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Abstract: The terrestrial biosphere absorbs about 30% of the carbon dioxide emitted by human 24 

activities each year, playing an important role in regulating global carbon budgets. The 25 

persistence of such a carbon sink, however, critically depends on vegetation responses to future 26 

increases in atmospheric aridity, decreases in soil water availability, and greater perturbations 27 

associated with meteorological droughts under global warming. While the evidence for 28 

increasing frequency and intensity of meteorological drought is growing, their potential 29 

systematic adverse impacts on vegetation productivity for the coming decades have not been 30 

quantified. Using newly-released data from 13 Sixth Coupled Model Intercomparison Project 31 

(CMIP6) models and basing on multiple meteorological drought indices, we show that the 32 

global mean drought-associated reductions in gross primary productivity (GPP) and net 33 

primary productivity (NPP) are projected to increase by 3.5-fold (p < 0.01) under the SSP5-8.5 34 

scenario and by 2.3-fold (p < 0.01) under the SSP1-2.6 scenario during the period from 2076 35 

to 2100 relative to the historical baseline period (1851–2000). Especially, the terrestrial carbon 36 

costs due to meteorological drought increase faster than the mean vegetation productivity 37 

enhanced by CO2 fertilization effect in tropical and temperate ecosystems and particularly for 38 

cropland. Increased potential evapotranspiration in response to global warming (i.e., radiative 39 

effects of rising CO2) is likely to play either a dominant and direct role in increasing drought-40 

associated reductions in GPP and NPP, by intensifying meteorological droughts, or an indirect 41 

role, by increasing the sensitivity of vegetation productivity to fluctuations in precipitation, or 42 

both. Our results indicate that the exacerbation of meteorological droughts under future 43 

warming scenarios increase a pressure on global food security and raise the concerns about the 44 

transformation of terrestrial ecosystem from a carbon sink into a carbon source. 45 

Keywords: meteorological drought; vegetation productivity; CMIP6; global warming 46 

Introduction 47 

As a key component of the terrestrial carbon cycle and ecosystem process, terrestrial ecosystem 48 
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production uniquely involves ecological, climatic, and anthropogenic impacts on the global 49 

carbon cycle.1–3 Its alternation, in either magnitude or trend, could profoundly affect CO2 50 

exchange between the land and the atmosphere, with great implications for the global 51 

climate.4,5 For example, terrestrial C uptake removed about 3.61 Pg of C from the atmosphere 52 

annually primarily driven by the acceleration of plants’ photosynthesis and water use efficiency 53 

in response to the increased concentration of CO2 (i.e., physiological effects of CO2) during 54 

the period from 2007 to 2016. This accounts for 33.7% of total anthropogenic C emissions 55 

from industrial activity and land-use change5 and thus provides an important negative climate-56 

C feedback. However, there is increasing evidence that the greater atmospheric water demand 57 

with rising temperatures (i.e., radiative effects of CO2) may lead to an increased intensity and 58 

frequency of meteorological drought,6 which could notably affect vegetation growth7–9 and 59 

crop yields,10 and even drive widespread forest mortality.11,12 In particular, hotter droughts are 60 

an inciting factor in C sinks reduction from insects and may also increase the frequency, size, 61 

and intensity of forest fires,13,14 and thus bring about an associated release of C to the 62 

atmosphere that may further accelerate the rate of climate warming through a positive climate-63 

C cycle system feedback loop. Given the increased likelihood of both negative and positive 64 

feedback effects of rising levels of CO2 under future climate conditions, it has been remained 65 

an internationally concerned issue of whether future increasing meteorological droughts under 66 

continuous global warming will lead to systematic adverse shifts in vegetation productivity at 67 

regional and global scales? An improved projection of future drought impacts on terrestrial 68 

ecosystem productivity is thus essential to reduce uncertainties in predicting land C uptake and 69 

to better understand atmosphere–biosphere interactions. 70 

Precisely quantifying the development of meteorological drought is one of the 71 

prerequisites to effective assessment of drought impacts, yet it remains methodologically 72 

challenging as using different drought indices to calculate drought characteristics can introduce 73 
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different uncertainties and even produce apparently conflicting results.15,16 For example, the 74 

Standardized Precipitation Index (SPI) proposed by Mckee, et al.17 has increasingly been used 75 

due to its simplicity and versatility.18,19 However, the SPI bases only on precipitation data and 76 

does not consider other critical variables (e.g., temperature and evapotranspiration) that can 77 

markedly influence droughts, the drying trends quantified by the SPI may thus be 78 

underestimated under global warming. Alternatively, the Standardized Precipitation 79 

Evapotranspiration Index (SPEI_PET-RC), calculated as the difference between precipitation 80 

and potential evapotranspiration (PET) that commonly estimated by using reference crop 81 

Penman–Monteith equation (PET-RC),20,21 could better capture the drought dynamics than the 82 

SPI especially for regions with substantially higher temperature. However, recent studies 83 

suggested that reference crop Penman–Monteith equation prescribed a constant surface 84 

resistance (𝑟𝑠) at 70 s m−1, which is appropriate for an idealized reference crop in the current 85 

climate but does not account for the fact that 𝑟𝑠 increases with elevated CO2 over vegetated 86 

surfaces in climate model projections.22–24 Drought projections based on SPEI_PET-RC may 87 

thus be overestimated due to the overrated PET under the background of continuously 88 

enhanced atmospheric CO2 concentration. Despite their individual uncertainties, both SPI-89 

based and SPEI_PET-RC-based drought projections may set a lower and upper limit, 90 

respectively, for the future drying trend. Given the inherent limitations of any single drought 91 

index,15,25 a multi-index evaluation could better quantify meteorological drought events and 92 

provide more important information for understanding the changes in future meteorological 93 

drought characteristics and its main causes and impacts.  94 

Drought impacts on vegetation productivity has been examined extensively, but most 95 

studies were limited to a regional scale and/or focused on past few decades.7,26 A recent study 96 

produced a global map of long-term projected impacts of soil moisture deficits on vegetation 97 

productivity, and suggested that the magnitude of vegetation productivity reduction associated 98 
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with extreme low soil moisture will increase dramatically.27 This study provides a preliminary 99 

understanding of future drought impacts on vegetation productivity at the global scale. But soil 100 

moisture only reflects the amount of water resources available in the underground part of 101 

vegetation (root zone), and is thus unable to represent the full influences by other 102 

meteorological factors in the aboveground part of vegetation under the drought conditions.28 103 

Several recent studies indicated that vegetation growth not only suffered from water stress by 104 

soil moisture deficit, but also by other meteorological factors, such as extreme high temperature 105 

and vapor pressure deficit (VPD).29–31 Using only soil moisture as drought indicator may thus 106 

underestimate the impacts of drought on vegetation productivity in water-limited regions. By 107 

contrast, the development of meteorological drought, such as quantified by SPEI, involving 108 

interactions between precipitation and temperature that directly controlling the levels of soil 109 

moisture and VPD, can more synthetically and accurately capture the response of vegetation 110 

growth to drought.21,32 However, a comprehensive global assessment of projected changes in 111 

long-term vegetation productivity response to meteorological droughts is still missing. This 112 

knowledge gap prevents a deeper understanding of vegetation response to the expected 113 

intensification of drought frequency, severity, and duration under continuous global warming. 114 

