
This is the **accepted version** of the journal article:

Arranz, Sara G.; Casanovas i Vilar, Isaac; Žliobaitė, Indrė; [et al.]. «Paleoenvironmental inferences on the Late Miocene hominoid-bearing site of Can Llobateres (NE Iberian Peninsula) : an econometric approach based on functional dental traits». *Journal of Human Evolution*, Vol. 185, art. 103441 (Dec. 2023). DOI 10.1016/j.jhevol.2023.103441

This version is available at <https://ddd.uab.cat/record/283690>

under the terms of the license

Paleoenvironmental inferences on the Late Miocene hominoid-bearing site of Can Llobateres (NE Iberian Peninsula): An econometric approach based on functional dental traits

Sara G. Arranz^{a,*}, Isaac Casanovas-Vilar^a, Indré Žliobaitė^{b,c}, Juan Abella^{d,a,e}, Chiara Angelone^{f,g}, Beatriz Azanza^h, Raymond Bernor^{i,j}, Omar Cirilli^{i,k}, Daniel DeMiguel^{h,l,a}, Marc Furió^{m,a}, Luca Pandolfiⁿ, Josep M. Robles^a, Israel M. Sánchez^a, Lars W. van den Hoek Ostende^o, David M. Alba^{a,*}

^a *Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain*

^b *Department of Computer Science, University of Helsinki, P.O. Box 68, 00014 Helsinki, Finland*

^c *Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland*

^d *Grup d'Investigació en Paleontologia de Vertebrats del Cenozoic (PVC-GIUV), Departament de Botànica i Geologia, Universitat de València, 46100 Burjassot, València, Spain*

^e *Instituto Nacional de Biodiversidad (INABIO), Pje. Rumipamba N. 341 y Av. de los Shyris (Parque La Carolina), Quito, Ecuador*

^f *Dipartimento di Scienze, Università degli Studi Roma Tre, 00146 Roma, Italy*

^g *Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044 Beijing, China*

^h *Departamento de Ciencias de la Tierra, and Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, 50009, Zaragoza, Spain*

ⁱ *College of Medicine, Department of Anatomy, Laboratory of Evolutionary Biology, Howard University, 520 W St. N.W., 20059, Washington D.C., USA*

^j *Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, 20013, Washington DC, USA*

^k *Earth Sciences Department, Paleo[Fab]Lab, Università degli Studi di Firenze, via G. La Pira 4, I-50121, Firenze, Italy*

^l *ARAID foundation, 50018, Zaragoza, Spain*

^m *Serra Húnter Fellow, Departament de Geologia, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain*

ⁿ *Dipartimento di Scienze, Università della Basilicata, via dell'Ateneo Lucano, 10, 85100, Potenza, Italy*

^o *Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands*

***Corresponding authors.**

E-mail addresses: sara.arranz@icp.cat (S.G. Arranz); david.alba@icp.cat (D.M. Alba).

1 Paleoenvironmental inferences on the Late Miocene hominoid-bearing site of Can Llobateres
2 (NE Iberian Peninsula): An econometric approach based on functional dental traits

3

4 **Abstract**

5 *Hispanopithecus laietanus* from the Late Miocene (9.8 Ma) of Can Llobateres 1 (CLL1;
6 Vallès-Penedès Basin, NE Iberian Peninsula) represents one of the latest occurrences of fossil
7 apes in Western mainland Europe, where they are last recorded at ~9.5 Ma. The
8 paleoenvironment of CLL1 is thus relevant for understanding the extinction of European
9 hominoids. To refine paleoenvironmental inferences for CLL1, we apply econometric models
10 based on functional crown type (FCT) variables—a scoring scheme devised to capture
11 macroscopic functional traits of occlusal shape and wear surfaces of herbivorous large mammal
12 molars. Paleotemperature and paleoprecipitation estimates for CLL1 are provided based on
13 published regional regression models linking average FCT of large herbivorous mammal
14 communities to climatic conditions. A mapping to Whittaker's present-day biome classification
15 is also attempted based on these estimates, as well as a case-based reasoning via canonical
16 variate analysis of FCT variables from five relevant biomes. Estimates of mean annual
17 temperature (25 °C) and mean annual precipitation (881 mm) classify CLL1 as a tropical
18 seasonal forest/savanna, only in partial agreement with the canonical variate analysis results,
19 which classify CLL1 as a tropical rainforest with a higher probability. The former biome agrees
20 better with previous inferences derived from fossil plants and mammals, as well as preliminary
21 isotopic data. The misclassification of CLL1 as a tropical forest is attributed to the mixture of
22 forest-adapted taxa with others adapted to more open environments, given that faunal and plant
23 composition indicates the presence of a dense wetland/riparian forest with more open
24 woodlands nearby. The tested FCT econometric approaches do not provide unambiguous biome
25 classification for CLL1. Nevertheless, our results are consistent with those from other

26 approaches, thus suggesting that FCT variables are potentially useful to investigate
27 paleoenvironmental changes through time and space—including those that led to the extinction
28 of European Miocene apes.

29

30 **Key words:** Fossil apes; *Hispanopithecus*; Functional crown types; Paleoecology; Vallesian;
31 Spain.

32

33 **1. Introduction**

34 *1.1. The hominoid-bearing site of Can Llobateres*

35 Historical background The fossil site of Can Llobateres (Late Miocene), in the municipality of
36 Sabadell (Catalonia, NE Spain), has figured prominently in the study of Miocene mammals
37 from Europe—being considered the reference locality of MN9 (Mein, 1990)—with emphasis
38 on fossil hominoids. The site was discovered in 1926 (Crusafont Pairó, 1969; Alba et al., 2011a,
39 2011b) and the first accounts of its fauna were published in the 1940s (Villalta Comella and
40 Crusafont Pairó, 1943; Crusafont Pairó and Villalta Comella, 1948). Hominoid dental remains,
41 assigned to the dryopithecine¹ *Hispanopithecus laietanus*, were first discovered there in 1958
42 (Crusafont Pairó, 1958; Crusafont Pairó and Hürzeler, 1969) and additional hominoid remains
43 were subsequently recovered during the 1960s (Crusafont Pairó and Hürzeler 1961, 1969;
44 Crusafont Pairó 1965; Golpe Posse 1982, 1993; Moyà-Solà et al. 1990). Crusafont and Hürzeler
45 (1961, 1969) reported two additional species from the site—never figured or described, and

¹ Although it is currently uncertain whether the Dryopithecinae constitute a clade or a paraphyletic assemblage (Alba, 2012; Almécija et al., 2021; Pugh, 2022), we follow Urciuoli and Alba (2023) in provisionally distinguishing this group at the subfamily rank until its phylogenetic relationships are clarified further.

46 hence considered nomina nuda (Szalay and Delson, 1979; Alba, 2012; Alba et al., 2012a)—
47 while a fourth hominoid was subsequently reported based on an isolated male upper canine
48 (Crusafont Pairó and Golpe Posse, 1973), being attributed to *Sivapithecus indicus*.

49 In 1981, additional dental hominoid material was recovered from the lower levels of the site
50 (Begin et al., 1990; Golpe Posse, 1993), known as Can Llobateres 1 (CLL1). From 1992
51 onward, a partial cranium (Moyà-Solà and Köhler, 1993, 1995; Begin, 1994) and skeleton
52 (Moyà-Solà and Köhler, 1996; Almécija et al., 2007; Pina et al., 2012; Tallman et al., 2013;
53 Susanna et al., 2014) were discovered on the upper levels of the site, termed Can Llobateres 2
54 (CLL2), which were last excavated in 1997. In 2010, excavations were resumed again at CLL1
55 by a team led from the Institut Català de Paleontologia Miquel Crusafont (ICP) and additional
56 hominoid teeth were found (Alba et al., 2012a), along with plant remains that enabled a better
57 characterization of the paleoenvironment (Marmi et al., 2012). The locality of CLL1 was last
58 excavated in 2015, owing to the paucity of the fossiliferous levels that delivered most of the
59 hominoid dental remains in previous years. Begin et al. (1990) and most subsequent authors
60 attributed the whole hominoid sample from Can Llobateres to *Dryopithecus laietanus*
61 (Harrison, 1991; Moyà-Solà and Köhler, 1993, 1995, 1996; Begin, 1994; Ribot et al., 1996)
62 or, more recently, *Hispanopithecus laietanus* (Almécija et al., 2007; Cameron, 1997, 1998,
63 1999, 2004; Moyà-Solà et al., 2009; Begin, 2009; Alba, 2012; Alba et al., 2012a).

64 Geological background and taphonomical remarks Can Llobateres is located in the Vallès
65 sector of the Vallès-Penedès Basin (Catalonia, Spain; Fig. 1), an elongated half-graben about
66 100 km in length and 12–14 km in width, parallel to the Catalan coastline near Barcelona, and
67 bounded by the Catalan Coastal Ranges (for an updated review, see Casanovas-Vilar et al.,
68 2016a). The Miocene sedimentary infill of the Vallès-Penedès Basin has been divided into four
69 main lithostratigraphic units, Can Llobateres belonging to the Upper Continental Units, which
70 range from the Middle to the Late Miocene (Casanovas-Vilar et al., 2016a). In particular, Can

71 Llobateres is located within distal facies of the alluvial fan system of Castellar del Vallès
72 (Agustí et al., 1996, 1997), consisting of a short sequence ~20 m thick mostly defined by
73 mudstones (claystones and siltstones), as well as polymictic breccias and conglomerates
74 (Marmi et al., 2012; Alba et al., 2012a). The locality of CLL1 is located in the lower section of
75 the sequence, characterized by organic matter and abundant mudstones, indicating a poorly
76 drained alluvial plain that would have favored the development of small shallow lakes and
77 ponds (Agustí et al., 1996; Alba et al., 2011a, 2011b, 2012a).

78 No taphonomic study has been performed at CLL1, but Begun et al. (1990) made some
79 sedimentological and taphonomic remarks based on the 1981 campaign, while Marmi et al.
80 (2012) and Alba et al. (2012a) provided far more detailed sedimentological descriptions and
81 additional taphonomic details based on the 2010–2011 campaigns. The former authors
82 distinguished two 'sedimentary units' at CLL1, which they interpreted as corresponding to two
83 different 'fluvial cycles' (Begun et al., 1990): the lower one, characterized by finer sediments
84 indicative of a low energy depositional environment, would have yielded taxa associated with
85 humid and forested environments (such as primates and suids); the upper one, in turn, would
86 be characterized by coarser sediments (including channel deposits) indicative of a higher energy
87 depositional environment and, according to these authors, would have yielded taxa indicative
88 of more open conditions (such as hippopotamid equids) that could have been transported from
89 greater distances. Subsequent fieldwork at the site (Alba et al., 2012a) confirmed that primates
90 are apparently restricted to the lower 'unit' recognized by Begun et al. (1990), but evinced a
91 greater stratigraphic and taphonomic complexity (Alba et al., 2012a; Marmi et al., 2012), in
92 which four stratigraphic bodies may be discerned.

93 The bottom of the CLL1 sequence (not available to Begun et al., 1990) is composed by layers
94 of reddish to brown silts, sands, and conglomerates, indicative of less humid conditions than
95 the 'classical' layers of CLL1, probably representing the end of a preceding depositional cycle

96 (Alba et al., 2012a). The lower 'unit' of Begun et al. (1990), in turn, comprises variously colored
97 mudstones (mostly fine-grained clays) with abundant micromammal and some macromammal
98 remains (including the hominoid teeth recovered in 1981 and 2011), plus mollusk shells,
99 silicified figs, and other fragmentary and poorly preserved plant remains. The lower layers (1a
100 and 1b) are blackish and become lighter in color (ligh gray to greenish) toward the top (layer
101 2), although at different locations layers 1b and 2—the ones that yielded primate remains—are
102 completely light brown (Alba et al., 2012a; Marmi et al., 2012). The top layers (3a and 3b)
103 consist of greenish to yellowish clays with some coarser sediments, in which gastropod shells
104 are poorly preserved and vertebrate remains sparser than in the underlying layers. The upper
105 'unit' of Begun et al. (1990) begins with a paleochannel (layer 4a) of varying thickness
106 composed of much coarser sediments (with decreasing granulometry from bottom to top),
107 which at some point erodes some or all of the aforementioned layers and which locally yielded
108 more abundant large mammal remains. Overlying these channel deposits there is a thick (>2.5
109 m) sedimentary package (layer 4b/4p) of alternating green clays, greenish to orange silts, and
110 conglomerates, which locally preserve abundant plant macroremains (Marmi et al., 2012). A
111 fourth sedimentary body can be distinguished at the top of the CLL1 sequence, including a
112 paleochannel (layer 5a) that erodes layer 4b and an overlying 6.5 m-thick package (layer 5b) of
113 multiple episodes of ocher to red clays, silts, and conglomerates, indicative of paleosol
114 formation and well-aerated conditions (Marmi et al., 2012).

115 Pending more detailed analyses, and contrary to Begun et al.'s (1990) previous assessment,
116 the 2010–2015 fieldwork campaigns (D.M.A., pers. obs.) failed to confirm differences in faunal
117 composition between the primate-bearing layers and the paleochannel deposits (other than the
118 apparent lack of primates in the latter). For example, suids are not restricted to the primate-
119 bearing layers (contra Begun et al., 1990) but also present in the paleochannel deposits (layer
120 4a) and in the layer 4b that overlies them. Similarly, *Hippotherium* remains are more abundant

121 in layer 4a, but are also present in most of the remaining layers, both above (4b) and below (3b,
122 2, and 1b), thus including the primate-bearing ones. Finally, that forest-adapted taxa are not
123 restricted to the latter is best exemplified by the recovery of a *Tapirus* tooth from the bottom of
124 layer 4a (D.M.A., pers. obs.). Coupled with the fact that detailed stratigraphic provenance is
125 not recorded for most of the remains recovered before 2010, this makes impossible to
126 conclusively ascertain whether, in fact, CLL1 as a whole mixes faunal elements from different
127 environments due to differential transport among various fossiliferous layers.

128 On the other hand, different degrees of transport depending on the layer are confirmed by
129 available data. In particular, the presence of isolated teeth from two single individuals
130 (hominoid and cervid) scattered over a few square meters in one of the clay layers that yielded
131 primate remains suggests minimal transport, probably under water (Alba et al., 2012a). By
132 contrast, the paleochannel combines fragmentary and rounded remains of multiple large
133 mammals with better preserved and larger macromammal remains (including disarticulated
134 dentognathic and postcranial remains of a single *Hippotherium* individual; D.M.A., pers.
135 obs.)—overall indicative of transport in higher energy conditions from longer distances, than
136 in the primate-bearing layers as previously concluded by Begun et al. (1990). Finally, the plant
137 remains from layer 4p (Marmi et al., 2012) are interpreted as a parautochthonous assemblage
138 accumulated by wind and short water transport in a shallow-water depositional environment. All
139 this preliminary taphonomic evidence combined suggests that the fossil assemblages from
140 CLL1 are representative of the fauna and flora present at and near the depositional environment,
141 although it cannot be discounted that some taxa preferentially inhabited areas farther away from
142 it, as some fossiliferous layers evince greater degrees of transport than others.

143 Chronological and paleoenvironmental background On biostratigraphic grounds, CLL1 is
144 correlated to the *Cricetulodon hartenbergeri*–*Progonomys hispanicus* interval local subzone,
145 while CLL2 is correlated to the *Cricetulodon sabadellensis* + *Progonomys hispanicus*

146 concurrent range local subzone (Casanovas-Vilar, 2016b). In addition, the Can Llobateres
147 sequence records three magnetozones, with reverse polarity in the lower and upper part, and
148 normal polarity in the middle (Agustí et al., 1996, 1997). In particular, CLL1 is correlated to
149 C4Ar.3r while CLL2 is correlated to C4Ar.2r (Agustí et al., 1996, 1997), with interpolated ages
150 of 9.76 and 9.62 Ma, respectively (Casanovas-Vilar et al., 2016b). Based on the absence of
151 *Progonomys* from CLL1, it has traditionally been considered that the Can Llobateres sequence
152 records the early to the late Vallesian transition, with CLL1 and CLL2 being correlated to MN9
153 and MN10, respectively (Agustí et al., 1996, 1997; Alba et al., 2012a); indeed, CLL1 is
154 considered the reference locality for MN9 (Mein, 1990; de Bruijn et al., 1992; Casanovas-Vilar
155 et al., 2016b). However, *Progonomys* remains have been found in older sites from other Iberian
156 basins, placing the lower boundary of MN10 (as defined by the first common occurrence of this
157 genus) at 9.98 Ma (Hilgen et al., 2012; Van Dam et al., 2014). Accordingly, under a strictly
158 biostratigraphic approach to MN units, CLL1 must be correlated to MN10 instead of MN9
159 (Casanovas-Vilar et al., 2016b; Alba et al., 2018). It is unlikely that the paleobiodiversity of
160 CLL1 is inflated by time averaging, as most of the remains come from a short stratigraphic
161 interval of ~2 m (Alba et al., 2012a). Based on the average sedimentation rate for the Vallesian
162 of the Vallès-Penedès Basin (20 cm/kyr; Garcés et al., 1996) this would merely represent a time
163 interval of ~10 kyr—in rough agreement with the difference between the interpolated ages of
164 CLL1 and CLL2 (~140 kyr; Casanovas-Vilar et al., 2016b), which are separated by less than
165 20 m of stratigraphic distance.

166 Paleoenvironmental inferences have previously been drawn for CLL1 based on both
167 mammals and plants, using different methods—see summary in Table 1 and the Discussion for
168 additional details. The plant remains (Sanz de Siria Catalán, 1993, 1994; Álvarez Ramis, 1975;
169 Alba et al., 2011b; Marmi et al., 2012), which enable a reliable reconstruction of the
170 paleoenvironment that *H. laietanus* inhabited, are generally in agreement with the conclusions

171 drawn from the large and/or small mammals (Nagatoshi, 1987; Köhler, 1993; Andrews, 1996;
172 Hernández Fernández et al., 2003; Casanovas-Vilar and Agustí, 2007; Costeur, 2005), which
173 indicate the presence of a humid and closed forest paleoenvironment at the depositional area
174 but further hint at the existence of relatively more open woodlands nearby (Marmi et al., 2012).
175 Some paleoenvironmental conclusions have also been derived for CLL1 from the numerical
176 analyses of its mammalian assemblage composition (Andrews, 1996; Hernández Fernández et
177 al., 2003) and eometrics in general have been applied to this site as part of studies that aimed
178 to reconstruct continental patterns of Neogene paleoprecipitation (Fortelius et al., 2002; Eronen
179 et al., 2009, 2010a; Kaya et al., 2018) or net primary production (Toivonen et al., 2022).
180 However, no dedicated eometric approaches to paleoenvironment reconstruction have been
181 performed thus far. Given that *H. laietanus* is the latest hominoid recorded from mainland
182 Western Europe, the reconstruction of its paleoenvironment is highly significant for
183 understanding the local extinction of hominoids and other mammalian taxa in Europe during
184 the Late Miocene (Casanovas-Vilar et al., 2011).

