
This is the **accepted version** of the journal article:

Xu, Hongwei; You, Chengming; Ton, Ba; [et al.]. «Effects of livestock grazing on the relationships between soil microbial». *Science of the Total Environment*, Vol. 881 (July 2023), art. 163416. DOI 10.1016/j.scitotenv.2023.163416

This version is available at <https://ddd.uab.cat/record/284232>

under the terms of the license

1 Effects of livestock grazing on the relationships between soil microbial
2 community and soil carbon in grassland ecosystems
3

4 Hongwei Xu ^a, Chengming You ^a, Bo Tan ^a, Lin Xu ^a, Yang Liu ^a, Minggang Wang ^b, Zhenfeng X
5 u ^a, Jordi Sardans ^{c d e}, Josep Peñuelas ^{d e}

6
7 a National Forestry and Grassland Administration Key Laboratory of Forest Resources
8 Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry
9 Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan
10 Province, Sichuan Agricultural University, Chengdu 611130, China

11 b The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of
12 Forestry, Beijing Forestry University, Beijing, China

13 c CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913 Bellaterra, Catalonia, Spain

14 d CREAF, 08913 Cerdanyola del Vallès, Catalonia, Spain

15 e Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of
16 Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80257, Jeddah 21589,
17 Saudi Arabia

18

19 **Abstract**

20 Livestock grazing of grassland ecosystems may induce shifts in microbe community traits and
21 soil carbon (C) cycling; however, impacts of contrasting managed grazing regimes on soil C-
22 microbe community trait relationships are unclear. Here, we conducted a global meta-analysis of
23 623 pairwise observations of grazing impacts on soil C cycling and microbe community traits under
24 three grazing intensities (light, moderate, and high), durations (<5 years, 5–10 years, and >10 years),
25 and livestock species assemblage (sheep, cattle, sheep+cattle). Grazing intensity and duration
26 generally led to declines in content of soil organic carbon (SOC), total nitrogen, and total
27 phosphorus, and soil respiration. In contrast to effects of high levels of grazing intensity, light and/or
28 moderately intense grazing increased diversity of soil bacteria and fungi, while soil microbial
29 biomass and enzyme activities were negatively related to grazing duration. Grazing by sheep

30 reduced saccharase and acid phosphatase activity and soil microbial biomass content. Livestock
31 grazing tended to induce linear SOC-microbe trait relationships, with no effects on microbe relations
32 with nitrogen or phosphorus. Overall, our results indicate that global soil C cycling-soil microbe
33 community trait relationships in grassland ecosystems intensify with livestock grazing and depend
34 on grazing intensity, duration, and livestock species. These findings highlight the global importance
35 of livestock grazing for soil C cycling in grasslands and the need to include these relationships in
36 grassland ecosystem models to improve predictions of soil biogeochemical cycles under future
37 management scenarios.

38

39 **Keywords:** grazing intensity; soil carbon cycling; grassland degradation; soil microbial activity;
40 ecosystem function

41

42 **1 Introduction**

43 Grassland soils represent a key component of global carbon (C) cycling (Myrgiotis et al., 2021),
44 given they account for about 10% of the global C pool (Dlamini et al., 2016). However, livestock
45 grazing of grasslands affects multiple ecosystem processes (Davidson et al., 2017; Teague & Kreuter,
46 2020), where intensive and/or inappropriate grazing regimes have led to global-scale degradation
47 (McSherry & Ritchie, 2013; Zhang et al., 2022a) and disruption of ecosystem function, including
48 soil C cycling (López-Mársico et al., 2015; Montenegro-Díaz et al., 2022). Soil microbe
49 communities are essential for the maintenance of ecosystem processes, including soil C cycling (Liu
50 et al., 2015; Trivedi et al., 2016) that is known to be driven by soil microbe diversity (Qiu et al.,
51 2021); for example, soil microbe diversity is positively associated with rates of litter decomposition

52 and C cycling (Zhou et al., 2020), aboveground plant community function and soil quality, and
53 overall ecosystem stability (Bardgett & van der Putten, 2014; van Elsas et al., 2012). Thus,
54 understanding links between soil C cycling and microbe diversity is required to improve the
55 management of grasslands to ensure sustainable ecosystem function.

