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Background
The notable conservation of essential cellular structures 
and pathways such as cell cycle regulation, DNA repair, 
RNA processing, signal transduction pathways, metab-
olism, protein quality control mechanisms, or stress 
response, has positioned the budding yeast Saccharomy-
ces cerevisiae (S. cerevisiae) as an ideal eukaryotic model 
organism. S. cerevisiae is also a reference expression sys-
tem for the heterologous production of recombinant pro-
teins. One of the major advantages of S. cerevisiae resides 
on its well-characterized and fully annotated genome. 
Indeed, several databases dedicated to yeast have been 

Microbial Cell Factories

†Javier Garcia-Pardo and Aleksandra E. Badaczewska-Dawid are co-
first authors.

*Correspondence:
Sebastian Kmiecik
sekmi@chem.uw.edu.pl
Salvador Ventura
Salvador.Ventura@uab.cat
1Institut de Biotecnologia i de Biomedicina (IBB) and Departament de 
Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 
Bellaterra, Barcelona 08193, Spain
2Genome Informatics Facility, Office of Biotechnology, Iowa State 
University, Ames, IA 50011, USA
3Biological and Chemical Research Center, Faculty of Chemistry, University 
of Warsaw, Pasteura 1, Warsaw 02-093, Poland

Abstract
Background The budding yeast Saccharomyces cerevisiae (S. cerevisiae) is a well-established model system for 
studying protein aggregation due to the conservation of essential cellular structures and pathways found across 
eukaryotes. However, limited structural knowledge of its proteome has prevented a deeper understanding of yeast 
functionalities, interactions, and aggregation.

Results In this study, we introduce the A3D yeast database (A3DyDB), which offers an extensive catalog of 
aggregation propensity predictions for the S. cerevisiae proteome. We used Aggrescan 3D (A3D) and the newly 
released protein models from AlphaFold2 (AF2) to compute the structure-based aggregation predictions for 6039 
yeast proteins. The A3D algorithm exploits the information from 3D protein structures to calculate their intrinsic 
aggregation propensities. To facilitate simple and intuitive data analysis, A3DyDB provides a user-friendly interface 
for querying, browsing, and visualizing information on aggregation predictions from yeast protein structures. The 
A3DyDB also allows for the evaluation of the influence of natural or engineered mutations on protein stability and 
solubility. The A3DyDB is freely available at http://biocomp.chem.uw.edu.pl/A3D2/yeast.

Conclusion The A3DyDB addresses a gap in yeast resources by facilitating the exploration of correlations between 
structural aggregation propensity and diverse protein properties at the proteome level. We anticipate that this 
comprehensive database will become a standard tool in the modeling of protein aggregation and its implications in 
budding yeast.
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published, including the Saccharomyces Genome Data-
base (SGD) [1], the Yeast Metabolome Database (YMDB) 
[2] or YEASTRACT+ [3]. Among them, the SGD data-
base stands as the gold-standard repository with a wealth 
of integrated biological information for this microorgan-
ism. It also provides access to analytic tools to explore 
these data, enabling the discovery of functional relation-
ships between sequence and gene products in fungi and 
higher organisms. In addition, the availability of compre-
hensive genomic resources, such as deletion libraries and 
collections of temperature-sensitive mutants, facilitates 
the identification and characterization of factors involved 
in different biological processes [4]. Indeed, S. cerevisiae 
stands out as one of the most widely employed model 
systems for studying protein aggregation in vivo. Notably, 
the yeast proteome is relatively small compared to higher 
eukaryotes, which makes it a privileged model for devel-
oping systematic studies and high-throughput screenings 
targeting protein aggregation [5]. Despite the relevance 
of this model organism in the field, aggregation propen-
sity predictions are not currently reported in dedicated 
databases.

The identification of intermolecular interactions medi-
ated by solvent-exposed aggregation-prone regions 
(APRs) embedded in the protein sequence has proven 
successful in predicting protein aggregation [6–10]. This 
approach is particularly suitable in the context of intrin-
sically disordered proteins (IDPs) or for newly synthe-
sized polypeptide chains, but it often overpredicts when 
applied to folded proteins. Indeed, in folded proteins the 
identified APRs are often located within their hydropho-
bic cores or at inaccessible regions characterized by the 
presence of highly stable secondary structures [11, 12]. 
It is now widely accepted that globular proteins aggre-
gate by the spatial clustering of often non-contiguous 
sequence regions of hydrophobic amino acids, form-
ing structural APRs in the protein surface (STAPs) [13]. 
The aggregation may happen by local or global struc-
tural destabilization [14] or by stochastic fluctuations 
that lead to the exposure of previously buried APRs [15]. 
Consequently, considering a protein’s spatial environ-
ment becomes crucial in understanding the underlying 
forces driving its aggregation. In this context, we devel-
oped the Aggrescan 3D (A3D) algorithm [16–18], which 
makes use of the experimentally determined Aggrescan’s 
aggregation propensity scale [7, 19] and projects it into 
a three-dimensional protein structure. The versatility and 
accuracy of this algorithm have converted it into one of 
the default methods to study the aggregation of proteins 
in their natively folded states and how dynamic fluctua-
tions and mutations impact this reaction.

