, 𝛼2,…} be a sequence
such that, 0 < 𝛼i < 1. The count random variable, Y , such that Y |X = n ∼ Bin(n, 𝛼n),
denoted as Y = X

𝜶
is called a variable binomial 𝜶-thinning of X .

Note that when 𝜶 = {𝛼1, 𝛼1, 𝛼1,…}, it corresponds to the standard binomial thinning X𝛼1 . The
probability function of Y is,

P(Y = k) =
∞∑

n=0
P(Y = k|X = n)P(X = n) =

∞∑

n=k

(n
k

)
𝛼

k
n(1 − 𝛼n)n−kP(X = n). (12)

The probability generating function (pgf) can be directly derived obtaining,

𝜙Y (t) = E(tY ) =
∞∑

n=0
E(tY |X = n)P(X = n) =

∞∑

n=0
(1 + 𝛼n(t − 1))nP(X = n). (13)

The following result connects the behavior of 𝛼n with the under(over)dispersion of the
observed events recorded by Y .

Proposition 6. Let X be a random variable following a Poisson distribution with
expectation E(X) = 𝜆, and Y = X

𝜶
.

1. Let 𝛼n be increasing in n. Then Y is overdispersed.
2. Let 𝛼n be decreasing, and n𝛼n increasing in n. Then Y is underdispersed.

Proof. Stein-Chen’s identity will be used in the proof. It states that if X follows a Pois-
son distribution, and f is any function for which the expected value E(f (X)) exists,
then E(Xf (X)) = E(X)E(f (X + 1)).

Evaluating the derivatives of the pgf (13) at t = 1, we obtain,

𝜇Y = 𝜙′Y (1) =
∞∑

n=0
n𝛼n

e−𝜆𝜆n

n!
= E(X𝛼X ) = E(X)E(𝛼X+1),

where X is a Poisson-𝜆 random variable. Similarly,

𝜎
2
Y + 𝜇

2
Y − 𝜇Y = 𝜙′′Y (1) =

∞∑

n=0
n(n − 1)𝛼2

n
e−𝜆𝜆n

n!
= E(X(X − 1)𝛼2

X ) = E(X)E(X𝛼2
X+1).

Because 𝜎2
Y − 𝜇Y = 𝜙′′Y (1) − (𝜙

′
Y (1))

2, overdispersion or underdispersion depends of
the sign of E(X𝛼2

X+1) − E(X)E2(𝛼X+1). Direct algebra shows that

E(X𝛼2
X+1) − E(X)E2(𝛼X+1) = cov(X𝛼X+1, 𝛼X+1) + E(𝛼X+1)cov(X , 𝛼X+1). (14)
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14 PUIG et al.

T A B L E 3 MLE of the parameters with standard errors (in brackets) and expected frequencies of the
distribution of dicentrics, using the 𝜶-thinning model with X ∼Poisson(𝜆) and logit(𝛼n) = b∕n; values of the 𝜒2

statistic and df (in brackets) for several doses.

MLE Number of dicentrics: expected frequenciesDose
(grays) ̂b ̂

𝝀 0 1 2 3 4 5 6 7 8 9
𝝌

2

(df )
3 4.1487 0.8685 213.8 197.6 72.5 14.1 1.8 4.54

(1.2628) (0.0643) (2)

5 4.1246 3.4392 5.9 27.5 45.2 38.0 20.9 8.6 2.8 0.8 7.78

(1.1611) (0.3443) (4)

7 5.5545 5.6134 6.0 20.3 33.8 35.3 26.5 15.5 7.4 3.0 1.1 3.95

(1.7332) (0.6002) (6)

Consequently, if 𝛼n is increasing 𝛼n+1 and n𝛼n+1 are also increasing and both covari-
ances in (14) are positive implying overdispersion.

On the other hand, if 𝛼n is decreasing and n𝛼n is increasing, 𝛼n+1 is decreasing
and n𝛼n+1 is increasing. Therefore, both covariances in (14) are negative implying
underdispersion. ▪

The condition for underdispersion shown in Proposition 6 is very meaningful. A decreasing
𝛼n means, in some sense, that it is more difficult to count a large number of objects than a few.
In addition, an increasing n𝛼n means that, although the sight mechanism penalizes counts of a
large number of objects, this penalization is not very hard, thus allowing the conditional average
E(Y |X = n) = 𝛼nn to be increasing. In other words, it means that as the true number of objects X
increases, the number of observed objects also increases on average.

