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Metagenomic Insight into The Global Dissemination of The
Antibiotic Resistome

Qi Zhang, Nuohan Xu, Chaotang Lei, Bingfeng Chen, Tingzhang Wang, Yunting Ma,
Tao Lu, Josep Penuelas, Michael Gillings, Yong-Guan Zhu, Zhengwei Fu,
and Haifeng Qian*

The global crisis in antimicrobial resistance continues to grow. Estimating the
risks of antibiotic resistance transmission across habitats is hindered by the
lack of data on mobility and habitat-specificity. Metagenomic samples of 6092
are analyzed to delineate the unique core resistomes from human feces and
seven other habitats. This is found that most resistance genes (≈85%) are
transmitted between external habitats and human feces. This suggests that
human feces are broadly representative of the global resistome and are
potentially a hub for accumulating and disseminating resistance genes. The
analysis found that resistance genes with ancient horizontal gene transfer
(HGT) events have a higher efficiency of transfer across habitats, suggesting
that HGT may be the main driver for forming unique but partly shared
resistomes in all habitats. Importantly, the human fecal resistome is
historically different and influenced by HGT and age. The most important
routes of cross-transmission of resistance are from the atmosphere,
buildings, and animals to humans. These habitats should receive more
attention for future prevention of antimicrobial resistance. The study will
disentangle transmission routes of resistance genes between humans and
other habitats in a One Health framework and can identify strategies for
controlling the ongoing dissemination and antibiotic resistance.
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1. Introduction

Antimicrobial resistance jeopardizes the
management of infectious diseases and has
emerged as one of the leading public-health
crises of the 21st century. An estimated five
million deaths were associated with bacte-
rial antibiotic resistance in 2019,[1] which is
expected to increase to 10 million deaths per
year by 2050, costing up to US$100 trillion
globally.[2]

Commensal bacteria in the human gut
comprise a complex and highly dense
polymicrobial community known to be
a reservoir of antibiotic-resistance genes
(ARGs), collectively known as the human
resistome.[3] The human resistome is dy-
namic, with its diversity and abundance af-
fected by geography,[4] age,[5] body state,[6]

and living environment.[7] How and when
the global human-gut resistome was as-
sembled, and what factors led to interindi-
vidual variation, however, are unclear. We
do know that resistance genes are ancient,
originating long before the antibiotic era.[8]
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ARGs of both clinical and agricultural importance have been
found in remote environments with minimal anthropogenic im-
pacts, such as the beta-lactam and tetracycline resistance genes
that were detected in 30, 000-year-old permafrost,[8] isolated
caves,[9] Alaskan soils[10] and glaciers.[11] Recently, a survey of
metagenomic data revealed that many ARGs can be detected in
different habitats, such as beta-lactam resistance genes, which
were widespread across human and environmental habitats.[12]

The connections between humans, animals, plants and environ-
ments, highlighted in the One Health framework, clearly provide
mechanisms for the ancient resistome to colonize the human
microbiota.[13]

Various routes for the transmission of resistance genes to
humans from other habitats have been demonstrated, such
as aquatic-human transmission from recreational swimming,
surfing and aquatic products,[13] and from soil via agricultural
products.[14] Understanding transmission routes between hu-
mans and other habitats is essential for controlling and inhibit-
ing the dissemination of resistance genes. Assessing and com-
paring the risk of cross-transmission between humans and dif-
ferent habitats, however, is difficult.

Horizontal gene transfer (HGT) of resistance genes is among
the most important mechanisms of dissemination[15] and could
help us understand the characteristics and risks of the resistome
under a One-Health framework.[16] Phylogenetic and ecologi-
cal diversity are crucial barriers to limiting the horizontal trans-
mission of antimicrobial resistance between humans and other
habitats.[17] ARGs could benefit if they can overcome these bar-
riers to HGT, as do their potential recipients.[18,19] Understand-
ing the HGT efficiency of ARGs when overcoming such barriers
would be a key step toward assessing and controlling the risk of
resistance.

The rapid development of high-throughput sequencing tech-
nology and bioinformatics provides unprecedented opportunities
to study the characteristics of global resistome.[20] We used 3018
and 20 data sets of modern and ancient fecal metagenomes, re-
spectively, to catalog the genes and potential driving factors that
assembled the human core resistome. We then collected metage-
nomic data sets for seven external habitats to investigate the com-
monalities and differences between humans and external habi-
tats’ resistome (Figure S1, Supporting Information). Finally, we
catalogued the global shared resistome and used 10274 bacterial
genomes isolated from human feces and external habitats to con-
struct a global exchange network of ARGs. These data will inform
risk assessments for resistance in a One Health framework and
could identify strategies for controlling the ongoing dissemina-
tion and antibiotic resistance.