Over the years, accurate predictions of structure-based 
aggregation propensities in yeast at the proteome level 
were hampered by the limited availability of structural 

information. However, the newly developed AlphaFold2 
(AF2) database has released the prediction of thousands 
of structures from different organisms, including S. cere-
visiae [20]. The overall quality of these computed models 
was shown to be comparable to experimentally deter-
mined structures [21]. Therefore, the newly reported 
structural information from AF2 allows the generation of 
proteome-wide repositories reporting yeast globular pro-
teins’ aggregation properties.

Herein, we present the A3D yeast database (A3DyDB), 
which compiles the structure-based aggregation propen-
sity predictions for 6039 S. saccharomyces protein models 
from the AF database [20]. Since many yeast proteins are 
not fully structured, the A3DyDB allows for the custom-
ization of jobs to adapt structural predictions according 
to AF2 confident cutoffs. The database also includes a 
tool for evaluating the influence of user-defined muta-
tions on protein solubility and stability. We believe that 
the A3DyDB will serve as a useful resource for the study 
of protein aggregation in yeast. It will also allow the 
investigation of correlations between structural aggre-
gation propensity and protein function, stability, archi-
tecture, location, and protein abundance, among other 
factors associated with protein aggregation. Ultimately, 
we illustrate the performance and utility of the database 
with selected case reports.

Results
A3DyDB summary and interface description
The A3DyDB incorporates A3D predictions for 6039 pro-
teins from the S. cerevisiae proteome. To perform aggre-
gation predictions, we used a large dataset of structural 
models generated with AF2, which were downloaded 
from the AF database [20]. These structures were ana-
lyzed using the latest A3D implementation developed 
by our group [17, 22]. The resultant A3D data have been 
stored in the first comprehensive database describing the 
structure-based aggregation predictions for yeast (http://
biocomp.chem.uw.edu.pl/A3D2/yeast). The A3DyDB 
is endowed with a search tab on the front page, which 
allows users to query for the content by using the gene, 
protein name, or Uniprot Accession (See Fig. 1a). Select-
ing entries from the query list leads to a page containing 
the A3D analysis. The analysis is distributed in differ-
ent tabs containing the following information: (I) pro-
tein information and project details, (II) an interactive 
A3D score profile and annotation of transmembrane 
regions (only applicable to membrane proteins), (III) a 
detailed table containing the precalculated A3D scores 
and AF structure prediction confidence scores (pLDDTs), 
(IV) the protein structure colored by A3D and pLDDTs 
scores, (V) custom jobs with pre-calculated pLDDT cut-
offs and (VI) collection of images. The A3DyDB Project 
details tab contains relevant information regarding the 

http://biocomp.chem.uw.edu.pl/A3D2/yeast
http://biocomp.chem.uw.edu.pl/A3D2/yeast
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selected entry (Fig.  1b). A3D plot/score tabs display a 
detailed analysis of the per-residue aggregation propen-
sity scores (A3D scores) and the profile and additional 
annotations for transmembrane and intermembrane pro-
teins can be found in the subsequent sections. For each 
entry, two different structural models are provided in 
the Structure tab (top panel in Fig. 2a). The top structure 
shows a per-residue prediction of the A3D aggregation 
propensity (A3D score), while at the lower structural rep-
resentation AF2 confidence score (pLDDT) is depicted 
(lower panel in Fig. 2a).

Membrane proteins were also included in the database 
as A3D accurately predicts hydrophobic transmembrane 
segments as highly aggregation-prone regions (Fig.  2b). 
Although they do not contribute to typical aggregation 
mechanisms, these highly hydrophobic stretches are 
often inserted in membrane lipidic bilayers or involved 
in protein oligomerization. Based on Uniprot annota-
tions, a total of 1219 transmembrane and intramembrane 
proteins from S. cerevisiae were identified. For these 
cases, we have included a complementary tab with rel-
evant information, including predictions of consensus 

Fig. 1 Overview of the A3DyDB home page and example of a search result for CDC19. (a) A3DyDB home page and query result for CDC19. (b) A3DyDB 
results page showing the project details tab for the CDC19 entry (Uniprot accession P00549)
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membrane segments from protein sequences by means 
of the TOPCONS server [23]. TOPCONS reports five 
different predictive algorithms, including OCTOPUS 
[24], Philius v [25], Polyphobius [26], SCAMPI [27], 
and SPOCTOPUS algorithms [28]. The inclusion of this 
module will facilitate the visual inspection and analysis 
of transmembrane regions, with the aim of performing 
comparative analyses.

