
This is the **accepted version** of the journal article:

Sardans i Galobart, Jordi; Llusia, Joan; Ogaya Inurriagro, Romà; [et al.].
«Foliar elementome and functional traits relationships identify tree species niche
in French Guiana rainforests». *Ecology*, Vol. 104, issue 11 (Nov. 2023), art.
e4118. DOI 10.1002/ecy.4118

This version is available at <https://ddd.uab.cat/record/284229>

under the terms of the IN COPYRIGHT license

1 **Foliar elementome and functional traits relationships identify tree**
2 **species niche in French Guiana rainforests**

3 Jordi Sardans^{a,b,*}, Joan Llusia^{a,b}, Romà Ogaya^{a,b}, Helen Vallicrosa^{a,b,c}, Iolanda Filella^{a,b},
4 Albert Gargallo-Garriga^{a,b}, Guillermo Peguero^{a,b,d}, Leandro Van Langenhove^e, Lore T.
5 Verryck^e, Clément Stahl^f, Elodie A. Courtois^f, Laëtitia M. Bréchet^{e,f}, Akash Tariq^{g,h},
6 Fanging Zeng^{g,h}, Aldulwahed Fahad Alrefaeiⁱ, Weiqi Wang^{j,k}, Ivan A. Janssens^e, Josep
7 Peñuelas^{a,b}

8 ^a*CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913 Bellaterra, Catalonia, Spain*

9 ^b*CREAF. 08913 Cerdanyola del Vallès, Catalonia, Spain*

10 ^c*Department of Civil and Environmental Engineering, Massachusetts Institute of
11 Technology, Cambridge, MA, USA*

12 ^d*Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de
13 Barcelona, 08028, Barcelona, Spain*

14 ^e*Research Group of Plants and Ecosystems (PLECO), Department of Biology, University
15 of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium*

16 ^f*INRAE, UMR EcoFoG, CNRS, CIRAD, AgroParisTech, Université des Antilles,
17 Université de Guyane, Kourou 97310, France*

18 ^g*State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and
19 Geography, Chinese Academy of Sciences, Urumqi, 830011, China*

20 ^h*Cele National Station of Observation and Research for Desert-Grassland Ecosystems,
21 Cele, 848300, China*

22 ⁱ*Department of Zoology, College of Science, King Saud University, P.O. Box 2455,
23 Riyadh 11451, Saudi Arabia*

24 ^j*Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of
25 Education, Fujian Normal University, Fuzhou, 350007, China*

26 ^k*College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China*

27 *Corresponding author. Email: j.sardans@creaf.uab.cat

28 Open research: Manuscript data will be available in Dryad data base. Dataset titled
29 "Script and results of the Bayesian analyses of environmental and phylogenetic effects
30 of leaf composition" has been reviewed by our curation team and approved for
31 publication. It is publicly accessible via this link:
32 <https://doi.org/doi:10.5061/dryad.2rbnzs7sk>.

33 **Abstract.** Biogeochemical niche hypothesis (BN) aims to relate species/genotype
34 elemental composition with its niche based on the fact that different elements are
35 involved differentially in distinct plant functions. We here test the BN hypothesis
36 through the analysis of the 10 foliar elemental concentrations and 20 functional-
37 morphological of 60 tree species in a French Guiana tropical forest. We observed strong
38 legacy (phylogenetic+species) signals in the species-specific foliar elemental composition
39 (elementome) and, for the first time, provide empirical evidence for a relationship
40 between species-specific foliar elementome and functional traits. Our study thus
41 supports the BN hypothesis and confirms the general niche segregation process through
42 which the species-specific use of bio-elements drives the high levels of α -diversity in
43 this tropical forest. We show that the simple analysis of foliar elementomes may be used
44 to test for BNs of co-occurring species in highly diverse ecosystems, such as tropical
45 rainforests. Although cause and effect mechanisms of leaf functional and morphological
46 traits in species-specific use of bio-elements require confirmation, we posit the
47 hypothesis that divergences in functional-morphological niches and species-specific
48 biogeochemical use are likely to have co-evolved.

49 **Keywords:** Diversity; nitrogen; phosphorus; stoichiometry; foliar elementome; tropical
50 forest; phylogeny; sympatric speciation

51

52

53

54

55

56 **Introduction**

57 Recent studies have examined species' niche space as a function of the use of
58 bioelements, based on the biogeochemical niche (BN) hypothesis which states that

59 species and/or genotypes, which comprise a unique genetic pool of individuals, are a
60 product of long-term evolutionary processes (Peñuelas et al., 2019; Sardans et al., 2021).
61 BN try to incorporate most, if not all, niche parameters using species-specific elemental
62 composition and stoichiometry. BN is based on the underlying assumptions that each
63 species is a unique genetic pool of individuals product of long-term evolutionary
64 processes, so that each species should have a specific morphological structure and
65 functionality (from gene expression to physiological processes). Moreover, all
66 fundamental biological processes (e.g, growth, secondary metabolism, reproduction and
67 storage) and structures (e.g. wood, leaves, roots,..) have distinct values in different species
68 depending on selection pressures, so different species must differentially allocate
69 elements to various traits of tissues and organs, because each function and structure have
70 their own elemental composition. Thus, each species should tend to have its own
71 elemental composition and stoichiometry (homeostatic component of BN) as a result of
72 the long-term singular evolution (legacy effects). In addition, each species should also
73 have phenotypical plasticity to allow the individuals of each species to adapt their
74 morphology and functionality to environmental and ontogenetic shifts (plasticity
75 component) (Peñuelas et al., 2019; Sardans et al., 2021). Then each singular species can
76 be characterized using specific elemental composition and stoichiometry, as a
77 homeostatic component of a BN, in a species-specific elementome (Peñuelas et al., 2019).