2. Results

2.1. Historical Variation in the Human Fecal Resistome

We collected a set of metagenomes from 20 samples of palae-
ofeces (1000-2611 years old)[21–23] and 3018 samples of modern-
human feces (ages from 0 to 90 years, uploaded to public
databases from 2004 to 2018) from 23 countries across five conti-
nents (Table S1, Supporting Information). Principal coordinate
analysis (PCoA) with Bray-Curtis dissimilarity showed that re-
sistomes from paleofeces were clearly separated from modern-

human feces (n = 768, healthy adults) (Adonis analysis, adjust p
< 0.05; Figure S2A, Supporting Information). The paleofeces re-
sistome was closest to Fiji (Figure S2B, Supporting Information),
resulting from higher source contributions in paleofeces resis-
tome to these countries by using fast expectation-maximization
for microbial source tracking (FEAST) (Figure S3A, Supporting
Information). An average of 20.11% source contributions of pale-
ofeces resistome to modern humans, of which 486 shared ARGs
mainly conferred multidrug resistance (Figure S3B, Supporting
Information).

Based on the core index (see “Extended methods” section),
we identified a total of 22 core ARGs in modern human feces
(Figure S4, Supporting Information), which mainly conferred re-
sistance to tetracyclines and beta-lactams. The prevalence of the
core ARGs of modern humans was relatively low in paleofeces
(Figure 1A), whereas nucleoside antibiotic and acridine dye resis-
tance genes dominated the paleofecal resistome (Figure 1B,C).
This finding further highlighted the historical variation in hu-
man fecal resistome.

2.2. Factors in Driving the Variation of Human Core Resistome

The peak of the distribution of some core ARGs was distinctly
lower than the medians of the country (Figure S4, Supporting In-
formation), implying that the core resistome of modern humans
presents obvious geographical differences (Figure S5, Support-
ing Information). We developed machine-learning random forest
regression models[24] to identify the main factors that formed the
core resistome in the human gut (n = 3018, factors see Table S2,
Supporting Information). We selected the model with the high-
est accuracy rate (70%) for calculating the importance of 14 op-
timal factors (variance inflation factor < 5) in accounting for the
core resistome (Figure S6, Supporting Information), and found
that age was the most important factor with a 19.78% explanation
rate (Figure 1D). PCoA showed that the pattern of core resistome
gradually changed with age (Adonis analysis, R2 = 0.086, adjust p
< 0.05; Figure S7A, Supporting Information), in which infant and
elder exhibited significant differences from adult (Adonis analy-
sis, infant and adult: R2 = 0.086, adjust p < 0.05; elder and adult:
R2 = 0.122, adjust p< 0.05, Figure S7B, Supporting Information).

2.3. Variation of the Core Resistome Across All Habitats

To gain insight into the role of habitats from a One Health per-
spective, we compiled a data set of 3562 metagenomic samples
(Table S3, Supporting Information) and identified 2556 ARGs
(Table S4, Supporting Information) from eight types of habi-
tats (Figure 2A). Buildings and plants harbored higher diver-
sity (Shannon index) of resistome compared with other habitats
(Figure S8A, Supporting Information). PCoA clearly separated
the patterns of resistomes between human feces and other habi-
tats (Adonis analysis, adjust p < 0.01; Figure 2B). Adonis analy-
sis indicated that the structure of resistome in the air habitat was
the most similar of all environmental habitats to human feces,
and the variations of resistomes between habitats were consis-
tent with their ecological relationships (Figure S8B, Supporting
Information), for example, the plant resistome was similar to the
terrestrial resistome.
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Figure 1. Historical variation and driving factor of human fecal core resistomes. A) We collected metagenomic data from palaeofeces (n = 20) and
modern-human feces (n = 3018), and found that the prevalence of modern-human fecal core ARGs was extremely low in palaeofeces. B) and C) The
dominant ARGs in palaeofeces (>1 abundance (reads per kilobase per million mapped reads, RPKM) and >60% frequency), and the associated classifi-
cation. A&A, aminoglycoside and aminocoumarin antibiotic; N&A, nucleoside antibiotic and acridine dye. D) Machine learning with the random-forest
algorithm was used to determine the importance of optimal factors (VIFs < 5) driving the core resistomes. Age was the most important factor to drive
the core resistomes in modern human feces. GNI, gross national income; VIFs: variance inflation factors.