In this study, we first create SPEI (including SPEI_PET-RC, which does not take account 115 

for the effect of increased CO2 on PET, and SPEI_PET[CO2], which does) and SPI, using 116 

projection data from 13 state‐of‐the‐art Earth system models (ESMs) in CMIP6, to 117 

synthetically characterize and project spatiotemporal variations in meteorological drought 118 

characteristics, including frequency, intensity, and duration during the period from 1851 to 119 

2100. We then calculate the difference between modeled and expected GPP and NPP (Figure 120 

S1) for each drought month and location, to systematically quantify the drought-associated 121 

reduction in GPP and NPP under two contrasting future climate scenarios. We finally use an 122 

idealized experiment, in which CO2 is increased from preindustrial levels by 1% each year only 123 
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in the atmospheric model (CO2rad) or in the vegetation model (CO2phy), or in both (FULL) 124 

for four ESMs from the CMIP6 (see Materials and Methods) to specifically assess the 125 

individual impacts of radiative and physiological effects of rising CO2 on projected changes in 126 

drought and its associated GPP reduction. Our findings demonstrated that the dominant role of 127 

radiative effects of CO2 in increasing meteorological droughts and its related carbon cost has 128 

the great potential to transform terrestrial ecosystem from a carbon sink into a carbon source.  129 

Results 130 

Projected changes in drought characteristics 131 

Under the two future climate scenarios, our analysis indicates that meteorological droughts will 132 

become more frequent and longer in duration (Figure 1), particularly after 2025 under the 133 

SSP5-8.5 scenario. During the period from 2076 to 2100, drought frequency is projected to 134 

increase by 2.58 fold (p < 0.01) and 1.55 fold (p < 0.01) under the SSP5-8.5 and SSP1-2.6 135 

scenarios, respectively (Figures 1A and 1E), and the mean drought duration is expected to 136 

increase by 1.76 (p < 0.01) and 0.45 (p < 0.01) months (Figures 1C and 1G), respectively, with 137 

the longest drought duration being increased by 6.47 (p < 0.01) and 2.02 (p < 0.01) months 138 

(Figures 1D and 1H) per drought event (p < 0.01), respectively, compared with the historical 139 

period (1851–2000). The levels of drought intensity are also projected to increase significantly 140 

(p < 0.01) under the two climate scenarios, but after 2075, this increasing trend greatly slows 141 

down under the SSP1-2.6 scenario (Figures 1B and 1F). Seasonally, consistent significant (p < 142 

0.01) increases in droughts are projected to occur mainly during the boreal winter months of 143 

December, January, and February (i.e., summer months for the Southern Hemisphere), with 144 

weaker evidence for such increases occurring also in boreal summer months in the Northern 145 

Hemisphere and in the latter spring months of November in the Southern Hemisphere (Figure 146 

S2). In contrast, the droughts in September and October are projected to decrease for both the 147 
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Northern and Southern Hemispheres. By using SPEI_PET[CO2], we found that the increasing 148 

trends in drought frequency, intensity, and duration are generally comparable to that estimated 149 

by using SPEI_PET-RC, and all these trends show a significant increase (p < 0.01), despite a 150 

slight decrease in magnitudes (Figure S3). The increasing trend in these drought characteristics 151 

are also notably larger under the SSP5-8.5 scenario than that under the SSP1-2.6 scenario, 152 

mainly as the result of the larger increase in PET under the high GHG emission scenario (Figure 153 

S4). 154 

Areas where drought frequency is projected to increase significantly (p < 0.01) under 155 

future climate change are widely distributed across central-southern North America, 156 

southwestern Eurasia, western and southern Africa, and much of South America and Australia, 157 

which together account for 36.6 and 52.9% of the global land surface (vegetation-covered area) 158 

under scenarios SSP1-2.6 and SSP5-8.5, respectively (Figures 2A–B). During the period from 159 

2076 to 2100, drought events are projected to occur biennially on average in most regions listed 160 

above under the SSP5-8.5 scenario (Figure S5); at higher latitudes (> 50N), however, drought 161 

frequency is likely to decrease, especially under the low emission scenario. Spatial patterns of 162 

drought duration are projected to be similar to those for drought frequency, with significant (p 163 

< 0.01) increases in 21.9 and 42.3% of the global land surface under the SSP1-2.6 and SSP5-164 

8.5 scenarios, respectively (Figures 2E–F). Drought intensity is projected to exhibit a large 165 

increase across nearly all the land surface under the SSP5-8.5 scenario and much smaller in the 166 

SSP1-2.6 scenario, with the projected significant (p < 0.01) increase in drought intensity areas 167 

being decreased from 75.9 to 32.1% of the global land surface. These spatial pattern of drought 168 

characteristics are in closer agreement with that indicated by SPEI_PET[CO2], except for 169 

central Africa, where a wetting trend was projected by SPEI_PET[CO2] under the two future 170 

climate scenarios (Figure S6).   171 

In contrast to increases in drought conditions, as indicated by our analyses of the SPEI, 172 
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water availability is projected to increase (i.e., wetting trends) under the two future climate 173 

scenarios, as indicated by analysis of the SPI (Figure S7), notably across northeastern North 174 

America and Europe, central-eastern Africa, and much of Asia (Figure S8). Analysis of the SPI 175 

also indicates large and long-lasting decreases in water availability across the Amazon Basin, 176 

Southern Africa, the southwestern United States, and southwestern Europe, particularly under 177 

the SSP5-8.5 scenario. In general, current conditions are expected to intensify (i.e., a tendency 178 

for the wet areas to get wetter and dry areas to get drier), as indicated by the SPI, but with no 179 

overall effect at the global scale between scenarios SSP5-8.5 and SSP1-2.6 (Figure S8).  180 

Projected changes in sensitivity of vegetation productivity to drought 181 

The magnitudes of total reductions in GPP and NPP associated with SPEI-based drought are 182 

projected to increase similarly under the two future climate scenarios (Figure 3), where trends 183 

in reduced water availability identified by the SPEI become more pronounced under the SSP5-184 

8.5 scenario than under the SSP1-2.6 scenario. Between the historical (1851−2000) and future 185 

(2076–2100) periods, total reductions in the global GPP (NPP) associated with SPEI-based 186 

drought are predicted to increase by ~3.5-fold (from 7.49 (5.14) gC m−2 year−1 to 25.36 (18.24) 187 

gC m−2 year−1; p < 0.01) under the SSP5-8.5 scenario and by ~2.3-fold (from 9.73 (6.76) gC 188 

m−2 year−1 to 22.79 (15.67) gC m−2 year−1; p < 0.01) under the SSP1-2.6 scenario. In addition 189 

to results based on SPEI at the 3-month timescale, we also used 2-, 4-, 5-, and 6-month 190 

timescales of SPEI to evaluate the drought-related GPP reduction under the SSP5-8.5 scenario. 191 

The results show great consistency with those from the 3-month SPEI (Figure S9). It should be 192 

noted that the projected increase in drought-related reduction in GPP and NPP occurs in the 193 

context of future CO2 fertilization, which would drive an increase in mean vegetation 194 

productivity (Figure S1). Therefore, to better understand the drought impacts in relative terms, 195 

it is also need to calculate the percentage reductions in GPP and NPP related to meteorological 196 

droughts (i.e., ratios of total drought-related reduction in GPP to total modeled GPP in each 197 
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period). Results indicated that the percentage reductions in GPP, between the 1851−2000 and 198 

