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Abstract: Micro-expressions reveal underlying emotions and are widely applied in political psychol-
ogy, lie detection, law enforcement and medical care. Micro-expression spotting aims to detect the
temporal locations of facial expressions from video sequences and is a crucial task in micro-expression
recognition. In this study, the problem of micro-expression spotting is formulated as micro-expression
classification per frame. We propose an effective spotting model with sliding windows called the
spatio-temporal spotting network. The method involves a sliding window detection mechanism,
combines the spatial features from the local key frames and the global temporal features and per-
forms micro-expression spotting. The experiments are conducted on the CAS(ME)2 database and the
SAMM Long Videos database, and the results demonstrate that the proposed method outperforms
the state-of-the-art method by 30.58% for the CAS(ME)2 and 23.98% for the SAMM Long Videos
according to overall F-scores.

Keywords: micro-expression spotting; sliding window; key frame extraction

1. Introduction

Macro-expressions are observable with the naked eye, albeit they are deceitful [1],
while micro-expressions [2,3] are short-lived and unconscious expressions [4,5] that are
harder to spot and recognize. Micro-expressions are more reliable measures for psycho-
logical states and are more important in understanding people’s real emotions. They are
widely applied in political psychology [6], lie detection [7], law enforcement and medical
care [8].

Research on micro-expression analysis primarily focuses on two areas: micro-expression
spotting, which involves identifying the onset and apex frames of micro-expressions
in videos, and micro-expression recognition, which predicts the category of the micro-
expression. Deep learning methods have wide and valuable applications in artificial
intelligence [9–11], and advances in deep models have contributed to the rapid develop-
ments of micro-expression recognition technology. However, micro-expression spotting
tasks, particularly in unprocessed raw videos, remain challenging. In 2020, the Third Facial
Micro-Expression Grand Challenge (MEGC2020) [12] introduced a new challenge to spot
both macro- and micro-expressions from Long Videos, drawing the attention of researchers
to the spotting task.

Micro-expression spotting aims to automatically detect the start and end frames of
micro-expressions in a video, representing the time interval of the micro-expression action.
Traditional machine learning methods rely on manually crafted features. Various feature
descriptors are employed, including spatial features such as local binary patterns (LBPs) [13],
a histogram of oriented gradients (HOG) [14], integral projection [15] and Riesz pyramid
features [16], temporal features such as optical stain [17] and optical flow [18–21] and features
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extracted in frequency domains such as the frequency domain feature [22]. Temporal fea-
tures, such as optical flow vectors, have proven to be highly effective for micro-expression
spotting. For example, Shreve et al. [23] partitioned the face into multiple regions, includ-
ing the forehead, eyes, cheeks and mouth. They employed dense optical flow to extract
image features and utilized central difference methods to compute the optical strain mag-
nitude within each region. By comparing these magnitudes with predefined thresholds,
they achieved micro-expression detection. In 2011, Shreve et al. [24] combined existing
macro-expression and micro-expression databases and employed optical flow for detection.
However, both of these approaches focused on non-spontaneous micro-expressions, which
were elicited through experimental instructions. Such micro-expression data virtually
lacked interference, making them relatively straightforward to detect and observe.

These features are further processed by using various machine learning methods, also
called shallow learning methods, such as the chi-square distances of LBP features [25]
and Euclidean distance ratio variations in facial landmarks [26]. For example, optical flow
vectors were extracted and video segments without micro-expressions were removed by
using heuristics [18]. Also, not all frames in a video contribute equally to the spotting task.
Feature difference (FD)-based methods [13] usually compute feature differences between
the first and last frames in the temporal window instead of using the whole sequence. The
main idea of using an FD is to search for distinctive variations within temporal windows.

Deep-learning-based methods have become mainstream solutions in many research
fields, particularly in computer vision. Researchers have also applied these methods to
micro-expression spotting. For instance, a convolutional neural network (CNN) has been
proposed to detect apex frames [27]. Neutral frames and apex frames were first classified
by a CNN architecture, and feature engineering methods were introduced to merge nearby
detection samples.