We identified 7, 36, 34, 44, 8, 48, and 20 core ARGs from the air,
aquatic, building, plant, invertebrate, terrestrial and vertebrate
microbiomes (Figure S9,Supporting Information), respectively.
The categories of ARGs vary in different habitats (Figure 2C).
For instance, aquatic, building, plant and terrestrial habitats har-
bored core ARGs conferring multidrug resistance, and the core
resistome of vertebrates was mainly classified into tetracycline,
similar to that in human feces. The human fecal core resistome
overlapped little with other habitats (Figure 2D), and their shared
network showed a habitat specificity (Figure S10, Supporting In-
formation), further implying that the core resistome of different
habitats might reflect unique features.

2.4. Resistome Elements Shared Between Human Feces and
Various Habitats

About 28% of the ARGs detected in the shared resistome network
were shared across all habitats (n= 3562), and all ARGs in human
feces were detected in other habitats (Figure 3A). These shared
ARGs mainly conferred multidrug and beta-lactams resistance
(Figure S11, Supporting Information). The category of shared ele-
ments differed between habitats (Figure 3B). FEAST estimations

showed an average of 85% source contribution of human fecal re-
sistome to every other habitat (Figure 3C; Figure S12, Supporting
Information). The classification of shared ARGs was almost com-
pletely similar between human feces and other habitats, while the
abundance of these elements between human and other habitats
varied considerably (Figure 3D). Although vertebrates and build-
ings had the highest abundance of shared resistomes, air had the
highest abundance of high-risk ARGs, significantly higher than
the other environmental habitats (aquatic and terrestrial habitats)
(Kruskal-Wallis test, adjust p < 0.05; Figure 3E).

2.5. Identification of ARG Hosts from Human Feces

Microbiomes determine the variation in resistomes and the
risk of antimicrobial resistance.[25] Based on our framework for
identifying ARG hosts,[26] we identified 332640 ARGs from the
human-gut metagenome-assembled genomes (MAGs) associ-
ated with microbes (n = 177134) recovered by Almeida et al.[27]

A total of 38630 MAGs were identified as ARG hosts (including
720 species from 72 families) (Table S5, Supporting Information)
(see Figure 4A for their taxonomy). Clostridia, Gammaproteobacte-
ria, Bacilli and Bacteroidetes were the main ARG hosts in human
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Figure 2. Variation of the core resistome across all habitats. A) We collected 3562 metagenomic datasets from the air (413), aquatic (471), buildings (508),
invertebrate (404), plant (346), terrestrial (493), vertebrate, (419) and human feces (508). B) Principal coordinate analysis with Bray-Curtis dissimilarity
and Adonis analysis showed that the pattern of resistomes from different habitats is clearly separated from human feces. Red and blue circles indicate
human feces and other habitats, respectively. C) The classification of the core resistome from different external habitats. D) Sharded and unique core
ARGs between human feces and other habitat samples.

feces, especially Enterobacteriaceae and Pseudomonadaceae in the
Gammaproteobacteria. These taxa are the most lethal antibiotic-
resistant bacteria (https://www.who.int/). Potentially high-risk
ARG hosts were also detected, such as Hafniaceae, Moraxellaceae
and Yersiniaceae. We found 57 new ARG hosts by Blasting 145783
bacterial genomes collected from the database of the National
Center for Biotechnology Information isolated from all habitats
based on the above lists of ARG hosts (Table S6, Supporting
Information). These data enriched the database of potentially
antibiotic-resistant bacteria.

2.6. Habitat Filtering for ARG Hosts

PCoA with Bray-Curits dissimilarity showed that the patterns
of human feces were significantly separated from those of the

seven other habitats, respectively (Adonis analysis, adjust p <

0.05; Figure 4B). These metrics were generally higher in the
microbiomes from air, buildings and vertebrates (Figure S13,
Supporting Information). Based on the database of Pathogen
Host Interactions and the list of antibiotic-resistant “priority
pathogens” from the WHO, we further defined the pathogenic
ARG hosts as: Priority 1-CRITICAL, Priority 2-HIGH, Prior-
ity 3-MEDIUM, and other human pathogens. The vertebrate
and building habitats contained more-abundant CRITICAL
priority pathogens, and the air and invertebrate habitats
contained the highest abundances of HIGH and MEDIUM
priorities, respectively (Figure 4C). This finding indicated that
the vertebrate, building, air, and invertebrate habitats pose
serious threats to human health, because they harbor more-
abundance priority antibiotic-resistant bacteria than do other
habitats.
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Figure 3. Shared pattern of resistomes across human feces and the other habitats. A) Network of resistomes shared between human feces and the
external habitats (air, terrestrial habitats, aquatic habitats, buildings, invertebrates, vertebrates and plants). A total of 708 ARGs were shared among all
habitats, and human feces had no unique ARGs. B) The abundance (RPKM) of shared ARGs varied considerably across habitats. C) Fast expectation-
maximization for microbial source tracking (FEAST) estimating the source contribution of human fecal resistome to the different habitats. These shared
ARGs mainly conferred beta-lactams resistance; most of the ARGs (≈85%) in other habitats were sourced from human fecal resistome. D) The total
abundance of shared ARGs in human feces and the other habitats. E) The antibiotic resistance risk of samples from various habitats. Different letters
represent significant differences between habitats (Kruskal-Wallis test, adjust p < 0.05).