2076–2100 periods, are projected to increase from ~0.75 to ~1.96% per year (p < 0.01) under 199 

the SSP5-8.5 scenario and from ~0.97 to ~1.79% per year (p < 0.05) under the SSP1-2.6 200 

scenario (Figure S10A). The drought assessments are not sensitive to the definition of the 201 

metrics when using either SPEI_PET-RC or SPEI_PET[CO2]; the temporal variations in the 202 

percentage reduction are highly consistent (Figure S10). These results further indicate a larger 203 

increase in C cost resulting from meteorological droughts and the effectiveness of traditional 204 

meteorological data-based drought models (i.e., SPEI_PET-RC) in evaluating the drought 205 

impacts.  206 

Spatial patterns of areas projected to experience greater drought-related reductions in GPP 207 

and NPP during the period from 2076 to 2100 than during the historical period of 1851 to 2000 208 

are correlated well with projected patterns of increased drought frequency, severity, and 209 

duration, particularly in southeastern North America, central-eastern South America, 210 

southwestern Eurasia, central-southern Australia, and southern Africa (Figure 4). Although 211 

meteorological droughts are expected to be more widespread and severe under the SSP5-8.5 212 

scenario, the predicted spatial distribution and changes in drought-associated reductions in GPP 213 

and NPP are generally similar under the SSP1-2.6 and SSP5-8.5 scenarios in most temperate 214 

regions. In addition, a latitudinal variation in the projected impact of drought on vegetation 215 

productivity is clearly revealed, with the greatest reductions in drought-related GPP and NPP 216 

for 2076–2100 likely to occur in tropical and temperate regions and the smallest reductions at 217 

high latitudes (> 60°N).  218 

Across climate gradients, we found that areas with greater projected changes in drought-219 

related reductions in vegetation productivity (DRP) tend to occur in water-limited (arid) 220 

regions, while mean changes in DRP decrease from water- to energy-limited regions and along 221 

an aridity gradient, where areas with greater reductions in DRP tend to be concentrated in semi-222 
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arid ecosystems (0.05 < aridity < 0.5; Figures 5A–B and S11); projected increases in PET are 223 

likely to be greater in these arid regions than in humid, energy-limited areas under the SSP1-224 

2.6 and SSP5-8.5 change scenarios (Figure S12). Across plant functional types, the greatest 225 

increases in DRP during the period from 2076 to 2100 are projected to occur in cropland, 226 

followed by forest and grassland (Figure 5D), whereas within plant functional type, the greatest 227 

changes in DRP are likely to occur in the tropics and subtropics (TSGSS, TSMBF, and TSDBF), 228 

followed by the temperate regions (TGSS, TBMF, and TCF), and the smallest changes in DRP 229 

are likely to occur in the montane and cold regions (MGS, BF, and TUN; Figures 5C and S11).  230 

Despite projected reductions in drought frequency, intensity, and duration, as indicated by 231 

the SPI (Figure S7), with greater levels of water availability across the majority of the global 232 

land surface, we projected an increased likelihood of drought-related (SPI-based) reductions in 233 

GPP and NPP during the period from 2076 to 2100 (Figure S13), predominantly in 234 

southwestern North America, southern Africa, northern-central South America, and 235 

southwestern Europe (Figure S14). Our analysis demonstrates that SPI indicators of vegetation 236 

productivity responses to drought will be more sensitive than those based on the SPEI, 237 

indicating that the vegetation productivity will be more sensitive to decreases in precipitation 238 

as a result of substantially elevated atmospheric water demand under future climate scenarios, 239 

especially for northern China, southwestern Asian, and central Africa (Figure S15). Vegetation 240 

drought sensitivity, indicated by the SPEI, will decrease during the period from 2076 to 2100 241 

over more than half of the total vegetated land surfaces, predominantly in the southern 242 

hemisphere, and this decrease will be larger under the SSP5-8.5 scenario, suggesting an 243 

improvement in drought resistance under the high GHG emission scenario (Figure S15). In 244 

addition to SPI and SPEI, we also used soil moisture (SM) as another drought indicator to 245 

quantify drought-related GPP (NPP) reduction. These analysis methods are generally 246 

consistent with Xu, et al.27 but used newly released CMIP6 data. Results indicated that SM 247 
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drought-related GPP (NPP) reduction are predicted to increase from 14.23 (9.52) gC m−2 year−1 248 

to 40.71 (28.85) gC m−2 year−1 (p < 0.01) under the SSP5-8.5 scenario and from 14.66 (9.85) 249 

gC m−2 year−1 to 29.37 (20.24) gC m−2 year−1 (p < 0.01) under the SSP1-2.6 scenario (Figure 250 

S16), which are larger than those quantified by SPEI, especially in the Amazon Basin and the 251 

high latitudes (Figure S17).  252 

Mechanisms of projected changes in drought-related reduction in vegetation productivity 253 

With rising atmospheric CO2 concentrations, plants tend to increase stomatal closure and 254 

enhance water use efficiency to minimize water lose, which can induce reduction in 255 

transpiration at the leaf level. On the other hand, increased vegetation productivity and leaf 256 

biomass due to CO2 fertilization effects can generate a larger evaporative surface and thus 257 

increase transpiration and thus the actual evapotranspiration (ET) at the ecosystem level. By 258 

analyzing the projected changes in transpiration and ET in the CO2phy simulation, we found 259 

that both of them show similar spatial patterns and are reduced in about 87% and 74% of the 260 

vegetated land surface, respectively, in response to a quadruple increase in CO2 (Figures 6A 261 

and S18). This suggested that extensive leaf area increases are not enough to offset the 262 

influence of decreasing stomatal conductance on transpiration and ET. The reduction in ET 263 

implies less water vapor available to drive rainfall and more sensible flux to rise surface 264 

temperature, which contributes to widespread decrease in precipitation and enhancement in 265 

VPD and PET (Figures 6, S18, and S19). These findings collectively indicated that even 266 

without the CO2rad effects, physiological responses alone can also cause a slight 267 

meteorological drying (global annual mean SPEI decreased by 0.1), especially for the wet 268 

regions (Figure S19). However, the great improvement in water use efficiency (WUE, i.e., 269 

GPP/transpiration) can slow down the loss of soil moisture (SM) and protect vegetation from 270 

this mild meteorological drying, resulting in little change or even a widespread decrease in 271 
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drought-related reduction in vegetation productivity, except in the Amazon Basin region 272 

(Figure 6C). 273 

In the CO2rad simulation, despite the fact that 78% of the global land surface experienced 274 

an increase in precipitation with a global average increase by 3.87%, this increase is small 275 

relative to the enhancement in atmospheric water demand (i.e., VPD and PET), causing a 276 

widespread drying trend that indicated by both SM and SPEI (Figure S19). Especially, our 277 

results indicated that the spatial patterns of projected changes in precipitation, ET, VPD, SM, 278 

and SPEI, as well as the drought-related reduction in vegetation productivity in the full 279 

simulation (FULL) are highly consistent with those in the CO2rad simulation (Figures 6B, 6D, 280 