78 Plant functional diversity is strongly connected with foliar morphological and
79 elemental composition, including foliar concentrations of nitrogen (N) or phosphorous
80 (P) (Zhan et al., 2019; Kamoske et al., 2020), and functional traits, such as photosynthetic
81 carbon (C) assimilation (van 't Veen et al., 2020). These species-specific functional traits
82 have been related to species-specific niche space at community level (Buzzard et al.,

83 2019; van 't Veen et al., 2020). Availability of resources, such as soil nutrients, is strongly
84 related to plant species diversity and functional dissimilarity (Gross et al., 2017;
85 Siebenkas et al., 2017), while plant functional traits are linked with important ecosystem
86 traits associated with nutrient cycling, such as soil web structure and composition (Peay
87 et al., 2013; Buzzard et al., 2019). Functional traits such as litter production (Legay et al.,
88 2020) soil microbial community structure and function exert seems to effects and feed-
89 backs on elemental composition of litter mainly during its decomposition (Malik et al.,
90 2020).

91 Tropical forests have high levels of biodiversity, including at local spatial scales,
92 with high number of different species at levels of ha (Vitousek and Sanford, 1986; da
93 Silva et al., 2011; Chisholm et al., 2013) associated to environmental factors including
94 climate (Vitousek, 2004), topography (Ferry et al., 2010), and seasonality (Girardin et al.,
95 2016), among several others (Wright, 2002; John et al., 2007; Becerra, 2015; Soong et
96 al., 2020; Pennington et al., 2009). All these variables make tropical forests an unique
97 scenario to test the relationships of foliar elementome and functional traits in the frame
98 of the BN hypothesis. As a representation of species niche based on elemental
99 composition, BN should, at some extend, be related with species functional differences.
100 Thus, despite the difficulty of controlling all the functions of a plant, we aim, for first
101 time, to analyze the relationships of BN with species-specific set of functions based on
102 leaves of several coexisting tree species in a tropical rain-forest.

103 To improve understanding of the relationship between tree species-specific
104 elementomes and species-specific functional traits in the identification of species-specific
105 BN in the n-dimensional space of multivariate analyses formed by the concentrations of
106 the different elements within a semi-pristine tropical rainforest, we tested the hypotheses

107 that (i) species-specific use of bio-elements is linked, at least in part, to phylogenetic
108 species legacy effects, confirming the the important role of evolutionary processes in the
109 existence of species-specific BN; (ii) diverse tropical forest tree BNs are associated to
110 species-specific functional traits characteristics linked with contrasting use of bio-
111 elements; and, (iii) tropical tree species elementomes and BNs are a product of legacy
112 effects and prevailing variability in environmental conditions.

113 **Material and Methods**

114 **Study sites**

115 The study was conducted in a semi-pristine lowland wet tropical forest at the Nouragues
116 (4°05'N, 52°40'W) and Paracou (5°18'N, 52°53'W) research stations in French Guiana
117 (Van Langenhove et al., 2020), where mean annual rainfall is 2990 and 3160 mm,
118 respectively (Van Langenhove et al., 2020). A pronounced dry season, from September
119 to November, is associated with the displacement of the inter-tropical convergence zone,
120 while a wet period of high daily rainfall is most prominent between March and July.

121 **Experimental design**

122 At each forest site we established 12 plots of 0.25 ha at each site stratified by three
123 topographic positions to account for this heterogeneity: at the top, slope, and bottom of
124 hills. We set a central 20-m quadrat in each plot, where we marked and geolocated five
125 evenly spaced sampling points around which we focused our measurements. Thus, this
126 design contained between 72 and 120 sampling points (2 sites x 3 topographic positions
127 x 4 replicate plots per position x 3–5 sampling points in each plot). Plots at each location
128 were separated by 10–200 m. At both study sites, soil sand content was greater at the

129 bottom plots than at top and slope plots, whereas clay content was lower (Courtois et al.,
130 2018).

131 **Leaf sample collection**

132 Leaf samples were collected from all tree species present within each study plot for bio-
133 element and functional trait analysis (Table S1). The sampling took place twice in 2015
134 during the rainy season from May to the end of June and during the dry season from the
135 beginning of October until late November. For details, see Appendix S1: Material and
136 Methods.

137 **Bio-element analysis**

138 Verdant and senescent leaves from 60 tree species (Urbina et al., 2021) were oven-dried
139 at 70°C to a constant weight and then ground using a ball mill (MM400, Restch GmbH);
140 dry biomass was measured using a precision balance A(B204 Mettler Toledo). We
141 determined leaf C, N, P, potassium (K), calcium (Ca), magnesium (Mg), copper (Cu),
142 manganese (Mn), strontium (Sr), and iron (Fe) concentrations. For details, see Appendix
143 S1: Material and Methods.

144 **Functional traits**

145 Leaf gas exchange, reflectance, and morphological variables were analyzed from samples
146 collected from the 60 tree species. Although a species accumulation curve suggests that
147 the complete regional pool must contain up to 250 tree species (see Appendix S1: Fig
148 S1), these 60 species were those with the highest abundance and occurrence in the studied
149 plots, therefore, this subset should be representative of the evolutionary and functional
150 diversity of the tree species present in the area. We measured leaf maximum

151 carboxylation rate (Vcmax), maximum rate of electron transport (Jmax), proportion of
152 leaf to ambient CO₂ concentrations (CiCa), leaf transpiration (Trmmol), maximum
153 quantum efficiency of photosystem II (PSII; Fv/Fm), nonphotochemical chlorophyll
154 fluorescence quenching (NPQ), solar radiation intensity (R; w m⁻²), and electron transport
155 rate (ETR), leaf reflectance, normalized difference vegetation index (NDVI),
156 photochemical reflectance index (PRI), water index (WI), structure independent pigment
157 index (SIPI), normalized difference pigment index (NDPI), simple ratio pigment index
158 (SPRI), leaf chlorophyll content and leaf thickness. See Appendix S1: Material and
159 Methods.