Combined networks of spatial and temporal deep models have also been utilized. For
example, the framework proposed in [28] consisted of two networks: a spatial network and
a temporal network. The spatial network generated spatial feature maps of two adjacent
frames, based on which a contrasting feature was obtained to enhance micro-expression
spotting. The contrasting feature was then fused with the temporal features extracted by
the temporal network to perform micro-expression recognition and apex frame detection.

In addition to the deep learning methods mentioned above for short video clips, there
have been studies investigating micro-expression spotting in Long Videos, utilizing various
deep learning models such as CNN, 3D-CNN and their variations. For instance, CNN
models were employed to extract spatial features from image frames, and a multi-head
self-attention model was utilized along with the temporal dimension to analyze the weight
of each frame and identify macro- and micro-expression intervals [29]. Variant CNN-
based models are also employed. For example, a Concat-CNN model consisting of three
streams of convolutional networks with different sizes of convolution kernels [30] was
proposed to learn feature correlations among facial action units (AUs) of different frames.
In addition, a local bilinear convolutional neural network (LBCNN) [31] was proposed to
transform the micro-expression spotting task into a fine-grained image recognition problem.
Xue et al. [32] proposed a Two-Stage Macro- and Micro-expression spotting network
(TSMSNet) containing two sub-networks: the Triplet-Stream Attention Network (TSANet)
and the Spatial–Temporal Classification (STCNet). TSANet processed the horizontal and
vertical components of optical flow as well as optical strain in three branches, combining
attention mechanisms to extract spatiotemporal features. The STCNet utilized the initial
expression intervals inferred by the TSANet to predict multi-scale expression segments.

Multiple-stream-based deep learning models are also employed. For example, a two-
stream 3D-CNN used frame skipping and contrast enhancement [33] for micro-expression
spotting in Long Videos. Liong et al. [34] proposed the Shallow Optical Flow Three-Stream
CNN (SOFTNet) model to estimate a confidence score indicating the probability of a frame
belonging to an expression interval. They treated micro-expression spotting as a regression
problem and introduced a pseudo-label mechanism combined with a sliding window
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mechanism to achieve macro-expression and micro-expression detection in Long Videos.
In 2022, Liong et al. proposed the multi-temporal stream network (MTSN) model based
SOFTNet [34]. This approach computed two optical flow features with different time
differences, and each optical flow was processed by the top and bottom SOFTNets. Finally,
the feature vectors from two streams were concatenated and utilized for micro-expression
detection.

The state-of-the-art micro-expression-spotting methods still have much room for
improvement. In this study, we aim to design an effective micro-expression-spotting
method. Inspired by the idea of video summarization, we extract representative frames
from video sequences that may contain crucial information. The micro-expression spotting
problem is then formulated as a classification task to determine whether these key frames
contain a micro-expression, a macro-expression or no facial expressions at all. The proposed
method extracts both spatial and temporal information to select key frames by analyzing
the video structure and spatio-temporal redundancies in the content.

The contributions of this study are listed as the following:

• A spatio-temporal network with sliding windows is proposed for effective micro-
expression spotting.

• A key-frame-extraction method is fused into the spatio-temporal network so that
spatial features of the video clip are denoted as a more concise key-frame-based
representation.

• Experiments show that the proposed model achieves F1-scores of 0.6600 on the
CAS(ME)2 and 0.6091 on the SAMM Long Videos for micro-expression spotting and
performs better with a large margin compared with the state-of-the-art methods.

2. The Spatio-Temporal Spotting Network with Sliding Windows

The video sequences are initially processed with a spatial feature extraction module
by using a sliding window mechanism. Key frames are then extracted from the resulting
feature sequences within the temporal windows. These key frames are further analyzed
by a temporal-information-extraction module for facial expression classification, which
identifies whether the central frame of the temporal window contains a micro-expression,
macro-expression or no expression at all. Figure 1 illustrates the overall structure of the
proposed micro-expression-spotting method called STSNet_SW. The codes and models of
the proposed method are available at https://github.com/ourpubliccodes/STSNet_SW on
12 September 2023.
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Figure 1. Overview of the proposed spatio-temporal micro-expression-spotting method with slid-
ing windows.