For example, consider a model with 𝛼n = a + bn−c, where a, b > 0, a + b < 1 and 0 < c < 1. It
can immediately be checked that 𝛼n is decreasing and n𝛼n increasing leading to underdispersion.

It is also useful to describe models in terms of logit(𝛼n). For instance, the model with
logit(𝛼n) = b∕n, b > 0, also satisfies that 𝛼n is decreasing and n𝛼n increasing. This property is also
shared using other link functions like probit(𝛼n) or cloglog(𝛼n). As an example of application of
this distribution, we reanalyze the distributions of dicentrics described in Table 1. The maximum
likelihood estimates, expected frequencies, and chi-square statistics are shown in Table 3. It shows
a good fit, similar to that obtained in Section 3.1 using a service-rate-model distribution (Table 2).
The interpretation is also meaningful:

1. Ionizing particles arrive to the cell accordingly to a Poisson process. It is assumed that the
number of damages X is Poisson distributed. The estimated mean of the number of damages
increases with the dose of radiation, as expected.

2. Cell repair mechanism acts, and the final number of aberrations is Y = X
𝜶

, a variable thinning
of the original number of damages X . The action of the repair mechanism, that is 𝛼n, is very
similar for doses 3 and 5 grays, and slightly less intense (less efficient) for 7 grays (b̂ = 5.5545).

3. Cell repair mechanism is strongly stressed with the number of damages so that 𝛼n decreases
with n. However, given a number of damages n, the expected number of aberrations, n𝛼n,
increases.
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PUIG et al. 15

F I G U R E 3 Profile of the dispersion index 𝛿 as a function of 𝛼 and 𝜆.

Another interesting model is that obtained from 𝛼n = 𝛽 + 𝛼n, 𝛽 ≥ 0 and 0 < 𝛼 < 1. It is clear
that 𝛼n is decreasing, but n𝛼n is increasing only when 𝛽 > 𝛼−2∕ log(𝛼). In particular, when 𝛽 = 0, this
leads to a sight mechanism described by 𝛼n = 𝛼n producing a two-parameter count distribution
with pgf,

𝜙Y (t) =
∞∑

n=0
(1 + 𝛼n(t − 1))n e−𝜆𝜆n

n!
.

In this case, the expectation and dispersion index take a simple form:

𝜇Y = 𝛼𝜆e𝜆(𝛼−1)
𝛿 =

𝜎
2
Y

𝜇Y
= 𝛼3

𝜆e𝜆𝛼(𝛼−1) − 𝜇Y + 1.

Figure 3 shows the profile of the dispersion index as a function of 𝛼 and 𝜆. Note that this model
presents over-equi and underdispersion, being an example that the condition of increasing n𝛼n
cannot be removed from Proposition 6 to ensure underdispersion.

To show an example application of this distribution we analyze one of the classical fertil-
ization datasets described in Morgan (1982) and reported in Table 4. This corresponds to an
experiment conducted on sea urchins, where a batch of eggs was exposed to sperm at a fixed
sperm concentration and a fixed temperature, with a dilute solution of nicotine. Table 4 shows
the counts of the number of sperms that had penetrated the eggs at various time intervals for
samples of 100 eggs. The row corresponding to time equal to 5 seconds has been removed from
the original data here because it is not informative. This dataset was also analyzed by Ridout and
Besbeas (2004).

We can observe a linear trend profile if we plot the sample means of the number of fertil-
izations shown in Table 4 against log-time. Moreover, 𝜇Y ≈ 𝜆 when 𝛼 is close to 1. Therefore,
we have fitted the data considering parameter 𝜆 to be time-dependent according to the linear
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16 PUIG et al.

T A B L E 4 Distributions of sperm over eggs.