S18, and S19). This further verified that the radiative effects will dominate over the water 281 

saving effects of plants’ physiology in response to increasing CO2, resulting in similar surface 282 

drying and reduction patterns in climate model simulations with or without the physiologic 283 

response. But for some tropical and temperate regions (e.g., Amazon Basin), drought-related 284 

GPP reductions are projected to increase in both CO2phy and CO2rad simulations, suggesting 285 

that the reduction in stomatal conductance due to rising CO2 and VPD and decrease in SM 286 

induced by increasing ET jointly contribute to the larger carbon cost in these regions. 287 

Discussion  288 

Projected changes in drought characteristics 289 

This study provides a comprehensive evaluation of projected changes in meteorological 290 

drought characteristics (frequency, intensity, and duration, as indicated by the SPI and SPEI) 291 

under low (SSP1-2.6) and high (SSP5-8.5) GHG emission scenarios. The contrasting trends in 292 

global mean drought characteristics projected by the analysis of the SPEI and SPI indicate that 293 

PET increases more rapidly than precipitation under future climate scenarios, causing an 294 

imbalance between water vapor availability and atmospheric demand and thus driving an 295 
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increase in meteorological drought. The greatest increases in drought conditions will occur 296 

predominantly in tropical and subtropical latitudes, with a marked poleward expansion (Figure 297 

2). These findings support the view anticipated by Sherwood, et al.33 that PET would increase 298 

substantially in most tropical and mid-latitude areas in response to global warming, resulting 299 

in shifts in local climates to more arid conditions. Chiang, et al.34 specifically investigated the 300 

individual impacts of GHG and aerosol forcing on levels of PET and reported that the negative 301 

effects of aerosol forcing may be masked by the positive impacts of GHG forcing in tropical 302 

and subtropical regions, which eventually contribute to the increase in PET in these regions. 303 

Thus, under anthropogenically induced global warming resulting from an increased 304 

concentration of atmospheric CO2 and other heat-trapping gases, there is a strong expectation 305 

of a general increase in PET that is directly related to a greater incidence of drought events 306 

with greater severity and longer duration, especially for tropical and subtropical areas. 307 

However, recent studies have indicated that increasing PET driven by global warming may 308 

be severely overpredicted in the traditional offline calculations (e.g., the reference crop 309 

Penman–Monteith equation), as they neglect the impacts of elevated CO2 on 𝑟𝑠. When we take 310 

the impacts of elevated CO2 concentration on  𝑟𝑠 into account in calculating PET, the projected 311 

trends in global mean PET and drought frequency, intensity, and duration still increase 312 

significantly (p < 0.01), although the magnitudes of these trends show a slight decrease (Figure 313 

S3). These findings indicate that the trends in PET can be mostly explained by increased 314 

temperature (i.e., radiative effects of rising CO2) rather than by elevated 𝑟𝑠 (i.e., physiological 315 

effects of rising CO2) under rising atmospheric CO2 concentrations, which is further verified 316 

by our mechanism analysis (Figure 6) and is consistent with recent observations.35 All these 317 

results support the premise that the water cycle will intensify in a warming climate because of 318 

greater atmospheric water demand. 319 

Future levels of precipitation deficit under anthropogenic climate change, as indicated by 320 
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the global mean frequency, intensity, and duration of drought events, based on analysis of the 321 

SPI, were shown to decrease, inferring that anthropogenic-mediated climate change may not 322 

lead to increased droughts as a result of reduced levels of precipitation in most regions. 323 

However, our analysis of SPEI data indicates that when they do occur, the extra heat from 324 

global warming will increase the rates of evapotranspiration and surface water evaporation, 325 

leading to more rapidly occurring drought conditions that are likely to be more intense. In this 326 

regard, despite projected increases in precipitation, the anomalous fluctuations in high levels 327 

of anthropogenic GHG emissions may also lead to an increased frequency and intensity of 328 

meteorological drought conditions. However, because a warmer atmosphere can hold more 329 

moisture according to the Clausius–Clapeyron scaling, it is also possible that increasingly 330 

intense precipitation under warmer atmospheric conditions may lead to an intensification of 331 

moisture levels in currently wet areas, causing a strong tendency for the wetter areas to become 332 

wetter under improved levels of anthropogenic GHG emissions (Figure S8).36–38 This may 333 

further exacerbate the problem of uneven distribution of water resources.  334 

Projected changes in drought-reduced productivity  335 

From a C perspective, although the analysis of SPEI data indicated greater increases in the 336 

frequency, intensity, and duration of drought under the SSP5-8.5 climate scenario than under 337 

the SSP1-2.6 scenario, global mean drought-associated reductions in GPP and NPP tended to 338 

be similar (Figures 1 and 3). This paradoxical phenomenon may be explained in two ways. 339 

First, the drought resistance of vegetation is improved under the elevated atmospheric CO2 340 

concentrations (Figure S15). Numerous studies have indicated that rising CO2 concentrations 341 

could stimulate photosynthetic activity39 and increase intrinsic vegetation water use efficiency 342 

with lower stomata conductance,40 which was also identified by our mechanism analysis 343 

(Figure S19). These physiological responses are of particular importance in plant communities 344 

subjected to seasonal water shortage or drought conditions, as plants could maintain similar 345 
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rates of C assimilation with a reduced demand for water.41 Second, the reduction in GPP (NPP) 346 

in drought-sensitive regions may be partially offset by increased vegetation productivity in 347 

energy-limited regions during meteorological drought periods. This was verified by our results 348 

projecting a substantial increase in vegetation productivity at high latitudes and across some 349 

humid regions, such as southeastern China, even during periods of meteorological drought; in 350 

particular, these regions were predicted to further expand under the high GHG emission 351 

scenario (Figure 4). The increased vegetation productivity during meteorological drought 352 

periods indicates that the water limitation caused by drought may not offset the positive effects 353 

of higher temperatures and CO2 concentrations on vegetation growth in these colder and wetter 354 

regions, supporting previous studies showing that temperature and photoperiod play more 355 

important roles than water availability in vegetation growth at high latitudes.42,43  356 

Additionally, the fact that vegetation productivity can increase during drought conditions 357 

may also explain why our projected magnitudes of globally averaged reductions in GPP 358 

associated with meteorological droughts (25.36 gC m−2 year−1; i.e., ~2.85 PgC year−1) were 359 

lower than that estimated by Xu, et al.27 (~4.7 PgC year−1, which is consistent with our 360 

estimations by using CMIP6 SM data, i.e., 4.57 PgC year−1; Figure S16) during the last quarter 361 

of this century under the high GHG emission scenario. As Xu, et al. 27 focused only on the 362 

months during which GPP were reduced owing to extreme SM deficit, ignoring the fact that 363 

drought is a long-term and gradual developing phenomenon and the responses of vegetation 364 

growth to water stress can vary during different drought developing stages. For example, in 365 

most energy-limited regions, favorable climate conditions (e.g., enhanced temperature and 366 

abundant sunshine) may provide a more important role in promoting vegetation growth during 367 

the early drought developing stage, which may partially or even entirely compensate the 368 

reduction in GPP caused by extreme SM deficit in the middle or later drought stages.32,44 In 369 