2.1. Spatial Information Extraction

Given a video sequence S = {I1, I2, . . . , In, . . . , IN}, where N is the number of frames,
the sequence is sampled by using temporal sliding windows of size K. At moment t, the
window samples a sub-sequence St, with In being the middle frame. And, all sample
windows of the video clip can be denoted as S

′
= {S1, S2, . . . , St, . . . , ST}, where T denotes

https://github.com/ourpubliccodes/STSNet_SW
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the total number of sliding windows. Note that K is set to five in our experiments, and the
first two and last two frames of the video sequence are not sampled as the middle frames
of the sliding windows.

The spatial information extraction module employs a residual network (ResNet)
model [35] as its backbone and is applied on every frame in a video sequence. At time t, we
extract a feature sequence, denoted as Pt, from the K samples within the sub-sequence St.
This feature sequence is represented as Pt = {p1, p2, . . . , pk, . . . , pK}, where pk ∈ RC×H×W

is the spatial features extracted from the k-th image frame and C, H and W denote the
number of channels, the height and the width, respectively.

The model is first initialized with the ImageNet dataset [36]. Due to the relatively low
intensity and short duration of the micro-expressions and the limited number of micro-
expression training samples, the model tends to overfit. To avoid this, the initialized model
is pre-trained on a macro-expression dataset AffectNet [37], which adapts the model from
a general image domain to the facial expression domain.

2.2. Key Frames Extraction

Related studies in micro-expression recognition [22,38–40] show that the features
extracted from the apex frames consist of crucial information and are most effective for
facial expression recognition. In a video clip with micro-expressions, most frames are
static and contain very few information and are thus redundant, while several frames
contain relatively rich information. Motivated by these observations, we introduce a
key-frame-extraction module.

The key-frame-extraction module keeps the most representative frames with more
distinctive features and abandons invariant frames. The module adopts the idea of video
summarization and utilizes a self-attention module and a two-layer fully connected classifi-
cation network. Figure 2 illustrates the structure of the module.

·  ·  ·

1  !

"

 

#

$

·  ·  ·

Figure 2. The structure of the key-frame-extraction module. This module takes Pt =

{p1, p2, . . . , pk . . . , pK} as input, where Pt is the spatial feature sequence extracted from the sub-sequence
St sampled by the t-th sliding window. This input is processed through the self-attention calculation
part and the key-frame-classification part, resulting in a set of scores Zt = {z1, z2, . . . , zk, . . . , zK}. Finally,
we select these frames corresponding to the top M scores in Zt as the M key frames.

The self-attention part captures the correlation between the features. The attention
vector α̃k is computed as the similarity between the extracted feature from the k-th frame
and the feature sequence Pt. We first calculate the correlation between the spatial feature of
the k-th frame and the spatial feature of the i-th frame in the sequence, as formulated in
Equation (1):

αk,i = (W1pi)
T(W2pk), i, k ∈ {1, 2, . . . , K}, (1)
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Then, the correlation between the k-th frame and the feature sequence Pt is denoted
by Equation (2):

αk = (W1Pt)
T(W2pk), αk ∈ RK×1, (2)

where K denotes the number of frames within a temporal window and W1, W2 are learnable
matrices. Then, this correlation vector is normalized by a softmax function to obtain the
attention weight vector α̃k, calculated as Equation (3):

α̃k = So f tmax(αk). (3)

The attention score α̃k,i evaluates the level of attention given to pi by pk. Next, the
feature pk is weighted by using the attention vector α̃k. Each input feature is first linearly
transformed by multiplying with a transformation matrix W3. The transformed vector
is multiplied by its corresponding attention score, which is followed by a summation to
compute the new representation bk, formulated by Equation (4). This vector focuses both
on the global and the key information of the whole sequence:

bk =
K

∑
i=1

α̃k,i(W3pk). (4)

In the key-frame-classification part, the vector bk is further processed with a linear
activation U, a residual sum, a dropout layer Dropout and a normalization layer Norm,
formulated as Equation (5):

gk = Norm(Dropout(Ubk + pk)), (5)

Two more layers are applied to compute the final scores, as shown in Equation (6).
Layer L1 consists of a ReLU activation layer, a dropout layer and normalization layer, and
L2 contains a single hidden unit with a sigmoid activation:

zk = L2(L1(gk)). (6)

The output of the key-frame-extraction module is an importance score sequence Zt =
{z1, z2, . . . , zk, . . . , zK}, zk ∈ [0, 1). We rank Zt and take the top M frames as the key frames
Pkey,t for the feature sequence Pt at time t, where Pkey,t =

{
pk1 , pk2 , . . . , pkm , . . . , pkM

}
.