Number of fertilizations

Time (seconds) 0 1 2 3 4 5 6 7 x s2

12 82 17 1 0.19 0.1757

20 33 56 9 2 0.80 0.4646

40 17 68 12 2 1 1.02 0.4642

80 9 56 25 7 2 1 1.40 0.8081

180 1 59 27 9 2 1 1 1.60 0.9899
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F I G U R E 4 Empirical and fitted mean (left) and variance (right).

relationship, 𝜆(t) = 𝛽0 + 𝛽1 log(t). The likelihood can be directly computed from the expression
of the probabilities (12), and using the numerical maximization algorithm provided by func-
tion nlm in R we obtain the maximum likelihood estimates: �̂� = 0.814, se = 0.012; 𝛽0 = −3.228,
se = 0.460; 𝛽1 = 1.410, se = 0.175. The interpretation of this model is meaningful:

1. The number of sperm X contacting an egg follows a Poisson distribution with an increasing
mean over time.

2. The number of fertilizations is Y = X
𝜶

, a variable thinning of the number of sperm X . Because
𝛼n = 𝛼n, 𝛼 can be interpreted as the rate of efficiency for the first fertilization. The rate of
efficiency for the second fertilization is 𝛼2 and so on.

In other words, the eggs have blocking mechanisms limiting the occurrence of polyspermy
and this is the cause of the underdispersion. Figure 4 shows the empirical mean and variance of
the number of fertilizations for each time, together with their estimated values, exhibiting good
performance.

4.2 Variable thinning and negative correlation

As commented earlier, thinning mechanisms are experimentally meaningful. Sometimes, the
𝜶-thinning random variable Y = X

𝜶
and the “remainder” Z = X − X

𝜶
are both meaningful, lead-

ing to a bivariate count random variable (Y ,Z), which is a bivariate stochastic decomposition of
X since X = Y + Z.
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PUIG et al. 17

The probability function of (Y ,Z) is,

P(Y = r,Z = s) = P(Y = r|X = r + s)P(X = r + s) =

=
( r + s

r

)
𝛼

r
r+s(1 − 𝛼r+s)sP(X = r + s). (15)

Most bivariate count distributions have overdispersed marginals that are positively correlated.
However, the following result shows the relation between the dispersion of X and the sign of the
correlation of Y and Z, for the classical binomial thinning (𝛼n = 𝛼, ∀n).

Proposition 7. Let X be a count random variable with dispersion index 𝛿X = 𝜎2
X∕𝜇X ,

Y = X
𝜶

, 𝛼n = 𝛼, ∀n, and the remainder Z = X − Y. Then, the correlation coefficient is,

𝜌YZ =
𝛼(1 − 𝛼)(𝛿X − 1)

√
(𝛼2(𝛿X − 1) + 𝛼)((1 − 𝛼)2(𝛿X − 1) + 1 − 𝛼)

. (16)

Proof. The proof is a direct consequence of (11) and the fact that Z = X1−𝜶 . Then, 𝛿Y =
1 + 𝛼(𝛿X − 1) and 𝛿Z = 1 + (1 − 𝛼)(𝛿X − 1). Moreover, cov(Y ,Z) = 𝛼(1 − 𝛼)𝜇(𝛿X − 1),
and after some straightforward calculations, the proof is concluded. ▪

Accordingly from expression (16), when X is overdispersed then Y and Z are both overdis-
persed, and their correlation is positive. Similarly, when X is underdispersed Y and Z are both
underdispersed and their correlation is negative. Note that, if X is under(overdispersed), then so
are Y and Z, but both Y and Z are less under(overdispersed) than X . Direct calculations show that
the maximum (minimum) correlation is attained at 𝛼 = 1∕2, obtaining

max |𝜌YZ| =
|𝛿X − 1|
𝛿X + 1

.

Commonly used bivariate count models accommodate only a positive correlation between counts.
The flexibility for allowing negative correlations for bivariate count distributions generated by the
variable thinning stochastic decomposition is shown in the following result.

Proposition 8. Let X be Poisson distributed and Y = X
𝜶

, such that 𝛼n is decreasing in
n. Consider the count random variable Z = X − Y, so that we obtain the decomposition
X = Y + Z. Then, if E(𝛼X ) < 1∕2 the correlation is negative: Cor(Y ,Z) < 0.