56 Livestock grazing of grasslands has been shown to reduce soil C pools by an average of 10.3%
57 (Zhou et al., 2017), probably as a result of impacts on soil microbes. For example, livestock grazing
58 has been shown to elicit profound effects on soil microbe diversity and activity (Hu et al., 2021;
59 Traore et al., 2021), where magnitude of effects on diversity are negatively dependent on grazing
60 intensity (Zhao et al., 2017; Zhang et al., 2022b), likely due to decreases in soil permeability under
61 high levels of grazing that inhibit microbial metabolic activity (Joshua et al., 2007; Jeffery et al.,
62 2009). Similarly, duration of grazing activity is negatively associated with soil microbe diversity (Li
63 et al., 2020), due to higher levels of plant damage and soil trampling with increasing period of
64 grazing (van der Heyde et al., 2017) that eventually lead to greater levels of soil erosion and nutrient
65 loss (Kosmalla et al., 2022; Zhang et al., 2022a). Negative effects of increases in livestock grazing
66 on global soil C pools have been attributed to decreases in plant species richness (Gao & Garmel,
67 2020) and biomass (Zhang et al., 2022a), greater levels of soil erosion, and reductions in soil
68 moisture (Kosmalla et al., 2022; Mariappan et al., 2022) that reduce soil microbe activity and
69 associated C flux and nutrient cycling (Allison & Treseder, 2008). Diversity and activity of soil
70 microbe communities have been shown to couple positively with soil C stocks (Liu et al., 2015;
71 Delgado-Baquerizo et al., 2020; Zhou et al., 2020); however, impacts of livestock grazing on this
72 relationship in grasslands, including for microbial C-stocks, remain unclear (Cai et al., 2017;
73 Eldridge et al., 2017; van der Weerden et al., 2020).

74 While global impacts of grazing on plant community dynamics, litter decomposition, soil
75 nutrient and C cycling in grasslands have been studied (Zhou et al., 2017; Gao & Garmel, 2020;
76 Filazzola et al., 2020), there is a lack of understanding of effects of grazing intensity and duration
77 on soil microbe communities. Thus, we synthesized a global dataset of observations in a meta-
78 analysis of (1) effects of grazing intensity and duration, and livestock species assemblage (sheep,
79 cattle, a mixture of sheep and cattle) on soil nutrient content and soil microbe community traits
80 (biomass, diversity, activity); and (2) variation in soil microbe links with soil C and nutrient content
81 with grazing regime. Specifically, we tested the hypotheses that livestock grazing (1) reduces soil
82 content of C, nitrogen (N), and phosphorous (P) and microbial biomass, diversity, and activity due
83 to decreases in plant biomass and increases in soil erosion and water loss and (2) intensifies links
84 between soil microbe community traits and soil C, N, P content.

85

86 **2 Methods**

87 **2.1 Data compilation**

88 Published peer-reviewed articles on responses of soil enzyme activities and microbe
89 communities to grazing were compiled from Google Scholar (<http://scholar.google.com>), Web of
90 Science (<http://apps.webofknowledge.com>), and CNKI (<http://www.cnki.net>) on Feb 10, 2022
91 using the search terms (“grassland”) and (“grazing” or “grazed” or “grazer”) and (“soil microbial”
92 or “soil bacteria” or “soil fungi” or “soil enzyme” or “soil respiration”). Articles were selected for
93 inclusion in the meta-analysis if (1) livestock species assemblage and grazing intensity and duration
94 were reported; (2) ungrazed control plots were included; (3) treatment means and sample sizes were
95 provided; (4) studies comprised grazing treatments only; and, (5) studies included data for topsoil.

96 As a result, our dataset comprised 623 data points from 95 articles (Appendix Dataset S1) for 21
97 variables related to soil enzymes, microbe community traits, and physicochemical properties (Table
98 S1). We extracted data from tables directly and from figures using GetData Graph Digitizer v. 2.24.

99 The dataset included longitude, latitude, mean annual temperature (MAT), mean annual
100 precipitation (MAP) for the areas in which the studies were conducted, along with classification of
101 grazing treatment duration (<5 years, 5–10 years, and >10 years) and intensity (light, moderate,
102 high), and livestock species assemblage (sheep, cattle, sheep+cattle).