185

186 *1.2. Eometrics and functional crown types*

187 Eometrics is a trait-based approach based on the study of functional morphological features
188 of organisms that attempts to quantify links between the distribution of those traits across biotic
189 communities and specific environmental factors as well as to analyze their dynamics through
190 space and time in the fossil record (Fortelius et al., 2002; Eronen et al., 2010b; Vermillion et
191 al., 2018). Eometric traits are measurable macroscopic features that are known to represent
192 their function in relation to local environmental conditions (Eronen et al., 2010b)—either due
193 to adaptive reasons or to use/plasticity (ecophenotypic features). The most typical eometric
194 traits of vertebrates describe dental morphology, limb proportions, and body mass. Candidate
195 traits for eometric modeling must be at least preliminarily known to be associated through

196 their functional relationship with the local environmental conditions, including the dominant
197 temperature, precipitation, or dominant vegetation type (Eronen et al., 2010b; Vermillion et al.,
198 2018). However, the exact associations are captured computationally when fitting statistical
199 models to link the traits of communities with their environmental conditions. Due to its
200 functional perspective, ecometrics has sometimes been referred to as a taxon-free approach, to
201 highlight that the ecology of fossil organisms is not inferred from that of their nearest living
202 relatives and that econometric approaches do not rely on presence or absence of any particular
203 individual taxa. Theoretically, econometric approaches can be completely taxon blind—e.g.,
204 analyzing random samples of teeth that are found at localities without considering any
205 taxonomic information. However, in practice, for robustness and potentially larger samples,
206 most econometric studies, including the present work, analyze the distribution of traits over
207 species at localities, sometimes on global scale datasets (e.g., Liu et al., 2012; Žliobaitė et al.,
208 2018). Econometrics, thus, does not focus on individual organisms, but deals with the functional
209 composition of communities, thereby enabling comparisons between present and past
210 communities. Of course, there is no way to statistically test for predictions about the past
211 (retrodictions), which makes it necessary to use different approaches and see how they compare.
212 Because of its relatively fast and non-destructive sampling, dental econometrics has been
213 particularly used to make large-scale inferences about paleoenvironmental and biotic changes
214 across different geographic and temporal scales, and different tailored global and regional
215 models have been developed for different types of analysis (Eronen et al., 2010b; Liu et al.,
216 2012; Fortelius et al., 2016; Žliobaitė et al., 2016; Oksanen et al., 2019).

217 In this study, we aim at predicting multiple climatic characteristics of CLL1, for which we
218 use the dental trait scoring scheme reported in Žliobaitė et al. (2016), termed functional crown
219 types (FCT). This scheme was devised to potentially increase the scope of environmental
220 predictions particularly in the Late Miocene and Plio-Pleistocene. The scheme is based on a

221 modular system called crown types (Jernvall, 1995), which was designed to be applicable to
222 mammals generally, primarily focusing on the shape of unworn teeth. Functional crown types,
223 in contrast, focus on characteristics of how teeth wear while in use. The FCT scheme includes
224 seven variables (Žliobaitė et al., 2016; Galbrun et al., 2018). Ecometric approaches based on
225 hypsodonty (HYP; relative crown height) and loph count (Fortelius et al., 2002, 2016; Eronen
226 et al., 2010a, 2010c; Liu et al., 2012; Oksanen et al., 2019) have been used to estimate
227 paleoprecipitation and productivity in the Old World from the Miocene through the Pleistocene,
228 as well as temperature in the Pleistocene. However, the set of seven variables of the FCT
229 scheme offers potential for estimating a broader set of climatic conditions, including seasonality
230 characteristics and reoccurring extremities of climatic conditions (Žliobaitė et al., 2016). Here,
231 we apply regional and global ecometric approaches based on the FCT of herbivorous large
232 mammals from CLL1 to refine the previous paleoenvironmental inferences on the habitat of *H.*
233 *laietanus.*

234

235 **2. Materials and methods**

236 *2.1. Studied material*

237 As in Žliobaitė et al. (2016), this study was restricted to herbivorous large mammals of the
238 orders Artiodactyla, Perissodactyla, Proboscidea, and Primates, and focused on M²s (see also
239 Galbrun et al., 2018). We scored dental traits at the species level. An updated faunal list of the
240 mammals recorded at CLL1, including 20 species of the aforementioned orders (Table 2), was
241 compiled based on the information available from the Vallès-Penedès Miocene Vertebrates –
242 Paleobiodiversity Database (Casanovas-Vilar et al., 2018; Alba et al., 2022a), which includes
243 specimen identification and provenance information for Miocene vertebrate remains from the
244 Vallès-Penedès Basin and is maintained by ICP researchers, not yet openly accessible. The
245 identification of multiple species was also revised in the course of this work by examining

246 original material housed in the ICP and comparing it with that from published sources.
247 Functional crown type variables were scored by visual inspection from M^2 s in all species of
248 large herbivorous mammals. Žliobaitė et al. (2016) scored these variables from M^3 s in the case
249 of African Suidae, where typically M^3 was the dominant molar for adults. However, this was
250 not necessary in the case of the Miocene suid species recorded at CLL1, where the scores for
251 M^2 and M^3 were the same. When the identification of a taxon was well-documented in the
252 literature and M^2 s where available from CLL1, we focused on this material to score the FCT
253 variables. When any of these conditions did not apply, other dental (or even postcranial)
254 remains were studied to confirm or refine the taxonomic identifications. When no M^2 s were
255 available from CLL1 for a particular taxon, FCT variables were based on those of the same
256 species or higher taxonomic ranks from elsewhere as reported in the literature.

257

258 *2.2. Ecometric analysis*

259 Functional crown types The FCT dental trait scoring scheme was designed to capture main
260 functional traits (durability, cutting, and other occlusal properties, as well as dental tissues) of
261 tooth shape and worn occlusal surfaces of herbivorous large mammal teeth, based on seven
262 (two ordinal and five binary) variables (Žliobaitė et al., 2016; Galbrun et al., 2018) that are
263 summarized in Table 3. The two ordinal variables, HYP and horizontodony (HOD; length of the
264 functional occlusal surface in terms of main cusp pairs) are related to tooth durability and have
265 three states each (Table 3). In turn, the binary variables record three additional functional
266 aspects, namely (Table 3): cutting structures (acute lophs [AL] and obtuse, or basin-like, lophs
267 [OL]); occlusion characteristics (structural fortification of cusps [SF] and occlusal topography
268 [OT]); and material properties (coronal cementum; CM). Based on data from extant
269 environments (national parks) from Kenya, these variables have been shown to be correlated
270 with environmental (climatic and ecological) parameters—such as precipitation (PREC),

271 temperature (TEMP), net primary productivity (NPP), and normalized difference vegetation
272 index (NDVI; i.e., the greenness of the vegetation)—thus being promising for making
273 paleoenvironmental inferences based on fossil data (Žliobaitė et al., 2016).

274 To retrodict the paleoenvironmental conditions of CLL1, we scored the seven FCT variables
275 for the herbivorous large mammal species present at this locality and, based on the average for
276 each variable, we followed the two different approaches described below. While FCT scoring
277 scheme has remained fixed over the years, scoring conventions of selenodonts have changed
278 from Oksanen et al. (2019) onward. For compatibility with the predictive models employed in
279 our first approach, here we use the scoring conventions as they were defined in Žliobaitė et al.
280 (2016), scoring all selenodonts with obtuse lophs and the Furchen of suids as fortified.

281 First approach Based on the seven FCT variables scored for 13 sites in Kenyan national parks,
282 Žliobaitė et al. (2016) derived predictive models for 23 environmental (climatic and ecological)
283 variables using least angle regression, which uses an iterative procedure to select the most
284 informative dental trait predictors (while avoiding redundancies). The resulting regression
285 models, to be used for predictive purposes, take the same functional form as ordinary linear
286 regression (a linear combination of input variables). In our first approach, we used the 23
287 regression models (based on three FCT variables each) reported by Žliobaitė et al. (2016: Table
288 2; see our Supplementary Online Material [SOM] Table S1) to estimate 23 paleoenvironmental
289 variables at CLL1. These regression models were not optimized for predictive purposes but
290 rather for comparability of information content in different seasonality indices using a constant
291 number of trait variables in each model. Yet, those models were tested for predictive accuracy
292 at present day, and in principle can be used for analysis of the fossil record.

293 An obvious limitation of this approach is that the regression models are regional, calibrated
294 on present day Kenya—no comparable models are available from elsewhere—which is not
295 necessarily representative of past environments during the Iberian Miocene. On the other hand,

296 the geographically restricted nature of the dataset could also potentially result in a greater
297 optimization of the regression equations used to estimate the paleoenvironmental parameters.
298 In any event, we consider that the scope of the environments covered by the Kenyan localities
299 used to derived the models is compatible with a range of environments that can potentially be
300 expected at CLL1 and, thus, applicable to this fossil locality. Furthermore, precisely because of
301 the aformentioned limitation, we also followed an alternative approach that was not based on
302 such models but on the covariation between FCT variables and biomes in a much less
303 geographically restricted dataset.

304 Second approach As an alternative approach, we used principal component analysis (PCA) and
305 canonical variate analysis (CVA) performed with R v. 4.1.1 (R Core Team, 2021) through
306 Rstudio v. 2021.9.0.351 (Rstudio Team, 2021) to evaluate to what extent FCT variables
307 discriminate among different types of biomes and can be reliably used to make such inferences.

308 First, we used the Whittaker's system of present-day biomes to classify the 13 sites in Kenyan
309 national parks from Žliobaitė et al. (2016) based on their mean annual temperature (MAT) and
310 mean annual precipitation (MAP) into the different biomes of the world characterized according
311 to the distribution of vegetation types (Whittaker, 1975). We plotted them in the Whittaker
312 biomes diagram using the R packages 'devtools' v. 2.4.3 (Wickham et al., 2021), 'plotbiomes'
313 v. 0.0.0.9001 (Stefan and Levin, 2022) and 'ggplot2' v. 3.3.5 (Wickham, 2016), and performed
314 a PCA with not normalized input variables (i.e., the average values for each FCT variable at
315 each locality) using the R packages 'ade4' v. 1.7.18 (Chessel et al., 2004; Dray and Dufour,
316 2007; Dray et al., 2007; Bougeard and Dray, 2018; Thioulouse et al., 2018), 'factoextra' v. 1.0.7
317 (Kassambara and Mundt, 2020), and 'ggplot2' v. 3.3.5 (Wickham, 2016).

318 Second, we also relied on a geographically much wider dataset of FCT variables to further
319 asses if they are useful to correctly classify extant localities according to Whittaker biomes
320 using a CVA based on FCT data. In particular, we used Galbrun et al.'s (2018) dataset (available

321 online at <https://github.com/zliobaite/teeth-redescription>), which contains data from 28,886
322 localities around the world on environmental variables, species composition, and FCT variables
323 for each species. We extracted the average of each FCT variable for those localities that,
324 according to the Whittaker diagram, correspond to certain biomes that, based on previous
325 literature (see Table 1), seem relevant to compare with CLL1 (temperate rainforest, temperate
326 seasonal forest, tropical rainforest, tropical seasonal forest/savanna, and woodland/shrubland).
327 The FCT variables mean hypsodonty and mean horizodonty were provided as three separate
328 binary variables each in Galbrun et al.'s (2018) dataset but were transformed back to ordinal
329 variables for this study. Once the localities were classified, we performed a cross-validated
330 CVA on the same data, using biomes to distinguish *a priori* groups, with the R packages
331 'Morpho' v. 2.9 (Schlager, 2017) and 'ggplot2' v. 3.3.5 (Wickham, 2016). To better evaluate
332 the structuration of the data and be able to discount spurious group separation, we computed
333 the amount of variance (r^2) explained by group differences in the raw data and the CVA (with
334 and without cross-validation) using a permutational multivariate analysis of variance (1000
335 permutations) with the R package 'RRPP' v. 1.3.1. (Collyer and Adams, 2018, 2019).
336 Percentages of correct classification were computed based on the cross-validated CVA.

337 Finally, based on the CVA, CLL1 and the Kenyan localities were classified according to
338 Whittaker's biomes. The probability that each locality belongs to one of the biomes
339 distinguished *a priori* was evaluated based on the standard posterior probabilities of group
340 membership (which add up to 1 when all the biomes distinguished *a priori* are considered) as
341 well as the typicality probabilities (which test if a given locality falls outside the variation of
342 each biome independently). To evaluate the consistency of the results for CLL1, the biome
343 classification favored by the CVA posterior probabilities was compared with that obtained from
344 the estimates of paleotemperature and paleoprecipitation yielded by the regressions based on
345 FCT average values in our first approach. To further assess the reliability of the classification

346 provided by the CVA for CLL1, the classification for the nine Kenyan sites from Žliobaitė et
347 al. (2016) corresponding to the five relevant biomes included in the CVA was also compared
348 with that obtained from actual data on temperature and precipitation.

349

350 **3. Results**

351 Species identification An updated list of mammals from CLL1 is reported in Table 2. The
352 herbivorous large mammals included in FCT analyses include 20 species from 19 genera and
353 13 families, while the complete mammal list includes 78 species (39 small and 39 large
354 mammals). While a few small mammal species are added here, the number of large mammal
355 species from CLL1 (39) reported in Table 2 is lower than the figure of 47 species reported by
356 Alba et al. (2011a), and even the figure of 41 currently recognized by the NOW database (The
357 NOW Community, 2023). All these changes are not attributable to recovery of new taxa during
358 the new campaigns since 2010, but rather to the ongoing revision of the collections recovered
359 in previous decades.

360 With regard to micromammals, the most updated list of eulipotyphlans from CLL1 is
361 probably that reported by Van den Hoek Ostende and Furió (2005). The current list differs in
362 the following regards: (1) the galericine previously assigned to *Parasorex socialis* is attributed
363 to *Parasorex* sp., pending illumination of the relationship between *Parasorex ibericus* and the
364 central European '*Schizogalerix*' *voesendorfensis*; (2) the erinaceid previously attributed to
365 *Postpalerinaceus vireti* by Crusafont Pairó and Gibert Clols (1974) is considered to represent
366 a different species (tentatively referred to cf. *Postpalerinaceus* sp.); (3) besides *Talpa*
367 *vallesiensis*, two additional talpids (*Desmanella* sp. and *Talpa* sp.) are recorded; (4) the
368 heterosoricid present at the site is *Dinosorex grycivensis* instead of *Dinosorex sansaniensis* (see
369 Furió et al., 2015); (5) an additional dimylid (*Metacordylodon schlosseri*) and three additional
370 soricids (*Miosorex grivensis*, *Lartetium* sp., and *Paenelimnoecus* sp.) are identified. An

371 indeterminate chiropteran and a single lagomorph (contra Alba et al., 2011a) are also identified
372 at CLL1. As for the rodents, the list is taken from Casanovas-Vilar et al. (2016b), and only the
373 genus ascription of *Csakvaromys bredai* has been updated following Sinitza et al. (2022).

374 Regarding the macromammals from CLL1 not included in the FCT computations, most
375 changes correspond to carnivorans. Their list is based on the review by Robles et al. (2014),
376 with several subsequent updates: (1) no material of *Promephitis pristinidens* has been
377 identified, and it is thus considered that previous citations of this genus from CLL1 correspond
378 to *Mesomephitis medius*; (2) *Hoplictis petteri* is considered a junior subjective synonym of
379 *Eomellivora fricki* following Valenciano et al. (2019); (3) a single hyaenid (*Protictitherium*
380 *crassum*) is recognized from CLL1; (4) the two amphicyonids from the site, currently under
381 study, are provisionally attributed to *Amphicyon* sp. and *Ammitocyon* sp.; (5) three ursids are
382 recorded, but instead of two *Ursavus* species, only *Ursavus brevirostris* is present at the site,
383 with scarce dental material being attributable instead to *Miomaci* sp.—an indarctin ursid genus
384 present at Rudabánya and Can Poncic (de Bonis et al., 2017). In addition, the hyracoid is
385 assigned to *Pliohiprax rossignoli* following Pickford et al. (1997), although more detailed
386 comparisons of the scarce material available would be required to confirm such an attribution.
387 The remaining large mammals are those included in the FCT analyses and hence discussed in
388 greater detail in the following paragraphs, as they constitute the basic information needed to
389 replicate our results. An argument could be made that hyraxes should be included in the FCT
390 computations but we decided to exclude them as they were not considered in the equations
391 originally derived by Žliobaitė et al. (2016).

392 Two proboscidean species are recorded, a deinotherine and a gomphothere. The deinotheriid
393 remains from CLL1 were described by Bergounioux and Crouzel (1962), who attributed them
394 to *Deinotherium giganteum*, which is currently considered the only deinotheriid species present
395 in MN9 of Europe (e.g., Pickford and Pourabrihami, 2013; Alba et al., 2020). The

396 gomphotheriid remains were described by Mazo (1977), who attributed them *Tetralophodon*
397 *longirostris*, which replaced *Gomphotherium angustidens* in late MN7+8 (Mazo and Van der
398 Made, 2012).

399 Perissodactyls are represented at CLL1 by six species (a chalicotheriid, a horse, three
400 rhinoceroses, and a tapir). The chalicotheriid remains are unpublished but were reported as
401 *Chalicotherium grande* (currently *Anisodon grande*) by Mein (1990) and later reassigned to
402 *Chalicotherium goldfussi* by Heissig (1999). The latter assignment is confirmed here based on
403 the position of the M¹ and M² metacones (see Anquetin et al., 2007), in further agreement with
404 the MN9 age of the site (the two species only overlap in late MN7+8; Anquetin et al., 2007).
405 The equid remains were attributed to *Hipparium primigenium primigenium* by Alberdi (1974).
406 Following Bernor et al. (1980, 1996, 2021), these remains could be assigned to a distinct species
407 endemic of the Vallès-Penedès Basin (*Hippotherium catalaunicum*). However, a long needed
408 revision of the Vallès-Penedès *Hippotherium* remains has been undertaken by some of the
409 authors of this paper and, on this basis, we prefer to tentatively assign the CLL1 remains to
410 *Hippotherium cf. primigenium*. This is because differences with the vast sample of this species
411 from Höwenegg (Bernor et al., 1997, 2022), at present time, do not seem to warrant a species
412 distinction. The rhinocerotid remains from CLL1, in turn, were described by Santafé Llopis
413 (1978), being attributed to four species, whose genus attribution has been updated based on
414 Sanisidro and Cantalapiedra (2022). Although these authors reported four species from CLL1,
415 we refrained from including *Lartetotherium sansaniense*, because its identification by Santafé
416 Llopis (1978) relies on a single damaged scaphoid that displays aceratheriine affinities. A
417 preliminary revision of the remains from the other rhinocerotid species by one of the authors of
418 this paper further indicates that more in-depth revision is required. On the one hand, the species
419 attribution of the *Dihoplus* remains must be considered tentative, because they show some
420 dental differences as compared with *Dihoplus schleiermacheri* from Central Europe. For the

421 same reason, the identification of *Aceratherium incisivum* is even more tentative and the
422 remains might even belong to a different genus, as they display some dental features that fall
423 outside the normal variation of the genus as recorded in Central Europe. Finally, the tapirid
424 remains were described by Golpe-Posse and Crusafont-Pairó (1982), who attributed them to
425 *Tapirus priscus*, an attribution that is confirmed here.

426 Artiodactyls are more diverse than perissodactyls, being represented at CLL1 by 11 species
427 (four suids, a tragulid, a moschid, two bovids, two cervids, and a giraffid), although only the
428 suid *Paracleuastochoerus crusafonti*, the bovid *Miotragocerus pannoniae*, and at least one of
429 the cervids are common faunal elements. The suid remains were described by Golpe-Posse
430 (1971, 1972), who recognized four different species: *Listriodon splendens*, *Pa. crusafonti*,
431 *Hyotherium soemmeringi*, and *?Hyotherium* sp. Pickford (1981, 2014) provided additional
432 descriptions of the *Pa. crusafonti* sample from CLL1, which is the type locality of the species.
433 The identification of *L. splendens* at CLL1 by Golpe-Posse (1971, 1972) was based on two
434 teeth, a purported molar and a premolar, the latter being assigned by the same author to
435 *?Hyotherium* sp. The revision of the material indicates that the former belongs in fact to *T.*
436 *priscus* and the latter to *Pa. crusafonti*. However, two infantile specimens reported by Van der
437 Made (1996) and a few additional unpublished deciduous teeth confirm the presence of *L.*
438 *splendens* at CLL1, representing the last well-dated occurrence of the genus in Europe (Van der
439 Made et al., 2022). The larger-bodied tetracodontine from CLL1 identified by Golpe-Posse
440 (1971, 1972) as *Hy. soemmeringi* was later reassigned to *Conohyus steinheimensis* by Van der
441 Made (1990). The species was later included in *Paracleuastochoerus steinheimensis* and,
442 more recently, split into *Versoporus steinheimensis* and *Versoporus grivensis* by Pickford
443 (2014, 2016). However, the revision of the single premolar attributed by Golpe-Posse (1971,
444 1972) to *Hy. soemmeringi* indicates that, together with an incisor, it belongs to the larger
445 tetracodontine referred by Pickford (2014, 2016) to *Paracleuastochoerus valentini* (see also

446 McKenzie et al., 2023). The presence of a suine at CLL1 was first reported by De Bruijn et al.
447 (1992) as *Korynochoerus palaeochoerus* (currently *Propotamochoerus palaeochoerus*; e.g.,
448 Van der Made et al., 1999; McKenzie et al., 2023), apparently based on unpublished material
449 not yet available to Golpe-Posse (1971, 1972). The revision of the suid remains from CLL1
450 unambiguously confirms the presence of the species based on diagnostic dentognathic material.