2.3. Temporal Information Extraction

The spatial feature sequences of the key frames are further processed by the temporal-
information-extraction module composed of two Gated Recurrent Units (bi-GRUs). Com-
pared with the Long Short-Term Memory Networks (LSTMs), the GRU units not only
extract temporal contextual information but also contain fewer trainable parameters, which
make them converge faster during the training process and reduce the risk of overfitting.
The structure of the module is illustrated in Figure 3.

Each bi-GRU module extracts features from a specific pixel position of all key frames
in parallel and obtains a feature pixel sequence of size C×M, where C denotes the total
number of channels of the spatial feature and M denotes the total number of key frames.
Suppose the dimension of the spatial feature vector for each frame is C× H ×W: there are
H×W different spatial positions for each feature map. Then, the temporal network consists
of H×W bi-GRU modules. All bi-GRU modules share the same set of parameters to reduce
the total number of tunable parameters. Suppose the input features at spatial position

(i, j) from all key frames are denoted by P(i,j)
key,t =

{
p(i,j)

k1
, p(i,j)

k2
, . . . , p(i,j)

km
, . . . , p(i,j)

kM

}
, where

p(i,j)
km

denotes the m-th key frame with the hidden state hm−1 from the previous key frame;
the GRU unit obtains the hidden state hm of the current key frame. The output of each
bi-GRU module is the average of the hidden states of the M key frames. This configuration
allows the output to fit with different key-frame lengths. And, the final spatio-temporal feature

Ft ∈ RC
′×H×W is the concatenation of the output from each bi-GRU module, where C

′
is the

number of feature channels after processing by the bi-GRU module.



Electronics 2023, 12, 3947 6 of 14

·
  
·
  
·

 ! " #$%&

'(

')

(
·
  
·
  
·

'*

 ! " #$%&

 ! " #$%&

·
  
·
  
·

·
  
·
  
·

)

*++++)+"

*

(++++)+"

,
-
.
/
0
1
.

)

*

·
  
·
  
·

·
  
·
  
·

Figure 3. The structure of the temporal-information-extraction module. This module takes the spatial
feature sequence Pkey,t from M key frames as input, where Pkey,t =

{
pk1

, pk2 , . . . , pkm , . . . , pkM

}
and pkm ∈ RC×H×W . The temporal-information-extraction module is composed of H ×W bi-GRU
modules, each of which process pixel-wise features within the sequence Pkey,t. For each bi-GRU

module containing M bi-GRUs units, hm is the output of the m-th bi-GRUs unit applied to p(i,j)
km

,

where p(i,j)
km

denotes the feature at spatial position (i, j) in the m-th key frame. The concatenation of
outputs from these H ×W bi-GRU modules forms the spatio-temporal feature Ft.

Finally, a dropout layer with a probability of 0.5 and a fully connected softmax layer
are applied to classify expressions for the sub-sequence St. The classification results denote
the expression categories (including micro-expression, macro-expression and no expression)
of the middle frame within the t-th temporal sliding window. The loss function is defined
in Equation (7):

Loss = −
Q

∑
q=1

1
{

y(Ft) = q′
}

log
eVq′Ft

∑Q
q=1eVqFt

, q ∈ [1, Q], (7)

where Q represents the number of categories, y(Ft) is the predicted label for the feature Ft,
q′ is the ground truth label, 1{·} denotes an eigenfunction (its value is 1 when y(Ft) and q′

are equal and 0 otherwise) and V is the weight vector of a fully connected layer.