160 **Statistical analyses**

161 **Species elementome and functional traits**

162 We conducted permutational multivariate analyses of variance (PERMANOVA)
163 (Anderson et al., 2008) using Euclidean distance, with research station location
164 (Nouragues, N; Paracou, O), season (dry and wet), topography (top, slope and bottom),
165 canopy (top and bottom leaves), and species as independent factors to test the importance
166 of species in foliar elemental and functional trait composition. For details, see Appendix
167 S1: Material and Methods.

168 **Phylogenetic signature**

169 We prepared a phylogenetic tree of the sampled species (Figure S2) by testing for
170 phylogenetic signals (Blomberg's K) in the studied variables and using R statistical
171 software (R Development Core Team 2011) from the Guyafor phylogeny (Baraloto et al.,
172 2012). For details, see Appendix S1: Material and Methods.

173 **Drivers of species elementomes**

174 We tested for effects of site, season and topography on foliar concentrations and
175 stoichiometry of bio-elements, functional traits, and canonical scores derived from the
176 GDA described below, using Bayesian phylogenetic linear mixed models and the
177 MCMCglmm package (Halfield, 2010) in R. We included season, topography, and
178 research station as fixed effects and phylogeny and species as random factors. Phylogeny
179 accounted for variability in shared ancestry, while species accounted for species-specific
180 traits independent of shared ancestry; thus, the two random factors together accounted for
181 variance explained by heritability. We used the phylogenetic tree based on Baraloto et al.
182 (2012).

183 **Tree species leaf elementomes and functional traits**

184 We conducted general discriminant analyses (GDA) using Statistica 8.0 (StatSoft, Inc.,
185 Tulsa, USA) to determine overall differences in foliar elemental composition and
186 functional traits with species as grouping Factor. For details, see Appendix S1: Material
187 and Methods.

188 **Results**

189 **Species elementome and functional traits**

190 Topographical (top, slope and bottom), geographical (research station) location, canopy
191 (top and bottom leaves) and season (wet, dry) as independent spatio-temporal variables
192 in PERMANOVA analyses explained a low proportion of the total variance in tree species
193 elementome ($R^2=0.011, 0.026, 0.023$ and 0.07 , respectively), whereas legacy (species)
194 effects explained a greater proportion ($R^2=0.46$) when included in the mixed model or as

195 a single independent factor (Table 1). Topographical and geographical location, canopy
196 and season explained a moderate proportion of the total variance in tree species functional
197 traits ($R^2=0.041, 0.20, 0.064$ and 0.08 , respectively), while species, when included in the
198 mixed model, explained a greater proportion ($R^2=0.39$); species explained even a slightly
199 greater proportion of variance when included as a single independent factor ($R^2=0.40$)
200 (Table 1). There were phylogenetic signals in leaf C, N, P, Ca, and Cu concentrations, in
201 14 of the 20 tested functional variables, and in the GDA canonical scores of leaf
202 elementome roots 1, 2, and 4 and the first four roots of the leaf functional variables
203 (Appendix S1: Table S2).

204 **Bayesian GLMM**

205 Topographic and geographic location and season explained a 14.6 ± 5 (SE) on average of
206 the total variation in foliar bio-element content and stoichiometry, functional traits, and
207 GDA canonical scores, whereas legacy effects explained 24.6 ± 8 on average of total
208 variance (To be deposited in Dryad upon acceptance). For example, legacy effects
209 accounted for 75.4, 62.8, and 28.6% of the total variance in leaf concentration of C, N,
210 and P, respectively, while topographic + geographic location + season accounted for 3.75,
211 22.5, and 2.35%, respectively, and legacy effects accounted for 77.5% of the variance in
212 canonical scores for root 1 (To be deposited in Dryad upon acceptance).

213 **Tree species leaf elementomes and functional traits**

214 We found that foliar elementomes and functional traits were associated with 78 and 73%
215 of tree species pairwise comparisons significantly separated by euclidean distances
216 (Squared Mahalanobis distances) respectively ($P<0.05$, $n=306$; Appendix S1: Fig. S3).
217 There were negative relationships between canonical scores for tree species functional

218 traits (root 1) and elementomes (roots 1 and 2) ($R=-0.35$, $P=0.004$ and $R=-0.40$,
219 $P<0.0001$, respectively; Fig. 1). The phylogenetic diagram of canonical scores of GDA
220 root 1 and root 2 of elemental foliar composition is depicted in Figs. 2A and 2B, and the
221 diagram for functional traits in Figs. 2C and 2D. These diagrams show that the values of
222 variables (represented by a color scale) are significantly more similar between/among
223 species the more proximate in the phylogenetic diagram they are.

224

225 **Discussion**

226 In this study, we identified distinct foliar elementomes for 60 coexisting tree species,
227 resulting from different evolutionary legacies, including recent evolution convergence
228 and divergence (see Sardans et al., 2021). We further found that the elementomes were
229 associated with leaf functional traits, such as indicators of photosynthesis and
230 morphology. Thus, our study of tree leaf elemental composition supports the BN
231 hypothesis (Peñuelas et al., 2019) and confirms that foliar BNs are linked to overall leaf
232 functionality, akin to a functional niche (Smith et al., 2013). Most species with high levels
233 of foliar N along root 1 of the GDA conducted with elementome variables of *Agondra*
234 *silvatica*, *Lecythis poiteaui*, *Lecythis zabucajo*, *Eperua falcata*, *Inga nouraguensis*,
235 *Oxandra asbeckii*, and *Vauacapoua americana* are characterized by high levels of
236 photosynthetic performance, as indicated by V_{cmax} and J_{max} along root 2 of the GDA
237 conducted with functional variables (Fig. 1; Appendix S1: Fig. S2). *Anacardium*
238 *spruceanum*, *Eperua falcata*, and *Inga nouraguensis* are the species that have at the same
239 time the highest loadings in Root 1 and 2 in the direction to higher N and Mg
240 concentrations at once coinciding with the higher loadings towards higher J_{max} and
241 V_{cmax} along root 1 in the GDA conducted with functional variables. This higher