2.7. The pattern of Dissemination of Resistomes Across Human
Feces and other Habitats

To examine the transmission of ARGs between the environment
and humans, we collected 10274 genomes of specific bacteria iso-
lated from human feces and seven habitats based on the list of
ARG hosts identified from the database of the National Center
for Biotechnology Information (Table S7, Supporting Informa-
tion). These genome data had obvious geographical differences,
but using them was still an effective and convenient approach to
studying the evolution of global species.[28] We then constructed
an ARG exchange network, with a total of 5, 555, 932 HGTs with
2, 084, 607 genomic pairs (Figure 5A). Almost half of the used
ARGs (n = 400) were transferable (Figure 5B), mainly ARGs
that conferred resistance to multidrug and beta-lactam antibiotics
(Figure S14A, Supporting Information). These ARGs were asso-
ciated with more types of mobile genetic elements (within 5 kb
upstream and downstream of the ARG) than non-transferable
ARGs across the various habitats (Figure S14B, Supporting In-
formation). We calculated the efficiency of transfer of each trans-
ferable ARG within and between species in various habitats and

found that HGT efficiency was significantly higher within than
between species (Figure 5C,D).

Most ARGs could be transferred between species across habi-
tats and some unique ARGs are only transferred horizontally be-
tween species within human feces (Figure S15, Supporting Infor-
mation). HGT efficiency between species was higher for the ter-
restrial and vertebrate habitats than for human feces. Because the
terrestrial habitats harbor the most diverse and complex micro-
biome on Earth,[28] intensive species interaction increases HGT
of ARGs between soil microbes. The high consumption of antibi-
otics in animal husbandry provides continuous selection for the
vertebrate microbiome to promote ARG enrichment and dissem-
ination.

2.8. HGT Efficiency and Evolution of Shared ARGs in Various
Cross-transmission Routes

We selected the most common species of antibiotic-resistant bac-
teria, E. coli, which had the highest frequency of isolation in all
habitats (n = 2090, HGT count = 685414; Table S8, Supporting
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 21983844, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202303925 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [24/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.advancedscience.com

Figure 4. Habitat filtering for the ARG hosts. A) Phylogenetic taxonomic network of ARG hosts in human feces. A total of 720 ARG hosts (species level)
were identified based on the 177134 metagenome-assembled genomes (MAGs) of the human fecal microbiome collected from 33 countries across six
continents compiled by Almeida et al45. The color and size of the circles indicate the taxonomic level and ARG numbers (per species), respectively, and
the width of the lines indicates the richness of the taxonomic levels. Clostridia, Gammaproteobacteria, Bacilli, and Bacteroidetes were the main ARG hosts
in human feces. B) Principal coordinate analysis with Bray-Curtis dissimilarity showed the variation pattern of ARG hosts between human feces and
other habitats. Adonis analysis indicates the ARG hosts from each habitat were significantly separated from human feces (“*”, adjust p < 0.05). C) The
relative abundance of the pathogenic ARG hosts from human feces in the other habitats. Based on the database of Pathogen Host Interactions and
the list of antibiotic-resistant “priority pathogens” (World Health Organization), we defined the pathogenic ARG hosts as R1 (Priority 1: CRITICAL), R2
(Priority 2: HIGH), R2 (Priority 3: MEDIUM), and Rn (other human pathogens). Different letters represent significant differences between the relative
abundance (Kruskal-Wallis test, adjust p < 0.05).

Information). The HGT efficiency within E. coli strains was
higher in air (9.15%), invertebrates (16.94%), and plants (6.48%)
than in human feces (4.54±0.3%) (Figure 5E). The average num-
ber of single nucleotide polymorphisms (SNPs) of transferable
ARGs in genomic pairs was lower in the cross-transmission
routes between human feces and air, invertebrates and plants,
supporting the above result (Figure 5F, Table S9, Supporting In-
formation). The number of SNPs transferred per ARG was pos-
itively associated with HGT efficiency, especially in the cross-
transmission routes between human feces and air and inver-
tebrates (Ordinary least squares linear regression analysis, air-:
R2 = 0.747, adjust p < 0.0001; plant-: R2 = 0.115, adjust p < 0.05;
Figure S16, Supporting Information), implying that transferable
ARGs participating in an earlier HGT had a stronger potential
for transmission across human and other habitats.