2.4. Segment Merging

For the micro-expression detection task, it is common to utilize the Intersection over
Union (IoU) between the detected sample and the ground truth to determine whether a
segment qualifies as a true positive (TP) sample, as depicted in Equation (8):

Wspotted
⋂

WgroundTruth

Wspotted
⋃

WgroundTruth
> r, (8)

where WgroundTruth is the ground truth interval starting from the onset frame until the offset
frame, r is set as 0.5 and the spotted interval Wspotted is considered to be a TP if it meets the
condition of Equation (8). We observe that for a video segment containing an expression,
if a few frames were wrongly identified, a long and continuous segment of expressive
content might be recognized as multiple short segments. In this case, some segments will
be filtered out because they do not meet the threshold duration, leading to them being
incorrectly identified as false negatives (FNs) and thus diminishing the performance of
micro-expression spotting. To address this issue, we carry out post-processing through seg-
ment merging to reduce FN short segments. For example, if an image frame is predicted as
not containing any expression, but its two adjacent frames are labeled as macro-expressions
(or micro-expressions), the label of this frame is adjusted to be consistent with its neighbors.
Figure 4 illustrates the process of segment merging. This merging approach enhances the
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overlap between the spotted samples and ground truth, which mitigates, to some extent,
the performance degradation that FN short segments cause.

 !"697. #$"  !"698. #$"  !"699. #$"  !"700. #$"  !"701. #$"  !"702. #$"  !"703. #$"  !"704. #$"  !"705. #$"  !"708. #$" !"706. #$"  !"707. #$"

Figure 4. Illustration of segment merging. The images framed inside the green box in the first
row represent micro-expressions according to ground truth annotations. The results of expression
detection for these images are displayed in the second row, where “0” signifies the absence of
expression and “1” denotes a micro-expression. Notably, the images encased within the green box are
incorrectly predicted as two separate expression segments, delineated by the red boxes in the second
row. Subsequent to applying segment-merging post-processing, these segments are consolidated
into a single micro-expression segment, indicated by the blue box in the third row, which aligns
consistently with the ground truth.

3. Experiments

We conduct extensive experiments on the spotting benchmark of the Third Facial
Micro-Expression Grand Challenge (MEGC 2020) that aims to spot both macro- and micro-
expressions (starting from the onset frame until the offset frame) in Long Videos. And, the
challenge includes two datasets and several metrics for evaluating the performance of the
methods, which are also used in our experiments.

3.1. Datasets and Evaluation Metrics

The proposed method is evaluated on the CAS(ME)2 database [41] and the SAMM
Long Videos dataset [42]. The CAS(ME)2 database contains a total of 87 videos with a frame
rate of 30 frames per second (fps) and an average duration of 86 s. The authors annotated
300 macro-expressions and 57 micro-expressions from 22 subjects, and the emotions are
divided into four categories: positive, negative, surprise and others.

The SAMM Long Videos dataset is an extended version of the SAMM dataset. It
contains 147 videos with a frame rate of 200 fps and an average duration of 35 s. The dataset
contains 343 macro-expressions and 159 micro-expressions from 32 subjects, recorded using
a high-speed camera with a resolution of 2040× 1088.

The MEGC 2020 spotting task evaluates both macro- and micro-expression spotting.
All videos are treated as “one particularly long video”, so the metric represents the overall
performance of all videos. We first evaluate the spotting of macro- and micro-expressions
separately and then compute the overall performance of the entire dataset. For macro-
expressions, the recall and the precision are defined as Equations (9) and (10):

RecallMaE =
a1

m1
, (9)

PrecisionMaE =
a1

n1
, (10)

where a1 denotes TPs, m1 denotes the total number of macro-expression (MaE) sequences
and n1 denotes the total number of predicted macro-expression intervals. The requirement
of being a TP is described in Equation (8).

Likewise, we also use two metrics for micro-expressions, as formulated in
Equations (11) and (12):
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RecallMiE =
a2

m2
, (11)

PrecisionMiE =
a2

n2
, (12)

where a2 denotes TPs, m2 denotes the total number of micro-expression (MiE) sequences
and n2 denotes the total number of predicted micro-expression intervals. The overall
performance is then computed as Equations (13) and (14):

Recall =
a1 + a2

m1 + m2
, (13)

Precision =
a1 + a2

n1 + n2
. (14)

Based on the overall recall and precision, we calculate the F1-score with Equation (15).
The F1-score is one of the widely used evaluation metrics in micro-expression analysis. It
provides a comprehensive assessment by considering both precision and recall. Precision
measures the percentage of TP samples among all samples predicted as micro-expressions
(including both TPs and false positives (FPs)), while recall measures the percentage of TPs
among all micro-expression samples (including both TPs and FNs). Both of these metrics are
equally important in assessing the classification accuracy, but they sometimes conflict with
each other. Therefore, the F1-score computes the harmonic mean of precision and recall,
taking both metrics into account simultaneously. The F1-score ranges from a minimum of
0 to a maximum of 1, where a higher F1-score indicates better model performance.