A significant number of proteins from the A3DyDB 
contain structurally disordered regions. This is consis-
tent with the observation that eukaryotes have a higher 
proportion of IDPs relative to bacteria or archaea [30]. 
AlphaFold2 outputs the pDDLT score, a per-residue esti-
mate of the model’s confidence on a scale from 0 to 100 
[20] which reports on the quality of the AF prediction 
[21]. Interestingly, regions of low confidence often cor-
respond to intrinsically disordered regions (IDRs) [29]. 
Not surprisingly, manual data curation revealed that low 
pLDDT scores might result in misleading A3D predic-
tions, either because these solvent-exposed regions are 
more exposed or compact in the model than they should 
be. A significant number of yeast proteins showed the 
presence of regions with low predicted accuracy (low 
pLDDT score in Fig.  2c). After testing different pLDDT 
thresholds, we decided to precompute A3D on top of 
three different AF models for each protein entry: the full-
length protein model and two additional models in which 
residues with pLDDT < 70 or residues with pLDDT < 50 
were removed (see Figure S1). These precalculated mod-
els can be directly accessed from the Custom Jobs tab. The 
A3DyDB implementation also allows users to model the 
effects of custom mutations on the stability and aggrega-
tion propensity of a given particular protein entry using 
the FoldX force field [31]. Using the mutation editor at 
the Custom Jobs tab it is possible to evaluate the effects 

of single or multiple mutations in a custom A3D analysis. 
These new jobs will be immediately listed and accessible 
in the A3DyDB queue.

Discussion
Protein aggregation is increasingly recognized as a con-
tributing factor to various pathologies in eukaryotes 
[32] and constitutes a major limitation to produce func-
tional recombinant proteins in yeast [33]. Numerous 
past studies, mostly performed using simple prokary-
otic and eukaryotic model organisms such as bacteria 
and yeast, have led to a detailed understanding of how 
highly aggregation-prone proteins form insoluble spe-
cies and how these proteins are toxic for the cells [34]. 
These seminal investigations have allowed the identifi-
cation of important principles of protein aggregation, 
which has led during the last decade to the development 
of a series of predictive algorithms to identify aggrega-
tion-prone sites [35]. Our current understanding of the 
structural landscape of the yeast proteome has radically 
changed with the development of deep-learning-based 
approaches, such as RoseTTA fold [36] or AF2 [21]. This 
new wealth of structural data can be exploited to predict 
the aggregation properties of the whole yeast proteome 
and undertake the redesign of yeast proteins to improve 
their solubility and stability for diverse purposes. Herein, 
we have launched the A3DyDB, which contains the pre-
computed aggregation predictions for the S. cerevisiae 
proteome, and we have tested the performance of the 
database in a variety of case reports. Below, we provide 
selected case examples demonstrating the suitability of 
our comprehensive repository in diverse scenarios.

Fig. 2 Examples of protein structural models as reported in the A3D Yeast database. Visualization of A3D predicted aggregation propensity ranges from 
blue (more solubilizing) to red (more aggregation-prone). A3D Yeast database provides the per-residue local confidence score (pDDLT), a metric that has 
been shown to inversely correlate with protein disorder [29]. Recent analysis suggests pDDLT scores < 70 usually correspond to unstructured in isolation. 
Examples of the A3D Yeast database output for (a) a globular protein, (b) a membrane protein and (c) a disordered protein are shown
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Case examples
Exploiting the A3DyDB to study cellular organization and 
metabolism in yeast
Yeast organisms live in a wide range of different environ-
ments which require local adaptations to transient con-
ditions [37]. For this reason, proteins have evolved to 
self-organize in the cellular milieu in response to specific 
stimuli such as nutrient starvation. Under these circum-
stances, metabolic enzymes from yeast proteins undergo 
a widespread reorganization into reversible punctate 
cytoplasmic foci that are disassembled when the stress 
is released [38]. Interestingly, the evidence strongly sug-
gests that the formation of reversible protein assemblies, 
specific to metabolites, is potentially widespread in the 
realm of cell biology [38]. In this context, the ability of 

proteins to form assemblies is closely linked to their pro-
pensity for aggregation. Linear aggregation predictors 
such as TANGO [39] have been used to study differences 
in protein aggregation in these dynamic assemblies [38], 
but most of the proteins involved in foci formation con-
tained globular regions which require dedicated struc-
ture-based aggregation predictive tools.