The efficiency of transfer of transferable ARGs within E. coli
strains from cross-transmission routes was diverse (Figure S17A,
Supporting Information), e.g. the efficiency of transfer of

peptide-resistance genes was higher in the cross-transmission
routes between human feces and invertebrates and plants, and
the efficiencies of transfer of the aminocoumarin-resistance
genes were higher in the cross-transmission routes between
human feces and aquatic habitats, terrestrial habitats and
buildings- (Figure S17B, Supporting Information). Multidrug-
resistance genes had the highest HGT efficiency across all cross-
transmission routes.

3. Discussion

ARGs are found in all microbial genomes,[8] representing a
cluster of functions that have been co-opted to produce resis-
tant phenotypes.[29] Understanding these resistance genes and
their transmission is a critical link in the One Health frame-
work for addressing the antibiotic crisis. The presence of ARGs
in the microbiome often may not increase their survivability
in the environment without the selection pressure provided by
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Figure 5. Pattern of dissemination of resistomes across human feces and the other habitats. A) Based on the list of 720 ARG hosts from human
feces, we collected 10 274 bacterial genomes from the various habitats based on the database of the National Center for Biotechnology Information to
construct the ARG exchange network with the global shared resistome (n = 400). We used Blast hits with 100% similarity and lengths >500 bp. B) We
obtained 5555932 horizontal gene transfers (HGTs), including 2, 088998 genomic pairs, and 191/414 transferable ARGs. C) The proportions of HGT
efficiency between and within species in the various habitats. D) The rate of detection of ARGs between and within species in the various habitats. E) We
collected 2090 E. coli genomes to calculate the efficiency of transfer within species across the external habitats and human feces (See “Method”). The
cross-transmission routes between human feces and air, invertebrates and plants had higher HGT efficiencies within E. coli strains than within human
feces; the efficiency of transfer within E. coli was higher in invertebrates and plants than the other external habitats. F) The number of single nucleotide
polymorphisms (SNPs) for each transferable ARG in different routes of transmission. The average number of SNPs for transferable ARGs in genomic
pairs from cross-transmission routes between human feces and air, invertebrates and plants was lower than for the other habitats.

antibiotics.[28] Such genes are unlikely to perform their original
functions when they are in a new genomic background.[13]

Only ARGs spread to the human microbiome cause serious
health risks. Humans are thus a key factor in the One Health
framework for understanding the global resistome. ARGs and as-
sociated bacterial hosts often cross habitat boundaries,[11] so the
resistomes from these habitats (environmental, buildings, ani-
mal and plant), have been considered as a primary source or sink
of the clinical resistome.[30]

We annotated 6092 metagenomic samples from palaeofeces,
modern-human feces, and seven other habitats to identify ARGs
and gain a view of the historical variation and dissemination of
the human fecal resistome across habitats. The resistome struc-
ture of external habitats differed significantly from the human fe-

cal resistome, likely driven by biotic and abiotic factors in the var-
ious habitats.[31] We subsequently identified a unique core resis-
tome of human feces, which was extremely different from those
in the other habitats, likely due to combinations of microbial pop-
ulation structure, the horizontal acquisition of resistance genes
and ongoing selection by antimicrobial agents. For example, we
found that the main bacterial hosts of the ARGs varied dramati-
cally across habitats (Figure S18, Supporting Information).

Most of the ARGs (≈85%) from each habitat, however, were
transmitted with the human fecal resistome, indicating that hu-
man feces are now a hub of the global resistome. This de-
velopment was not an accident, because modern human ac-
tivity disseminates microbes on a global scale,[32] intensifying
the potential for transmitting ARGs between humans and other

Adv. Sci. 2023, 2303925 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2303925 (7 of 11)
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habitats. Meanwhile, the efficiency of the horizontal transfer of
ARGs between E. coli strains was significantly higher in cross-
transmission routes between human feces and air, invertebrates
and plants than within human feces, potentially associated with
the recency of HGTs within E. coli strains. Some ARG hosts that
frequently emerge in human and other habitats can also fre-
quently transmit across habitats after phylogenetic barriers are
overcome, further highlighting human feces as a hub of ARG ac-
cumulation. We used molecular clocks to determine that ARGs
with earlier HGTs had higher efficiencies of transmission across
habitats, highlighting their importance for linking the modern
global antibiotic resistome. These genes should be added to the
list of ARGs with the highest health risk.