Proof. Note that Z is also a variable thinning of X with probabilities 𝛼∗n = 1 − 𝛼n. Then,
𝛼
∗
n is increasing when 𝛼n is decreasing and vice versa. Let us now determine the sign

of the covariance,

cov(X
𝜶
,X − X

𝜶
) = E(X

𝜶
(X − X

𝜶
)) − E(X

𝜶
)E(X − X

𝜶
).

Then, E(X
𝜶
(X − X

𝜶
)) = E(X)2E(𝛼X+2(1 − 𝛼X+2)), according to the reasoning used

in the proof of Proposition 6. Note that, E(X
𝜶
) = E(X)E(𝛼X+1) and E(X − X

𝜶
) =

E(X)E(1 − 𝛼X+1). Therefore,

cov(Y ,Z) = E(X)2(E(𝛼X+2(1 − 𝛼X+2)) − E(𝛼X+1)E(1 − 𝛼X+1)),
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and this is equal to,

E(X)2(cov(𝛼X+2, (1 − 𝛼X+2)) + E(𝛼X+2)E(1 − 𝛼X+2) − E(𝛼X+1)E(1 − 𝛼X+1)).

Note that cov(𝛼X+2, (1 − 𝛼X+2)) is negative because 𝛼n is decreasing, so that 1 − 𝛼n is
increasing in n. The remaining part is also negative because it can be written as the
product,

(E(𝛼X+2) − E(𝛼X+1))(1 − (E(𝛼X+2) + E(𝛼X+1))),

where the first term is negative because 𝛼n is decreasing, and the second term is
positive because E(𝛼X+2) + E(𝛼X+1) < 2E(𝛼X ) < 1. ▪

For instance, condition E(𝛼X ) < 1∕2 can easily be checked for the model 𝛼n = 𝛼n, 0 < 𝛼 < 1,
presented in Section 4.1. It can immediately be seen that in this case E(𝛼X ) is just the pgf of a
Poisson-𝜆 distribution evaluated at 𝛼, so condition E(𝛼X ) < 1∕2 is equivalent to e𝜆(𝛼−1)

< 1∕2, or
𝛼 < 1 − log(2)∕𝜆.

Useful expressions for computing the expectations, variances and the covariance of Y and Z
are also obtained from the proofs of Propositions 6 and 8:

𝜇Y = 𝜆E(𝛼X+1) , 𝜇Z = 𝜆 − 𝜇Y

𝜎
2
Y = 𝜆E(X𝛼2

X+1) + 𝜇Y − 𝜇2
Y

𝜎
2
Z = 𝜆E(X(1 − 𝛼X+1)2) + 𝜇Z − 𝜇2

Z

cov(Y ,Z) = 𝜆2E(𝛼X+2 − 𝛼2
X+2) − 𝜇Y𝜇Z

(17)

Propositions 6 and 8 are useful to model bivariate count patterns, as we shall see in the
following application.

The genome of coronavirus SARS-CoV-2 is about 30,000 “letters” long. The sequence of
nucleotides can be downloaded from the National Centre for Biotechnology Information (NCBI)
(https://www.ncbi.nlm.nih.gov/). We have worked with the sequence collected in Spain in
2020-03-15, accession number MT359865. Sliding window analyses are a common approach to
study the local variation within a genome sequence. We want to explore the presence of pairs of
specific trinucleotides in nonoverlapping chunks of size 200 (window length).

Consider for instance the number of trinucleotides atc (Y ) and the number of tta (Z)
along chunks, and the sum of both X = Y + Z. Here the number of observations for each vari-
able is m = 149 (the number of chunks). The sample means and variances are x = 8.0268, y =
2.2550 and z = 5.7718, and s2

X = 7.4722, s2
Y = 1.9615 and s2

Z = 6.8935. The dispersion indexes
are dX = 0.9309, dY = 0.8698, dZ = 1.1943, and the sample correlation coefficient between Y
and Z is rY ,Z = −0.1880. The negative sign of rY ,Z is an indicator of a kind of competition
between both trinucleotides. The Poisson assumption on X has been checked using the bat-
tery of 13 goodness of fit tests described by Puig and Weiss (2020). This battery includes some
classical tests, like Fisher’s dispersion test, and new tests designed for a large family of overdis-
persed alternatives called the LC-class (Puig and Kokonendji (2018)). They explore different
aspects of Poissonness. It is reasonable to assume that X follows a Poisson distribution because
none of the 13 test rejected the Poisson assumption (the minimum p-value= 0.1211 was for the
test Δ∞).
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F I G U R E 5 Observed and fitted values of 𝛼n for the counts of atc.