242 photosynthetic activity also coincided with low leaf thickness and higher solar radiation
243 along the root 1. Moreover, species such as *Chrysophyllum sanguinolentum*, *Licania*
244 *alba*, *Sterculia speciosa*, *Tapura capitulifera*, and *Vochysia tomentosa* with high values
245 of Root 2 scores of BN GDA also had low values of Root 1 scores of functional variables
246 GDA (Fig. 1; Appendix 1: Fig. S2). This relationship is mainly supported by lower values
247 of foliar N concentration associated with higher leaf thickness (Appendix S1: Fig. S2).

248 Indeed, we found that functional variables that may account directly for
249 differences in soil temperature, water content, and fertility (topographical and
250 geographical location, season) explained only 1.4% and 1.7% of the roots 1 and 2 variance
251 of the GDA of all sampled elementomes (when species were taken as grouping factor),
252 whereas legacy effects explain more than 70% of these roots 1 and 2 variance (Figure 1b,
253 To be deposited in Dryad upon acceptance) and also consistently with the PERMANOVA
254 analyses (Table 1). These results are consistent with several findings showing that soil
255 heterogeneity at micro-scale level reporting for instance changes in soil nutrient
256 availability have all been cited as drivers of biodiversity in tropical forests (John et al.,
257 2007; van Breugel et al., 2018).

258 We have demonstrated that the BN hypothesis, based on the elementome identity
259 of species/genotypes, is valid. BN differences among species reflected by the foliar
260 elementome differences are also related with overall functional traits. This contrasting
261 use of bio-elements by tree species may avoid direct competition among sympatric
262 species, thus facilitating species coexistence and biodiversity. The evolutionary drivers
263 of functional and morphological divergences that have led to high levels of biodiversity
264 of rainforest ecosystems are likely to have been a complex set of synergistic and
265 antagonistic feedback mechanisms based on differential use of basic resources, such as

266 light, water, and bio-elements. This, together with a range of biotic interactions, including
267 symbiotic, mutualistic, and plant-herbivore relationships has led to species-specific
268 strategies in the use, uptake, and allocation of bio-elements. However, whether these
269 divergences in functional and morphological traits are causes or effects of species-
270 specific use of bio-elements remains unresolved. Further studies are warranted to figure
271 it out.

272 Overall, our study also supports previous work reporting that high levels of plant
273 community diversity, from local to landscape scales, leads to heterogeneity of chemical,
274 structural, and functional traits known to affect biogeochemical processes (Townsend et
275 al., 2008). Summarizing, this study has directly demonstrated the link of foliar elemental
276 composition with species evolutionary legacy and species functionality in tropical forest,
277 consistently with previous studies that have observed relationships of plant species
278 elemental composition with species evolutionary legacy and/or with determined function
279 and ecological strategies in tropical (Pennington et al., 2015; Uriarte et al., 2015;
280 Gargallo-Garriga et al., 2020a) but also in extratropical ecosystems such as European
281 forests (Sardans et al., 2015), boreal forests (Reiman et al., 2018), temperate shrublands
282 (Urbina et al., 2017), Chinese forests (Wu et al., 2017; Zhao et al., 2018), Mediterranean
283 woodlands (Rivas-Ubach et al., 2012; de la Riva et al., 2017) and arid lands (Castellanos
284 et al., 2018). Global studies of tree species have also detected that different habitats,
285 ecological strategies, and sympatric competence are related to different BN (Sardans et
286 al., 2015;2021; Peñuelas et al., 2019; Vallicrosa et al., 2021). Niche concrete
287 characterization is a difficult task but BN should be considered as a tool to concretely
288 identify of different niches in plant communities (Peñuelas et al. 2019). This study
289 demonstrates the suitability of BN as a proxy for species niche identification based on the

290 use of the bio-elements that each species has due to its particular morphology and
291 functioning in the occupation of its ecological niche.

292 **Final remarks and conclusions**

293 We found there were phylogenetic and species signals in leaf elemental composition and
294 functional traits of 60 coexisting tropical rainforest tree species, where foliar elemental
295 composition was related to functional traits. Thus, we conclude that 1) leaf elemental
296 composition is an indicator of biogeochemical niches at small spatial scales in this tropical
297 forest; 2) species-specific foliar elemental composition and functional traits are related;
298 and 3) the observed high species-specific use of bio-elements confirms the existence of
299 a BN that reflects general niche segregation. Our hypothesis, that functional-
300 morphological traits and biogeochemical niche differentiation co-evolve in parallel
301 among species, requires testing through further research. Overall, our study provides
302 empirical evidence for an association between species-specific use of key bio-elements
303 and leaf functional traits in this high diverse Guiana rainforest as a result of legacy effects.

304 **Acknowledgements**

305 Funding was provided by the Spanish Government grants PID2019-110521GB-I00 and
306 PID2020115770RB-I, the Fundación Ramón Areces grant CIVP20A6621, and the
307 Catalan Government grant SGR 2017-1005. We extend our appreciation to the
308 Researchers Supporting Project (no. RSP2023R218), King Saud University, Riyadh,
309 Saudi Arabia.