Most importantly, the human fecal resistome has been formed
by recent ARG transmissions across habitats, indicated by the
significant differences between the palaeofecal and modern sam-
ples, with the palaeofeces harbored more multidrug ARGs. Al-
though the palaeofecal samples were limited in number and do
not fully represent the global ancient human resistome, never-
theless they still generated useful insights, despite the sampling
and technical limitations. The machine-learning analysis indi-
cated that the core ARGs were mainly driven by age, diet and
enterotype. Paying more attention to the antibiotic resistance in
early life might be important,[33] and dietary modifications may
be an effective strategy for managing the burden of antimicrobial
resistance.

Managing antimicrobial resistance has also been focused on
the risk of transmission across the external environment and hu-
man feces.[30] Our results showed that the built habitat, especially
sewage treatment plants and subways, contained a higher abun-
dance of ARGs and pathogens, presenting a higher health risk to
humans. Consequently, vertebrate and built habitats constitute a
significant reservoir of ARGs and antibiotic resistance bacteria.
We thus urge health protection in built environments, and hy-
gienic contact with farmed animals or pets.[34] Interestingly, the
HGT efficiency of ARGs between humans and invertebrates was
373% of that within the human habitat, but the risk of antimi-
crobial resistance in invertebrates continues to be rarely studied.
Many invertebrates are favored foods by humans worldwide, es-
pecially raw food that could be able to direct contact with humans,
posing a serious risk of resistance. Most importantly, we found
that the air habitat not only harbored the most abundant high-risk
ARGs and contained more abundant priority antibiotic-resistant
pathogens,[35] but also had a high HGT efficiency of ARGs cross-
transmission. This may be due to air being an ecosystem capable
of long-distance transport and with direct exposure to humans
in any region.[35] We thus stress that these cross-transmission
routes are of greater concern in the future, and some control
management should be highlighted, such as enhancing people’s
awareness of protection in polluted areas or cities and strength-
ening the safety of raw food.

4. Conclusion

Systematically studying the resistome in specific regions under a
One Health framework is necessary. Metagenomic sample collec-
tion, storage, transportation, DNA extraction, sequencing meth-
ods, and sequencing depth from different independent studies

all lead to analysis biases in investigating global resistome. In
this study, we carried out detailed sample information collection,
built strict filtering sample standards, and controlled the data
quality strictly, to alleviate the impact of the data deviation. De-
spite the data being heterogeneous, our study is nevertheless the
most comprehensive study to date focusing on the human fecal
resistome under a One Health approach (Figure 6), and provides
clear analytical and research perspectives for future studies. We
developed a new study framework of the antibiotic resistome un-
der a One-Health perspective and demonstrated that widespread
use of antimicrobial agents might have co-opted antibiotic resis-
tance genes from various environments into the modern human
microbiome, where they have been fixed and have increased in
abundance. Monitoring the formation of the human resistome
in early life, and controlling air and animal cross-transmission
routes of antibiotic resistance can contribute to the context of
WHO-identified targets of antibiotic resistance prevention.

5. Experimental Section
Data Collection: Data sets of metagenomes, metagenome-assembled

genomes (MAGs) and completed genomes was used to evaluate the
variation between the character and structure of resistomes in humans
and other habitats and to depict their system of dissemination by
HGT. Metagenomic datasets available across the NCBI, EBI and other
databases, and downloaded 6092 metagenomic samples using IBM As-
pera Connect (v4.1.1) for determining the structure and abundance of
ARGs across paleofeces, modern-human feces (from 23 countries on five
continents) and other habitats, including buildings, environment (air, ter-
restrial and aquatic habitats), animals (invertebrates and vertebrates) and
plants were comprehensively searched. To maintain quantitative balance
and representativeness of metagenomic data from different habitats, the
data were strictly filtered according to the following standards: 1) Ensuring
the public availability of metagenomic samples. 2) Making the sample size
of each habitat the same order of magnitude; 3) Keeping the number of
independent studies equal; 4) Maintaining a uniform distribution of sam-
ples at spatial scales; 5) Obtaining more types of sub-habitats from each
habitat. 6) Selecting fecal samples of healthy adults that were associated
with metadata.