F1-score =
2× (Recall × Precision)

Recall + Precision
. (15)

3.2. Experiments and Results

We run the experiments by using an I5-9600K CPU@3.70 GHz with a NVIDIA GeForce
RTX 2070 (with memory size of 16 GB, manufactured by the Gigabyte Technology located
at New Taipei City, Taiwan). In this study, the size of the sliding windows is set as K = 5
and the number of key frames is set as M = 3. For the temporal-information-extraction
module, the input of each temporal module is a feature map with dimensions of M× 512,
512 is the output dimensions of each frame after the key-frame-extraction module and the
number of feature channels C′ is equal to 64. For training, the number of epochs is set as 30,
and the initial learning rate is set as 1 × 10−3. The learning rate is adjusted by using the
cosine annealing learning rate method [43], and the minimum value is set as 1 × 10−8. For
optimization, we use a stochastic gradient descent method [44] with the momentum set
as 0.9 and the weight decay set as 5 × 10−4. And, we use the leave-one-subject-out cross-
validation (LOSO) protocol for validation. This validation method allows us to precisely
evaluate the generalization of the model across individuals, making it particularly suitable
for personalized requirements in practical scenarios.

In this study, we compare the proposed method with the baseline provided by the
MEGC 2020 spotting task and other state-of-the-art (SOTA) methods on the F1-score. From
the results in Table 1, it is clear that our method outperforms others on both the CAS(ME)2

and SAMM Long Videos datasets. Specifically, on the CAS(ME)2 dataset, we achieve an
F1-score of 0.6694 for macro-expression detection and 0.6600 for micro-expression detec-
tion. On the SAMM Long Videos dataset, the F1-score for macro-expression detection is
0.5539, while for micro-expression detection, it reaches 0.6091. Compared to the SOTA, the
STSNet_SW approach improves by 43.25% on the CAS(ME)2 and 39.11% on the SAMM
Long Videos for micro-expression spotting and outperforms the other methods by 25.93%
and 14.58% on the two datasets for macro-expression spotting, respectively. It is note-
worthy that the compared methods generally exhibit better performance in detecting
macro-expressions than micro-expressions on both datasets, with the LSSNet-LSM [45]
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and MTSN [46] methods particularly excelling in this regard. However, the proposed
STSNet_SW method is effective at spotting both micro-expressions and macro-expressions.

Table 1. Comparison of the proposed method with the state-of-the-art methods according to F1-scores.

Dataset CAS(ME)2 SAMM Long Videos

Method Macro-Expression Micro-Expression Overall Macro-Expression Micro-Expression Overall

EL-FACE [33] 0.0841 0.0184 0.0620 0.1973 0.0426 0.1261
SOFTNet(w/o) [34] 0.1615 0.1379 0.1551 0.1463 0.1063 0.1293

3D-CNN [47] 0.2158 0.0253 0.1417 0.1921 0.0425 0.1066
SOFTNet [34] 0.2410 0.1173 0.2022 0.2169 0.1520 0.1881

TSMSNet(w/o) [32] 0.2440 0.2275 0.2407 0.2342 0.1899 0.2144
TSMSNet [32] 0.2515 0.2275 0.2466 0.2395 0.1969 0.2213
Yang et al. [30] 0.2599 0.0339 0.2118 0.3553 0.1155 0.2736
Yap et al. [48] - - - 0.4081 0.0508 0.3299