310 **References**

311 Anderson, M. J., R. N. Gorley, and K. R. Clarke. 2008. *PERMANOVA + for PRI-MER*:

312 *Guide to Software and Statistical Methods.*

313 Baraloto, C., O. J. Hardy, C. E. T. Paine, K. G. Dexter, C. Cruaud, L. T. Dunning, M. A.

314 Gonzalez, J. F. Molino, D. Sabatier, et al. 2012. Using functional traits and

315 phylogenetic trees to examine the assembly to tropical tree communities. *Journal of*

316 *Ecology* 100: 690-701.

317 Becerra, J. X. 2015. On the factors that promote the diversity of herbivorous insects and

318 plants in tropical forests. *Proceedings of the National Academy of Sciences* 112: 6098–

319 6103.

320 Buzzard, V., S. T. Michaletz, Y. Deng, Z. L. He, D. L. Ning, L. N. Shen, J. W. Tu, J. J.

321 Wang, et al. 2019. Continental scale structuring of forest and soil diversity via

322 functional traits. *Nature Ecology and Evolution* 3: 1298-1308.

323 Castellanos, A.E., Llano-Sotelo, J.M., Machado-Encinas, L.I., Lopez-Pina, J.E., Romo-

324 Leon, J.R., Sardans, J., Peñuelas, J., 2018. Foliar C, N and P stoichiometry

325 characterize successful plant ecological strategies in the Sonoran Desert. *Plant*

326 *Ecology*

327 219: 775–788

328 Chisholm, R. A., H. C. Muller-Landau, K. A. Rahman, D. P. Bebber, Y. Bin, S. A.

329 Bohlman, K. A., Bourg, J. Brinks, et al. 2013. Scale-dependent relationships between

330 tree species richness and ecosystem function in forest. *Journal of Ecology* 101: 1214–

331 1224.

332 Courtois, E., C. Stahl, J. Van den Verge, L. Bréchet, L. Van Langenhove, A. Richter, I.

333 Urbina, J. L. Soong, et al. 2018. Spatial variation of soil CO₂, CH₄ and N₂O fluxes

334 across topographical positions in tropical forests of the Guiana Shield. *Ecosystems* 7:

335 1445-1458.

336 da Siva, K.E., S. V. Martins, A. A. S. Soares Ribeiro, N. T. Santos, C. P. de Azevedo, F.

337 D. de Almeida Matos, and O. L. do Amaral. 2011. Floristic composition and similarity
338 of 15 hectares in Central Amazonia. *Revista de Biologia Tropical* 59: 1927-1938.

339 de la Riva, E.G., Maranon, T., Violle, C., Villar, R., Perez-Ramos, I.M., 2017.
340 Biogeochemical and Ecomorphological Niche segregation of Mediterranean Woody
341 species along a local gradient. *Frontiers in Plant Science* 8: 1242.

342 Ferry, B., F. Morneau, J. D. Bontemps, J. Blanc, and V. Freycon. 2009. Higher treefall
343 rates on slopes and waterlogged soils result in lower stand biomass and productivity
344 in a tropical rain forest. *Journal of Ecology* 98: 106-110.

345 Gargallo-Garriga, A., J. Sardans, V. Granda, J. Llusià, G. Peguero, D. Asensio, R. Ogaya,
346 I. Urbina, et al. 2020. Different “metabolomic niches” of the highly diverse tree
347 species of the French Guiana rainforests. *Scientific Reports* 10: 6937.

348 Girardin, C.A., Y. Malhi, C. E. Doughty, D. B. Metcalfe, P. Meir, J. del Aguila-Pasquel,
349 A. Araujo-Murakai, A. C. L. da Costa, J. E. Silva-Espejo, F. F. Amézquita, and L.
350 Rowland. 2016. Seasonal trends of Amazonian rainforest phenology, net primary
351 productivity, and carbon allocation. *Global Biogeochemical Cycles* 30: 700-715.

352 Gross, N., Y. Le Bagouse-Pinguet, P. Liancourt, M. Berdugo, N. J. Gotelli, and F. T.
353 Maestre. 2017. Functional trait diversity maximizes ecosystem multifunctionality.
354 *Nature Ecology and Evolution* 1: 0132.

355 Hadfield, J. D. 2010. MCMC methods for multi-response generalised linear mixed
356 models: the MCMCglmm R package. *Journal of Statistical Software* 33: 2.

357 Harms, K. E., S. J. Wright, O. Calderón, A. Hernández, and E. A. Herre. 2000. Pervasive
358 density-dependent recruitment enhances seedling diversity in a tropical forest. *Nature*
359 404: 493-495.

360 John, R., J. W. Dalling, K. Harms, J. B. Yavitt, R. F. Stallard, M. Mirabello, et al. 2007.

361 Soil nutrients influence spatial distributions of tropical tree species. *Proceedings of the*
362 *National Academy of Sciences of the United States of America* 104: 864–869.

363 Kamoske, A. G., K. M. Dahlin, S. P. Serbin, and S. C. Stark. 2020. Leaf traits and canopy
364 structure together explain canopy functional diversity: an airborne remote sensing
365 approach. *Ecological Applications* 31: e02230.

366 Legay, N., J. C. Clement, F. Grassein, S. Lavorel, S. Lamauviel-Levenant, E. Personeni,
367 F. Poly, T. Pommier, et al. 2020. Plant growth drives soil nitrogen cycling and N-
368 related microbial activity through changing root traits. *Fungal Ecology* 44: 100910.

369 Malik, A. A., T. Swenson, C., Weihe, E. W. Morrison, J. B. H. Martiny, E. L. Brodie, T.
370 R. Northen, and S. D. Allison. 2020. Drought and plant litter chemistry alter microbial
371 gene expression and metabolite production. *Isme Journal* 14: 2236-2247.

372 Matos, F. A. R., L. F. S. Magnago, M. Gastauer, J. M. B. Carreiras, M. Simonelli, J. A.
373 A. Meira-Neto, and D. P. Edwards. 2017. Effects of landscape configuration and
374 composition on phylogenetic diversity of trees in a highly fragmented tropical forest.
375 *Journal of Ecology* 105: 265–276.