MAGs of 37431 and 177134 were downloaded from the IMG/M por-
tal with the permission of Nayfach et al[27] and Almeida et al,[26] respec-
tively. To delineate the HGT network and the evolutionary age of the global
shared resistome (n = 400), the genomes of specific bacteria was down-
loaded isolated from human feces (n = 5912), air (n = 99), terrestrial habi-
tats (n = 861), aquatic habitats (n = 631), buildings (n = 1178), inverte-
brates (n= 140), vertebrates (n= 813) and plants (n= 640) from the NCBI
database based on the species lists of ARG hosts (identified from human
feces). An index of the human-health risk and the rank of each ARG was
calculated from the previous study.[36] Detailed information for these data
sets were provided in Figure S1 and Tables S1 and S2 (Supporting Infor-
mation).

Taxonomic Annotation and Calculation of ARG Abundance: FastQC
(v0.11.5; https://github.com/s-andrews/FastQC) was used to check the
quality of the raw metagenomic data that were further trimmed and fil-
tered for quality using Trimmomatic (v0.36).[37] ARGs were annotated in
the Comprehensive Antibiotic Research Database (CARD 2020)[38] using
reads by RGI (v5.1.1) with default parameters at the metagenomic level.
Reads were mapped to the ARGs in each sample using BWA (v0.7.13), and
unmapped reads were removed using Samtools (v1.3.1).[39] The abun-
dances of the ARGs were calculated as reads per kilobase per million
mapped reads, based on the number of mapped reads and the lengths
of genes using a script available at GitHub (see “Code availability”). The
ARGs were manually reclassified based on the drugs to which they con-
ferred resistance, as detailed in the previous study.[12]
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Figure 6. Overview of this study. We collected three datasets including metagenomics (n = 8061), metagenome-assembled genomes (MAGs, n =
177134) and bacterial genomes (n = 10274) from paleofeces, modern-human feces, buildings, air, aquatic, and terrestrial, plants, vertebrates and
invertebrates. First, we determined the historical and habitat variations of human fecal resistome, identified core resistome from various habitats and
quantified the ARGs risk of different habitats by using a metagenomic dataset. Second, we identified the ARG host (n= 720) in human feces by using MAG
datasets and evaluated their risk in various habitats. Finally, we calculated the HGT efficiency of ARGs (n = 400) across various habitats to determine
the transmission risk by using the bacterial genomes. The ongoing process of acquiring genes by HGT has overcome and altered the ecological and
phylogenetic barriers to such horizontal transfers, probably by the co-selection of promiscuous mobile genetic elements that carry resistance genes as
cargo.

Calculation of ARG HGT Efficiencies: To determine the HGT potential
of each ARG in more detail, the absolute number of distinct Blast hits were
considered between two genomes and the total number of possible pair-
ings of each ARG in genomic pairs for calculating the efficiency of transfer
of each transferable ARG within and between species. The number of pos-
sible pairings within species in the same habitat (SWithin) was calculated
as:

SWithin =
∑n

i=1
(ni − 1) +

(ni − 1) × (ni − 2)

2
(1)

where ni was the number of genomes of the same species in the same
habitat.

The number of all possible pairings in the same habitat (SAll) was cal-
culated as:

SAll = (N − 1) +
(N − 1) × (N − 2)

2
(2)

where N was the number of genomes of the same species.
The efficiency of transfer of transferable ARGs between species in the

same habitat (ESBetween) was calculated as:

ESBetween =
HTR

(SAll − SWithin)
× A (3)

where HTR and A were the number of HGTs between species and the num-
ber of transferable ARGs in the same habitat, respectively.

The efficiency of transfer of transferable ARGs within species in the
same habitat (ESWithin) was calculated as:

ESWithin =
HTR

SWithin
× A (4)

where HTR and A were the numbers of HGTs between species and the
number of transferable ARGs in the same habitat, respectively.

The efficiencies of transfer of transferable ARGs within (ETWithin) and
between (ETBetween) species across routes of transmission were calculated
as:

ETWithin =
HWithin

h × f
× B (5)

ETBetween =
HBetween

h × f
× B (6)

where HWithin and HBetween were the numbers of HGTs within and between
species across routes of transmission, respectively, h and f were the num-
bers of genomes in habitats and human feces, respectively, and B was the
number of transferable ARGs across routes of transmission.
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Identification of Core Resistomes from Microbiomes Based on The Analysis
of Metadata: Unlike the traditional identification of core members in mi-
crobial communities, a method that simultaneously considered the abun-
dance, prevalence and rate of detection (from all independent studies)
of members (including functional groups and microbiomes) in a specific
habitat for quantifying their core potentials based on the previous study
was developed.[40] This process considered the detection rate and abun-
dance of ARGs in specific habitats or communities. The detection rate was
considered for all independent experiments in the metadata, making the
identification of a core resistome for the specific habitats more universal.