451 The tragulid remains from CLL1, originally reported as *Dorcatherium* sp. (Crusafont Pairó,
452 1958), were subsequently identified as *Dorcatherium naui* by Moyà-Solà (1979; see also Alba
453 et al., 2011c). The material is scanty and consists of a few tarsal bones and an upper canine.
454 The even scarcer moschid remains from CLL1 are unpublished. Based on their small size and
455 some details of occlusal morphology, they are referred to *Micromeryx* aff. *flourensisianus* but
456 probably belong to an undescribed species. The bovid remains from CLL1 were described by
457 Moyà-Solà (1983) as *Protragocerus* aff. *chantei* and *Miotragocerus* aff. *pannoniae*, but we
458 concur with previous authors (e.g., Alba et al., 2011a) that open nomenclature (aff.) is
459 unnecessary for these attributions, which are not tentative. The cervid remains from CLL1 have
460 not been described in detail but were assigned to *Amphiprox anocerus* by Azanza and
461 Menéndez (1990). Our review of the abundant material available from CLL1 indicates that
462 dental variation would be compatible with the presence of a single species. However, the
463 variation displayed by the antler material strongly suggests the presence of a second species,
464 the taxonomic identity of which cannot be clarified at the moment—although an assignment to
465 *Euprox dicranoceros*, present in earlier Vallesian sites (Azanza and Menéndez, 1990), seems
466 unlikely. The giraffid remains from CLL1 were described by Crusafont Pairó (1952), who
467 assigned them to *Palaeotragus* sp. Here, however, they are merely referred to Giraffidae indet.
468 because the available material merely consists of a few isolated postcranial elements that do
469 not allow for a species or genus attribution, particularly taking into account the taxonomic
470 uncertainties about the MN9 giraffids from the Vallès-Penedès Basin (Alba et al., 2022b).

471 Finally, as explained in greater detail in the Introduction, the hominid remains from CLL1
472 were first reported by Crusafont-Pairó (1958). The material currently available was described
473 in detail by Begun et al. (1990), Golpe-Posse (1993), and Alba et al. (2012a). Although
474 Crusafont Pairó and Hürzeler (1961, 1969) and subsequently Golpe-Posse (1993) recognized
475 the presence of various species, currently the whole sample is attributed to *Hispanopithecus*
476 *laietanus* (Alba, 2012; Alba et al., 2012a). Nevertheless, based on enamel–dentine shape, the
477 presence of a second hominoid species at CLL1 cannot be entirely ruled out (Zanolli et al.,
478 2023).

479 Paleoenvironmental estimates based on the first approach The values for the FCT variables for
480 the investigated species recorded at CLL1 are reported in Table 4, while the 23 estimated
481 environmental variables for this site are reported in Table 5. Most noteworthy are the estimated
482 values of paleotemperature (MAT = 25 °C) and paleoprecipitation (MAP = 881 mm), which
483 indicate a Whittaker's biome of tropical seasonal forest/savanna for CLL1 (Fig. 2).

484 Paleoenvironmental estimates based on the second approach The first two principal
485 components of a PCA based on FCT variables for 13 extant localities from Kenyan national
486 parks (Fig. 3) summarize more than 75% of the variance. The first principal component (56%
487 of the variance) is mostly driven by SF and AL toward negative scores, and the remaining FCT
488 variables toward positive scores. The site of CLL1 displays very high scores along this axis,
489 most similar to the extant localities of Shimba Hills (tropical seasonal forest/savanna) as well
490 as Elgon and Kakamega (temperate seasonal forests). Along PC1, these three extant localities
491 fall far from the rest of extant localities, which cluster close to one another despite
492 corresponding to the four different biomes included in the analysis. The second principal
493 component (21% of the variance) is mostly driven by SF (and, to a lesser extent, CM and HYP)
494 toward negative scores, and by AL (and, to a much lesser extent, OT and OL) toward positive
495 scores. Extant Kenyan localities corresponding to the temperate seasonal forest and

496 woodland/shrubland biomes tend to display lower PC2 scores than those representing the
497 tropical seasonal forest/savanna and subtropical desert biomes. The site of CLL1 displays an
498 extremely positive score along this axis, well beyond any of the extant localities, suggesting
499 relevant environmental differences even compared with the closest extant localities in PC1.

500 The CVA based on 18,671 extant localities from five different biomes accounts for 33.7%
501 of the differences among the groups, which are statistically significant at $p < 0.001$, both with
502 and without cross-validation. Differences among the groups are also statistically significant (p
503 < 0.001) based on the raw data—indicating that grouping structure is not spurious—although
504 they explain a lower amount of variance (13.9%). The cross-validated CVA has a low
505 classification accuracy (49.5% after cross validation; Table 6) because there is a considerable
506 overlap among several biomes (Fig. 4). The first canonical variate summarizes most of the
507 variance (96%), being mostly determined by OL and, to a lesser extent, CM toward positive
508 scores, and in decreasing order of importance, HOD, AL, and HYP toward negative scores. The
509 analysis discriminates well between woodland/shrubland and tropical rainforest localities, and
510 also quite well between the former and tropical seasonal forest/savanna localities (only with
511 slight overlap of their 95% confidence ellipses). However, there is considerable overlap among
512 these and other biomes, with the ellipse of the tropical rainforest biome being totally included
513 within those of both the temperate rainforest and the tropical seasonal forest/savanna biomes,
514 and further partly overlapping with that of the temperate seasonal forest biome. The second
515 canonical variate is positively driven by most of the variables to some extent, except OL (which
516 has no influence) and AL (which has a moderate influence toward negative scores). Given the
517 small amount of variance summarized by CV2 (3.5%), it is questionable whether it needs to be
518 interpreted, as further confirmed by the fact that all the five investigated biomes overlap along
519 this axis. However, it is noteworthy that the tropical rainforest biome shows a lower range of
520 variation than the remaining ones, with all the localities included displaying negative scores for

521 both CV1 and CV2. The locality of CLL1 also displays moderately negative scores for both
522 axes, falling within the overlap zone among the ellipses of tropical seasonal forest/savanna,
523 temperate rainforest, and tropical rainforest, and at the fringe of temperate seasonal forest.

524 However, based on the posterior probabilities (Table 7)—which hold assuming that the
525 distribution of possible climatic conditions in the past is similar to that of the reference dataset
526 of the present day—CLL1 is classified as a tropical rainforest as a first option (63%) and as a
527 tropical seasonal forest/savanna as second option (30%). The typicality probabilities (Table 7)
528 are consistent with such classifications and confirm that, based on FCT variables, CLL1
529 statistically differs from all the remaining biomes at least with $p < 0.05$. The second
530 classification option for CLL1 (tropical seasonal forest/savanna) according to the CVA based
531 on FCT variables coincides with the biome attribution of our first approach—i.e., based on
532 estimated paleotemperature and paleoprecipitation using Žliobaitė et al.’s (2016) regressions.
533 Estimates of paleotemperature and paleoprecipitation are based on different sets of variables
534 (OL, SF, and OT vs. HOD, SF, and OT, respectively) than those that have greater loadings on
535 CV1 (OL, HOD and, to a lesser extent, AL and HYP), so it is not surprising that the
536 classification results yielded by these two different approaches do not completely match.
537 However, it is remarkable that the second classification option obtained from the CVA, with a
538 lower posterior probability (30%), does coincide with the biome classification obtained from
539 paleotemperature and paleoprecipitation estimates based on FCT variables. The biome
540 classification results for the extant Kenyan localities based on the CVA only coincide with
541 those based on actual data of temperature and precipitation in five out of nine cases (Table 8),
542 which is not surprising given the classification accuracy of the analysis around 50%. The
543 mismatches correspond to localities from the temperate seasonal forest biome that are
544 erroneously classified by the CVA as tropical seasonal forest/savanna, whereas the four
545 localities actually corresponding to tropical seasonal forest/savanna are (like CLL1) correctly

546 classified as such. It must be taken into account, however, that none of the localities from
547 Kenyan national parks correspond to the tropical rainforest biome. The percentages of correctly
548 classified cases for the 18,671 localities included in the CVA (Table 6) indicate that localities
549 from the tropical seasonal forest/savanna biome are frequently erroneously classified as tropical
550 rainforest (indeed, which the same frequency as the former are correctly classified, 42%),
551 whereas tropical rainforest localities are most frequently correctly classified as such (82% of
552 the cases) and misclassified as tropical rainforest/savanna with a low frequency (9%).

553

554 **4. Discussion**

555 Environmental estimates and biome classification based on functional crown type variables The
556 23 prediction equations for environmental variables reported by Žliobaitė et al. (2016) vary in
557 both accuracy (r^2 , measuring the goodness of fit) and predictive power (r^{2*} , as measured by
558 cross-validation). The former values vary from ~0.6–0.8 in the most reliable variables to less
559 than 0.3 in the least ones, resulting in highly divergent equations in terms of their potential
560 predictive power. While these models were not optimized to maximize the predictive accuracy,
561 the calibration accuracy is reasonable for trying them for predictive purposes on the fossil
562 record. Probably, more accurate equations could be derived in the future based on a higher
563 number of extant localities. In the meantime, the paleoenvironmental estimates derived from
564 these equations for CLL1 should be taken with care as rough approximations whose reliability
565 depends on the accuracy of the equations used to derive them. In other words, these estimates
566 should not be taken at face value, because the model calibration accuracy (or goodness of fit,
567 r^2) and, especially, the predictive power of these equations (calibration accuracy as measured
568 by cross-validation, r^{2*}) are quite low and there is no guarantee that the Kenyan extant localities
569 used to derive the models are representative of European environments during the Miocene.

570 Nevertheless, the estimated parameters could be useful in relative terms to compare CLL1 with
571 other well-sampled fossil localities of the Vallès-Penedès Basin in the future.

572 For the purposes of this work, estimates of paleotemperature (especially MAT) and
573 paleoprecipitation (MAP) will be mainly discussed here. Neither MAT nor MAP estimates
574 appear particularly accurate, with $r^2 = 0.57$ and 0.68, and $r^{2*} = -0.05$ and 0.38, respectively.
575 Based on the equations' accuracy, the paleoprecipitation estimate would be a priori more
576 reliable, but this is uncertain because Žliobaitė et al. (2016) provided no method for computing
577 the confidence intervals of such estimates. In any event, the biome classification based on the
578 paleotemperature (MAT) and paleoprecipitation (MAP) estimates for CLL1 should be
579 contrasted with other sources of evidence, such as those derived from stable isotope
580 composition of mammalian tooth enamel (e.g., Koch, 1998; Kohn et al., 1998; Domingo et al.,
581 2013; Higgins, 2018). These analyses are currently underway, but only preliminary results have
582 been published so far (see below for further details). In the meantime, an alternative approach
583 based on a multivariate analysis of FCT average values was undertaken to contrast the biome
584 classification for CLL1 with that discussed above based on the regression equations.

585 Based on the estimated values for paleotemperature (25 °C) and paleoprecipitation (881
586 mm), CLL1 would correspond to a tropical seasonal forest/savanna according to Whittaker's
587 biome scheme. The biome classification based on the CVA is not entirely coincident, as CLL1
588 is classified as a tropical rainforest with a posterior probability of 63%. Such a discrepancy is
589 not surprising, as the CVA is based on the seven FCT variables, whereas the paleotemperature
590 and paleoprecipitation estimates are calculated from different subsets of three variables each,
591 overall including only four out of the seven FCT variables. Furthermore, the classification
592 accuracy of the CVA is moderately low (49.5%). Given all these caveats, it is remarkable that
593 the biome classification based on paleoenvironmental estimates (tropical seasonal
594 forest/savanna) coincides with the second most likely classification of the CVA, with a

595 posterior probability of 30%. From a purely statistical viewpoint, CLL1 falls in an area of the
596 ecomorphospace where the 95% confidence ellipses of both biomes overlap, with the tropical
597 rainforest biome displaying a much more restricted scatter than tropical seasonal
598 forest/savanna. Moreover, extant localities from the tropical seasonal forest/savanna biome are
599 as frequently misclassified as tropical rainforest as correctly classified (42% in both cases),
600 whereas tropical rainforest localities are most frequently classified correctly and only seldom
601 misclassified as tropical seasonal forest/savanna. Therefore, it seems logical to conclude that
602 CLL1 most likely belongs to the tropical seasonal forest/savanna biome. Alternatively, CLL1
603 might belong to a tropical rainforest biome, which differs from the tropical seasonal
604 forest/savanna biome by displaying much higher precipitation values. This would imply that
605 the annual precipitation estimate derived for CLL1 largely underestimates the actual value,
606 which must be more than twice the estimate (>2500 mm instead of 881 mm at 25 °C, based on
607 Whittaker's scheme). This seems unlikely even if paleotemperature is overestimated, but not
608 completely impossible, given the low accuracy of the paleoprecipitation regression equation. A
609 third possible explanation, not mutually exclusive with the first one, is that CLL1 records a
610 mosaic of habitats that, despite falling within the tropical seasonal forest/savanna biome,
611 mimics the faunal composition that would be expected in a tropical rainforest habitat—owing
612 to local paleoenvironmental conditions favoring the presence of taxa adapted to more humid
613 environments. These possibilities are evaluated in the next subsection based on the fossil flora
614 and fauna from CLL1, as well as in relation to preliminary data on tooth enamel isotopic data.

615 Whittaker's biome classification is one of the simplest schemes to distinguish terrestrial
616 biomes as it only considers MAT and MAP. While the scheme is calibrated on the present day
617 and, in all probability, does not identically apply to the deep past, it can be applied to the
618 Miocene to a first approximation. Other biome classification systems, such as Walter (1979),
619 consider seasonality in both temperature and precipitation. Since the methods used allow

620 inferring which are the coldest/warmest and wettest/driest months in the studied localities these
621 biome classification schemes can be considered as well. MAT is above 20 °C, which indicates
622 a tropical climate (according to Köppen-Geiger climate classification; see Peel et al., 2007)
623 with little temperature seasonality since it ranges from 24.4 °C in the coldest month to 26.7 °C
624 in the warmest. MAP is also high (881 mm) for a tropical environment such as savanna or desert
625 with average monthly precipitation always above 100 mm. However, inferred rainfall
626 seasonality is remarkable, with precipitation in the wettest month (2119 mm) being more than
627 10 times higher than that recorded during the driest month (136 mm). Such precipitation
628 seasonality is consistent with a tropical seasonal biome, with a clear rainy season. Nonetheless,
629 there is a gradient between evergreen tropical forests and tropical deciduous forests depending
630 on the length and severity of the dry season, with tropical seasonal forests (also called
631 semievergreen or mixed tropical forests), corresponding to zonoecotone I/II of Walter (1979),
632 showing an intermediate composition, characterized by the presence of some deciduous tree
633 species that lose their leaves during the dry season. Vegetation structure in tropical seasonal
634 forests includes different canopy layers as in rainforests, but generally stratification is less
635 complex, the canopy is relatively more open, epiphytes and especially lianas are abundant, and
636 ground vegetation is more diverse and abundant (see Walter, 1979; Allaby, 2006). In a tropical
637 seasonal biome, the driest month typically records less than 60 mm of rainfall, which is much
638 lower than the values inferred for CLL1, suggesting that the latter might have been
639 characterized by a tropical seasonal forest somewhat intermediate between a tropical evergreen
640 and a tropical deciduous forest.

641 Comparison with previous paleoenvironmental inferences for Can Llobateres 1 The summary
642 of previous paleoenvironmental inferences for CLL1 provided in Table 1 highlights some
643 similar conclusions among authors but also some discrepancies regarding the openness of the
644 habitat and the seasonality of the climate. Nagatoshi (1987) concluded that most of the primate-

645 bearing sites of the Middle and Late Miocene of western Eurasia were characterized by the
646 presence of water and interpreted CLL1 as an open environment with some intruding marshy
647 areas based on the presence of *Hippotherium* and *Tapirus*. However, the paleobotanical
648 evidence is rather suggestive of a closed forest next to a marshy area with more open
649 environments at some distance (Fig. 5; Marmi et al., 2012). The fossil plant assemblage from
650 CLL1 (Álvarez Ramis, 1975; Sanz de Siria Catalán, 1993, 1994; Marmi et al., 2012) is
651 composed of abundant reed remains (*Phragmites* and *Typha*), coupled with palms, evergreen
652 laurels, and fig trees (*Ficus* sp.). The reeds are suggestive of a marshy area, whereas the rest of
653 the vegetation denotes the nearby presence of a dense wetland or riparian forest (Alba et al.,
654 2011a, 2011b; Marmi et al., 2012; Andrews, 2015). In turn, the presence of mega-mesothermal
655 taxa and the absence of deciduous taxa indicate a subtropical to warm-temperate climate
656 characterized by high mean annual temperatures (Marmi et al., 2012). Sanz de Siria Catalán
657 (1994) inferred subtropical conditions based on the then available flora from CLL1. Although
658 such inferences must be taken with care, given that CLL1 corresponds to an azonal plant
659 community, they are consistent with the estimated MAT of 26 °C derived in this work from
660 FCT variables. According to the Köppen-Geiger climate classification (updated by Peel et al.,
661 2007), a tropical climate is characterized by average temperatures above 18 °C in the coldest
662 month, whereas a subtropical (or temperate) climate displays average temperatures above 10
663 °C in the hottest month and between 0 and 18 °C in the coldest month. Therefore, the
664 paleotemperature estimates for CLL1 based on FCT variables for the hottest month (26.7 °C)
665 and the coldest month (24.4 °C) indicate a tropical climate, consistent with the two biome
666 attributions favored by the analyses. On the other hand, paleobotanical evidence from other
667 localities and nearby basins suggests that the plant community from CLL1 would not be
668 representative of the zonal vegetation, which would have been characterized by a higher
669 proportion of mega-mesothermal taxa and deciduous elements, overall denoting subtropical to

670 warm-temperate (rather than tropical) climate conditions in the Vallès-Penedès Basin around
671 the transition between the early and late Vallesian (Marmi et al., 2012, and references therein).
672 It is thus reasonable to assume that, far from the wetlands, more open woodlands would have
673 been present by this time (Alba et al., 2011a, 2011b; Marmi et al., 2012), and that
674 paleotemperature estimates for CLL1 based on FCT variables might be biased to some extent
675 toward higher temperatures than were actually present in the area by that time.

676 As stressed by Marmi et al. (2012) and Andrews (2015), the faunal composition of CLL1
677 further supports the presence of a marshy depositional environment, given the presence of
678 beavers and otters (Marmi et al., 2012; Andrews, 2015), the bovid *M. pannoniae* (which
679 displays adaptations to wet environments; Köhler, 1993), and the tragulid *D. naui* (which shows
680 many similarities with the extant water chevrotian, a forest-dwelling frugivorous animal with
681 aquaphilous preferences; Alba et al., 2011c, and references therein). The presence of large
682 browsing herbivores (*C. goldfussi*, *M. aff. flourensianus*, *A. anocerus*, *T. priscus*, *Ac. incisivum*,
683 and *Alicornops simorrense*), in turn, is indicative of a densely forested environment (Marmi et
684 al., 2012), which is further supported by a diverse assemblage of flying squirrels and tree
685 dormice, which are quite diverse albeit not particularly abundant (Casanovas-Vilar and Agustí,
686 2007; Marmi et al., 2012; Casanovas-Vilar et al., 2015). Flying squirrels are remarkably
687 diverse, including up to five different species representing both large (*Miopetaurista crusafonti*,
688 *Miopetaurista neogrivensis*, *Albanensis* aff. *grimmi*) and small (*Blackia miocaenica*., cf.
689 *Pliopetaurista* sp.) species. Such diversity of flying squirrels is currently only recorded in the
690 tropical and subtropical forests of southeastern Asia, which show a complex and stratified
691 canopy (Jackson 2012, Lu et al. 2013). This is further consistent with the presence of a large-
692 bodied ape such as *H. laietanus*, particularly given the previous locomotor inferences based on
693 its partial skeleton, indicating that it possessed an orthograde body plan with suspensory
694 adaptations, even if displaying a higher degree of above-branch quadrupedalism than extant

695 apes (Moyà-Solà and Köhler, 1996; Almécija et al., 2007; Alba et al., 2010, 2012b; Pina et al.,
696 2012; Tallman et al., 2013; Susanna et al., 2014). On the other hand, the presence of a giraffid
697 (Köhler, 1993) and rodents such as the cricetid *Hispanomys* and ground squirrels (Casanovas-
698 Vilar and Agustí, 2007) hint at the presence of more open woodlands nearby (Marmi et al.,
699 2012).