Herein, we used the data from the A3DyDB to inves-
tigate possible differences in structural aggregation 
between the 180 foci and 27 non-foci forming proteins 
described by Narayanaswamy et al. [38] (Supplemen-
tary Table 1). Our results showed that foci-forming pro-
teins had a significantly higher A3D average score than 
non-foci-forming proteins (Fig.  3a). Indeed, the visual 
inspection of proteins from the two independent datasets 

Fig. 3 Structural aggregation propensity differences between foci and non-foci forming proteins from yeast. (a) The A3D average score is higher for 
proteins observed to form punctate foci (in red) than those that did not form (in blue). A statistically significant difference between the two groups was 
observed (Mann-Whitney-Wilcoxon two-sided test-t; p = 0.0047). The A3D predictions from AF ARO2 (AF-P28777-F1) (b) and TIF2 (AF-P10081-F1) (c) 
structures, two representative cases of foci and non-foci proteins respectively. The foci-forming protein ARO2 presents a larger number of STAPs than the 
non-foci protein TIF2.
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revealed that foci proteins, such as ARO2, contain a 
larger number of STAPs than non-foci proteins like TIF2 
(Fig. 3b and c, respectively). Overall, it seems that protein 
organization in yeast is a very dynamic process that could 
be, at least, partially understood by protein aggregation. 
In this framework, the release of thousands of struc-
tural predictions in the yeast A3D database can help in 
identifying STAPs in several proteins involved in cellular 
reorganizations.

Predicting STAPs to study functional protein assemblies
We have investigated a case example in which STAPs 
are important for mediating functional protein-protein 
interactions. The actin fold is found in cytoskeletal poly-
mers, chaperones, and various yeast enzymes involved in 
metabolic pathways. Most actin-fold proteins, such as the 
carbohydrate kinases are monomeric proteins and do not 
polymerize. However, it has been recently reported that 
the S. cerevisiae glucokinase GLK1 can form polymers 
in response to its substrates and products (Fig. 4a) [40]. 

Fig. 4 A3D predictions for yeast hexokinase GLK1 self-assembly. (a) Cryo-EM structure of the yeast hexokinase GLK1 filament (PDB: 6PDT). (b) Structure 
of a GLK1 monomer showing the location of the N-terminal Phenylalanine residue involved in filament formation (Phe3, indicated with a circle). (c) A3D 
prediction of the wild-type active monomeric GLK1 obtained from the A3DyDB. Predicted aggregation propensities are colored in the structure ranging 
from blue (more solubilizing) to red (more aggregation-prone). The position of the two predicted hydrophobic STAPs is indicated with arrows. (d) Detailed 
representation of the insertion site of Phe3 into the C-terminus hydrophobic cavity. (e) A3D prediction of the Phe3Ser (P3S) solubilizing mutant. This 
solubilizing mutation eliminates filament polymerization
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The polymerization of this actin-fold protein inhibits its 
kinase catalytic activity, a mechanism directly coupled to 
cell viability and the adaptation of the yeast to stochastic 
changes in the environment. Recently, cryo-EM studies 
have revealed that glucokinase GLK1 from S. cerevisiae 
is able to form two-stranded filaments with a molecular 
architecture different from that of cytoskeletal polymers 
[40]. These filaments are built up by GLK1 monomer sta-
bilized by hydrophobic interactions between GLK1 sub-
units along a strand. In this structure, a solvent exposed 
Phe3 of one GLK1 subunit is inserted into the hydropho-
bic pocket at the C-terminus of the next GLK1 moiety, 
effectively mediating the stabilization of the filament 
(Fig. 4b).

A detailed analysis of the structural aggregation pro-
pensity of the monomeric GLK1 was obtained from the 
AF2-derived model collected in A3DyDB (Fig.  4c). Our 
analysis showed the presence of two strong STAPs in this 
protein that overlap with the observed GLK1 oligomer-
ization interfaces, where the N-terminus Phe3 is inserted 
in the hydrophobic C-terminus cavity (Fig.  4d). This is 
consistent with the view that functional and aberrant 
polymerization surfaces share very similar physicochemi-
cal properties and do frequently overlap [13, 41]. Garner 

and coworkers mutated the N-terminal Phe3 involved in 
GLK1 assembly contacts to Ser, to change the non-polar 
character of this [21] protein position [40]. Based on our 
A3D predictions, this mutation significantly decreases 
the potency of the N-terminal STAP (Fig.  4e), which 
coincides with the experimental observation that it elimi-
nated polymerization both in vitro and in vivo.

Using the A3DyDB to study membrane proteins
The endoplasmic reticulum (ER) network is built up by 
tubules with high membrane curvature in cross-sec-
tion, which are generated and stabilized by reticulons 
and receptor expression-enhancing proteins (REEPs). 
Reticulons and REEPs are integral membrane proteins 
resident at the ER that are evolutionary conserved across 
all eukaryotes [42, 43]. These proteins share a common 
architecture that has been also identified in other human 
proteins that function as ER-phagy intramembrane 
receptors (i.e. ATG40 in S. cerevisiae and FAM134B 
in mammals) [44, 45]. Here, we used the A3DyDB to 
investigate the structure and aggregation propensities of 
YOP1, as a model membrane protein (Fig. 5).