376 Münkemüller, T., S. Lavergne, B. Bzeznik, S. Dray, T. Jombart, K. Schifflers, and W.
377 Thuiller. 2012. How to measure and test phylogenetic signal. *Methods in Ecology and*
378 *Evolution* 3: 743-756.

379 Pagel, M. 1999. Inferring the historical patterns of biological evolution. *Nature* 401:
380 877–884.

381 Peay, K. G., C. Baraloto, and P. V. A. Fine. 2013. Strong coupling of plant and fungal
382 community structure across western Amazonian rainforests. *ISME J.* 7: 1852–1861.

383 Pennington, R. T., M. Lavin, and A. Oliveira-Filho. 2009. Woody Plant Diversity,
384 Evolution, and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical

385 Forests. *Annual Review of Ecology Evolution and Systematics* 40: 437–457.

386 Pennington, R. T., M. Hughes, and P. W. Moonlight. 2015. The origins of tropical
387 rainforest hyperdiversity. *Trends in Plant Science* 20: 693-695.

388 Peñuelas, J., M. Fernández-Martínez, P. Ciais, D. Jou, S. Piao, M. Obersteiner, S. Vicca,
389 I. A. Janssens, and J. Sardans. 2019. The bioelements, the elementome and the
390 “biogeochemical niche”. *Ecology* 100: e02652.

391 Reimann, C., K. Fabian, B. Flem, M. Andersson, P. Filzmoser, and P. Englmaier. 2018.
392 Geosphere-biosphere circulation of chemical elements in soil and plant systems from
393 a 100 km transect from southern central Norway. *Science of The Total Environment*
394 639: 129–145

395 Rivas-Ubach, A., J. Sardans, M. Perez-Trujillo, M. Estiarte, and J. Peñuelas. 2012.
396 Strongrelationship between elemental stoichiometry and metabolome in plants.
397 *Proceedings of the. National Academy of Sciences USA* 109: 4181–4186.

398 R Development Core Team R: *A Language and Environment for Statistical Computing*
399 (R Foundation for Statistical Computing, (2011).

400 Sardans J., I. A. Janssens, R. Alonso S. D. Veresoglou M. C. Rilling, T. G. M. Sanders,
401 J. Carnicer, I. Filella, et al. 2015. Foliar elemental composition of European forest tree
402 species associated with evolutionary traits and present environmental and competitive
403 conditions. *Global Ecology and Biogeography* 24: 240-255.

404 Sardans, J., H. Vallicrosa, P. Zuccarini, G. Farré-Armengol M. Fernández-Martínez, G.
405 Peguero, A. Gargallo-Garriga, P. Ciais, et al. 2021. Empirical support for the
406 Biogeochemical Niche Hypothesis in forest trees. *Nature Ecology and Evolution* 5:
407 184–194.

408 Schnitzer, S. A., and W. P. Carson. 2001. Treefall gaps and the maintenance of species
409 diversity in a tropical forest. *Ecology* 82: 913-919.

410 Siebenkas, A., J. Schumacher, and C. Roscher. 2017. Trait variation in response to
411 resource availability and plant diversity modulates functional dissimilarity among
412 species in experimental grasslands. *Journal of Plant Ecology* 10: 981-993.

413 Smith, A. B., S. Brody, N. J. B. Kraft, and C. Susan. 2013. Characterizing scale-dependent
414 community assembly using the functional-diversity-area relationship. *Ecology* 94:
415 2392–2402.

416 Soong, J. L., I. A. Janssens, O. Grau, O. Margalef, C. Stahl, L. Van Langenhove, I.
417 Urbina, J. Chave, et al. 2020. Soil properties explain tree growth and mortality, but not
418 biomass, across phosphorus-depleted tropical forests. *Scientific Reports* 10: 2302.

419 Townsend, A. R., G. P. Asner, and C. C. Cleveland. 2008. The biogeochemical
420 heterogeneity of tropical forests. *Trends in Ecology and Evolution* 23: 424-431.

421 Urbina, I., J. Sardans, O. Grau, C. Beierkuhnlein, A. Jentsch, J. Kreyling, and J. Peñuelas.
422 2017. Plant community composition affects the species biogeochemical niche.
423 *Ecosphere* 8: e01801.

424 Urbina, I., O. Grau, J. Sardans, O. Margalef, G. Peguero, D. Asensio, J. Llusià, and R.
425 Ogaya, et al.. 2021. High foliar K and P resorption efficiencies in old-growth tropical
426 forest growing on nutrient-poor soils. *Ecology and Evolution* 11:8969-8982.

427 Uriarte, M., B. L. Turner, J. Thompson, and J. K. Zimmerman. 2015. Linking spatial
428 patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood
429 approach. *Ecological Applications* 25: 2022-2034.

430 Vallicrosa, H., J. Sardans, J. Maspons, P. Zuccarini, M. Fernández-Martínez, M. Bauters,
431 D. S. Goll, P. Ciais, et al. 2021. Global maps and factors driving forest foliar elemental
432 composition: the importance of evolutionary history. *New Phytologist* 233: 169-181.

433 Van Breugel, M., D. Craven, H. R. Lai, M., Baillon, B. L. Turner, and J. S. Hall. 2018.
434 Soil nutrients and dispersal limitation shape compositional variation in secondary

435 tropical forests across multiple scales. *Journal of Ecology* 107: 566-581.