particular, our results indicated that most projected drought events will be initialized by 370 
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enhanced atmospheric water demand (i.e., PET) due to radiative effects of rising CO2, which 371 

is responsible for the subsequent SM deficits during drought conditions. This further highlight 372 

that the impacts of abundant sunshine and increased temperature as well as its tightly related 373 

climate factors (e.g., VPD) preceding extreme SM deficit (i.e., during the early drought 374 

developing stage) are nonnegligible to comprehensively capture drought-associated reduction 375 

in vegetation productivity under climate change.  376 

Overall, continued climate change threatens terrestrial ecosystems far more than it benefits 377 

high latitudes. As Penuelas, et al.45 hypothesized that future increases in global temperature, 378 

drought frequency, and key nutrient limitations, such as phosphorous, may drive a shift from 379 

one period dominated by the positive effects of atmospheric fertilization on C sink to another 380 

characterized by the saturation of these positive effects and a rise in negative impacts on climate 381 

change. In terms of drought impacts, our analyses indicate that this transformation has a very 382 

high possibility to occur during the period from 2076 to 2100, as the percentage reduction in 383 

GPP related to meteorological droughts is projected to increase by a factor of 2 under both the 384 

SSP5-8.5 and SSP1-2.6 climate scenarios (Figure S10), suggesting a faster increase in 385 

terrestrial C cost resulting from droughts than the mean GPP (NPP) because of CO2 fertilization 386 

effects in the future. But spatially, we highlight that this transformation may be more 387 

pronounced across tropical and temperate ecosystems, such as the Amazon, Mediterranean 388 

Basin, Southern Africa, and the southwestern United States. This is because larger increases in 389 

both SPEI- and SPI-based droughts were projected to occur during the period from 2076 to 390 

2100 in these regions (Figures 2 and S8), indicating a continued rise in atmospheric water 391 

demand (PET) under global warming and a decrease in precipitation and associated increase 392 

in water limitation that are expected to reduce vegetation productivity in these regions. It is 393 

important to note that the optimal air temperature for ecosystem-level GPP, particularly in 394 

tropical forests, is close to current growing-season air temperatures but is projected to fall 395 



17 
 

below the actual air temperatures under all future climate scenarios, indicating that 396 

temperatures above the optimum may also occur for vegetation productivity in these 397 

ecosystems.29 Thus, the integrated effects of water and temperature limitations associated with 398 

both radiative and physiological effects of rising CO2 may mask the positive impacts of CO2 399 

fertilization (Figure 6), causing catastrophic impacts on vegetation productivity and thus the 400 

transformation of terrestrial ecosystems into C sources in these regions. These predictions of 401 

large increases in drought-induced GPP and NPP reductions in tropical and temperate regions 402 

support observations of changes in drought-induced vegetation productivity in the Amazon 403 

Basin,46 the western United States,47 and across the globe (GPP) when using remote sensing-404 

based estimates,48 implying a further rising threat to the stability of the land C sink. In addition, 405 

the largest increases in drought-induced vegetation productivity were projected to occur over 406 

croplands (Figure 5C), which may be due to their lower coping capacity in times of water 407 

scarcity as compared with woody vegetation with shallower roots and thus more limited access 408 

to deeper soil water.26 Such findings highlight the urge for societies to take actions to reduce 409 

increasing pressures of climate change on crop yields and guarantee a global food security.   410 

Uncertainties of predictions and implications for the global C cycle and food security 411 

Several limitations of our study reflect important challenges and open questions. First, many 412 

models suffer from substantial tropical sea surface temperature biases that affect the accuracy 413 

of the El Niño/Southern Oscillation (ENSO) simulations,49,50 which would thus affect the 414 

reliability of drought event simulations in regions strongly connected to ENSO events; 415 

therefore, further research is needed to identify the origins and impacts of these biases. Second, 416 

rising temperatures and levels of CO2 tend to be correlated with regional hydroclimatic 417 

conditions,34,51 and models may not fully capture the vegetation responses to changes in these 418 

climate conditions, especially the response of 𝑟𝑠 to elevated atmospheric CO2 in water-limited 419 

regions. This merits further attention because the largest increases in meteorological droughts 420 
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were projected to be concentrated mainly in these water-limited regions. Third, studies of plant 421 

physiology have shown that plants have “memory” that allows them to store and recall 422 

information from previous events and adjust their responses to future stress conditions 423 

accordingly.52 Future increases in drought frequency may repeatedly trigger a memory of water 424 

scarcity in plants and improve their tolerance to extreme drought events,  through a reduction 425 

in sensitivity.53 The lack of plant memory effects in CMIP6 models may therefore have led to 426 

the overestimation of drought-related reduction in vegetation productivity. In addition to 427 

memory effects, droughts elicit legacy effects—multiyear recovery of trees from drought—in 428 

plants, which results from the physiological impairment caused by drought-induced water 429 

stress.54,55 Even when climate conditions return to long-term average conditions, surviving 430 

trees do not recover their expected growth rates for an average of 2 to 4 years.56 In CMIP6 431 

models, however, plants’ physiological recovery from drought is often assumed to be complete 432 

and relatively fast, leading to an underestimation of drought-related GPP (NPP) reduction. 433 

Finally, we suggested that the increasing drought-related GPP (NPP) reduction may also be 434 

partially compensated for by the positive anomalies of GPP and NPP related to favorable 435 

wetness, temperature and radiation, and enhanced water-use efficiency, especially at high 436 

latitudes, resulting in increased GPP and NPP, including in drought periods. However, this 437 

projection may be too optimistic because the current CMIP6 models do not explicitly consider 438 

insect dynamics,27 which are driven by temperature and drought and that contribute to tree 439 

mortality and C cycles at a range of scales.57,58 Thus, further attention to including these 440 

physiological and wider ecosystem processes in future models will lead to an improved 441 

understanding of the effects of global change on GPP (NPP) and C cycles. 442 

Conclusions 443 

Compared with historical (1851–2000) levels, CMIP6 models project that the global mean 444 

SPEI-based drought frequency, intensity, and duration will significantly increase during the 445 
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period from 2076 to 2100 under high (SSP5-8.5) and low (SSP1-2.6) future GHG emission 446 

scenarios, whereas SPI-based drought hazards are likely to decrease. These contrasting trends 447 

highlight the dominant role of PET (i.e., radiative effects of rising CO2) in the occurrence of 448 

drought events for most regions under global warming, which are further verified by 449 

mechanism experiments. The projected drought-associated reduction in GPP and NPP (DRP) 450 

increased under the two climate scenarios, regardless of the drought indicator (SPI, SPEI), 451 

indicating that vegetation productivity will become more sensitive to precipitation fluctuations 452 

under enhanced atmospheric water demand. Areas with the greatest increases in DRP are likely 453 

to occur in cropland, highlighting the potential threat of meteorological drought to global food 454 

security. Spatially, larger DRP areas are projected to concentrate in the tropical and temperate 455 

regions, including the Amazon Basin, Southern Africa, the southwestern United States, and 456 

Europe, with smaller DRP occurring at high latitudes, where GPP (NPP) even increased during 457 

meteorological drought periods. Such spatial patterns of drought and DRP are driven by 458 

tradeoffs among the effects of water, temperature, and rising CO2 concentrations. Improved 459 

quantification of the individual and combined impacts of these climate factors on vegetation 460 

growth will lead to more reliable projections of ecosystem productivity and thus a better 461 

understanding of atmosphere–biosphere feedbacks under future global climate change. 462 