700 Unlike other artiodactyls, suids have not been previously considered when making
701 paleoenvironmental inferences for CLL1, even though they can provide interesting insights. The
702 taxonomic revision of the large herbivorous mammals from CLL1 performed in this work has
703 confirmed the presence of a diverse suid assemblage, clearly dominated by the small
704 tetracodontine *Pa. crusafonti*, but further including (in order of decreasing abundance) *P.*
705 *palaeochoerus*, *L. splendens*, and *Pa. valentini*. The dietary ecology of *L. splendens* has been
706 thoroughly discussed, as these suids stand out by its lophodont morphology and the lack of
707 adaptations for the rooting feeding behaviors characteristic of most suids (Fortelius et al.,
708 1996a; Van der Made et al., 2014, 2022), allowing them to survive when other types of food
709 are scarce. The occlusal morphology of *L. splendens* was originally interpreted as an adaptation
710 for a mainly folivorous diet (Van der Made, 1996) and microwear analyses supported that this
711 species was mainly a browser (Hunter and Fortelius, 1994). This has been confirmed by isotopic
712 analyses, which further suggest a considerable consumption of fruits and maybe some grass
713 (Aiglstorfer et al., 2014). Van der Made et al. (2014) hypothesized that *L. splendens* would have
714 inhabited relatively open or mosaic environments, but most recently Van der Made et al. (2022)
715 favored the view that, given the lack of rooting adaptations, *Listriodon* would have been more
716 limited than other suids to environments where nutritious leaves and fruits were available
717 throughout the year. Based on dental morphology, it has been inferred that *P. palaeochoerus*
718 would have been even better adapted for rooting behaviors than medium to large-sized
719 tetracodontines of the genera *Paracleuastochoerus* and *Versoporcus* (Van der Made, 2010;

720 Van der Made et al., 2014). However, isotopic data indicate that these tetracodontines also
721 consumed underground resources (Aiglstorfer et al., 2014), and indeed isotopic data and trace
722 elements from Rudabánya (Hungary)—a hominoid-bearing site roughly coeval to CLL1—
723 indicate that tetracodontines might have feed on such resources more frequently than
724 *Propotamochoerus* (Eastham et al., 2016, 2017; Iannucci and Begun, 2022). This suggests a
725 more varied omnivorous diet for *Propotamochoerus*, in agreement with the greater
726 development of secondary cusps typical of suines (Fortelius et al., 1996a).

727 These dietary inferences for suids recorded at CLL1 are relevant for interpreting the
728 extinction of *H. laietanus* because some parallelism can be established with the diet of *H.*
729 *laietanus* and also because the extinction of *L. splendens* has been related to the
730 paleoenvironmental changes during the early/late Vallesian transition, which are generally
731 considered the trigger of the Vallesian Crisis (Van der Made et al., 2022). The latter is a regional
732 turnover event, originally identified in the Vallès-Penedès Basin, that allegedly implied the
733 extinction of mammals adapted to warm and humid forested environments and their
734 replacement by taxa adapted to more open and drier environments (Agustí and Moyà-Solà,
735 1990; Moyà-Solà and Agustí, 1990). The extension of the Vallesian Crisis to a continental scale
736 (e.g., Fortelius et al., 1996b; Agustí et al., 1999) has been questioned (Casanovas-Vilar et al.,
737 2005, 2010), being alternatively attributable to sampling biases (Casanovas-Vilar et al., 2014,
738 2016a). This has been conclusively shown based on micromammals from the Vallès-Penedès
739 Basin (Casanovas-Vilar et al., 2014), where the correction of such biases indicates that the
740 purported Vallesian Crisis was a protracted faunal turnover rather than an abrupt extinction
741 event. Although this remains to be ascertained for large mammals, it has been convincingly
742 argued that changes in vegetation structure led to the extinction of multiple forest-adapted
743 frugivorous taxa, particularly primates (Agustí et al., 2003; Marmi et al., 2012; Casanovas-
744 Vilar et al., 2016a) and some suids (Van der Made et al., 2022).

745 Dental microwear analyses indicate that *H. laietanus* displayed a frugivorous diet (Ungar,
746 1996; DeMiguel et al., 2014), probably emphasizing soft ripe fruits but also including hard
747 fruits as fallback fruits on a seasonal basis (DeMiguel et al., 2014). This would have allowed
748 this species to survive in the face of marked environmental instability around the early/late
749 Vallesian transition. This is supported by the presence of abundant enamel hypoplasias (Skinner
750 et al., 1995; Eastham et al., 2009), which indicate repeated episodes of malnutrition due to
751 seasonal resource abundance fluctuations, suggesting that *H. laietanus* probably feed on hard
752 foods during the unfavorable season (DeMiguel et al., 2014). Although there are no
753 paleodietary data for *Pa. crusafonti*, small suids are generally interpreted as forest-adapted
754 forms (Fortelius et al., 1996a), in agreement with the abundance in this taxon at CLL1. This
755 suggests that *Pa. crusafonti* might have displayed on the ground a similar feeding strategy to
756 that of *H. laietanus* in an arboreal niche, i.e., predominantly based on fruits and recourse to
757 other resources during the most unfavorable months of the year (maybe thanks to rooting
758 behaviors). The moderately abundant *P. palaeochoerus*, like the scarce *Pa. valentini*, could
759 have exploited other trophic resources and preferentially inhabited the more open areas far from
760 the wetland. In contrast, this explanation is more unclear in the case of *L. splendens*, whose
761 scarcity at CLL1 might be related to the lack of a continuous fruit supply during the unfavorable
762 season, given its lack of rooting adaptations.

763 With regard to the biome classification of CLL1 as a tropical rainforest or a tropical seasonal
764 forest/savanna biome, it is worth comparing it with the results obtained by previous authors
765 using different methods. The analyses of mammalian community structure performed by
766 Andrews (1996) using different methods reconstructed both CLL1 and Rudabánya as
767 subtropical seasonal forests, thus supporting a classification of the former as a tropical seasonal
768 forest rather than as a tropical rainforest (note that an alternate classification of CLL1 as a
769 temperate rain or seasonal forest biome is discounted by the results of our analyses). Similarly,

770 based on multivariate analyses of faunal composition, Hernández Fernández et al. (2003)
771 classified CLL1 as a deciduous tropical forest with a posterior probability of 99.5%—the
772 second option (savanna) and other remaining possibilities (rainforest and laurel forest) being
773 very small. Despite being based on a much less sophisticated approach, the results of Hernández
774 Fernández et al. (2003) are also broadly consistent with those derived in this work, supporting
775 that CLL1 is more readily interpreted as a tropical seasonal forest/savanna biome than as a
776 tropical rainforest. By contrast, Costeur's (2005) cenogram analyses concluded that CLL1
777 displayed more closed and humid conditions than Rudabánya, attributing the former to a
778 tropical forest and the latter to a subtropical forest/savanna mosaic. Additional support to the
779 classification of CLL1 as a tropical seasonal forest/savanna instead of a tropical rainforest
780 comes from preliminary isotope analyses performed on muroid rodents from the Vallès-
781 Penedès Basin (Casanovas-Vilar et al., 2019, 2020). These confirm that hominoid-bearing sites
782 are more humid on average than those where primates are not recorded, with most of the former
783 being in the range of tropical deciduous forests to evergreen warm mixed forests. For CLL1,
784 paleoprecipitation estimates derived from muroid stable isotopes result in MAP well above
785 1000 mm while paleotemperature estimate is comparable to that derived in this work (I.C.V.,
786 unpublished data). Nevertheless, the value derived from isotopes is much lower than the one
787 that would be expected for a tropical rainforest, confirming that CLL1 does not correspond to
788 this type of biome. Unpublished isotope analyses based on the equid *Hip. catalaunicum* from
789 CLL1 indicate a diet entirely based on C₃ vegetation (Misas Alcàntara, 2022). Following the
790 methods by Kohn (2010), these can be used to infer paleoprecipitation, although ideally a
791 broader taxonomic sample should be considered for the calculations. Tooth enamel $\delta^{13}\text{C}$ ranges
792 from -10.7‰ to -12.5‰ (Misas Alcàntara, 2022), which results in a MAP estimation of ~700–
793 1000 mm, thus consistent with the results yielded by the multivariate analyses of FCT variables.
794 Misas Alcàntara (2022) noted that, if *Hip. catalaunicum* had inhabited and fed in the locally

795 humid environment next to the depositional environment, this would have resulted in more
796 negative isotopic values—in further agreement with the greater abundance of *Hippotherium*
797 remains in the channel deposits than in the primate-bearing levels of CLL1. Therefore, the
798 values reported are taken as an indication of less humid, and presumably more open,
799 environments nearby.

800 It has been hypothesized that *H. laietanus* would have preferred the humid forested
801 environments close to permanent water due to the availability of ripe, soft fruit supplies on a
802 year-round basis (Alba et al., 2011a, 2011b; Marmi et al., 2012), or at least during part of the
803 year (DeMiguel et al., 2014), despite the fact that warm-temperate mixed forests, composed
804 mainly of deciduous taxa, would have probably been present far from these wetlands (Alba et
805 al., 2011a, 2011b; Marmi et al., 2012). Similarly, the roughly coeval *Rudapithecus hungaricus*
806 from Rudabánya (Hungary) is associated with a subtropical swamp forest dominated by swamp
807 cypress (*Taxodium*; Andrews and Cameron, 2010; Andrews, 2015). Tooth enamel stable
808 isotope analyses of the large mammal assemblage of Rudabánya indicate a mosaic of
809 environments and ecological niche partitioning (Eastham et al., 2016). Some taxa, such as *D.*
810 *naui* and *C. goldfussi*, would have fed in closed canopy environments, while others such as
811 *Hippotherium intrans* would have preferred more open habitats. Therefore, the environment
812 associated with *R. hungaricus* in Rudabánya has strong similarities with that associated with *H.*
813 *laietanus* in CLL1, the two corresponding to local wetlands. However, there are also some
814 differences because the riparian forest composition (as evidenced from paleobotanical data) is
815 clearly different and woodlands away from the wetlands appear to have been more humid and
816 warm-temperate in Rudabánya (Andrews, 2015).

817 Within such environments, Late Miocene dryopithecines occupied a mainly arboreal and
818 frugivorous niche. Although these environments might have been quite common in the Vallès-
819 Penedès Basin during the early Vallesian (Alba et al., 2011b; Marmi et al., 2012), from the late

820 Vallesian onwards, tropical and subtropical taxa (such as palm and fig trees) would have
821 progressively disappeared as temperatures dropped (Sanz de Siria Catalán, 1994), while
822 deciduous trees (such as poplars or willows) became dominant in forested areas and wetlands
823 (Agustí et al., 2003; Alba et al., 2011a, 2011b; Marmi et al., 2012). As a result, these new
824 environments would not have provided the necessary resources to sustain a population of *H.*
825 *laietanus* (and other taxa dependent on forest trophic resources, such as probably *Pa. crusafonti*
826 and *L. splendens*) throughout the year, especially during the cold season, leading to their
827 progressive demise and eventual extinction in the Vallès-Penedès Basin and other areas of
828 Western Europe (Agustí et al., 2003; Casanovas-Vilar et al., 2005, 2010; Alba et al., 2011a,
829 2011b; Marmi et al., 2012). In this regard, it is noteworthy that the record of *L. splendens* from
830 CLL1 represents the latest well-dated occurrence of this taxon in Europe, whereas *Pa.*
831 *crusafonti* is last recorded slightly later at La Tarumba 1 (Van der Made, 1990, 1997; Van der
832 Made et al., 2022) at ~9.6 Ma (Casanovas-Vilar et al., 2016b), coinciding with the last record
833 of *H. laietanus* (Casanovas-Vilar et al., 2011; Alba et al., 2018). The extinction of hominoids
834 in other areas of Western mainland Europe would have followed a similar, although
835 diachronous, pattern (Agustí et al., 2003; Casanovas-Vilar et al., 2010, 2011; Merceron et al.,
836 2010; DeMiguel et al., 2014).

837

838 **5. Conclusions**

839 This study for the first time applied a full FCT scheme to analyze a Miocene fossil site. The
840 results of this work indicate that FCT variables in combination with regional predictive models
841 calibrated on Kenyan national parks as well as case-based reasoning over a selection of present-
842 day biomes are not very powerful for providing unambiguous biome classifications for CLL1.
843 Paleoprecipitation values appear potentially more biased than paleotemperature estimates,
844 which show a greater agreement with isotopic data and both plant and faunal composition.

845 Canonical variate analyses, in turn, failed to distinguish some particular biomes. Nevertheless,
846 when both approaches based on FCT variables are combined, the results are in broad agreement
847 with previous inferences based on other sources of data, suggesting that FCT variables are a
848 useful complementary approach to make ecometric comparisons among multiple sites with
849 limited associated cost, thus being potentially useful to refine inferences based on other, more
850 traditional methods of paleoecological inference.

851 Regarding CLL1, the multivariate analyses based on FCT support a biome classification as
852 tropical rainforest or tropical seasonal forest/savanna, but paleotemperature and
853 paleoprecipitation estimates, particularly considering the amplitude of rainfall seasonality, are
854 in better agreement with the latter. These results are in further accordance with previous
855 inferences derived from fossil plants and mammals, as well as preliminary isotopic data. Based
856 on these other sources of evidence, it is concluded that the inability of the multivariate analysis
857 to unambiguously classify CLL1 as a tropical seasonal forest is due to the fact that the fossil
858 assemblage mixes forest-adapted taxa (such as *H. laietanus* and *Pa. crusafonti*), likely restricted
859 to the closed forest environment surrounding the marshy depositional area, with other taxa that
860 likely inhabited more open woodland environments far from the wetland (such as
861 *Propotamochoerus* and *Hippotherium*). In other words, the CLL1 local paleoenvironment to
862 which *H. laietanus* was adapted, in isolation, would not be representative of the biome at a
863 more regional scale, characterized by a mosaic of dense forests around the wetlands and more
864 open vegetation between these areas. Overall, our results are consistent with previous studies
865 that related the extinction of frugivorous hominoids in Western mainland Europe with that of
866 other forest-adapted taxa—the so-called Vallesian Crisis. Even though paleobiodiversity
867 analyses of micromammals suggest that this was a more protracted event rather than an abrupt
868 crisis, it remains to be determined if the same applies to large mammals or whether some
869 important paleoenvironmental threshold (such as the complete replacement of tropical seasonal

870 forest patches by deciduous tropical forests) was surpassed at ~9.5 Ma, at least in the Vallès-
871 Penedès Basin. Future studies based on FCT variables in other well-sampled Vallesian localities
872 of this basin, preceding (e.g., Castell de Barberà, Creu de Conill, Can Poncic) or postdating
873 (e.g., La Tarumba, Torrent de Febulines) CLL1, might provide further precision in assessing
874 the causes of the extinction of Miocene apes in Europe.

875

876 **Acknowledgments**

877 This article is part of R+D+I projects PID2020-117289GB-I00 and and PID2020-116220GB-
878 I00, funded by the Agencia Estatal de Investigación of the Spanish Ministerio de Ciencia e
879 Innovación (MCIN/AEI/10.13039/501100011033/), and has also been supported by the
880 Agència de Gestió d'Ajuts Universitaris i de Recerca of the Generalitat de Catalunya (2001
881 SGR 00620) and the Generalitat de Catalunya/CERCA Programme, and the Government of
882 Aragón (Research Group ref. E33_23R). S.G.A. enjoys a technician contract of the
883 INVESTIGO Program 2022 (reference 100027TC1) financed by the European Union, Next
884 Generation EU. I.Ž. acknowledges research funding by the Academy of Finland (grant no.
885 341623). O.C. gratefully acknowledges funding to R.L.B. (NSF ABI 1759882) and Howard
886 University, for his support as a postdoctoral research fellow at Howard University, Washington
887 D.C. We are grateful to Alessandro Urciuoli, Florian Bouchet, and Oriol Monclús-Gonzalo for
888 statistical advice, as well as Salvador Moyà-Solà and Víctor Vinuesa for discussion about fossil
889 material. This work is part of the Ph.D. Dissertation of the first author, in the framework of the
890 Ph.D. Programme in Biodiversity of the Universitat Autònoma de Barcelona. Finally, we thank
891 the Editor (Clément Zanolli), the Associate Editor, and three anonymous reviewers for helpful
892 and constructive comments that helped us improve a previous draft of this paper.

893

894 **References**

895 Agustí, J., Moyà-Solà, S., 1990. Mammal extinctions in the Vallesian (Upper Miocene). *Lect.*
896 *Not. Earth Sci.* 30, 425–432.

897 Agustí, J., Köhler, M., Moyà-Solà, S., Cabrera, L., Garcés, M., Parés, J.M., 1996. Can
898 Llobateres: the pattern and timing of the Vallesian hominoid radiation. *J. Hum. Evol.* 31,
899 143–155.

900 Agustí, J., Cabrera, L., Garcés, M., Parés, J.M., 1997. The Vallesian mammal succession in the
901 Vallès-Penedès basin (northeast Spain): Paleomagnetic calibration and correlation with
902 global events. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 133, 149–180.

903 Agustí, J., Cabrera, L., Garcés, M., Llenas, M., 1999. Mammal turnover and global climate
904 change in the late Miocene terrestrial record of the Vallès-Penedès basin (NE Spain). In:
905 Agustí, J., Rook, L., Andrews, P. (Eds.), *The Evolution of Neogene Terrestrial Ecosystems*
906 in Europe. Cambridge University Press, Cambridge, pp. 397–411.

907 Agustí, J., Sanz de Siria Catalán, A., Garcés, M., 2003. Explaining the end of the hominoid
908 experiment in Europe. *J. Hum. Evol.* 45, 145–153.

909 Aiglstorfer, M., Bocherens, H., Böhme, M., 2014. Large mammal ecology in the late Middle
910 Miocene Gratkorn locality (Austria). *Palaeobiodivers. Palaeoenvir.* 94, 189–213.

911 Alba, D.M., 2012. Fossil apes from the Vallès-Penedès Basin. *Evol. Anthropol.* 21, 254–269.

912 Alba, D.M., Casanovas-Vilar, I., Moyà-Solà, S., Robles, J.M., 2011a. Parada 4. El Vallesiense
913 Inferior y su transición con el Vallesiense Superior: Can Llobateres. *Paleontol. Evol.*
914 memòria especial 6, 111–123.

915 Alba, D.M., Casanovas-Vilar, I., Robles, J.M., Marmi, J., Moyà-Solà, S., 2011b. New
916 paleontological excavations at the Late Miocene site of Can Llobateres 1 (Vallès-Penedès
917 Basin, NE Iberian Peninsula): preliminary results of the 2010 campaign. In: Pérez-García,
918 A., Gascó, F., Gasulla, J.M., Escaso, F. (Eds.), *Viajando a Mundos Pretéritos*. Ayuntamiento
919 de Morella, Morella, pp. 35–43.

920 Alba, D.M., Moyà-Solà, S., Robles, J.M., Casanovas-Vilar, I., Rotgers, C., Carmona, R.,
921 Galindo, J., 2011c. Middle Miocene tragulid remains from Abocador de Can Mata: the
922 earliest record of *Dorcatherium naui* from Western Europe. *Geobios* 44, 135–150.