436 Van Langenhove, L., L. T. Verryckt, C. Stahl, E. A. Courtois, I. Urbina, O. Grau, D.

437 Asensio, G. Peguero, et al. 2020. Soil nutrient variation along a shallow catena in

438 Paracou, French Guiana. *Soil Research* 59: 130-145

439 Van't Veen, H., L. Chalmandrier, N. Sandau, M. P. Nobis, P. Descombes, A. Psomas, Y.

440 Hautier, and L. Pellissier. 2020. A landscape-scale assessment of the relationship

441 between grassland functioning, community diversity, and functional traits. *Ecology*

442 and *Evolution* 10: 9906-9919.

443 Vitousek, P. M., and R. L. Sanford, Jr. 1986. Nutrient Cycling in moist tropical forest.

444 *Annual Review of Ecology Evolution and Systematics* 17: 137-167.

445 Vitousek, P. M. 2004. Nutrient Cycling and Limitations: Hawai'I as a Model System.

446 Princeton University Press. New York. Vleminckx, J., J. L. Doucet, J. Morin-Rivat, A.

447 Biwolé, D. Bauman, O. J. Hardy, A. Fayolle, J. F. Gillet, K. Dainou, et al. 2017. The

448 influence of spatially structured soil properties on tree community assemblages at a

449 landscape scale in the tropical forests of southern Cameroon. *Journal of Ecology* 105:

450 354–366

451 Wu, Y. T., H. Y. Liu, Z. L. Song, X. M. Yang, Z. C. Li, Q. Hao, and L. A. Liu. 2017.

452 Ecological stoichiometry of nitrogen, phosphorus, and sulfur in China's forests. *Acta*

453 *Geochimica* 36: 525–530.

454 Zhan, D. Y., Y. F. Peng, F. Li, G. B. Yang, J. Wang, J. C. Yu, G. Y. Zhou, and Y. H.

455 Yang. 2019. Trait identity and functional diversity co-drive response of ecosystem

456 productivity to nitrogen enrichment. *Journal of Ecology* 10: 2402-2414.

457 Zhao, J., L. Gong, and X. Chen, X. 2018. Relationship between ecological

458 stoichiometry and community diversity of plant ecosystems in the upper reaches of

459 the Tarim River, northwestern China. *Journal of Arid Land* 12: 227-238.

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475 Table 1. Analysis of effects (PERMANOVA) of topographic (slope position) and
 476 geographic (research station) location, season, and species on tropical tree elementomes
 477 (A) and on tropical tree leaf function (B).

(A)Model including main effects of topographical location, season, geographical location, and species on tropical tree elementomes					
Variable	Df	Sum of Squares	F (Model)	R ²	P
Topography	2	0.349	3.08	0.011	0.009
Season	1	2.12	37.4	0.07	0.001
Canopy	1	0.104	1.89	0.023	0.0045
Geography	1	0.80	14.04	0.026	0.001
Species	59	13.6	4.83	0.46	0.001
Residuals	260	12.4		0.41	
Total	324	29.3		1	
Model including main effect of species					
Species	59	13.9	3.93	0.46	0.001
Residuals	265	15.9		0.54	
Total	324	29.7		1	
(B)Model including main effects of topographical location, season, geographical location, and species on tropical tree leaf function					
Variable	Df	Sum of Squares	F (Model)	R ²	Pr(>F)
Topography	2	0.180	7.85	0.041	0.001
Season	1	0.92	159.4	0.200	0.001
Canopy	1	0.201	7.12	0.064	0.001
Geography	1	0.35	60.4	0.080	0.001
Species	59	0.931	3.99	0.390	0.001
Residuals	260	1.23		0.225	
Total	324	3.71		1	
Model including main effect of species					
Species	59	0.921	2.94	0.396	0.001
Residuals	265	1.41		0.604	
Total	324	2.33		1	

478

479

480

481 **Figure captions**

482 Figure 1. Regression analysis of the relationship between GDA canonical scores of root
483 1 foliar functional traits and GDA canonical scores of roots 1 (A) and 2 (B) of foliar bio-
484 elements grouped by species. Numbers in the figure refer to species listed in Table 1.

485 Figure 2. Phylogenetic diagram of canonical scores of GDA root 1 and root 2 of elemental
486 foliar composition (A and B) and functional traits (C and D). This diagram was obtained
487 using the contMap function of the phytools package in R, representing the value structure
488 used to estimate phylogenetic signals in variables. The contMap function estimates the
489 ancestral characters at internal nodes using maximum likelihood and assuming Brownian
490 motion as a model for trait evolution (Münkemüller et al. 2012), and then interpolates
491 the ancestral condition along the branches of the tree (Pagel, 1999).