Materials and Methods 463 

CMIP6 model data 464 

We used monthly historical (1850–2014) and future (2015–2100) precipitation, maximum 465 

temperature, minimum temperature, relative humidity, wind speed, shortwave radiation, GPP, 466 

and NPP data derived from the CMIP6 simulations. At the time of writing this paper, there 467 

were 13 earth system models that produced these data (Table S1; https://esgf-468 

node.llnl.gov/projects/cmip6/). Data were bilinearly interpolated to a spatial resolution of 0.5° 469 
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× 0.5°. In contrast to CMIP5, CMIP6 data employ a  shared socioeconomic pathways (SSPs) 470 

framework that describes five alternative evolutions of future society in the absence of climate 471 

change or climate policy (SSP1 to SSP5),59 among which SSP1 and SSP5 envision contrasting 472 

trends for human development, as they assume an increasing shift toward sustainable practices 473 

(SSP1) and an energy-intensive, fossil-based economy (SSP5). On the basis of assumptions for 474 

the SSPs, combined with four representative concentration pathways (RCPs), CMIP6 generates 475 

four radiative forcing pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) with associated 476 

warming to the end of the 21st century in updated versions of integrated assessment models, 477 

which has improved performance in many drought-related aspects than CMIP5, from 478 

projecting ecosystem productivity (e.g., GPP and NPP) to hydrological process.60 In this study, 479 

we considered SSP1-2.6 and SSP5-8.5 as two future scenarios, where SSP1-2.6 updates the 480 

RCP2.6 pathways and represents a low-ending range of future scenarios, as measured by its 481 

radiative forcing pathway (2.6 Wm−2 in 2100; low forcing sustainability pathway), whereas 482 

SSP5-8.5 stabilizes radiative forcing at 8.5 Wm−2 in 2100 and is considered a high radiative 483 

forcing scenario.59 Thus, the SSP1-2.6 and SSP5-8.5 scenarios capture the potential influence 484 

of future ranges of GHG emissions on drought impacts under a relatively realistic range of 485 

socioeconomic development pathways. Additionally, to include the physiological response of 486 

vegetation to rising CO2 in calculating PET (PET[CO2]) and the SPEI (SPEI_PET[CO2]), 487 

monthly and latitudinally (0.5°) resolved CO2 concentration data during the period from 1850 488 

to 2100 under the two climate scenarios were used in our analysis.61 489 

To specifically investigate the relative influence of radiative and physiological effects of 490 

rising CO2 on projected changes in drought and its related GPP (NPP) reduction, monthly 491 

precipitation, maximum temperature, minimum temperature, relative humidity, wind speed, 492 

shortwave radiation, transpiration, actual evapotranspiration (ET), soil moisture (SM), and 493 

GPP that outputted in three different simulations with 1% per year CO2 increases from four 494 
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CMIP6 models (BCC-CSM2-MR, CanESM5, CMCC-ESM2, and IPSL-CM6A-LR) were used. 495 

The three simulations include: (1) 1% per year increase in CO2 from pre-industrial to quadruple 496 

pre-industrial levels for both radiative and physiological processes (FULL; 1pctCO2 in CMIP6 497 

terminology); (2) same as (1) but the CO2 increase is only in radiative processes, and is fixed 498 

to the pre-industrial level for the physiological processes (CO2rad; 1pctCO2-rad in CMIP6 499 

terminology); and (3) same as (1) but the CO2 increase is only in physiological processes, and 500 

is fixed to the pre-industrial level for the radiative processes (CO2phy; 1pctCO2-bgc in CMIP6 501 

terminology). These three simulations thus allow for the partitioning of changes in each water 502 

and C cycle flux into two components of CO2rad and CO2phy. In each simulation, the change 503 

in a field (e.g., ET, VPD, PET, and SPEI) due to increasing CO2 was calculated as the difference 504 

between the average of the last 25 years with that of the first 25 years (Figures S18 and S19). 505 

VPD was calculated from temperature and relative humidity; PET was calculated by Penman–506 

Monteith equation (see below); annual SPEI was calculated at a 12-month timescale, and the 507 

baseline period for SPEI calculation was set to the first 30 years of the FULL model run for all 508 

experiments (including CO2rad and CO2phy) in a given model. Before calculation, all monthly 509 

original data in each simulation and model were first bilinearly interpolated to a common 0.5° 510 

× 0.5° grid. 511 

Observed and reanalyzed data 512 

Monthly precipitation and potential evapotranspiration data for the 1980–2018 period were 513 

obtained from the Climatic Research Unit Times Series (CRU-TS) data set to calculate an 514 

aridity index, defined as the ratio of mean annual precipitation to PET; the latest version of this 515 

database (v. 4.03) covers the period from 1901 to 2018 at a spatial resolution of 0.5° × 0.5° 516 

over land surfaces (https://data.ceda.ac.uk/badc/cru/data/cru_ts). This data set, which has been 517 

widely used in previous studies of climate change,62,63 was generated from interpolated 518 

monthly climatic anomalies derived from more than 4,000 globally distributed meteorological 519 

https://data.ceda.ac.uk/badc/cru/data/cru_ts
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stations. 520 

To characterize the terrestrial ecosystems that were water-limited or energy-limited (see 521 

below for specific methods), monthly root-zone soil moisture (SM) and transpiration (trans) 522 

data derived from the Global Land Evaporation Amsterdam Model (Gleam v3.3a; 523 

https://www.gleam.eu/) were used. Data were generated based on a reanalysis of radiation and 524 

air temperature data, a combination of gauge-based, satellite-based, and reanalyzed 525 

precipitation data, and satellite-based vegetation optical depth data.64 Gleam data comprised 526 

daily and monthly temporal resolution at 0.25° spatial resolution for the period from 1980 to 527 

2018 and had undergone rigorous correction, preprocessing, and validation.65 Soil moisture 528 

and transpiration data were aggregated to a spatial resolution of 0.5°. 529 

Vegetation distribution data 530 

Vegetation land cover data, based on the International Geosphere–Biosphere Program (IGBP) 531 

classification, were extracted from the MCD12Q1 Land Cover Science Data product at a spatial 532 

resolution of 0.05° (https://modis.gsfc.nasa.gov/data/dataprod/mod12.php), which were then 533 

aggregated to 0.5°. 534 

Changes in drought-related vegetation productivity were quantified by biome type 535 

(https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world),66 which comprise 536 

temperate tropical and subtropical moist broadleaf forests (TSMBF), tropical and subtropical 537 

dry broadleaf forests (TSDBF), tropical and subtropical coniferous forests (TSCF), temperate 538 

broadleaf and mixed forests (TBMF), temperate coniferous forests (TCF), boreal forests or 539 

taiga (BF), tropical and subtropical grasslands, savannas, and shrublands (TSGSS), temperate 540 

grasslands, savannas, and shrublands (TGSS), flooded grassland and savannas (FGS), montane 541 

grasslands and shrublands (MGS), tundra (TUN), Mediterranean forests, woodlands, and scrub 542 