103 **2.2 Meta-analysis**

104 The natural logarithmic response ratio (*RR*) (Hedges et al., 1999; Powers et al., 2011) was used
105 to evaluate soil enzyme and microbe responses to grazing:

106
$$RR = \ln \left(\frac{\bar{X}_t}{\bar{X}_c} \right) = \ln \bar{X}_t - \ln \bar{X}_c \quad (1)$$

107 where \bar{X}_t and \bar{X}_c are the treatment and control means for a variable, respectively.

108 Variance (v) in *RR* of individual observations was calculated as:

109
$$v = \frac{s_t^2}{n_t \bar{X}_t^2} + \frac{s_c^2}{n_c \bar{X}_c^2} \quad (2)$$

110 where s_t and s_c are the treatment and control SDs, respectively, and n_t and n_c are treatment
111 and control sample sizes, respectively. We calculated SD as either $SE\sqrt{N}$ or $\frac{\text{mean}}{10}$, depending on
112 reporting of SE in the studies.

113 We calculated weighted response ratios (RR_{++}), along with 95% bootstrap confidence intervals
114 (CI) and SE ($S(RR_{++})$) using a random effects model:

115
$$RR_{++} = \frac{\sum_{i=1}^m \sum_{j=1}^{k_i} W_{ij} RR_{ij}}{\sum_{i=1}^m \sum_{j=1}^{k_i} W_{ij}} \quad (3)$$

116
$$95\%CI = RR_{++} \pm 1.96S(RR_{++}) \quad (4)$$

117
$$S(RR_{++}) = \sqrt{\frac{1}{\sum_{i=1}^m \sum_{j=1}^{k_i} W_{ij}}} \quad (5)$$

118 There were no effects of grazing on response variables when 95% bootstrap CIs = 0; 95%
119 bootstrap CIs >0 or <0 indicate grazing increases or decreases in soil enzyme activities and
120 microbial community indices, respectively (P < 0.05).

121 We calculated the weighting factor (w) as:

122 $w_{ij} = \frac{1}{\vartheta_i + \sigma^2}$ (6)

123 where ϑ_i and σ^2 are variance of the data in the i -th study and the random variable common
124 between studies, respectively.

125 We calculated rr as the proportional change (%) in RR_{++} of soil enzyme activity and microbe
126 community trait responses to grazing as:

127 $rr = \frac{\exp(RR_{++}) - 1}{\exp(RR_{++})} \times 100\%$ (7)

128 A random effects model was used to test RRs of soil enzyme activities and microbe community
129 traits to grazing intensity and duration, and livestock species assemblage (sheep or goat, cattle or
130 yak, and mixture of sheep or cattle or horse), based on the heterogeneity in group cumulative effect
131 sizes (Q_M) (Gao et al., 2021; Xu et al., 2022a, b). Publication bias in RRs of grazing effects on
132 variables (Fig. S1) was tested using the funnel method (Fig. S2) and biased variables were corrected
133 using the trim and filled methods (Egger, 1997). Data processing and analysis were implemented in
134 R v. 4.0.2 using the “metafor” package.

135

136 3 Results

137 3.1 Overall effects of grazing

138 There were contrasting effects of grazing on soil physicochemical properties, enzyme activity,
139 and microbe community traits (Fig. 1), where there increases in bacteria diversity (1.0%) and

140 richness (24.8%), fungi diversity (17.3%), phospholipid fatty acid (PLFA; 9.9%), and pH (2.2%)
141 and decreases in activities of saccharase (SA; 31.1%), urease (UA; 7.0%), acid phosphatase (AP;
142 11.9%), soil basal respiration (SR; 15.4%), soil organic carbon (SOC; 10.1%), total soil nitrogen
143 (TN; 10.2%), and total soil phosphorus (TP; 15.0%) (Fig. 1).