The values of 𝛼n = E(Y |X = n)∕n can be nonparametrically estimated averaging the counts of
Y for each observed value of X , n, dividing the average by n. The dots in Figure 5 represent these
estimates.

To model the bivariate distribution of (Y ,Z)we assume that the odds of 𝛼n is a power function
of the total number of counts (X), that is, log(𝛼n∕(1 − 𝛼n)) = a + b log(n). Interestingly, when the
slope b is negative, 𝛼n is decreasing with n and n𝛼n is increasing with n. Therefore, Proposition 6
ensures that Y is underdispersed and Z is overdispersed.

The likelihood function has the expression,

L(Y ,Z) =
m∏

i=1

(
yi + zi

yi

)(
1

1 + e−a−b log(yi+zi)

)yi
(

e−a−b log(yi+zi)

1 + e−a−b log(yi+zi)

)zi e−𝜆𝜆yi+zi

(yi + zi)!
. (18)

Note that parameter 𝜆 can be estimated separately because its MLE is just that of the Poisson
distribution obtained with the observations of X (xi = yi + zi), that is �̂� = x = 8.0268. The part
of the likelihood function corresponding to parameters a and b is that of a logistic regression
model, with logit link function, with one covariate (the values of log(X)). Then, standard soft-
ware for Generalized linear models can be used, obtaining the MLE, â = 0.4318, se = 0.4117
and b̂ = −0.6434, se = 0.1918. Although the intercept is not significant, note the negative sign
of b̂ as expected. Figure 5 also shows the values of �̂�n = 1∕(1 + e−â−b̂ log(n)) (red line) reflecting a
good performance. The estimated value of E(𝛼X ) is

∑∞
n=0�̂�ne−�̂��̂�n∕n! = 0.2994 < 1∕2, in agreement

with Proposition 8, ensuring that both (Y ,Z) are negatively correlated. Expectations, variances,
and the correlation coefficient can be estimated using (17) obtaining, �̂�Y = 2.2559, �̂�Z = 5.7710,
�̂�

2
Y = 1.8142, �̂�2

Z = 7.2872 and 𝜌Y ,Z = −0.1478.
There are globally 2016 different pairs of combinations of trinucleotides. In SARS-CoV-2, only

316 pairs are significantly negatively correlated (𝜌 < −.15) for chunks of size 200. Some of them
can be analyzed using the methodology of the previous example (atc and tta), but the Poisson
assumption on X is rejected for some other pairs. In these cases, although Propositions 6 and 8
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could not be illustrated or applied, a similar analysis could be done by using suitable alternatives
to the Poisson distribution in the likelihood function (18).

5 DISCUSSION

The main message of this paper might be that: if your data are underdispersed try to find out why
this is happening, as the answer could be very enriching. We have pointed out two major families
of mechanisms leading to underdispersed count data distributions: stochastic processes (arrival
and birth-death) and binomial thinning (constant and variable).

Renewal processes, such that the interarrival times follow an IFR distribution or have a coef-
ficient of variation lower than 1, are an important source of underdispersed distributions of the
number of arrivals. In Section 2.1 we reviewed an important result by Barlow and Proschan (1965),
pointing out the true meaning of the result by Winkelmann (1995).

Pure birth processes are another meaningful source, producing underdispersed distributions
when the sequence of birth-rates is decreasing (Ball (1995)). On the other hand, any arbitrary
count distribution admits a representation as the number of arrivals (births) of a specific pure
birth process (Faddy’s representation). We have revisited these results in Section 2.2 pointing out
the importance of Faddy’s representation as a tool for modeling.