(MFWS), deserts and xeric shrublands (DXS), and mangroves (MG). Samples of TSCF (3 543 

pixels) and MG (10 pixels) were limited at a spatial resolution of 0.5°, so they were removed 544 

https://www.gleam.eu/
https://modis.gsfc.nasa.gov/data/dataprod/mod12.php
https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
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from our analysis (Figure S11). 545 

Definition of drought events and characteristics 546 

Drought events become apparent after substantial periods without precipitation, but 547 

quantification of their onset and end times and  spatial extent is problematic; as a result, a range 548 

of drought indices have been developed.21 Against the background of rapid global warming, 549 

robust drought indices have to include the dynamics of temperature and its closely correlated 550 

factors, such as PET. Therefore, we defined drought events in our study based on the SPEI, 551 

calculated as the difference between precipitation and PET, to describe drought conditions with 552 

respect to normal conditions for a given period.21 This approach accounts for both the effect of 553 

climate warming on drought and the role of land–atmosphere feedback effects in drought 554 

development and persistence. It can be calculated for contrasting timescales, where a short-555 

term (e.g., 3-month) SPEI reflects a high frequency of variability in soil moisture that is 556 

important for vegetation production, whereas a long-term (e.g., 12-month) SPEI indicates 557 

medium-term trends in precipitation and provides annual estimates of water availability that 558 

are relevant to hydrological drought. Given that our investigation focused on drought impacts 559 

on vegetation productivity, we mainly focus on the 3-month SPEI,67,68 in which PET (PET-RC) 560 

was calculated by the reference crop Penman–Monteith equation20 (SPEI_PET-RC):  561 

 PET-RC =
0.408∆(𝑅𝑛−𝐺)+𝛾(

900

𝑇mean+273
)𝑈2(𝑒𝑠−𝑒𝑎)

∆+𝛾(1+0.34𝑈2)
， (1) 562 

where 𝑅𝑛 is the net radiation at the vegetation surface [MJ·m−2·day−1]; G is the soil heat flux 563 

density [MJ·m−2·day−1]; 𝑇mean is the mean air temperature at 2 m above ground level [℃]; 𝑈2 564 

is the wind speed 2 m above ground level [m·s−1]; 𝑒𝑠 is the saturation pressure of water vapor 565 

[kPa]; 𝑒𝑎 is the actual water vapor pressure [kPa]; ∆ is the slope of the vapor pressure curve 566 

[kPa·℃−1]; and, 𝛾 is the psychrometric constant [kPa·℃−1]. In the reference crop Penman–567 

Monteith model, the surface resistance (𝑟𝑠) is prescribed as 70 s m−1, and this parameter value 568 
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is embedded in the equation. 569 

However, recent studies have suggested that PET and drought conditions may be 570 

overestimated by the SPEI_PET-RC, as it does not consider the impact of rising CO2 on 𝑟𝑠.
22,23 571 

To reduce such uncertainties, we also used a modified reference crop Penman–Monteith PET 572 

model that takes the biological effect of elevated [CO2] into account, as derived by Yuan, et al. 573 

30, to calculate the PET ( PET[CO2] ) and SPEI (SPEI_ PET[CO2] ). The PET[CO2]  was 574 

calculated as follows: 575 

 PET[CO2] =
0.408∆(𝑅𝑛−𝐺)+𝛾(

900

𝑇mean+273
)𝑈2(𝑒𝑠−𝑒𝑎)

∆+𝛾{1+𝑈2[0.34+2.4×10−4([𝐶𝑂2]−300)]}
， (2) 576 

The monthly SPEI-3 (SPEI at a 3-month timescale) series for each pixel from 1851 to 2100 577 

was calculated to construct the drought duration, intensity, and frequency. The onset and end 578 

times of a drought event were defined as the month when the SPEI fell below and returned to 579 

−1, respectively. Given that soil moisture stored prior to a drought buffers the impacts on 580 

vegetation growth of short-term moisture deficiency, we defined a drought event as occurring 581 

just when the SPEI value was less than −1 for at least three consecutive months. Thus, the 582 

drought duration was calculated as the number of months between the onset and end of a 583 

drought event; the drought intensity was calculated as the mean of monthly SPEI values during 584 

the drought period; the drought frequency was defined as the number of drought events that 585 

occurred over a specific period. Because the pronounced seasonal shifts in drought can also 586 

alter vegetation productivity patterns, monthly and seasonal changes in drought frequency 587 

during 2076 to 2100 were also assessed (Figure S2). Additionally, given that the timescales at 588 

which different vegetation types respond to drought may differ,69 in addition to SPEI at a 3-589 

month timescale, we also calculated 2-, 4-, 5-, and 6-month timescales of SPEI to further 590 

estimate the projected changes in drought-related GPP reduction under the SSP5-8.5 scenario. 591 

To explore the individual contributions of changes in precipitation and atmospheric water 592 
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demand (i.e., PET) on long-term trends in drought frequency, intensity, and duration, we also 593 

employed the standardized precipitation index (SPI) to define drought events. In contrast to the 594 

SPEI, which accounts for precipitation and PET, the SPI accounts for only precipitation. By 595 

comparing the results generated by the SPEI and SPI, the individual contributions of 596 

precipitation and PET on drought as well as on vegetation productivity can thus be separated. 597 

Note that the results generated based SPEI_PET-RC were shown in main text, while results 598 

generated based SPEI_PET[CO2] and SPI were shown in supplementary. In addition to SPEI 599 

and SPI, soil moisture (SM) data was used as an additional drought indicator to assess drought 600 

impacts. SM drought was defined as the month when SM was below tenth percentiles for the 601 

same month during 1851–2000 and caused a decrease in GPP, which is referenced to Xu, et al. 602 

27. 603 

Definition of drought-related reduction in vegetation productivity 604 

We defined drought-related reductions in GPP and NPP (DRP) as a departure in the modeled 605 

productivity (CMIP6-exported GPP and NPP data) from the expected productivity (i.e., the 606 

theoretical value of GPP and NPP in the absence of drought) during a drought episode: 607 

 𝐷𝑅𝑃𝑚𝑜𝑛(𝑖, 𝑗) = 𝐸𝑃𝑚𝑜𝑛(𝑖, 𝑗) − 𝑀𝑃𝑚𝑜𝑛(𝑖, 𝑗),  (3) 608 

 𝐷𝑅𝑃𝑒𝑣𝑒𝑛𝑡(𝑖, 𝑗) = ∑ 𝐷𝑅𝑃𝑚𝑜𝑛
𝐷𝐷
𝑚=1 (𝑖, 𝑗),  (4) 609 

where 𝐷𝑅𝑃𝑚𝑜𝑛(𝑖, 𝑗) is the drought-related reduction in vegetation productivity (i.e., GPP or 610 

NPP), 𝐸𝑃𝑚𝑜𝑛(𝑖, 𝑗) is the expected productivity, and 𝑀𝑃𝑚𝑜𝑛(𝑖, 𝑗) is the modeled productivity 611 

for a specific drought month 𝑚𝑜𝑛 in a pixel at longitude 𝑖 and latitude 𝑗; 𝐷𝑅𝑃𝑒𝑣𝑒𝑛𝑡(𝑖, 𝑗) is the 612 

total reduction during a drought episode, and 𝐷𝐷 is the duration of a drought event. 613 