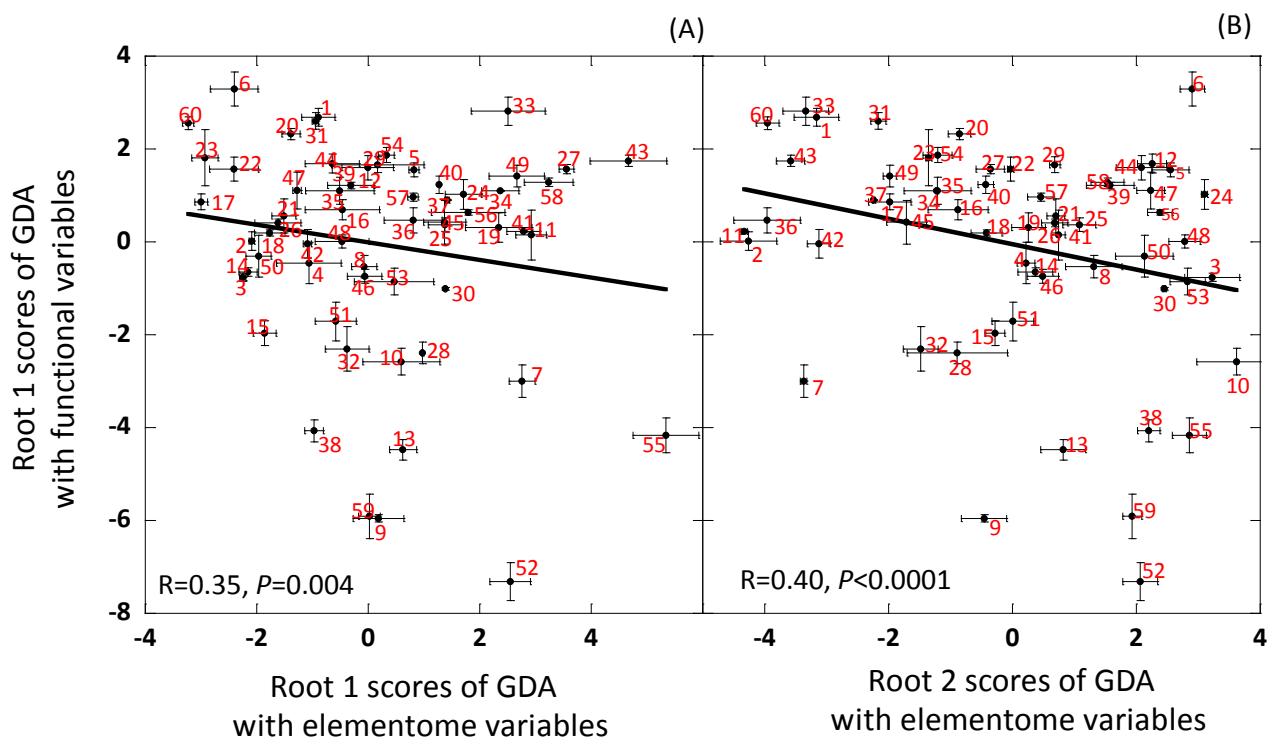
492

493

494

495

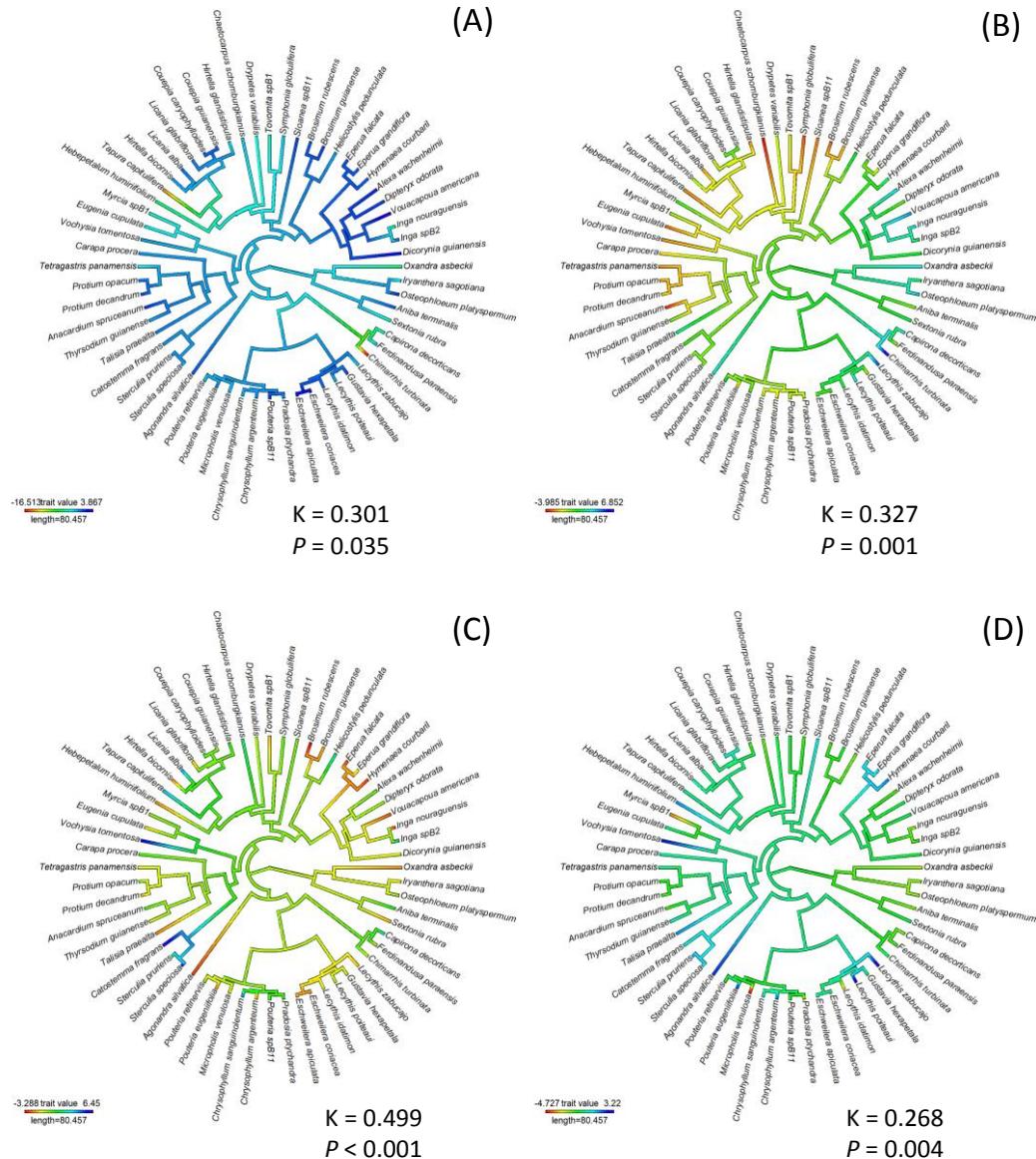
496


497

498

499

500


501

502

503

504 Figure 1.

505

506 Figure 2

507

508

509

510

511

512

513