923 Alba, D.M., Casanovas-Vilar, I., Almécija, S., Robles, J.M., Arias-Martorell, J., Moyà-Solà,
924 S., 2012a. New dental remains of *Hispanopithecus laietanus* (Primates: Hominidae) from
925 Can Llobateres 1 and the taxonomy of Late Miocene hominoids from the Vallès-Penedès
926 Basin (NE Iberian Peninsula). *J. Hum. Evol.* 63, 231–246.

927 Alba, D.M., Almécija, S., Casanovas-Vilar, I., Méndez, J.M., Moyà-Solà, S., 2012b. A partial
928 skeleton of the fossil great ape *Hispanopithecus laietanus* from Can Feu and the mosaic
929 evolution of crown-hominoid positional behaviors. *PLoS One* 7, e39617.

930 Alba, D.M., Casanovas-Vilar, I., Furió, M., García-Paredes, I., Angelone, C., Jovells-Vaqué,
931 S., Luján, À. H., Almécija, S., Moyà-Solà, S., 2018. Can Pallars i Llobateres: A new
932 hominoid-bearing locality from the late Miocene of the Vallès-Penedès Basin (NE Iberian
933 Peninsula). *J. Hum. Evol.* 121, 193–203.

934 Alba, D.M., Gasamans, N., Pons-Monjo, G., Luján, À.H., Robles, J.M., Obradó, P., Casanovas-
935 Vilar, I., 2020. Oldest *Deinotherium proavum* from Europe. *J. Vertebr. Paleontol.* 40,
936 e1775624.

937 Alba, D.M., Torres, J., DeMiguel, D., Casanovas-Vilar, I., 2022a. The Vallès-Penedès Miocene
938 Vertebrates Paleobiodiversity Database. In: Casanovas-Vilar, I., Alba, D.M. (Eds.), NOW
939 25th Anniversary Meeting. Sabadell (Barcelona), 16–18 November 2022. Abstract book &
940 fieldtrip guide. *Paleontol. Evol. memòria especial* 9, 59–60.

941 Alba, D.M., Robles, J.M., Casanovas-Vilar, I., Beamud, E., Bernor, R.L., Cirilli, O., DeMiguel,
942 D., Galindo, J., Llopert, I., Pons-Monjo, G., Sánchez, I.M., Vinuesa, V., Garcés, M., 2022b.
943 A revised (earliest Vallesian) age for the hominoid-bearing locality of Can Mata 1 based on

944 new magnetostratigraphic and biostratigraphic data from Abocador de Can Mata (Vallès-
945 Penedès Basin, NE Iberian Peninsula). *J. Hum. Evol.* 170, 103237.

946 Alberdi, M.T., 1974. El género *Hipparrison* en España. Nuevas formas de Castilla y Andalucía,
947 revisión e historia evolutiva. In: *Trabajos sobre Neógeno-Cuaternario 1*. Instituto Lucas
948 Mallada, C.S.I.C., Madrid., pp. 1–219.

949 Allaby, M., 2006. Biomes of the Earth: Tropical forests. Chelsea House Publishers, New York.

950 Almécija, S., Alba, D.M., Moyà-Solà, S., Köhler, M., 2007. Orang-like manual adaptations in
951 the fossil hominoid *Hispanopithecus laietanus*: first steps towards great ape suspensory
952 behaviours. *Proc. R. Soc. B.* 274, 2375–2384.

953 Almécija, S., Hammond, A.S., Thompson, N.E., Pugh, K.D., Moyà-Solà, S., Alba, D.M., 2021.
954 Fossil apes and human evolution. *Science* 372, eabb4363.

955 Álvarez Ramis, C., 1975. Quelques considérations écologiques sur le gisement Vallésien de
956 Can Llobateres (Barcelone, Espagne). In: *Comptes Rendus du 100e Congrès National des
957 Sociétés Savantes* (Paris, 1975). Fascicule II. Bibliothèque Nationale, Paris, pp. 11–16.

958 Andrews, P., 1996. Palaeoecology and hominoid palaeoenvironments. *Biol. Rev.* 71, 257–300.

959 Andrews, P., 2015. *An Ape's View of Human Evolution*. Cambridge University Press,
960 Cambridge.

961 Andrews, P., Cameron, D., 2010. Rudabànya: Taphonomic analysis of a fossil hominid site
962 from Hungary. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 297, 311–329.

963 Anquetin, J., Antoine, P.O., Tassy, P., 2007. Middle Miocene Chalicotheriinae (Mammalia,
964 Perissodactyla) from France, with a discussion on chalicotheriine phylogeny. *Zool. J. Linn.
965 Soc.* 151, 577–508.

966 Azanza, B., Menéndez, E., 1990. Los ciervos fósiles del neógeno español. *Paleontol. Evol.* 23,
967 75–82.

968 Begun, D.R., 1994. Relations among the great apes and humans: new interpretations based on
969 the fossil great ape *Dryopithecus*. Yearb. of Phys. Anthropol. 19, 11–63.

970 Begun, D.R., 2009. Dryopithecins, Darwin, de Bonis, and the European origin of the African
971 apes and human clade. Geodiversitas, 31, 789–816.

972 Begun, D.R., Moyá-Sola, S., Kohler, M., 1990. New Miocene hominoid specimens from Can
973 Llobateres (Vallès Penedès, Spain) and their geological and paleoecological context. J. Hum.
974 Evol. 19, 255–268.

975 Bergounioux, F.M., Crouzel, F., 1962. Les Deinotheridés d'Espagne. Bull. Soc. Geol. Fr. 4,
976 394–404.

977 Bernor, R.L., Woodburne, M.O., Van Couvering, J.A., 1980. A contribution to the chronology
978 of some Old World Miocene faunas based on hipparionine horses. Geobios 13, 705–739.

979 Bernor, R.L., Koufos, G.D., Woodburne, M.O., Fortelius, M., 1996. The evolutionary history
980 and biochronology of European and Southwest Asian Late Miocene and Pliocene
981 Hipparionine horses. In: Bernor, R.L., Fahlbusch, V., Mittmann, H.-W. (Eds.), The
982 Evolution of Western Eurasian Neogene Faunas. Columbia University Press, New York, pp.
983 307–338.

984 Bernor, R.L., Tobien, H., Hayek, L.-A.C., Mittmann, H.-W., 1997. *Hippotherium primigenium*
985 (Equidae, Mammalia) from the late Miocene of Höwenegg (Hegau, Germany). Andrias 10,
986 5–230.

987 Bernor, R.L., Kaya, F., Kaakinen, A., Saarinen, J., Fortelius, M., 2021. Old world hipparion
988 evolution, biogeography, climatology and ecology. Earth Sci. Rev. 221, 103784.

989 Bernor, R.L., Cirilli, O., Mittmann, H.-W., 2022. Höwenegg *Hippotherium primigenium*:
990 geological context, cranial and postcranial morphology, palaeoecological and biogeographic
991 importance. Hist. Biol. <https://doi.org/10.1080/08912963.2022.2094261>

992 Bougeard, S., Dray, S., 2018. Supervised Multiblock Analysis in R with the ade4 Package. J.
993 Stat. Softw. 86, 1–17.

994 Cailleux, F., Van den Hoek Ostende, L.W., Joniak, P., in press. The Late Miocene Erinaceidae
995 and Dimylidae (Eulipotyphla, Mammalia) from the Pannonian Region. J. Paleontol.

996 Cameron, D.W., 1997. A revised systematic scheme for the Eurasian Miocene fossil
997 Hominidae. J. Hum. Evol. 33, 449–477.

998 Cameron, D.W., 1998. Patterns of faciodental sexual dimorphism in *Hispanopithecus*. Z.
999 Morphol. Anthropol. 82, 47–58.

1000 Cameron, D.W., 1999. The single species hypothesis and *Hispanopithecus* fossils from the
1001 Vallés Penedés Basin, Spain. Z. Morphol. Anthropol. 82, 159–186.

1002 Cameron, D.W., 2004. Hominid Adaptations and Extinctions. University of New South Wales
1003 Press, Sydney.

1004 Casanovas-Vilar, I., Agustí, J., 2007. Ecogeographical stability and climate forcing in the Late
1005 Miocene (Vallesian) rodent record of Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 248,
1006 169–189.

1007 Casanovas-Vilar, I., Moyà-Solà, S., Agustí, J., Köhler, M., 2005. The geography of a faunal
1008 turnover: tracking the Vallesian Crisis. In: Elewa, A.T. (Eds.), Migration of Organisms:
1009 Climate, Geography, Ecology. Springer, Heidelberg, pp. 247–301.

1010 Casanovas-Vilar, I., García-Paredes, I., Alba, D.M., van den Hoek Ostende, L., Moyà-Solà, S.,
1011 2010. The European Far West: Miocene mammal isolation, diversity and turnover in the
1012 Iberian Peninsula. J. Biogeogr. 37, 1079–1093.

1013 Casanovas-Vilar, I., Alba, D.M., Garcés, M., Robles, J.M., Moyà-Solà, S., 2011. Updated
1014 chronology for the Miocene hominoid radiation in Western Eurasia. Proc. Natl. Acad. Sci.
1015 USA 108, 5554–5559.

1016 Casanovas-Vilar, I., Van den Hoek Ostende, L., Furió, M., Madern, P.A., 2014. The range and
1017 extent of the Vallesian Crisis (Late Miocene): new prospects based on the micromammal
1018 record from the Vallès-Penedès basin (Catalonia, Spain). *J. Iber. Geol.* 40, 29–48.

1019 Casanovas-Vilar, I., Almécija, S., Alba, D.M., 2015. Late Miocene flying squirrels from Can
1020 Llobateres 1 (Vallès-Penedès Basin, Catalonia): systematics and paleobiogeography.
1021 *Palaeodivers. Palaeoenvir.* 95, 353–372.

1022 Casanovas-Vilar, I., Madern, A., Alba, D.M., Cabrera, L., García-Paredes, I., Van den Hoek
1023 Ostende, L.W., DeMiguel, D., Robles, J.M., Furió, M., Van Dam, J., Garcés, M., Angelone,
1024 C., Moyà-Solà, S., 2016a. The Miocene mammal record of the Vallès-Penedès Basin
1025 (Catalonia). *C. R. Palevol.* 15, 791–812.

1026 Casanovas-Vilar, I., Garcés, M., Van Dam, J., García-Paredes, I., Robles, J.M., Alba, D.M.,
1027 2016b. An updated biostratigraphy for the late Aragonian and Vallesian of the Vallès-
1028 Penedès Basin (Catalonia). *Geol. Acta* 14, 195–217.

1029 Casanovas-Vilar, I., Torres, J., DeMiguel, D., Alba, D.M., 2018. Introducing: The Vallès-
1030 Penedès Miocene Vertebrates Paleobiodiversity Database. In: The role of NOW in the future
1031 of the past. NOW meeting in Bratislava 9-10 October 2018. Abstract book, pp. 1–2.

1032 Casanovas-Vilar, I., Kimura, Y., Flynn, L.J., Pilbeam, D., Moyà-Solà, S., Alba, D.M., 2019.
1033 Stable isotopes of rodent tooth enamel provide new evidence on Miocene ape environments
1034 in the Vallès-Penedès Basin (Catalonia). In: The Palaeontological Association 63rd Annual
1035 Meeting. 15th-21st December 2019. University of Valencia, Spain. Programme Abstracts
1036 AGM papers, p. 28.

1037 Casanovas-Vilar, I., Kimura, Y., Flynn, L.J., Pilbeam, D., Moyà-Solà, S., Alba, D.M., 2020.
1038 Rodent stable isotopes provide new data on Miocene ape environments in the Siwaliks and
1039 the Vallès-Penedès Basin. *Am. J. Phys. Antropol.* 171 (S69), 46.

1040 Chessel, D., Dufour, A., Thioulouse, J., 2004. The ade4 Package - I: One-Table Methods. R
1041 News 4, 5–10.

1042 Collyer, M.L., Adams, D.C., 2018. RRPP: An R package for fitting linear models to high-
1043 dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779.

1044 Collyer, M.L., Adams, D.C., 2019. RRPP: Linear model evaluation with randomized residuals
1045 in a permutation orocedure. R package version 1.3.1. [https://CRAN.R-
1046 project.org/package=RRPP](https://CRAN.R-project.org/package=RRPP)

1047 Costeur, L., 2005. Cenogram analysis of the Rudabánya mammalian community:
1048 palaeoenvironmental interpretations. Palaeontogr. Ital. 90, 303–307.

1049 Crusafont Pairó, M., 1952. Los jiráfidos fósiles de España. Mem. Com. Inst. Geol. 8, 1–239.

1050 Crusafont Pairó, M., 1958. Nuevo hallazgo del póngido vallesiense *Hispanopithecus*. Bol. Inf.
1051 A.E.P.V. 1, 13–14.

1052 Crusafont Pairó, M., 1965. El desarrollo de los caninos en algunos Driopitécidos del Vallesiense
1053 en Cataluña. Not. Com. Inst. Geol. Min. Esp. 80, 179–191.

1054 Crusafont Pairó, M., 1969. Història de la paleontologia a Sabadell. Joan Sallent Sucr, Sabadell.

1055 Crusafont Pairó, M., Villalta Comella, J.F. de, 1948. El Mioceno continental del Vallés y sus
1056 yacimientos de Vertebrados. Publ. Fund. Bosch Cardellach 3, 7–30.

1057 Crusafont Pairó, M., Hürzeler, J., 1961. Les Pongidés fossiles d'Espagne. C. R. Acad. Sci. Paris
1058 252, 582–584.

1059 Crusafont Pairó, M., Hürzeler, J., 1969. Catálogo comentado de los Póngidos fósiles de España.
1060 Acta Geol. Hisp. 4, 44–48.

1061 Crusafont Pairó, M., Golpe Posse, J.M., 1973. New pongids from the Miocene of Vallès
1062 Penedès Basin (Catalonia, Spain). J. Hum. Evol. 2, 17–24.

1063 Crusafont Pairó, M., Gibert Clols, J., 1974. Nuevos datos sobre el género *Postpalerinaceus* del
1064 Vallesiense. Acta Geol. Hisp 9, 1–3.

1065 de Bonis, L., Abella, J., Merceron, G., Begun, D.R., 2017. A new late Miocene ailuropodine
1066 (Giant Panda) from Rudabánya (Northcentral Hungary). *Geobios* 50, 413–421.

1067 De Bruijn, H., Daams, R., Daxner-Höck, G., Fahlbusch, V., Ginsburg, L., Mein, P., Morales,
1068 J., 1992. Report o the RCMNS working group on fossil mammals, Reisensburg 1990. NewsL.
1069 *Stratigr.* 26, 65–118.

1070 DeMiguel, D., Alba, D.M., Moyà-Solà, S., 2014. Dietary specialization during the evolution of
1071 Western Eurasian hominoids and the extinction of European great apes. *PLoS One* 9,
1072 e97442.

1073 Domingo, L., Koch, P.L., Hernández Fernández, M., Fox, D.L., Domingo, M.S., Alberdi, M.T.,
1074 2013. Late Neogene and early Quaternary paleoenvironmental and paleoclimatic conditions
1075 in southwestern Europe: isotopic analyses on mammalian taxa. *PLoS One* 8, e63739.

1076 Dray, S., Dufour, A., 2007. The ade4 Package: Implementing the Duality Diagram for
1077 Ecologists. *J. Stat. Softw.* 22, 1–20.

1078 Dray, S., Dufour, A., Chessel, D., 2007. The ade4 Package - II: Two-Table and K-Table
1079 Methods. *R News* 7, 47–52.

1080 Eastham, L., Skinner, M., Begun, D.R., 2009. Resolving seasonal stress in the Late Miocene
1081 hominoid *Hispanopithecus laietanus* through the analysis of the dental developmental defect
1082 linear enamel hypoplasia. *J. Vert. Paleontol.* 29, 91A.

1083 Eastham, L.C., Feranec, R.S., Begun, D.R., 2016. Stable isotopes show resource partitioning
1084 among the early Late Miocene herbivore community at Rudabánya II: Paleoenvironmental
1085 implications for the hominoid, *Rudapithecus hungaricus*. *Palaeogeogr. Palaeoclimatol.*
1086 *Palaeoecol.* 454, 161–174.

1087 Eastham, L.C., Feranec, R.S., Begun, D.R., 2017. Trace element analysis provides insight into
1088 the diets of early Late Miocene ungulates from the Rudabánya II locality (Hungary). *Geol.*
1089 *Acta* 15, 231–243.

1090 Eronen, J.T., Ataabadi, M.M., Micheels, A., Karme, A., Bernor, R.L., Fortelius, M., 2009.

1091 Distribution history and climatic controls of Late Miocene Pikermian chronofauna. Proc.

1092 Natl. Acad. Sci. USA 106, 11867–11871.

1093 Eronen, J.T., Puolamäki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C., Fortelius, M.,

1094 2010a. Precipitation and large herbivorous mammals II: application to fossil data. Evol.

1095 Ecol. Res. 12, 235–248.

1096 Eronen, J., Polly, P., Fred, M., Damuth, J., Frank, D., Mosbrugger, V., Scheidegger, C.,

1097 Stenseth, N., Fortelius, M., 2010b. Ecometrics: The traits that bind the past and present

1098 together. Integr. Zool. 5, 88–101.

1099 Eronen, J.T., Puolamäki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C., Fortelius, M.,

1100 2010c. Precipitation and large herbivorous mammals I: estimates from present-day

1101 communities. Evol. Ecol. Res. 12, 217–233.

1102 Fortelius, M., Van der Made, J., Bernor, R.L., 1996a. Middle and Late Miocene Suoidea of

1103 Central Europe and the Eastern Mediterranean: Evolution, Biogeography, and Paleoecology.

1104 In: Bernor, R.L., Fahlbusch, V., Mittmann, H.W. (Eds.), The Evolution of Western Eurasian

1105 Neogene Faunas. Columbia University Press, New York, pp. 348–377.

1106 Fortelius, M., Werdelin, L., Andrews, P., Bernor, R.L., Gentry, A., Humphrey, L., Mittmann,

1107 H.-W., Viratana, S., 1996b. Provinciality, diversity, turnover, and paleoecology in land

1108 mammal faunas of the Later Miocene of Western Eurasia. In: Bernor, R.L., Fahlbusch, V.,

1109 Mittmann, H.W. (Eds.), The Evolution of Western Eurasian Neogene Faunas. Columbia

1110 University Press, New York, pp. 414–448.

1111 Fortelius, M., Eronen, J.T., Jernvall, J., Liu, L., Pushkina, D., Rinne, J., Tesakov, A.,

1112 Vislobokova, I., Zhang, Z., Zhou, L., 2002. Fossil mammals resolve regional patterns of

1113 Eurasian climate change during 20 million years. Evol. Ecol. Res. 4, 1005–1016.

1114 Fortelius, M., Žliobaitė, I., Kaya, F., Bibi, F., Bobe, R., Leakey, L., Leakey, M., Patterson, D.,

1115 Rannikko, J., Werdelin, L., 2016. An econometric analysis of the fossil mammal record of the

1116 Turkana Basin. Phil. Trans. R. Soc. B 371, 20150232.

1117 Furió, M., Prieto, J., Van den Hoek Ostende, L., 2015. Three million years of “Terror-Shrew”

1118 (*Dinosorex*, Eulipotyphla, Mammalia) in the Miocene of the Vallès-Penedès Basin

1119 (Barcelona, Spain). C. R. Palevol. 14, 111–124.

1120 Galbrun, E., Tang, H., Fortelius, M., Žliobaitė, I., 2018. Computational biomes: The econometrics

1121 of large mammal teeth. Palaeontol. Electron. 21, 21.1.3A.

1122 Garcés, M., Agustí, J., Cabrera, L., Parés, J.M., 1996. Magnetostratigraphy of the Vallesian

1123 (late Miocene) in the Vallès-Penedès Basin (northeast Spain). Earth Plant. Sci. Lett. 142,

1124 381–396.