YOP1 is a yeast reticulon that is highly enriched in the 
tubular portions of the ER and virtually excluded from 

Fig. 5 A3DyDB allows the study of membrane proteins and their functional implications. (a) A3DyDB results page or Transmembrane regions tab for 
YOP1 entry (Uniprot Accession Q12402). (b) Scheme of YOP1 predicted topology deduced from A2DyDB TOPCONS predictions and previous experi-
mental data [44, 46]. (c) YOP1 AF2 model (AF-Q12402-F1), showing the location of predicted TMs and APH regions. (d) A3D analysis (upper panel) and 
AlphaFold2 (AF2) model confidence score (lower panel). Note that YOP1 exposes STAPs to the hydrophobic interior of the membrane bilayer and at the 
APH region
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other regions, which induces high membrane curvature 
of tubules by an unknown mechanism. Indeed, dele-
tion of the reticulons and YOP1 in yeast has been linked 
to the loss of tubular ER. Previous studies have sug-
gested that YOP1 generates high membrane curvature 
by hydrophobic insertion and scaffolding mechanisms, 
which is mediated by the insertion of the TM regions on 
the highly hydrophobic lipid bilayers [47–49]. The sug-
gested mechanism relies on functional data and the pro-
tein’s structure, but its experimental verification remains 
incomplete at this stage.

We have analyzed the presence of membrane segments 
at the transmembrane regions tab from the A3DyDB out-
put. We found that YOP1 has two pairs of trans-mem-
brane (TM) segments, which is one of the characteristic 
features of reticulons (Fig.  5a). These TM regions are 
well predicted by the different algorithms implemented 
in the database and by the consensus TOPCONS predic-
tion, which is accompanied by an overall high prediction 
reliability (Fig.  5a). Next, we have compared the struc-
ture-based aggregation predictions from A3D with the 
proposed membrane topology. Most of the TM regions 
were predicted as large highly aggregation-prone seg-
ments, as expected for such hydrophobic regions. The 
main four STAPs in YOP1 were followed by an additional 
strong short aggregation-prone stretch (residues Ile143-
Ile152), a region that matches with an amphipathic helix 
(APH) that is required for maintaining the character-
istic reticulon’s ER-tubule localization (Fig.  5c and d). 
Both the TMs and APH have been shown as essential 
elements to generate high membrane curvature and for 
maintaining relevant protein-protein interactions [46]. It 
has been previously demonstrated that YOP1 undergoes 
homotypic and heterotypic oligomerization [46, 47, 50, 
51]. This behavior was mostly due to homotypic interac-
tions mostly between the TMs regions, as suggested by 
Cystein-based crosslinking experiments [50, 51]. Taken 
together, our results indicate that STAPs are present 
in YOP1, and it is likely that these regions are involved 
in membrane binding, as well as in maintaining YOP1 
oligomerization interaction interfaces.

Conclusions
The A3DyDB provides a unique repository of structural 
aggregation predictions for thousands of yeast structures 
collected in the AF database, a resource that for a long 
time remained elusive due to the limited amount of avail-
able structural data. Given the importance of S. cerevisiae 
as a model organism in aggregation, we see A3DyDB as 
a valuable resource to inspect STAPs in yeast proteins 
and find associations between aggregation propensity 
and other functional aspects of yeast biology. Besides, 
A3DyDB can be used to analyze the effect of mutations 
on the 3D surface of proteins and engineer variants that 

could become more stable and soluble. The presented 
here in silico approach can serve to make faster and more 
cost-efficient yeast mutants for different applications 
such as reconstructing metabolic networks, improving 
the solubility of endogenous proteins, recombinant pro-
tein production, and anticipating improved protein vari-
ants in synthetic biology approaches.

Methods
Data collection and A3D analysis
S. cerevisiae (UP000002311) protein structures 
(n = 6039) were downloaded from the AF database 
(October 20, 2022; structural model version v4, avail-
able at https://ftp.ebi.ac.uk/pub/databases/alphafold/v4/
UP000002311_559292_YEAST_v4.tar) and run with A3D 
in static mode with a distance of aggregation analysis of 
10Å and FoldX-based energy minimization for stability 
calculations. Custom jobs were created for all predicted 
structures with two defined AF cutoffs 50 and 70, with 
residues of pLDDT < = 50 or < = 70 removed for the A3D 
aggregation prediction.

Database construction
The user interface of the A3DyDB online database was 
developed utilizing HTML and integrated with custom 
JavaScript functions to enhance interactivity. The visual 
design of the website is a combination of standard Boot-
strap components along with a touch of custom CSS 
styles. An Apache2 web server is employed to host the 
website, leveraging MySQL integration to handle data 
storage, retrieval, and querying of the pre-calculated 
A3DyDB entries. Interactive plots are dynamically gener-
ated using the D3.js library, while molecular visualization 
tasks are handled by the Open Source PyMOL tool [52]. 
Additionally, the database is seamlessly integrated with 
the A3D Server, enabling direct submission of custom 
mutation analysis. The transmembrane analysis for mem-
brane proteins was performed with the consensus algo-
rithm TOPCONS [23], which includes predictions from 
OCTOPUS [24], Philius [25], Polyphobius [26], SCAMPI 
[27], and SPOCTOPUS [28].