LSSNet-LSM [45] 0.3800 0.0630 0.3270 0.3360 0.2180 0.2900
MTSN [46] 0.4101 0.0808 0.3620 0.3459 0.0878 0.2867

STSNet_SW 0.6694 0.6600 0.6678 0.5539 0.6091 0.5697

Table 2 reports a detailed analysis of the experimental results obtained by using the pro-
posed method across several evaluation metrics. The F1-scores for spotting macro-expressions
of the CAS(ME)2 and the SAMM Long Videos are 0.6694 and 0.5539, respectively, and the
F1-scores for spotting micro-expressions are 0.66 and 0.6091, respectively. The overall F1-scores
are 0.6678 and 0.5697, respectively. Note that the relatively small values of the FPs indicate
that the proposed method has a strong ability to identify no-expression segments, and there
are very few cases where no-expression segments are misclassified as macro-expression (or
micro-expression) segments.

Table 2. Detailed performance of the proposed method using several evaluation metrics.

Dataset CAS(ME)2 SAMM Long Videos

Expression Macro-Expression Micro-Expression Overall Macro-Expression Micro-Expression Overall

Total 300 57 357 343 159 502
TP 166 33 199 167 74 241
FP 30 10 40 93 10 103
FN 134 24 158 176 85 261

Precision 0.8469 0.7674 0.8326 0.6423 0.8810 0.7006
Recall 0.5533 0.5789 0.5574 0.4869 0.4654 0.4801

F1-score 0.6694 0.6600 0.6678 0.5539 0.6091 0.5697

The experimental results of the proposed method with segment merging is reported in
Table 3. The results show that performance on the SAMM Long Videos dataset improved,
but the results on the CAS(ME)2 dataset barely changed. This discrepancy is attributed to
the difference in frame rates between the two datasets. In the SAMM Long Videos database
with high frame rates, an expression clip contains a greater number of frames within the
same time interval compared to the CAS(ME)2 dataset with low frame rates. Consequently,
the proposed model may miss some of the expression frames during spotting, leading to
the detection of multiple shorter segments instead of a single complete segment. Therefore,
the segment-merging post-processing connects multiple short segments into a longer one,
significantly improving the detected TPs for the SAMM Long Videos dataset.

In addition, we also conduct an experiment to distinguish macro- and micro-expressions
according to segment duration so as to assess and validate the advantages of segment-
merging post-processing in micro-expression spotting. Typically, micro-expressions have
shorter durations compared to macro-expressions, which make them prone to be confused
with macro-expression segments. With the initial predictions generated by the STSNet_SW
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method, we re-labeled segments with facial expressions as “with-expression” segments
and those without expressions as “no-expression” segments. During the segment-duration
post-processing, we set a threshold duration to discriminate whether a “with-expression”
segment represents a micro-expression or a macro-expression. Specifically, for segments
containing facial expressions, those lasting shorter than or equal to the threshold are con-
sidered micro-expressions, while segments lasting longer than the threshold are re-labeled
as a macro-expressions. Figure 5 shows an example of a micro-expression segment mis-
classified as a macro-expression, which is correctly re-labeled by using segment-duration
post-processing.

Table 3. Detailed performance of the proposed method with segment-merging post-processing.

Dataset CAS(ME)2 SAMM Long Videos

Expression Macro-Expression Micro-Expression Overall Macro-Expression Micro-Expression Overall

Total 300 57 357 343 159 502
TP 165 33 198 175 80 255
FP 30 10 40 87 11 98
FN 135 24 159 168 79 247

Precision 0.8462 0.7674 0.8319 0.6679 0.8791 0.7224
Recall 0.5500 0.5789 0.5546 0.5102 0.5031 0.5080

F1-score 0.6667 0.6600 0.6655 0.5785 0.6400 0.5965
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Figure 5. Illustration of the segment duration. The first row displays the video clip to be detected.
The second row shows the prediction results for this video clip, including no-expression segments
denoted by “0”, a micro-expression segment indicated by “1” (i.e., the images framed within the red
box) and a macro-expression segment identified as “2” (i.e., the images framed within the yellow box).
Subsequently, these segments are re-labeled as either “no-expression” segments or “with-expression”
segments (depicted by the blue boxes in the third row). The “with-expression” segments are further
re-classified as micro-expressions (indicated by the red boxes in the fourth row) by comparing their
durations with the predefined threshold.