1125 Golpe-Posse, J.M., 1971. Suiformes del Terciario español y sus yacimientos. Ph.D.

1126 Dissertation, Universidad de Barcelona.

1127 Golpe-Posse, J.M., 1972. Suiformes del terciario español y sus yacimientos (Tesis doctoral-Resumen) (revisado y reimprimido en Diciembre de 1972). Paleontol. Evol. 2, 1–197.

1129 Golpe Posse, J.M., 1982. Los hispanopitecos (Primates, Pongidae) de los yacimientos del

1130 Vallès Penedès (Cataluña - España). I: Material ya descrito. Bull. Inf. Inst. Paleontol.

1131 Sabadell 14, 63–69.

1132 Golpe Posse, J.M., 1993. Los Hispanopitecos (Primates, Pongidae) de los yacimientos del

1133 Vallès-Penedès (Cataluña, España). II: Descripción del material existente en el Instituto de

1134 Paleontología de Sabadell. Paleontol. Evol. 26–27, 151–224.

1135 Golpe-Posse, J.M., Crusafont Pairó, M., 1982. Caracterización de *Tapirus priscus* Kaup en el

1136 Mioceno superior del Vallés-Penedés. Acta Geol. Hisp. 17, 95–101.

1137 Harrison, T., 1991. Some observations on the Miocene hominoids from Spain. J. Hum. Evol.

1138 20, 515–520.

1139 Heissig, K., 1999. Family Chalicotheriidae. In: Rössner, G.E., Heissig, K. (Eds.), The Miocene
1140 Land Mammals of Europe. Verlag Dr. Friedrich Pfeil, München, pp. 189–192.

1141 Hernández Fernández, M., Salesa, M.J., Sánchez, I.M., Morales, J., 2003. Paleoecología del
1142 género *Anchitherium* von Meyer, 1834 (Equidae, Perissodactyla, Mammalia) en España:
1143 evidencias a partir de las faunas de macromamíferos. Col. Paleontol. 1, 253–280.

1144 Higgins, P., 2018. Isotope ecology from biominerals. In: Croft, D.A., Su, D.F., Simpson, S.W.
1145 (Eds), Methods in Paleoecology. Springer, Cham, pp. 99–120.

1146 Hilgen, F.J., Lourens, L.J., Van Dam, J.A., 2012. The Neogene period. In: Gradstein, F.M.,
1147 Ogg, J.G., Schmitz, M., Ogg, G. (Eds.), The Geologic Time Scale 2012. Elsevier,
1148 Amsterdam, pp. 923–978.

1149 Hunter, J.P., Fortelius, M., 1994. Comparative dental occlusal morphology, facet development,
1150 and microwear in two sympatric species of *Listriodon* (Mammalia: Suidae) from the Middle
1151 Miocene of Western Anatolia (Turkey). J. Vertebr. Paleontol. 14, 105–126.

1152 Iannucci, A., Begun, D.R., 2022. Suidae (Mammalia, Artiodactyla) from the late Miocene
1153 hominoid locality of Alsótelekes (Hungary). Geobios 71, 39–49.

1154 Jackson, S., 2012. Gliding Mammals of the World. CSIRO Publishing, Collingwood.

1155 Jernvall, J., 1995. Mammalian molar cusp patterns: Developmental mechanisms of diversity.
1156 Acta Zool. Fenn. 198, 1–61.

1157 Kassambara, A., Mundt, F., 2020. factoextra: Extract and visualize the results of multivariate
1158 data analyses. R package version 1.0.7. <https://CRAN.R-project.org/package=factoextra/>

1159 Kaya, F., Bibi, F., Žliobaitė, I., Eronen, J.T., Hui, T., Fortelius, M., 2018. The rise and fall of
1160 the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol.
1161 Evol. 2, 241–246.

1162 Koch, P.L., 1998. Isotopic reconstruction of past continental environments. Ann. Rev. Earth
1163 Plant. Sci. 26, 573–613.

1164 Kohn, M.J., 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of
1165 (paleo)ecology and (paleo)climate. Proc. Natl. Acad. Sci. USA 107, 19691–19695.

1166 Kohn, M.J., Schoeninger, M.J., Valley, J.W., 1998. Variability in oxygen isotope compositions
1167 of herbivore teeth: reflections of seasonality or developmental physiology? Chem. Geol.
1168 152, 97–112.

1169 Köhler, M., 1993. Skeleton and habitat of recent and fossil ruminants. Münch. Geowiss. Abh. A
1170 25, 1–88.

1171 Liu, L., Puolamaki, K., Eronen, J., Ataabadi, M.M., Hernesniemi, E., Fortelius, M., 2012.
1172 Dental functional traits of mammals resolve productivity in terrestrial ecosystems past and
1173 present. Proc. R. Soc. B 279, 2793–2799.

1174 Lu, X., Ge, D., Xia, L., Zhang, Z., Li, S., Yang, Q., 2013. The evolution and paleobiogeography
1175 of flying squirrels (Sciuridae, Pteromyini) in response to global environmental change. Evol.
1176 Biol. 40, 117–132.

1177 Marmi, J., Casanovas-Vilar, I., Robles, J.M., Moyà-Solà, S., Alba, D.M., 2012. The
1178 paleoenvironment of *Hispanopithecus laietanus* as revealed by paleobotanical evidence
1179 from the Late Miocene of Can Llobateres 1 (Catalonia, Spain). J. Hum. Evol. 62, 412–423.

1180 Mazo, A.V., 1977. Revisión de los mastodontes de España. Ph.D. Dissertation, Universidad
1181 Complutense de Madrid.

1182 Mazo, A.V., Van der Made, J., 2012. Iberian mastodonts: Geographic and stratigraphic
1183 distribution. Quat. Int. 255, 239–256.

1184 McKenzie, S., Sorbelli, L., Cherin, M., Almécija, S., Pina, M., Abella, J., Luján, À.H.,
1185 DeMiguel, D., Alba, D.M., 2023. Earliest Vallesian suid remains from Creu de Conill 20
1186 (Vallès-Penedès Basin, NE Iberian Peninsula). J. Mamm. Evol. 30, 155–212.

1187 Mein, P., 1990. Updating of MN zones. In: Lindsay, E.H., Fahlbusch, V., Mein, P. (Eds.),
1188 European Neogene Mammal Chronology. Springer, Boston, pp. 73–90.

1189 Mercerón, G., Kaiser, T.M., Kostopoulos, D.S., Schulz, E., 2010. Ruminant diets and the
1190 Miocene extinction of European great apes. Proc. R. Soc. B 277, 3105–3112.

1191 Misas Alcàntara, M., 2022. El paleoambient d'*Hispanopithecus laietanus*: noves dades basades
1192 en l'anàlisi d'isòtops estables de l'esmalt dental dels mamífers herbívors de Can Llobateres.
1193 Graduate Thesis, Universitat Autònoma de Barcelona.

1194 Moyà-Solà, S., 1979. Revisión del género *Dorcatherium* Kaup, 1833 (Mammalia, Ruminantia,
1195 Tragulidae) de las cuencas miocénicas catalanas. Butll. Inf. Inst. Paleontol. Sabadell 11, 55–
1196 59.

1197 Moyà-Solà, S., 1983. Los Boselaphini (Bovidae Mammalia) del Neógeno de la Península
1198 Ibérica. Universidad Autónoma de Barcelona, Barcelona. .

1199 Moyà-Solà, S., Agustí, J., 1990. Bioevents and mammal successions in the Spanish Miocene.
1200 In: Lindsay, E.H., Fahlbusch, V., Mein, P. (Eds.), European Neogene Mammal Chronology.
1201 Plenum Press, New York, pp. 357–373.

1202 Moyà-Solà, S., Köhler, M., 1993. Recent discoveries of *Dryopithecus* shed new light on
1203 evolution of great apes. Nature 365, 543–545.

1204 Moyà-Solà, S., Köhler, M., 1995. New partial cranium of *Dryopithecus* Lartet, 1863
1205 (Hominoidea, Primates) from the upper Miocene of Can Llobateres, Barcelona, Spain. J.
1206 Hum. Evol. 29, 101–139.

1207 Moyà-Solà, S., Köhler, M., 1996. A *Dryopithecus* skeleton and the origins of great-ape
1208 locomotion. Nature 379, 156–159.

1209 Moyà-Solà, S., Pons-Moyà, J., Köhler, M., 1990. Primates catarrinos (Mammalia) del Neógeno
1210 de la península Ibérica. Paleontol. Evol. 23, 41–45.

1211 Moyà-Solà, S., Köhler, M., Alba, D.M., Casanovas-Vilar, I., Galindo, J., Robles, J.M., Cabrera,
1212 L., Garcés, M., Almécija, S., Beamud, E., 2009. First partial face and upper dentition of the
1213 Middle Miocene hominoid *Dryopithecus fontani* from Abocador de Can Mata (Vallès-

1214 Penedès Basin, Catalonia, NE Spain): taxonomic and phylogenetic implications. Am. J.
1215 Phys. Anthropol. 139, 126–145.

1216 Nagatoshi, K., 1987. Miocene hominoid environments of Europe and Turkey. Palaeogeogr.
1217 Palaeoclimatol. Palaeoecol. 61, 145–154.

1218 Oksanen, O., Žliobaitė, I., Saarinen, J., Lawing, A.M., Fortelius, M., 2019. A Humboldtian
1219 approach to life and climate of the geological past: Estimating palaeotemperature from
1220 dental traits of mammalian communities. J. Biogeogr. 46, 1760–1776.

1221 Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-Geiger
1222 climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644.

1223 Pickford, M., 1981. *Paracheleuastochoerus* (Mammalia, Suidae). Estud. Geol. 37, 313–320.

1224 Pickford, M., 2014. *Sus valentini* Filhol (1882) from St Gaudens (MN 8–9) France: blighted
1225 from the outset but a key to understanding late Middle Miocene Tetraconodontinae (Suidae,
1226 Mammalia) of Europe. Mainzer Naturwiss. Archiv 51, 167–220.

1227 Pickford, M., 2016. Biochronology of European Miocene Tetraconodontinae (Suidae,
1228 Artiodactyla, Mammalia) flowing from recent revision of the Subfamily. Ann. Naturhist.
1229 Mus. Wien 118, 175–244.

1230 Pickford, M., Pourabri shami, Z., 2013. Deciphering Dinotherei sande deinotheriid diversity.
1231 Palaeobiodivers. Palaeoenvirons. 93, 121–150.

1232 Pickford, M., Moyà Solà, S., Mein, P., 1997. A revised phylogeny of Hyracoidea (Mammalia)
1233 based on new specimens of Pliohyracidae from Africa and Europe. N. Jb. Geol. Paläont.
1234 Abh. 205, 265–288.

1235 Pina, M., Alba, D.M., Almécija, S., Fortuny, J., Moyà-Solà, S., 2012. Brief Communication:
1236 Paleobiological inferences on the locomotor repertoire of extinct hominoids based on
1237 femoral neck cortical thickness: the fossil great ape *Hispanopithecus laietanus* as a test-case
1238 study. Am. J. Phys. Anthropol. 149, 142–148.

1239 Pugh, K.D., 2022. Phylogenetic analysis of Middle-Late Miocene apes. *J. Hum. Evol.* 165,
1240 103140.

1241 R Core Team, 2021. R: A language and environment for statistical computing. R Foundation
1242 for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

1243 Ribot, F., Gibert, J., Harrison, T., 1996. A reinterpretation of the taxonomy of *Dryopithecus*
1244 from Vallès-Penedès, Catalonia (Spain). *J. Hum. Evol.* 31, 129–141.

1245 Robles, J.M., Abella, J., Madurell-Malapeira, J., Alba, D.M., 2014. Miocene carnivorans from
1246 the Vallès-Penedès Basin. In: Robles, J.M., Miocene carnivorans from the Vallès-Penedès
1247 Basin (NE Iberian Peninsula). Ph.D. Dissertation, Universitat Autònoma de Barcelona, pp.
1248 367–434.

1249 RStudio Team, 2021. RStudio: Integrated Development Environment for R. RStudio, PBC,
1250 Boston. <http://www.rstudio.com/>

1251 Sanisidro, O., Cantalapiedra, J.L., 2022. The Rhinocerotidae fossil record in the Iberian
1252 Peninsula. *Hist. Biol.* 34, 1591–1610.

1253 Santafé Llopis, J.V., 1978. Rinocerótidos fósiles de España. Ph.D. Dissertation, Universidad de
1254 Barcelona.

1255 Sanz de Siria Catalán, A., 1993. Datos sobre la paleoclimatología y paleoecología del Neógeno
1256 del Vallès-Penedès según las macrofloras halladas en la Cuenca y zonas próximas. *Palentol.*
1257 *Evol.* 26–27, 281–289.

1258 Sanz de Siria Catalán, A., 1994. La evolución de las paleofloras en las cuencas cenozoicas
1259 catalanas. *Acta Geol. Hisp.* 29, 169–189.

1260 Schlager, S., 2017. Morpho and Rvcg - Shape Analysis in R. In: Zheng, G., Li, S., Szekely, G.
1261 (Eds.), *Statistical Shape and Deformation Analysis*. Academic Press, London, pp. 217–256.

1262 Sinitsa, M.V., Čermák, S., Kryuchkova, L.Y., 2022. Cranial anatomy of *Csakvaromys bredai*
1263 (Rodentia, Sciuridae, Xerinae) and Implications for ground squirrel evolution and
1264 systematics. *J. Mamm. Evol.* 29, 149–189.

1265 Skinner, M.F., Dupras, T.L., Moyà-Solà, S., 1995. Periodicity of linear enamel hypoplasia
1266 among Miocene *Dryopithecus* from Spain. *J. Paleopathol.* 7, 195–222.

1267 Stefan, V., Levin, S., 2022. plotbiomes: Plot Whittaker biomes with ggplot2. R package version
1268 0.0.0.9001. <https://rdrr.io/github/valentinitnelav/plotbiomes/>

1269 Susanna, I., Alba, D.M., Almécija, S., Moyà-Solà, S., 2014. The vertebral remains of the late
1270 Miocene great ape *Hispanopithecus laietanus* from Can Llobateres 2 (Vallès-Penedès Basin,
1271 NE Iberian Peninsula). *J. Hum. Evol.* 73, 15–34.

1272 Szalay, F., Delson, E., 1979. Evolutionary History of the Primates. Academic Press, New York.

1273 Tallman, M., Almécija, S., Reber, S.L., Alba, D.M., Moyà-Solà, S., 2013. The distal tibia of
1274 *Hispanopithecus laietanus*: More evidence for mosaic evolution in Miocene apes. *J. Hum.*
1275 *Evol.* 62, 319–327.

1276 The NOW Community, 2023. New and Old Worlds Database of Fossil Mammals (NOW).
1277 Licensed under CC BY 4.0. <https://nowdatabase.org/now/database/> [Accessed May 31,
1278 2023]

1279 Thioulouse, J., Dray, S., Dufour, A., Siberchicot, A., Jombart, T., Pavoine, S., 2018.
1280 Multivariate Analysis of Ecological Data with ade4. Springer, New York.

1281 Toivonen, J., Fortelius, M., Žliobaitė, I., 2022. Do species factories exist? Detecting exceptional
1282 patterns of evolution in the mammalian fossil record. *Proc. R. Soc. B* 289, 20212294.

1283 Ungar, P.S., 1996. Dental microwear of European Miocene catarrhines: evidence for diets and
1284 tooth use. *J. Hum. Evol.* 31, 335–366.

1285 Urciuoli, A., Alba, D.M., 2023. Systematics of Miocene apes: State of the art of a neverending
1286 controversy. *J. Hum. Evol.* 175, 103309.

1287 Valenciano, A., Jiangzuo, Q., Wang, S., Li, C., Zhang, X., Ye, J., 2019. First record of *Hoplictis*
1288 (Carnivora, Mustelidae) in East Asia from the Miocene of the Ulungur River Area,
1289 Xianjiang, Northwest China. *Acta Geol. Sin.* 93, 251–264.

1290 Van Dam, J.A., Krijgsman, W., Abels, H.A., Álvarez-Sierra, M.Á., García-Paredes, I., López-
1291 Guerrero, P., Peláez-Campomanes, P., Ventra, D., 2014. Updated chronology for Middle to
1292 Late Miocene mammal sites of the Daroca área (Calatayud-Montalbán Basin, Spain).
1293 *Geobios* 47, 325–334.

1294 Van den Hoek Ostende, L.W., Furió, M., 2005. Spain. In: van den Hoek Ostende, L.W.,
1295 Doukas, C.S., Reumer, J.W.F. (Eds.), *The Fossil Record of the Eurasian Neogene*
1296 *Insectivores* (Erinaceomorpha, Soricomorpha, Mammalia), Part I. *Scripta Geol. Special*
1297 Issue 5, 149–284.

1298 Van der Made, J., 1990. Iberian Suoidea. *Paleontol. Evol.* 23, 83–97.

1299 Van der Made, J., 1996. Listriodontinae (Suidae, Mammalia), their evolution, systematics and
1300 distribution in time and space. *Contrib. Tert. Quatern. Geol.* 33, 3–254.

1301 Van der Made, J., 1997. Los Suoidea de la Península Ibérica. In: Calvo, J.P., Morales, J. (Eds.),
1302 *Avances en el conocimiento del Terciario Ibérico*. Cuenca, pp. 109–112.

1303 Van der Made, J., 2010. The pigs and “Old World peccaries” (Suidae and Palaeochoeridae,
1304 Suoidea, Artiodactyla) from the Miocene of Sandelzhausen (southern Germany): phylogeny
1305 and an updated classification of the Hyotheriinae and Palaeochoeridae. *Paläontol. Zeits.* 84,
1306 43–121.

1307 Van der Made, J., Krakhmalnaya, T., Kubiak, H., 1999. The pig *Propotamochoeours*
1308 *palaeochoerus* from the upper Miocene of Grytsiv, Ukraine. *Estud. Geol.* 55, 283–292.

1309 Van der Made, J., Aiglstorfer, M., Böhme, M., 2014. Taxonomic study of the pigs (Suidae,
1310 Mammalia) from the late Middle Miocene of Gratkorn (Austria, Syria). *Palaeobiodivers.*
1311 *Palaeoenviron.* 94, 595–617.

1312 Van der Made, J., Choudhary, D., Singh, N.P., Sharma, K.M., Singh, N.A., Patnaik, R., 2022.

1313 *Listriodon dukkar* sp. nov. (Suidae, Artiodactyla, Mammalia) from the late Miocene of

1314 Pasuda (Gujarat, India): the decline and extinction of the Listriodontinae. *Paläontol. Zeits.*

1315 96, 355–383.

1316 Vermillion, W., Polly, P., Head, J., Eronen, J., Lawing, A., 2018. Ecometrics: A trait-based

1317 approach to paleoclimate and paleoenvironmental reconstruction. In: Croft, D.A., Su, D.F.,

1318 Simpson, S.W. (Eds.), *Methods in Paleoecology. Reconstructing Cenozoic Terrestrial*

1319 *Environments and Ecological Communities*. Springer Nature Switzerland, Cham, pp. 373–

1320 394.

1321 Villalta Comella, J.F. de, Crusafont Pairó, M., 1943. Los Vertebrados del Mioceno continental

1322 de la cuenca del Vallés-Penedés (provincia de Barcelona): I. Insectívoros; II. Carnívoros.

1323 *Bol. Inst. Geol. Min. España* 56, 147–314.

1324 Walter, H., 1979. *Vegetation und Klimazonen*, 4th ed. Verlag Eugen Ulmer, Stuttgart.

1325 Wickham, H., 2016. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag, New York.

1326 <https://ggplot2.tidyverse.org/>

1327 Wickham, H., Hester, J., Chang, W., Bryan, J., 2021. *devtools: Tools to Make Developing R*

1328 *Packages Easier*. R package version 2.4.3. <https://CRAN.R-project.org/package=devtools/>

1329 Whittaker, R., 1975. *Communities and Ecosystems*, 2nd ed. MacMillan Publishing Co., New

1330 York.

1331 Zanolli, C., Bouchet, F., Fortuny, J., Bernardini, F., Tuniz, C., Alba, D.M., 2023. A

1332 reassessment of the distinctiveness of dryopithecine genera from the Iberian Miocene based

1333 on enamel-dentine junction geometric morphometric analyses. *J. Hum. Evol.* 177, 103326.