Foci and mutation structural analyses
Foci (n = 180) and non-foci (n = 27) forming proteins were 
obtained from [38]. Structural aggregation propensities 
for both protein datasets were obtained from the yeast 
A3DyDB. Statistical significance between variables and/
or datasets was assessed with Mann-Whitney-Wilcoxon 
two-sided test with Bonferroni correction. p-value was 
marked with asterisks to better convey statistical sig-
nificance (p > 0.05 (ns), p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 
(***), p ≤ 0.0001 (****)).

GLK1 mutation analysis was performed with A3DyDB 
mutation mode under the Custom jobs tab. Structural 

https://ftp.ebi.ac.uk/pub/databases/alphafold/v4/UP000002311_559292_YEAST_v4.tar
https://ftp.ebi.ac.uk/pub/databases/alphafold/v4/UP000002311_559292_YEAST_v4.tar
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representations of A3D mutants were obtained from the 
Structure tab visualization tool.

Acknowledgements
Not applicable.

Authors’ contributions
JG-P, CP-G, and VI performed the analyses and wrote the initial draft of the 
manuscript. AEB-D, AK and SK contributed with the implementation of the 
database. JG-P, SK and SV acquired funding and reviewed the final version of 
the manuscript with inputs from all authors. JG-P, SK and SV conceptualized 
the project.  All authors have read and agreed to the final version of the 
manuscript.

Funding
This work was funded by the Spanish Ministry of Science and Innovation 
(MICINN) PID2019-105017RB-I00 to S.V, by ICREA, ICREA-Academia 2020 and 
by EU (PhasAge /H2020-WIDESPREAD-2020-5) to SV. J.G.-P. was supported 
by the Spanish Ministry of Science and Innovation with a Juan de la Cierva 
Incorporacion IJC2019-041039-I. V.I. was supported by the Spanish Ministry 
of Science and Innovation and the European Union-NextGenerationEU 
(Universitat Autònoma de Barcelona 02/07/2021). C.P.-G. was supported by 
the Secretariat of Universities and Research of the Catalan Government and 
the European Social Fund (2023 FI_3 00018). This article is partially based upon 
work from COST Action ML4NGP, CA21160, supported by COST (European 
Cooperation in Science and Technology). SK acknowledges financial support 
by National Science Centre, Sheng grant number 2021/40/Q/NZ2/00078.

Data Availability
All data generated or analyzed during this study are included in this published 
article and the A3DyDB is freely available at http://biocomp.chem.uw.edu.pl/
A3D2/yeast.

Declarations

Ethics approval and consent to particiate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 30 June 2023 / Accepted: 18 August 2023

References
1. Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, et al. 

Saccharomyces Genome Database: the genomics resource of budding yeast. 
Nucleic Acids Res. 2012;40(Database issue):D700–5.

2. Ramirez-Gaona M, Marcu A, Pon A, Guo AC, Sajed T, Wishart NA, et al. YMDB 
2.0: a significantly expanded version of the yeast metabolome database. 
Nucleic Acids Res. 2017;45(D1):D440–D5.

3. Monteiro PT, Oliveira J, Pais P, Antunes M, Palma M, Cavalheiro M, et al. YEAST-
RACT+: a portal for cross-species comparative genomics of transcription 
regulation in yeasts. Nucleic Acids Res. 2020;48(D1):D642–D9.

4. Jin K, Li J, Vizeacoumar FS, Li Z, Min R, Zamparo L, et al. PhenoM: a database 
of morphological phenotypes caused by mutation of essential genes in Sac-
charomyces cerevisiae. Nucleic Acids Res. 2012;40(Database issue):D687–94.

5. Di Gregorio SE, Duennwald ML. Yeast as a model to study protein misfolding 
in aged cells. FEMS Yeast Res. 2018;18(6).

6. Belli M, Ramazzotti M, Chiti F. Prediction of amyloid aggregation in vivo. 
EMBO Rep. 2011;12(7):657–63.

7. Conchillo-Sole O, de Groot NS, Aviles FX, Vendrell J, Daura X, Ventura S. AGGR-
ESCAN: a server for the prediction and evaluation of hot spots of aggregation 
in polypeptides. BMC Bioinformatics. 2007;8:65.

8. Maurer-Stroh S, Debulpaep M, Kuemmerer N, Lopez de la Paz M, Martins IC, 
Reumers J, et al. Exploring the sequence determinants of amyloid structure 
using position-specific scoring matrices. Nat Methods. 2010;7(3):237–42.

9. Walsh I, Seno F, Tosatto SC, Trovato A. PASTA 2.0: an improved server for 
protein aggregation prediction. Nucleic Acids Res. 2014;42(Web Server 
issue):W301–7.