To quantify the expected productivity for a given drought month m, a smooth spline 614 

(“smooth.spline” function in the R package) was used to fit a smooth curve over noisy 615 

simulations of GPP and NPP for 𝑚  during the period from 1851 to 2100. This method 616 

minimizes an objective function that considers the goodness of fit and smoothness of the 617 
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curve.27 The difference between the expected and observed productivity for month 𝑚 during 618 

the drought year was defined as 𝐷𝑅𝑃𝑚𝑜𝑛, with positive values indicating a drought reduction 619 

in productivity and negative values indicating the reverse (Equation (2)). Estimation of 620 

𝐷𝑅𝑃𝑚𝑜𝑛 using the smooth spline is described in detail in Figure S1.  621 

For the analysis of temporal global shifts in DRP, we summed 𝐷𝑅𝑃𝑒𝑣𝑒𝑛𝑡(𝑖, 𝑗)  across 622 

drought events and spatial locations for period 𝑝:  623 

𝐷𝑅𝑃𝑔𝑙𝑜𝑏𝑎𝑙(𝑝) = ∑ ∑ ∑ 𝐷𝑅𝑃𝑒𝑣𝑒𝑛𝑡(𝑖, 𝑗, 𝑓)
𝑁𝑓
𝑓=1

𝑁𝑖
𝑖=1

𝑁𝑗
𝑗=1 𝐴(𝑖, 𝑗),      (5) 624 

where N𝑓 is the drought frequency and 𝐴(𝑖, 𝑗) is the area (m2) for the pixel at longitude 𝑖 and 625 

latitude 𝑗 during period 𝑝. 626 

Definition of sensitivity of vegetation productivity to drought 627 

Biological sensitivity is the degree to which a system responds to (or is affected by) climate 628 

change70 and is used as a key parameter to quantify the vulnerability of the ecosystem to a 629 

climate disturbance.71 In our study, the sensitivity of vegetation productivity to drought in a 630 

pixel for a specific period 𝑆𝑒𝑛𝑠𝑝 was defined as the mean reduction in productivity per drought 631 

unit, defined as the product of the frequency, mean duration, and mean intensity: 632 

 𝑆𝑒𝑛𝑠𝑝 =
∑ 𝐷𝑅𝑃𝑒𝑣𝑒𝑛𝑡(𝑖,𝑗,𝑓)
𝑁𝑓
𝑓=1

𝑁𝑓×𝐷×𝐼
, (6) 633 

where 𝑁𝑓, 𝐷, and 𝐼 represent the drought frequency, mean drought duration, and mean drought 634 

intensity, respectively, in a pixel at longitude 𝑖 and latitude 𝑗 during period 𝑝. 635 

Statistical Analysis 636 

We tested for differences at a specific pixel at longitude 𝑖 and latitude 𝑗 in the mean drought 637 

frequency, duration, and intensity and drought-related reduction in GPP (NPP) between future 638 

periods (2076−2100) and the historical baseline period (1851–2000) by using the Welch two-639 

sample t-test at p < 0.01. Temporal trends in mean drought sensitivity were calculated by using 640 
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the nonparametric Theil–Sen estimator, and pixels in which there were shifts in trend (p < 0.01) 641 

were identified by using the Mann–Kendall trend test. The dependence of drought-related 642 

reduction in GPP (NPP) on climate gradients was tested by a Pearson correlation analysis of 643 

annual mean root-zone soil moisture and transpiration (r(SM, trans)), where positive values 644 

indicate water-limited conditions and negative values represent energy-limited conditions.24,72 645 
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Figure legends 871 

Figure 1. Temporal changes in SPEI-based (SPEI_PET-RC) drought characteristics from 1851 872 

to 2100 under the SSP5-8.5 (A–D) and SSP1-2.6 (E–H) climate scenarios comprising changes 873 

in drought frequency (A, E), mean drought intensity (B, F), mean drought duration (C, G), and 874 

mean longest drought duration (D, H). The solid red line represents the overall multi model 875 

mean, and the shading represents the mean ± SD. 876 

Figure 2. Spatial patterns of mean changes in drought characteristics, based on SPEI_PET-RC, 877 

between future (2076–2100) and historical (1851–2000) periods under the SSP5-8.5 (A, C, E) 878 

and SSP1-2.6 (B, D, F) climate scenarios. The stippling denotes regions with changes in mean 879 

drought at p < 0.05. The insets in A, C, and E represent frequency distributions of mean changes 880 

in drought frequency, intensity, and duration, respectively, under the SSP5-8.5 (red line) and 881 

SSP1-2.6 (blue line) climate scenarios; vertical lines represent average values. The insets in B, 882 

D, and F show proportions (%) of areas with increases (*+) or decreases (*−) in drought 883 

frequency, intensity, and duration, respectively, under the SSP5-8.5 (red bar) and SSP1-2.6 884 

(blue bar) climate scenarios at p < 0.05. 885 

Figure 3. Temporal changes in the drought-related reduction in vegetation productivity, based 886 

on the SPEI_PET-RC, during period from 1851 to 2100 under the SSP5-8.5 (A, B) and SSP1-887 

2.6 (C, D) climate scenarios: drought-related reduction in GPP (A, C) and drought-related 888 

reduction in NPP (B, D). The solid red line represents overall multi-model means, and the 889 

shading represents the mean ± SD.  890 

Figure 4. Spatial patterns of mean changes in the drought-related reduction in GPP (A, D) and 891 

NPP (B, E) between future (2076–2100) and historical (1851–2000) periods under the SSP5-892 

8.5 (A, B) and SSP1-2.6 (D, E) climate scenarios. The stippling indicates regions with mean 893 

changes in drought-related GPP and NPP reduction at p < 0.05. (C, F) Latitudinal comparison 894 

of mean changes in drought-related reduction in GPP (red) and NPP (blue); the solid line 895 
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indicates means, and the shading represents the SD. 896 

Figure 5. Dependence of changes in the drought-related reduction in vegetation productivity 897 

on climate and vegetation gradients. Boxplots of mean changes in drought-related reduction in 898 

GPP (tomato boxes) and NPP (orange boxes) across cor(SM, trans) gradients (A); *+, +, −, and 899 

*− for significant (p < 0.05) positive, positive, negative, and significant (p < 0.05) negative 900 

values, respectively, where positive values indicate water-limited transpiration and negative 901 

values reflect energy limitation. Boxplots of mean changes in the drought-related reduction in 902 

GPP (tomato boxes) and NPP (orange boxes) across aridity gradients (B), biome types (C), and 903 

plant functional types (D). 904 

Figure 6. Global mean relative changes in precipitation (Pre), transpiration (Tran), actual 905 

evapotranspiration (ET), vapor pressure deficit (VPD), potential evapotranspiration (PET), and 906 

water use efficiency (WUE), and annual mean values changes in the Standardized Precipitation 907 

Evapotranspiration Index (SPEI) between last 25 years with the first 25 years under the FULL, 908 

CO2phy, and CO2rad simulations (A). Spatial patterns of mean changes in the drought-related 909 

reduction in GPP between last 25 years with the first 25 years under the FULL (B), CO2phy 910 

(C), and CO2rad (D) simulations.  911 
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