1334 Žliobaitė, I., Rinne, J., Tóth, A., Mechenich, M., Liu, L., Behrensmeyer, A., Fortelius, M., 2016.

1335 Herbivore teeth predict climatic limits in Kenyan ecosystems. *Proc. Natl. Acad. Sci. USA*

1336 113, 12751–12756.

1337 Žliobaitė, I., Tang, H., Saarinen, J., Fortelius, M., Rinne, J., Rannikko, J., 2018. Dental
1338 eometrics of tropical Africa: linking vegetation types and communities of large plant-eating
1339 mammals. *Evol. Ecol. Res.* 19, 127–147.

1340

1341 **Figure captions**

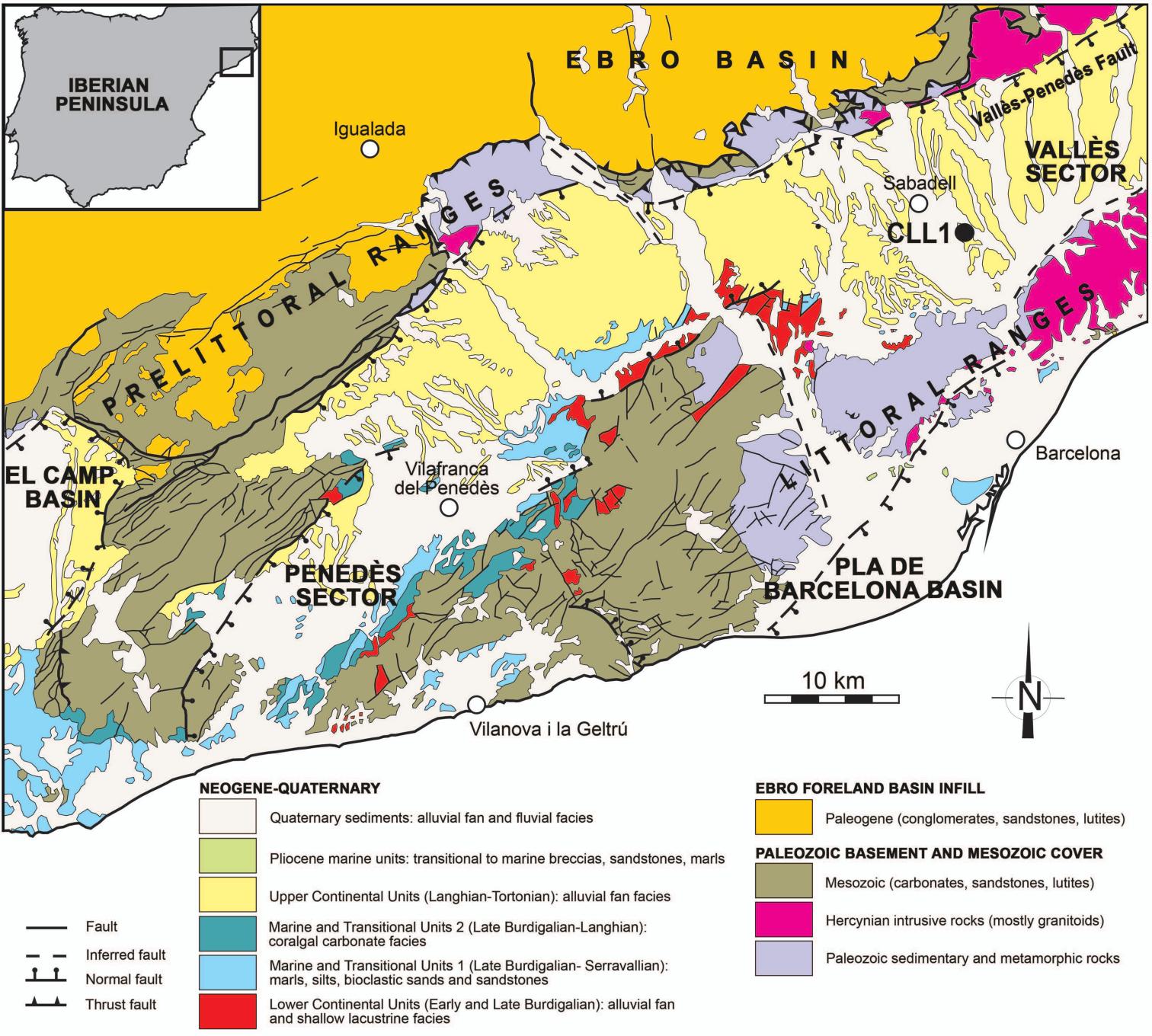
1342

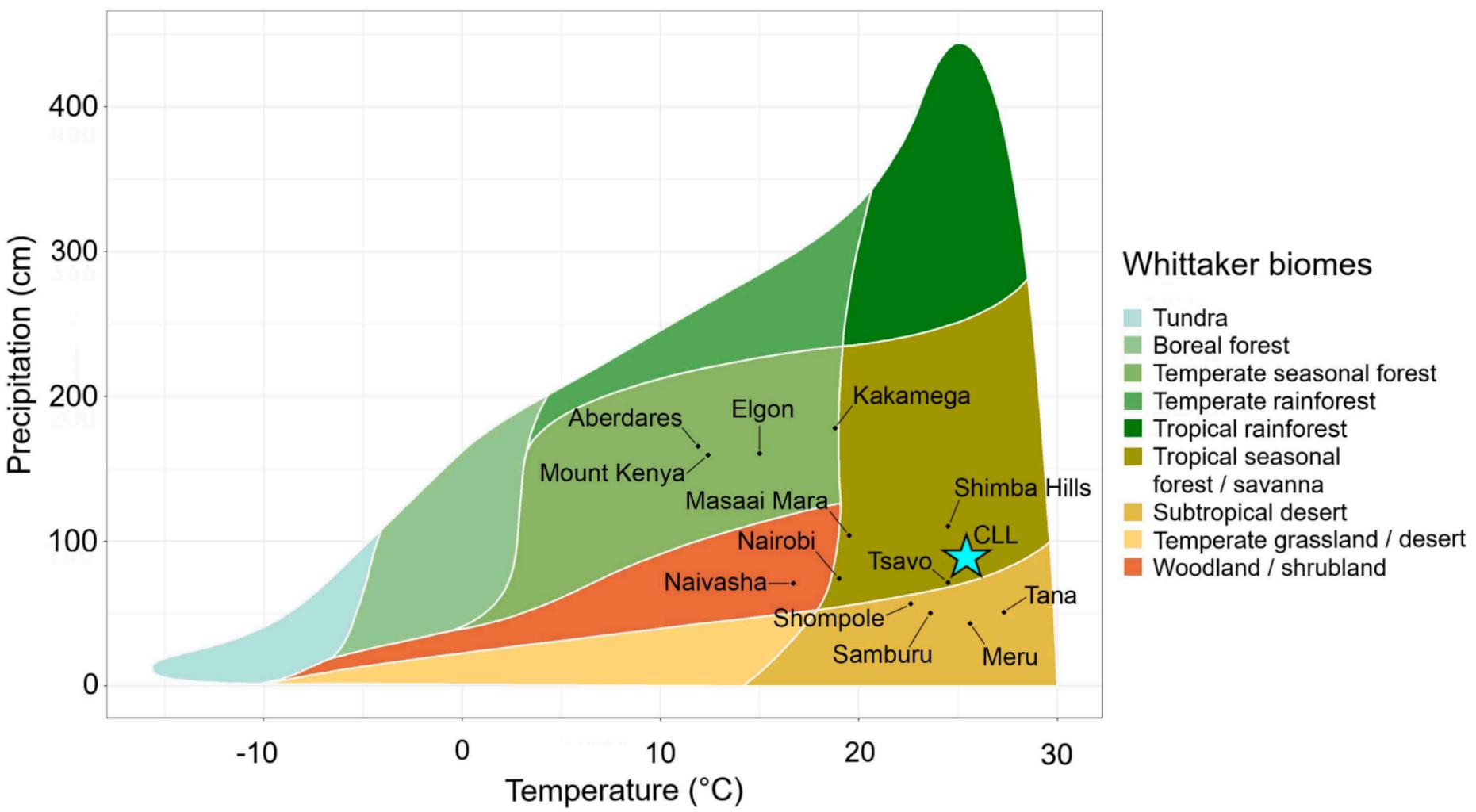
1343 **Figure 1.** Simplified geological map of the Vallès-Penedès Basin showing the location of Can
1344 Llobateres 1 (CLL1) and location of the basin within the Iberian Peninsula (inset). Modified
1345 from Casanovas-Vilar et al. (2016a: Fig. 1).

1346

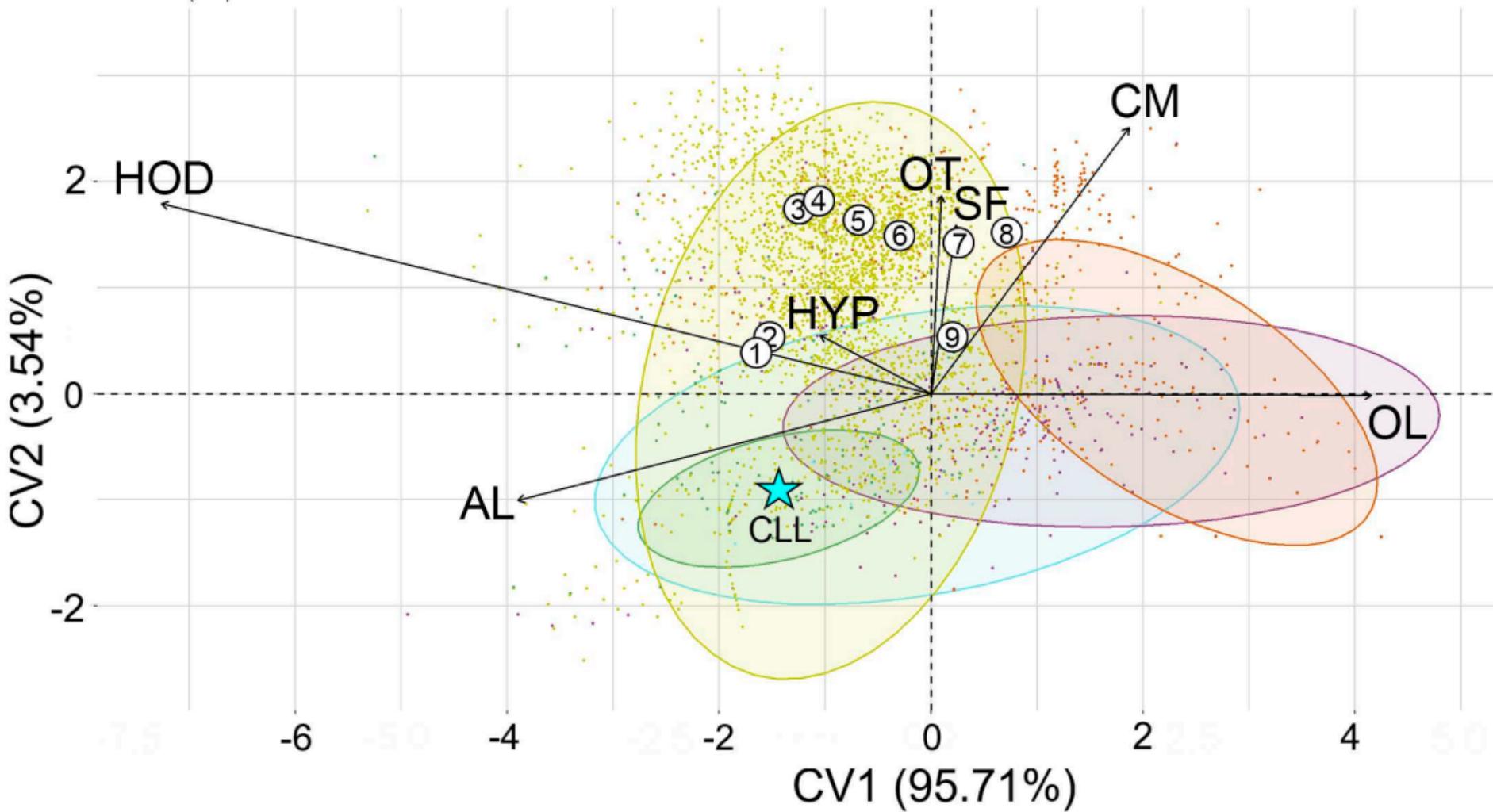
1347 **Figure 2.** Whittaker's diagram with biome classification for Can Llobateres 1 (blue star) based
1348 on estimated paleotemperature and paleoprecipitation (Table 5), along with the nine extant
1349 localities from Kenyan national parks based on actual temperature and precipitation data
1350 (Žliobaitė et al., 2016).

1351

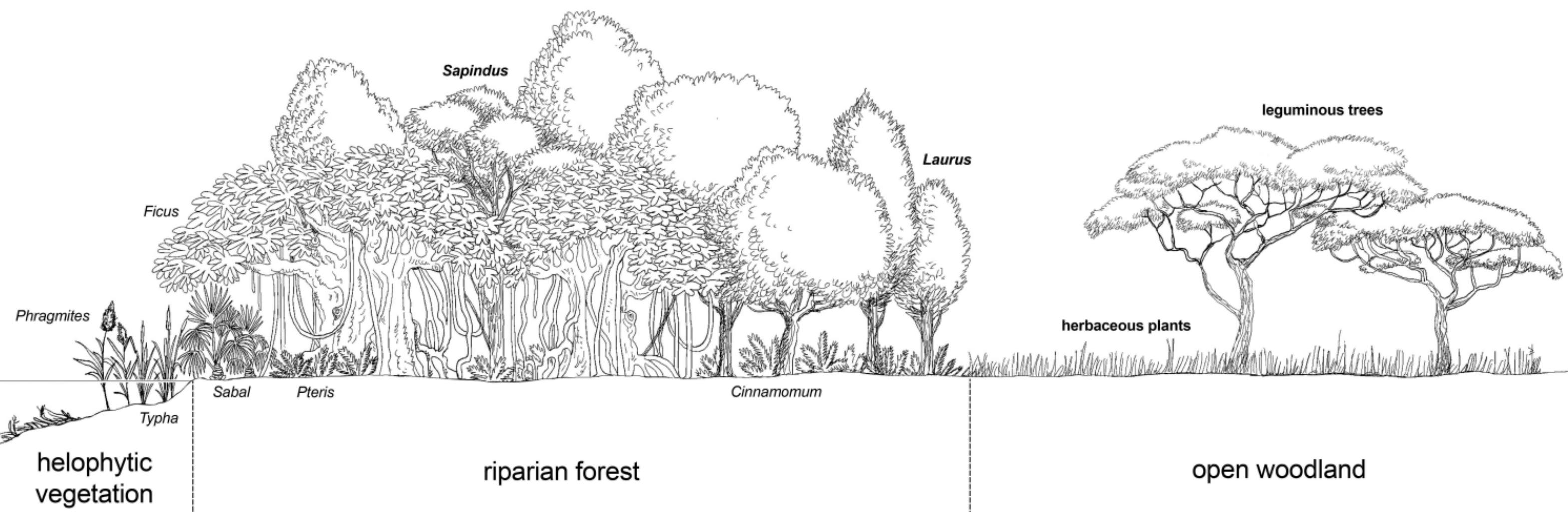

1352 **Figure 3.** Results of a principal component (PC) analysis based on the seven functional crown
1353 type (FCT) variables of 13 extant localities from Kenyan national parks from four different
1354 biomes and Can Llobateres 1 (blue star), as depicted by a bivariate plot of PC2 vs. PC1. The
1355 percentage of variance summarized by each axis is indicated within parentheses. Vectors
1356 represent the loadings of the seven FCT variables (average values) on each axis. Each locality
1357 is color-coded according to Whittaker biome classification (see legend). Abbreviations: HYP =
1358 hypsodonty; HOD = horizodonty; AL = acute lophs; OL = obtuse lophs; SF = structural
1359 fortification; OT = occlusal topography; CM = coronal cementum.


1360

1361 **Figure 4.** Results of a canonical variate (CV) analysis based on the seven functional crown type
1362 (FCT) variables of 18,671 extant localities from five different Whittaker biomes, as depicted
1363 by a bivariate plot of CV2 vs. CV1. The percentage of variance summarized by each axis is
1364 indicated within parentheses. Vectors represent the loadings of the seven FCT variables
1365 (average values) on each axis. Each locality is color-coded according to Whittaker biome
1366 classification (see legend). Ellipses represent the 95% confidence interval of each group
1367 included a priori. The nine localities from Kenyan national parks classified by this analysis,
1368 together with CLL1 (blue star), are also depicted. Kenyan localities: 1 = Shimba Hills; 2 =
1369 Kakamega; 3 = Aberdares; 4 = Mt Kenya; 5 = Masaai Mara; 6 = Tsavo; 7 = Nairobi; 8 =
1370 Naivasha; 9 = Elgon. Abbreviations: HYP = hypsodonty; HOD = horizodonty; AL = acute
1371 lophs; OL = obtuse lophs; SF = structural fortification; OT = occlusal topography; CM =
1372 coronal cementum.


1373

1374 **Figure 5.** Schematic vegetation profile for Can Llobateres 1 based on macrofloral remains
1375 recovered from the site. Vegetation zones as well as names of characteristic plants are also
1376 indicated. Bold font indicates taxa that have not been recovered at Can Llobateres 1 but occur
1377 in other sites of the same basin. A marshy environment populated by reeds (*Phragmites* and
1378 *Typha*) is depicted to the left, bordered by a dense riparian evergreen forest with palms (*Sabal*),
1379 figtrees (*Ficus*), and laurels (*Cinnamomum*) that would have represented a favorable habitat for
1380 hominoids. A more arid, open, and seasonal environment, including areas dominated by
1381 leguminous trees, shrubs, and herbaceous plants, is depicted to the right far from the wetlands.
1382 Artwork by Roc Olivé.



Whittaker biomes

- Temperate rainforest
- Temperate seasonal forest
- Tropical rainforest
- Tropical seasonal forest / savanna
- Woodland / shrubland

Table 1

Summary of previous paleoenvironmental reconstructions of Can Llobateres 1 as compared to the present one, including methods, data analyzed, paleoenvironmental inferences, and references.

Reference	Methods and data analyzed	Paleoenvironmental inferences
Nagatoshi (1987)	Qualitative evaluation of fauna and flora	Habitat dominated by fringing forest and open woodland, followed by swamp forest and forest/grassland mosaic, and to a lesser extent parkland and grassland, with river/stream, lake, and marsh water sources
Andrews (1996)	Analysis of community structure using various methods	Classified as a subtropical seasonal forest
Hernández Fernández et al. (2003)	Multivariate analysis of faunal composition	Classified as a deciduous tropical forest with high probability
Costeur (2005)	Cenogram analysis	Considered a tropical forest with very closed and humid conditions
Casanovas-Vilar & Agustí (2007)	Multivariate analysis of the rodent assemblage	Considered a humid warm-temperate evergreen forest
Marmi et al. (2012)	Qualitative evaluation of plant remains	Habitat consisting of a marshy area surrounded by a dense wetland or riparian forest in a warm-temperate climate with high mean

annual temperatures, probably with more open woodlands far from
the wetlands

Table 2

Updated list of the mammals from Can Llobateres 1.