The steady state distributions of birth-death processes are undoubtedly important and
meaningful sources of underdispersed distributions. We saw in Section 3 that decreasing
sequences of ratio-plot elements 𝜃n provide underdispersed distributions. In particular, queues
with state-dependent service rates provide interesting models leading to distributions like
COM-Poisson and that introduced by Gelfand and Dalal (1990). It is worth noting that represent-
ing the COM-Poisson distribution as a queuing model with service rate 𝜇n = anc provides for a
simple proof, using Corollary 1, that the distribution is underdispersed (overdispersed) for c > 1
(c < 1). The theory of the steady state distributions of queues with state-dependent service rates,
and Corollary 1, allows for construction of new underdispersed distributions in a simple way, for
instance considering log(𝜃n) as a linear function of n. This new distribution fits the frequencies
of dicentrics very well, providing a biological explanation for why they are underdispersed.

Several authors have applied Weighted Poisson distributions for dealing with underdispersion.
In Section 3.2 we showed that Weighted Poisson distributions can be interpreted as the steady
state distribution of a birth-death process. This makes it possible to prove some theoretical results,
also using Corollary 1.

Binomial thinning (or subsampling) is a meaningful operation that models sight or selection
mechanisms in which an underlying count random variable X is partially observed or selected.
We showed in Section 4 that if X is underdispersed, then so is any 𝛼-thinning X𝛼 . However, the
variable thinning mechanism defined in Section 4.2 is more flexible and realistic. We show that if
the underlying variable X is Poisson distributed, and the sequence of thinnings 𝛼n is decreasing
but n𝛼n is increasing, then the variable 𝜶-thinning X

𝜶
is underdispersed. The choice of 𝛼n is a

source of new underdispersed statistical models. We have reanalyzed the frequencies of dicentrics
with the new distribution generated by logit(𝛼n) = b∕n providing meaningful results. Another
new variable thinning model (𝛼n = 𝛼n) makes it possible to fit the classic fertilization datasets
(Morgan (1982)) providing an interesting interpretation.

Two models, one using the service-rate distribution (7) and the other using the
Poisson-variable-thinning distribution with logit(𝛼n) = b∕n, have been used to fit the frequencies
of dicentrics. Which model is preferable? Looking at the results presented in Tables 2 and 3, we
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can conclude that, statistically speaking, the Poisson-variable-thinning model is slightly better
because the value of its global 𝜒2 statistic is 16.27 (12 df), which is lower than the value for the
service-rate model, 19.64 (11 df). However, because both models attempt to explain the cell-repair
mechanism, extensive biological experiments are required to determine which model is the most
accurate.

Finally, Binomial thinning operators provide a natural bivariate stochastic decomposition of
the form (X

𝜶
,X − X

𝜶
). In Section 4.2, we explored some relationships between the underdis-

persion of X
𝜶

and the sometimes negative correlation between X
𝜶

and X − X
𝜶

. In particular,
Propositions 6 and 8 allow to construct new bivariate count models, where one marginal is
underdispersed, the other is overdispersed and the correlation is negative. We have illustrated
some of the results of this section exploring the presence of a specific pair of trinucleotides in
nonoverlapping chunks of size 200 of the genome of coronavirus SARS-CoV-2. We have used
a new bivariate count distribution generated by a variable thinning where the odds of 𝛼n is a
power function of n. Interestingly, this model can be fitted with standard software for Generalized
linear models.

Many topics remain open to further research. One of these is how to implement regression
models to new distributions, like the one presented in (7). One issue is that its parameters can-
not be directly interpreted as mean and variance. The COM-Poisson distribution has the same
problem. A possible option is to parametrize the distribution in terms of the mean and a suit-
able dispersion parameter, albeit this may need the numerical solution of a nonlinear system of
equations. In general, each distribution should be investigated to see how its parameters may be
affected by the covariates.

It can be interesting to investigate order statistics of count distributions as a potential source
of underdispersion. A recent article by Badiella et al. (2023), for instance, demonstrates how the
Poisson order statistics are underdispersed.

Another interesting aspect is that most count distributions linked to capture–recapture prob-
lems are overdispersed and belong to the LC-class, a wide family of distributions endowed with a
log-convex pgf (Puig and Kokonendji (2018)). Similarly, it can be directly checked that all count
distributions with a log-concave pgf are underdispersed, but this property has no practical inter-
pretation. What kind of mechanism is behind a log-concave pgf? This challenge is a motivation
for further research.
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