Based on experience, the threshold of the frame numbers is set as 15 for the CAS(ME)2

dataset and 100 for the SAMM Long Videos dataset. Table 4 shows the experimental results.
From the table, we observe that compared with segment-merging post-processing, the
performance on the two databases is improved for macro-expression spotting, while the
performance is worse for both databases for the micro-expressions. This phenomenon is
attributed to the fact that filtering expression segments based on the threshold results in
micro-expressions predominantly containing shorter-duration segments. Consequently,
these micro-expression segments are scattered throughout the video sequence, causing
the overlap region between the spotted samples and ground truth that includes more
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non-expression segments. From the perspective of Equation (8), this issue decreases the IoU
and TPs for micro-expressions, which subsequently affects the final detection. Conversely,
macro-expressions, which retain segments with a long duration, show a relatively increased
overlap between the detected samples and ground truth. On the other hand, due to indi-
vidual variations in emotional expression habits, setting a fixed threshold duration for each
dataset does not ensure that all micro-expression segments meet the thresholding criteria.
As a result, many micro-expression segments may be misclassified as macro-expression
segments because their durations are longer than the threshold. The compared methods
using segment duration for post-processing are subject to accuracy loss under certain
scenarios. In conclusion, segment merging is effective as a post-processing procedure.

Table 4. Detailed performance of the proposed method with segment-duration post-processing.

Dataset CAS(ME)2 SAMM Long Videos

Expression Macro-Expression Micro-Expression Overall Macro-Expression Micro-Expression Overall

Total 300 57 357 343 159 502
TP 167 22 189 179 49 228
FP 32 42 74 87 76 163
FN 133 35 168 164 110 274

Precision 0.8392 0.3438 0.7186 0.6729 0.3920 0.5831
Recall 0.5567 0.3860 0.5294 0.5219 0.3082 0.4542

F1-score 0.6693 0.3636 0.6097 0.5878 0.3451 0.5106

4. Conclusions

This study proposes a spatio-temporal spotting network with sliding windows for
spotting macro- and micro-expression in long videos. By combining convolutional neural
networks and recurrent neural networks, this model comprehensively learns spatial and
temporal features, capturing the key characteristics of facial expressions. Furthermore,
we innovatively incorporate a video summarization algorithm for key frame extraction to
improve the performance of micro-expression spotting. Many existing expression-spotting
methods combine traditional feature extraction with deep learning but frequently struggle
to capture complex facial expression variations and incur high costs of labor and time.
Additionally, given the shorter durations and smaller amplitudes of facial movements
in micro-expressions compared to macro-expressions, current methods tend to prioritize
macro-expression detection and perform poorly in micro-expression segment detection.

We evaluate the proposed STSNet_SW on two benchmark datasets: CAS(ME)2 and
SAMM Long Videos from the MEGC 2020 challenge. In terms of the F1-score, the pro-
posed method achieves scores of 0.6600 and 0.6091 for micro-expression spotting on the
CAS(ME)2 and SAMM Long Videos datasets, respectively, and scores of 0.6694 and 0.5539
for macro-expression spotting on the CAS(ME)2 and SAMM Long Videos datasets, re-
spectively. Compared to the state-of-the-art (SOTA) methods, the STSNet_SW approach
achieves a superiority margin of 43.25% and 25.93% on the CAS(ME)2 dataset for micro-
expression and macro-expression spotting, and this method improves by 14.58% and
39.11% on the SAMM Long Videos dataset for micro-expression and macro-expression
spotting, respectively. These results demonstrate that the STSNet_SW method outperforms
state-of-the-art methods in both macro- and micro-expression detection, with particularly
remarkable improvements in micro-expressions. However, regardless of whether segment-
merging post-processing or segment-duration post-processing is applied, the performance
of this proposed method on the SAMM Long Videos dataset is notably lower than on the
CAS(ME)2 dataset, possibly due to disparities between the datasets. Additionally, there is a
significant imbalance between the data used for micro-expressions and macro-expressions,
limiting further improvements in spotting performance. We will continue this study in the
future and utilize more diverse facial information, such as facial action units (AUs) and
optical flow features to solve the problem of insufficient data for micro-expression spotting.
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