Order	Family	Species ^a
Eulipotyphla	Erinaceidae	<i>Lantanotherium sanmigueli</i>
Eulipotyphla	Erinaceidae	<i>Parasorex</i> sp.
Eulipotyphla	Erinaceidae	cf. <i>Postpalerinaceus</i> sp.
Eulipotyphla	Dimylidae	<i>Plesiodimylus chantrei</i>
Eulipotyphla	Dimylidae	<i>Metacordylodon schlosseri</i>
Eulipotyphla	Talpidae	<i>Desmanella</i> sp.
Eulipotyphla	Talpidae	<i>Talpa vallesiensis</i>
Eulipotyphla	Talpidae	<i>Talpa</i> sp. 2
Eulipotyphla	Heterosoricidae	<i>Dinosorex grycivensis</i>
Eulipotyphla	Soricidae	<i>Miosorex grivensis</i>
Eulipotyphla	Soricidae	<i>Lartetium</i> sp.
Eulipotyphla	Soricidae	<i>Paenelimoecus</i> sp.
Eulipotyphla	Soricidae	<i>Crusafontina endemica</i>
Chiroptera	—	Chiroptera indet.
Lagomorpha	Ochotonidae	<i>Prolagus crusafonti</i>
Rodentia	Sciuridae	<i>Csakvaromys bredai</i>
Rodentia	Sciuridae	<i>Heteroxerus rubricati</i>
Rodentia	Sciuridae	<i>Albanensis</i> aff. <i>grimmi</i>
Rodentia	Sciuridae	<i>Miopetaurista neogryvensis</i>
Rodentia	Sciuridae	<i>Miopetaurista crusafonti</i>
Rodentia	Sciuridae	<i>Blackia miocaenica</i>
Rodentia	Sciuridae	cf. <i>Pliopetaurista</i> sp.
Rodentia	Castoridae	<i>Euroxenomys minutus</i>
Rodentia	Castoridae	<i>Chalicomys jaegeri</i>

Rodentia	Gliridae	<i>Glirudinus</i> cf. <i>undosus</i>
Rodentia	Gliridae	<i>Myoglis meini</i>
Rodentia	Gliridae	<i>Muscardinus vallesiensis</i>
Rodentia	Gliridae	<i>Muscardinus hispanicus</i>
Rodentia	Gliridae	<i>Bransatoglis astaracensis</i>
Rodentia	Gliridae	<i>Paraglirulus werenfelsi</i>
Rodentia	Gliridae	<i>Glirulus lissiensis</i>
Rodentia	Eomyidae	<i>Eomyops catalaunicus</i>
Rodentia	Eomyidae	<i>Keramidomys pertesunatoi</i>
Rodentia	Cricetidae	<i>Eumyarion leemannii</i>
Rodentia	Cricetidae	<i>Hispanomys thaleri</i>
Rodentia	Cricetidae	<i>Megacricetodon</i> cf. <i>minutus</i>
Rodentia	Cricetidae	<i>Democricetodon</i> cf. <i>nemoralis</i>
Rodentia	Cricetidae	<i>Cricetulodon sabadellensis</i>
Rodentia	Cricetidae	<i>Anomalomys gaillardi</i>
Carnivora	Viverridae	<i>Semigenetta ripolli</i>
Carnivora	Barbourofelidae	<i>Albanosmilus jourdani</i>
Carnivora	Felidae	<i>Machairodus aphanistus</i>
Carnivora	Hyaenidae	<i>Protictitherium crassum</i>
Carnivora	Amphicyonidae	<i>Amphicyon</i> sp.
Carnivora	Amphicyonidae	<i>Ammitocyon</i> sp.
Carnivora	Ursidae	<i>Ursavus brevirhinus</i>
Carnivora	Ursidae	<i>Miomaci</i> sp.
Carnivora	Ursidae	<i>Indarctos vireti</i>
Carnivora	Ailuridae	<i>Proturus simpsoni</i>
Carnivora	Mephitidae	<i>Mesomephitis medius</i>
Carnivora	Mustelidae	<i>Martes melibulla</i>

Carnivora	Mustelidae	<i>Circamustela dechaseuxi</i>
Carnivora	Mustelidae	<i>Marcetia santigae</i>
Carnivora	Mustelidae	<i>Trochictis narcisoii</i>
Carnivora	Mustelidae	<i>Eomellivora fricki</i>
Carnivora	Mustelidae	<i>Sabadelictis crusafonti</i>
Carnivora	Mustelidae	<i>Trocharion albanense</i>
Hyracoidea	Pliohyracidae	<i>Pliohyrax rossignoli</i>
Proboscidea	Deinotheriidae	<i>Deinotherium giganteum</i>
Proboscidea	Gomphotheriidae	<i>Tetralophodon longirostris</i>
Perissodactyla	Chalicotheriidae	<i>Chalicotherium goldfussi</i>
Perissodactyla	Equidae	<i>Hippotherium cf. primigenium</i>
Perissodactyla	Rhinocerotidae	<i>Aicornops simorrense</i>
Perissodactyla	Rhinocerotidae	<i>cf. Aceratherium incisivum</i>
Perissodactyla	Rhinocerotidae	<i>Dihoplus cf. schleiermacheri</i>
Perissodactyla	Tapiridae	<i>Tapirus priscus</i>
Artiodactyla	Suidae	<i>Listriodon splendens</i>
Artiodactyla	Suidae	<i>Paracleuastochoerus valentini</i>
Artiodactyla	Suidae	<i>Paracleuastochoerus crusafonti</i>
Artiodactyla	Suidae	<i>Propotamochoerus palaeochoerus</i>
Artiodactyla	Tragulidae	<i>Dorcatherium naui</i>
Artiodactyla	Moschidae	<i>Micromeryx aff. flourensianus</i>
Artiodactyla	Bovidae	<i>Miotragocerus pannoniae</i>
Artiodactyla	Bovidae	<i>Protragocerus chantrei</i>
Artiodactyla	Cervidae	<i>Amphiprox anocerus</i>
Artiodactyla	Cervidae	<i>Cervidae indet.</i>
Artiodactyla	Giraffidae	<i>Giraffidae indet.</i>
Primates	Hominidae	<i>Hispanopithecus laietanus</i>

^a Taxa included in the ecometric analyses are in bold.

Table 3

Definition and scoring of functional crown type variables following Žliobaitė et al. (2016).

Variable	Abbreviation	Definition	Scoring			
			0	1	2	3
Hypsodonty	HYP	Height of a tooth crown relative to its length ^a		Brachyodont	Mesodont	Hypsodont
Horizodonty	HOD	Length of the functional occlusal surface (number of main cusp pairs along the mesiodistal axis) ^b		Brachyhorizodont	Mesohorizodont	Hypsohorizodont
Acute lophs	AL	Sloped linear structures typically having straight edges	Absent	Present		
Obtuse lophs	OL	Nonsloped linear structures that typically have curved edges	Absent	Present		
Structural fortification of cusps	SF	Structures that strengthen and reinforce the cusps (usually by differential thickness of enamel)	Absent	Present		

Occlusal topography	OT	Lack (flat) or presence (non-flat) of occlusal raised elements such as cusps ^c	With raised elements	Flat
Coronal cementum	CM	Presence or absence of thickened cementum in the crown, supporting its strength and durability	Absent or very thin	Thick coating

^a Hypsodonty categories (Fortelius et al., 2002; Žliobaitė et al., 2016; Galbrun et al., 2018): brachydont = lower than long (<0.8); mesodont = approximately as tall as long (0.8–1.2); hypsodont = taller than long (>1.2).

^b Horizodonty categories (Žliobaitė et al., 2016): brachyhorizodont = 1–2 cusp pairs; mesohorizodont = 3 cusp pairs; hypsohorizodont = more than 3 cusp pairs.

^c Lophodont teeth can be flat or non-flat.

Table 4

Scoring of the functional crown types variables for the species of herbivorous large mammals recorded from Can Llobateres 1 (based on the M²) and average value computed for each variable.^a

Species	HYP	HOD	AL	OL	SF	OT	CM
<i>Deinotherium giganteum</i>	1	1	1	0	0	0	0
<i>Tetralophodon longirostris</i>	1	3	0	1	0	0	0
<i>Chalicotherium goldfussi</i>	1	1	1	0	0	0	0
<i>Hippotherium cf. primigenium</i>	3	1	0	1	0	1	1
<i>Aicornops simorrense</i>	1	1	1	1	0	0	0
cf. <i>Aceratherium incisivum</i>	1	1	1	1	0	0	0
<i>Dihoplos cf. schleiermacheri</i>	1	1	1	1	0	0	0
<i>Tapirus priscus</i>	1	1	1	0	0	0	0
<i>Listriodon splendens</i>	1	1	1	0	0	0	0
<i>Parahcleuastochoerus</i>	1	1	0	0	1	0	0
<i>valentini</i>							
<i>Parahcleuastochoerus</i>	1	1	0	0	0	0	0
<i>crusafonti</i>							
<i>Propotamochoerus</i>	1	1	0	0	1	0	0
<i>palaeochoerus</i>							
<i>Dorcatherium naui</i>	1	1	0	1	0	0	0
<i>Micromeryx aff. flourensianus</i>	1	1	0	1	0	0	0
<i>Miotragocerus pannoniae</i>	2	1	0	1	0	0	0
<i>Protragocerus chantrei</i>	1	1	0	1	0	0	0
<i>Amphiprox anocerus</i>	1	1	0	1	0	0	0
Cervidae indet.	1	1	0	1	0	0	0
Giraffidae indet.	1	1	0	1	0	0	0

<i>Hispanopithecus laietanus</i>	1	1	0	0	0	0	0
Mean	1.150	1.100	0.350	0.600	0.100	0.050	0.050

Abbreviations: HYP = hypsodonty; HOD = horizodonty; AL = acute lophs; OL = obtuse or basin-like lophs; SF = structural fortification of cusps; OT = occlusal topography; CM = coronal cementum.

^a The scoring protocol of Žliobaitė et al. (2016) is followed (no acute lophs are scored for selenodonts). See the Materials and methods for details about the meaning of each score.

Table 5

Estimates of 23 environmental variables for Can Llobateres 1 (CLL1) based on the regressions published by Žliobaitė et al. (2016)^a and the functional crown type variables computed in this study for CLL1 (Table 4).

Paleoenvironmental variable	Estimates for CLL1
Mean annual precipitation (MAP)^b	881 mm
Driest month over year	136 mm
Driest place over year	974 mm
Wettest month over year	2119 mm
Wettest place over year	816 mm
Average annual NPP	1352 g C/m ²
Coldest and driest month over year	174 g C/m ²
Coldest days with driest place	1090 g C/m ²
Coldest days with driest month	182 g C/m ²
Coldest month driest place over year	1257 g C/m ²
Average NDVI	0.91
Global minimum over 9 yr	0.60
Average over yearly minimums	0.67
Minimum over yearly averages	0.68
Average over monthly minimums	0.85
Minimum over monthly minimums	0.74
Mean annual temperature (MAT)^b	25 °C
Coldest month over year	24 °C
Average over coldest days of months	17 °C
Minimum over coldest days of months	17 °C
Hottest month over year	27 °C
Average over hottest days of months	30 °C

Maximum over hottest days of months

34 °C

Abbreviation: NDVI = normalized difference vegetation index; NPP = net primary productivity.

^a See SOM Table S1 for the parameters of Žliobaitė et al.'s (2016: Table 2) regressions.

The variables used in Whittaker's biome attribution are bolded.

^b These variables were termed annual precipitation and average temperature in Žliobaitė et al. (2016).

Table 6

Summary classification results (in %) for the selected 18,671 extant localities from five Whittaker biomes based on the canonical variate analysis of seven functional crown type variables with cross-validation.^a

	Temperate rainforest	Temperate seasonal forest	Tropical rainforest	Tropical seasonal forest/savanna	Woodland/shrubland
Temperate rainforest	43.2	4.9	29.6	9.9	12.4
Temperate seasonal forest	22.4	23.7	7.9	5.6	40.4
Tropical rainforest	8.8	0.3	81.5	9.4	0.1
Tropical seasonal forest/savanna	14.0	1.9	42.1	41.7	0.4
Woodland/shrubland	6.5	16.4	0.7	3.6	72.8

^a Correct classification percentages after cross-validation are bolded.

Table 7

Posterior probabilities and typicality probabilities for each Whittaker's biome based on the canonical variate analysis of functional crown type variables for Can Llobateres 1 and nine extant localities from Kenyan national parks (Žliobaitė et al., 2016).

Locality	Posterior probabilities					Woodland/shrubland
	Temperate rainforest	Temperate seasonal forest	Tropical rainforest	Tropical seasonal forest/savanna		
Aberdares	0.087	0.011	0.094		0.806	0.002
Elgon	0.245	0.210	0.092		0.353	0.100
Kakamega	0.116	0.009	0.230		0.644	0.001
Masaai Mara	0.157	0.025	0.099		0.705	0.013
Mt Kenya	0.090	0.013	0.096		0.796	0.004
Nairobi	0.228	0.104	0.067		0.419	0.181
Naivasha	0.187	0.195	0.025		0.222	0.371
Shompole	0.126	0.004	0.316		0.553	0.000
Tsavo	0.209	0.054	0.091		0.607	0.039
Can Llobateres 1	0.062	0.005	0.629		0.304	0.001

Locality	Temperate rainforest	Temperate seasonal forest	Tropical rainforest	Tropical seasonal forest/savanna	Woodland/shrubland
Aberdares	0.081	0.015	0.087	0.429	0.003
Elgon	0.547	0.497	0.286	0.675	0.302
Kakamega	0.094	0.011	0.160	0.340	0.001
Masaai Mara	0.209	0.049	0.147	0.579	0.028
Mt Kenya	0.123	0.025	0.129	0.575	0.010
Nairobi	0.029	0.015	0.010	0.048	0.024
Naivasha	0.064	0.066	0.012	0.074	0.111
Shompole	0.414	0.028	0.717	0.912	0.005
Tsavo	0.230	0.080	0.122	0.482	0.062
Can Llobateres 1	0.100	0.013	0.534	0.333	0.002

^a The highest probabilities for each locality are bolded.

Table 8

Whittaker's biome classification of Can Llobateres 1 and nine extant localities from Kenyan national parks (Žliobaitė et al., 2016) based on temperature and precipitation (TP) and a canonical variate analysis (CVA) of functional crown type variables.^a

Locality	Whittaker's biome (TP)	Whittaker's biome (CVA)
Aberdares	Temperate seasonal forest	Tropical seasonal forest/savanna
Elgon	Temperate seasonal forest	Tropical seasonal forest/savanna
Kakamega	Temperate seasonal forest	Tropical seasonal forest/savanna
Masaai Mara	Tropical seasonal forest/savanna	Tropical seasonal forest/savanna
Mt Kenya	Temperate seasonal forest	Tropical seasonal forest/savanna
Nairobi	Tropical seasonal forest/savanna	Tropical seasonal forest/savanna
Naivasha	Woodland/shrubland	Woodland/shrubland
Shompole	Tropical seasonal forest/savanna	Tropical seasonal forest/savanna
Tsavo	Tropical seasonal forest/savanna	Tropical seasonal forest/savanna
Can Llobateres 1	Tropical seasonal forest/savanna	Tropical rainforest

^a Biome names are bolded for those localities in which both methods yield the same biome attributions.

Supplementary Online Material (SOM):

Paleoenvironmental inferences on the Late Miocene hominoid-bearing site of Can Llobateres (NE Iberian Peninsula): An econometric approach based on functional dental traits

Sara G. Arranz^{a,*}, Isaac Casanovas-Vilar^a, Indrè Žliobaitė^{b,c}, Juan Abella^{d,a,e}, Chiara Angelone^{f,g}, Beatriz Azanza^h, Raymond Bernor^{i,j}, Omar Cirilli^{i,k}, Daniel DeMiguel^{h,l,a}, Marc Furió^{m,a}, Luca Pandolfiⁿ, Josep M. Robles^a, Israel M. Sánchez^a, Lars W. van den Hoek Ostende^o, David M. Alba^{a,*}

^a Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain

^b Department of Computer Science, University of Helsinki, P.O. Box 68, 00014 Helsinki, Finland

^c Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland

^d Grup d'Investigació en Paleontologia de Vertebrats del Cenozoic (PVC-GIUV), Departament de Botànica i Geologia, Universitat de València, 46100 Burjassot, València, Spain

^e Instituto Nacional de Biodiversidad (INABIO), Pje. Rumipamba N. 341 y Av. de los Shyris (Parque La Carolina), Quito, Ecuador

^f Dipartimento di Scienze, Università degli Studi Roma Tre, 00146 Roma, Italy

^g Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044 Beijing, China

^h Departamento de Ciencias de la Tierra, and Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, 50009, Zaragoza, Spain

ⁱ College of Medicine, Department of Anatomy, Laboratory of Evolutionary Biology, Howard University, 520 W St. N.W., 20059, Washington D.C., USA

^j Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, 20013, Washington DC, USA

^k Earth Sciences Department, Paleo[Fab]Lab, Università degli Studi di Firenze, via G. La Pira 4, I-50121, Firenze, Italy

¹ *ARAID foundation, 50018, Zaragoza, Spain*

^m *Serra Húnter Fellow, Departament de Geologia, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain*

ⁿ *Dipartimento di Scienze, Università della Basilicata, via dell'Ateneo Lucano, 10, 85100, Potenza, Italy*

^o *Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands*

***Corresponding authors.**

E-mail addresses: sara.arranz@icp.cat (S.G. Arranz); david.alba@icp.cat (D.M. Alba).

SOM Table S1

Parameters of the regressions reported by Žliobaitė et al. (2016: Table 2) to estimate 23 environmental variables based on average values of functional crown type variables for a given locality.

Prediction target	Regression coefficients								Accuracy		Description of the prediction target
	Intercept	HYP	HOD	AL	OL	SF	OT	CM	R ²	R ^{2*}	
PREC	-1765		2156			3969	-2441		0.68	0.38	Annual precipitation
PREC_MIN	-1688		1481			2325	-762		0.66	0.36	Driest month over year
PREC_low	966					1456	-2444	-310	0.76	0.53	Driest place over year
PREC_MAX	1486			775		3741	-245		0.27	-0.01	Wettest month over year
PREC_high	-3561		3553			5339	-1300		0.56	0.24	Wettest place over year
NPP	1179					2907	-2331	-15	0.71	0.51	Average annual NPP
NPP_MIN_MIN	-2447		2049			4112	-876		0.66	0.40	Coldest and driest month over year
NPP_low_low	972	25				2639		-3495	0.77	0.65	Coldest days with driest place
NPP_low_MIN	-2265		1896			4071	-914		0.67	0.40	Coldest days with driest month
NPP_MIN_low	1162					2307	-2041	-667	0.74	0.55	Coldest month driest place over year
NDVI	0.337			1.429		0.879	-0.374		0.59	0.26	Average NDVI
NDVI_MIN9y	0.410			0.789	-0.098		-0.479		0.50	-0.08	Global minimum over 9 y
NDVI_low1y	0.419			0.721		0.396	-0.869		0.66	0.26	Average over yearly minimums

NDVI_lowly_MIN	0.314	0.846	0.88	-0.378	0.51	0.20	Minimum over yearly averages
NDVI_low	0.347	1.281	0.818	-0.447	0.59	0.27	Average over monthly minimums
NDVI_low_MIN	0.300	0.986	0.887	-0.63	0.67	0.33	Minimum over monthly minimums
TEMP	43.9	-23.0	-53.5	13.1	0.57	-0.05	Average temperature
TEMP_MIN	44.3	-24.7	-56.4	11.6	0.60	0.04	Coldest month over year
TEMP_low	28.6	-13.6	-35.7	7.2	0.37	-0.37	Average over coldest days of months
TEMP_low_MIN	28.3	-13.4	-37.8	2.8	0.37	-0.33	Minimum over coldest days of months
TEMP_MAX	44.7	-22.5	-52.3	13.7	0.54	-0.12	Hottest month over year
TEMP_high	55.2	-16.8	-20.7	-67.9	0.62	0.23	Average over hottest days of months
TEMP_high_MAX	54.0	-8.9	-18.0	-62.9	0.57	0.19	Maximum over hottest days of months

Abbreviations: HYP = hypsodonty; HOD = horizodonty; AL = acute lophs; OL = obtuse or basin-like lophs; SF = structural fortification of cusps; OT = occlusal topography; CM = coronal cementum; R^2 = goodness of fit (model calibration accuracy); R^{2*} = predictive power (accuracy measured via cross-validation).

SOM References

Žliobaitė, I., Rinne, J., Tóth, A., Mechenich, M., Liu, L., Behrensmeyer, A., Fortelius, M., 2016.

Herbivore teeth predict climatic limits in Kenyan ecosystems. *Proc. Natl. Acad. Sci. USA* 113,

12751–12756.