Indicators for membership of the core resistome for each ARG in each
habitat were based on the frequency and relative abundance from all
metagenomic samples and the rate of detection from all independent
studies (≥50% ARGs detected in each study). All indicator values were
normalized to avoid the effects of weighting the original numerical values
for calculating the core index (CI) of each ARG in the various habitats:

CIi = RAi ×
Fi × fi(>50%)

Ni × ni
(7)

where RAi and Fi were the relative abundance (averages) and the number
of ARGs from all samples in habitat i, respectively, Ni was the number of
samples in habitat i, fi was the number of ARGs with frequencies >50% in
habitat i in each independent study and ni was the number of independent
studies of habitat i. Considering the heterogeneity and sequencing depth
limitations of metadata analysis, the RA > 1%, F/N > 60% and f/n > 60%
(CI > 0.1) were set as the screening threshold for core resistome. More-
over, when using this formula with CI > 0.1, F/N > 60% should be ensured
at the same time to avoid uneven sample numbers of different indepen-
dent experiments in metadata.

Identification and Pathogenic Classification of ARG Hosts Based On The
Analysis of MAGs: MAGs of 177134 associated with the human-gut mi-
crobiota in CARD 2020,[38] 89256 of which were used for detecting ARGs
were annotated. The MAGs and ARG contigs were taxonomically as-
signed using Kraken2 (v2.1.2)[36] with the default parameters based on
the National Center for Biotechnology Information Reference Sequence
Database; ARG contigs >10 kb and ensured that their taxonomic affilia-
tion coincided with that of the ARG-containing MAGs. were considered.[12]

This method removes some false-negative ARG-host information but was
still one of the best methods for identifying ARG hosts based on metage-
nomic data and can accurately identify a large amount of information
about unisolated ARG hosts. A total of 38630 MAGs were identified as
ARG hosts, which were taxonomically classified into 720 species from 72
families.

According to the taxonomic information of the identified ARG hosts
and the Pathogen Host Interactions database[41] and the list of antibiotic-
resistant “priority pathogens” recognized by the World Health Organi-
zation (https://www.who.int/news/item/27-02-2017-who-publishes-list-
of-bacteria-for-which-new-antibiotics-were-urgently-needed), these ARG
hosts were classified into Priority 1-CRITICAL, Priority 2-HIGH, Priority 3-
MEDIUM and other human pathogens.

Number and Ages of HGTs: Blast hits with 100% similarity and lengths
>500 bp was used to identify recent HGTs in the global shared resistome
(ARGs >500 bp, n = 400) between pairs of species.[42] To understand the
efficiency of the transfer of each ARG more systematically between pairs
of genomes, the number of potential pairings between each genome and
gene and the number of HGTs as the number of between-species genomic
pairs that shared at least one HGT of each ARG (500 bp + HGT) was
also considered. the number of SNPs were also calculated for HGT per
ARG between genomic pairs. Assuming a genome size of ≈106 bp and
a molecular clock of one SNP/genome/year, HGTs >500 bp with >99%
similarity was consistent with transfers that occurred between 0 and 10000
years ago.[42]

Statistical Analysis and Visualization: Data were presented as means
± Standard Error of Means. For differences using multiple methods were
tested, as described in the main text. Kolmogorov-Smirnov test was per-
formed in Graphpad Prism 8 and calculated that the different nested

dataset (ARGs and microbial abundance) in various groups do not con-
form to the normal distribution. Mann-Whitney test and Kruskal-Wallis
test were used to pairwise comparisons in two or more groups by per-
forming in Graphpad Prism 8. Linear mixing model and least squares lin-
ear regression were built in SPSS Statistics (v20.0.0) and generated by us-
ing Graphpad Prism 8. Principal co-ordinates analyses and Adonis tests
were performed and calculated using R (v3.6.3), and heatmaps were pro-
duced using TBtools (v1.113) and R (v3.6.3). The network analysis using
Gephi v0.9.2 and Cytoscape v3.8.2. Venn diagrams were generated us-
ing EVenn (http://www.ehbio.com/test/venn; v1.0) were performed. Parti-
tioning around medoids was used to determine the enterotypes based on
Jensen–Shannon divergence[43] (Table S3, Supporting Information). Data
figures were created using Graphpad Prism 8 and R (v3.6.3), and Adobe Il-
lustrator 2020 was used for formatting the figures. All schematic diagrams
and art elements were drawn using BioRender (https://app.biorender.
com/; v1.0) with full publishing rights. Fast expectation–maximization mi-
crobial source tracking (FEAST) was used for estimating the source pro-
portion of human fecal resistome to each habitat and was conducted with
the R package “FEAST” and visualized using Graphpad Prism 8. See sup-
plemental information for details.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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