10. Santos J, Pujols J, Pallares I, Iglesias V, Ventura S. Computational prediction 
of protein aggregation: advances in proteomics, conformation-specific 
algorithms and biotechnological applications. Comput Struct Biotechnol J. 
2020;18:1403–13.

11. Castillo V, Chiti F, Ventura S. The N-terminal helix controls the transition 
between the soluble and amyloid states of an FF domain. PLoS ONE. 
2013;8(3):e58297.

12. Santos J, Iglesias V, Ventura S. Computational prediction and redesign of aber-
rant protein oligomerization. Prog Mol Biol Transl Sci. 2020;169:43–83.

13. Castillo V, Ventura S. Amyloidogenic regions and interaction surfaces overlap 
in globular proteins related to conformational diseases. PLoS Comput Biol. 
2009;5(8):e1000476.

14. Castillo V, Espargaro A, Gordo V, Vendrell J, Ventura S. Deciphering the role of 
the thermodynamic and kinetic stabilities of SH3 domains on their aggrega-
tion inside bacteria. Proteomics. 2010;10(23):4172–85.

15. Grana-Montes R, de Groot NS, Castillo V, Sancho J, Velazquez-Campoy A, Ven-
tura S. Contribution of disulfide bonds to stability, folding, and amyloid fibril 
formation: the PI3-SH3 domain case. Antioxid Redox Signal. 2012;16(1):1–15.

16. Zambrano R, Jamroz M, Szczasiuk A, Pujols J, Kmiecik S, Ventura S. AGGR-
ESCAN3D (A3D): server for prediction of aggregation properties of protein 
structures. Nucleic Acids Res. 2015;43(W1):W306–13.

17. Kuriata A, Iglesias V, Pujols J, Kurcinski M, Kmiecik S, Ventura S. Aggrescan3D 
(A3D) 2.0: prediction and engineering of protein solubility. Nucleic Acids Res. 
2019;47(W1):W300–W7.

18. Pujols J, Iglesias V, Santos J, Kuriata A, Kmiecik S, Ventura S. A3D 2.0 update 
for the prediction and optimization of protein solubility. Methods Mol Biol. 
2022;2406:65–84.

19. Badaczewska-Dawid AE, Garcia-Pardo J, Kuriata A, Pujols J, Ventura S, Kmiecik 
S. A3D database: structure-based predictions of protein aggregation for the 
human proteome. Bioinformatics. 2022;38(11):3121–3.

20. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. 
AlphaFold protein structure database: massively expanding the structural 
coverage of protein-sequence space with high-accuracy models. Nucleic 
Acids Res. 2022;50(D1):D439–D44.

21. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. 
Highly accurate protein structure prediction with AlphaFold. Nature. 
2021;596(7873):583–9.

22. Kuriata A, Iglesias V, Kurcinski M, Ventura S, Kmiecik S. Aggrescan3D stand-
alone package for structure-based prediction of protein aggregation proper-
ties. Bioinformatics. 2019;35(19):3834–5.

23. Tsirigos KD, Peters C, Shu N, Kall L, Elofsson A. The TOPCONS web server for 
consensus prediction of membrane protein topology and signal peptides. 
Nucleic Acids Res. 2015;43(W1):W401–7.

24. Viklund H, Elofsson A. OCTOPUS: improving topology prediction by two-track 
ANN-based preference scores and an extended topological grammar. Bioin-
formatics. 2008;24(15):1662–8.

25. Reynolds SM, Kall L, Riffle ME, Bilmes JA, Noble WS. Transmembrane topol-
ogy and signal peptide prediction using dynamic bayesian networks. PLoS 
Comput Biol. 2008;4(11):e1000213.

26. Kall L, Krogh A, Sonnhammer EL. An HMM posterior decoder for sequence 
feature prediction that includes homology information. Bioinformatics. 
2005;21(Suppl 1):i251–7.

27. Bernsel A, Viklund H, Falk J, Lindahl E, von Heijne G, Elofsson A. Prediction of 
membrane-protein topology from first principles. Proc Natl Acad Sci U S A. 
2008;105(20):7177–81.

28. Viklund H, Bernsel A, Skwark M, Elofsson A. SPOCTOPUS: a combined predic-
tor of signal peptides and membrane protein topology. Bioinformatics. 
2008;24(24):2928–9.

29. Piovesan D, Monzon AM, Tosatto SCE. Intrinsic protein disorder and condi-
tional folding in AlphaFoldDB. Protein Sci. 2022;31(11):e4466.

30. Pancsa R, Tompa P. Structural disorder in eukaryotes. PLoS ONE. 
2012;7(4):e34687.

31. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX 
web server: an online force field. Nucleic Acids Res. 2005;33(Web Server 
issue):W382–8.

http://biocomp.chem.uw.edu.pl/A3D2/yeast
http://biocomp.chem.uw.edu.pl/A3D2/yeast


Page 10 of 10Garcia-Pardo et al. Microbial Cell Factories          (2023) 22:186 

32. Chiti F, Dobson CM. Protein misfolding, amyloid formation, and Human 
Disease: a Summary of Progress over the last decade. Annu Rev Biochem. 
2017;86:27–68.

33. Romero-Suarez D, Wulff T, Rong Y, Jakociu Nas T, Yuzawa S, Keasling JD, et al. 
A reporter system for cytosolic protein aggregates in yeast. ACS Synth Biol. 
2021;10(3):466–77.

34. Ibstedt S, Sideri TC, Grant CM, Tamas MJ. Global analysis of protein aggrega-
tion in yeast during physiological conditions and arsenite stress. Biol Open. 
2014;3(10):913–23.

35. Pintado-Grima C, Barcenas O, Bartolomé-Nafría A, Fornt-Suñe M, Iglesias V, 
Garcia-Pardo J, et al. A review of Fifteen Years developing computational 
tools to study protein aggregation. Biophysica. 2023;3(1):1–20.

36. Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, et al. 
Accurate prediction of protein structures and interactions using a three-track 
neural network. Science. 2021;373(6557):871–6.

37. Dhar R, Sagesser R, Weikert C, Wagner A. Yeast adapts to a changing stressful 
environment by evolving cross-protection and anticipatory gene regulation. 
Mol Biol Evol. 2013;30(3):573–88.

38. Narayanaswamy R, Levy M, Tsechansky M, Stovall GM, O’Connell JD, 
Mirrielees J, et al. Widespread reorganization of metabolic enzymes into 
reversible assemblies upon nutrient starvation. Proc Natl Acad Sci U S A. 
2009;106(25):10147–52.

39. Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L. Prediction of 
sequence-dependent and mutational effects on the aggregation of peptides 
and proteins. Nat Biotechnol. 2004;22(10):1302–6.

40. Stoddard PR, Lynch EM, Farrell DP, Dosey AM, DiMaio F, Williams TA, et al. 
Polymerization in the actin ATPase clan regulates hexokinase activity in yeast. 
Science. 2020;367(6481):1039–42.

41. Pechmann S, Levy ED, Tartaglia GG, Vendruscolo M. Physicochemical prin-
ciples that regulate the competition between functional and dysfunctional 
association of proteins. Proc Natl Acad Sci U S A. 2009;106(25):10159–64.

42. Chen S, Novick P, Ferro-Novick S. ER structure and function. Curr Opin Cell 
Biol. 2013;25(4):428–33.

43. Yang YS, Strittmatter SM. The reticulons: a family of proteins with diverse 
functions. Genome Biol. 2007;8(12):234.

44. Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK, Akutsu M, et al. 
Regulation of endoplasmic reticulum turnover by selective autophagy. 
Nature. 2015;522(7556):354–8.

45. Bhaskara RM, Grumati P, Garcia-Pardo J, Kalayil S, Covarrubias-Pinto A, Chen W, 
et al. Curvature induction and membrane remodeling by FAM134B reticulon 
homology domain assist selective ER-phagy. Nat Commun. 2019;10(1):2370.

46. Brady JP, Claridge JK, Smith PG, Schnell JR. A conserved amphipathic helix is 
required for membrane tubule formation by Yop1p. Proc Natl Acad Sci U S A. 
2015;112(7):E639–48.

47. Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA. A class of membrane pro-
teins shaping the tubular endoplasmic reticulum. Cell. 2006;124(3):573–86.

48. Campelo F, McMahon HT, Kozlov MM. The hydrophobic insertion 
mechanism of membrane curvature generation by proteins. Biophys J. 
2008;95(5):2325–39.

49. Wang N, Clark LD, Gao Y, Kozlov MM, Shemesh T, Rapoport TA. Mechanism of 
membrane-curvature generation by ER-tubule shaping proteins. Nat Com-
mun. 2021;12(1):568.

50. Shibata Y, Voss C, Rist JM, Hu J, Rapoport TA, Prinz WA, et al. The reticulon and 
DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic 
reticulum. J Biol Chem. 2008;283(27):18892–904.

51. Xiang Y, Lyu R, Hu J. Oligomeric scaffolding for curvature generation by ER 
tubule-forming proteins. Nat Commun. 2023;14(1):2617.

52. The PyMOL Molecular. Graphics System, Version 2.0 Schrödinger, LLC.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	A3DyDB: exploring structural aggregation propensities in the yeast proteome
	Abstract
	Background
	Results
	A3DyDB summary and interface description

	Discussion
	Case examples
	Exploiting the A3DyDB to study cellular organization and metabolism in yeast
	Predicting STAPs to study functional protein assemblies
	Using the A3DyDB to study membrane proteins


	Conclusions
	Methods
	Data collection and A3D analysis
	Database construction
	Foci and mutation structural analyses

	References