144 **3.2 Effects of grazing intensity**

145 Intensity of grazing led to contrasting effects on soil enzyme, microbe, and physicochemical
146 parameters (Fig. 2; Table S2). Light and moderate grazing increased fungi diversity by 14.1 and
147 13.3%, respectively, and fungi richness by 17.0 and 13.1%, respectively. Moderate and high levels
148 of grazing decreased soil activity of SA (28.3 and 27.9%, respectively), levels of SR (17.9 and
149 28.3%, respectively), and content of SOC (10.6 and 13.9%, respectively), TN (13.2 and 14.7%,
150 respectively), and soil moisture (14.7% and 19.7%, respectively), and increased soil pH (2.4 and
151 1.4%, respectively). High levels of grazing decreased activities of AP (10.5%), microbial biomass
152 carbon (MBC; 7.2%), microbial biomass nitrogen (MBN; 7.5%), arbuscular mycorrhizal fungi
153 (AMF; 30.0%), and ratio of fungi to bacteria (F:B; 15.8%), and increased microbial metabolic
154 quotient ($q\text{CO}_2$) by 42.2%.

155 **3.3 Effects of grazing duration**

156 Short-term grazing (0–5 years) increased soil activity of AP by 14.6% and bacteria richness by
157 21.3%, and decreased AMF content by 36.0%, F:B by 13.4%, and soil moisture by 10.7%. Medium
158 (5–10 years) and longer term (>10 years) grazing decreased SR (16.1 and 21.5%, respectively),
159 content of SOC (9.7 and 15.0%, respectively), TN (6.7 and 20.0%, respectively), and TP (9.5 and
160 15.7%, respectively), and increased soil pH (3.5 and 1.7%, respectively). Grazing for >10 years
161 decreased activities of SA (36.2%), AP (12.1%), and UA (11.5%), soil content of microbial biomass

162 C (MBC; 15.0%), MBN (17.7%), TN (20.0%), and TP (15.7%), and SR (21.5%) (Fig. 3; Table S2).
163 Grazing duration was negatively correlated with RRs of AP, MBC, MBN, SR, and SOC, and
164 positively correlated with RRs of AMF (Fig. S3).

165 **3.4 Effects of livestock species assemblage**

166 Livestock species led to contrasting effects on soil enzyme, microbe, and physicochemical
167 parameters (Fig. 4; Table S2). Grazing by sheep led to decreases in activity of SA (30.7%) and AP
168 (5.7%), soil content of MBC (5.2%) and AMF (30.1%), GP:GN (4.7%), and SR (15.6%), and
169 increased soil pH(1.7%). Grazing by cattle led to decreases in UA activity (15.7%) and soil content
170 of MBN and microbial biomass P (MBP) (6.8 and 28.0%, respectively), while sheep and cattle
171 grazing decreased SR (15.6 and 14.9%, respectively), and content of SOC (11.1 and 8.5%,
172 respectively), soil TN (11.9 and 6.8%, respectively), soil TP (10.2 and 8.4%, respectively), and soil
173 moisture (12.7 and 7.2%, respectively).

174 **3.5 Effects of climate**

175 Mean annual precipitation (MAP) was positively related to RRs of MBC and MBN and mean
176 annual temperature (MAT) was positively related to RRs of UA activity, soil content of MBC and
177 MBN, fungi diversity, and PLFA content (Fig. 5).

178 **3.6 Relationships between soil nutrient content and microbe traits under contrasting grazing
179 regimes**

180 Overall, RRs of SOC content were positively related to RRs of SA and AP activity, soil content
181 of MBC, MBN, and MBP, SR, bacteria and fungi diversity, and PLFA content (Fig. S4). Under high
182 levels of grazing, RRs of SOC content were positively related to RRs of SA activity, and bacteria
183 and fungi diversity, while under moderate and high levels of grazing, SOC RRs were positively

184 related to RRs of UA activity, soil content of MBC, MBN, and MBP, and SR; relationships with
185 SOC were stronger under the high levels of grazing (Fig. 6). There were positive relationships
186 between RRs of SOC content and RRs of SA activity, fungi diversity, and MBN content under
187 longer-term grazing (>10 years), RRs of AP activity and bacteria diversity under medium term
188 grazing (5–10 years), and RRs of soil content of MBC and MBN, and SR under short-term (0–5
189 years) and longer-term grazing (Fig. S5).

190 Overall, RRs of soil TN content were positively related to RRs of activity of AP, soil content
191 of MBC, MBN, and MBP, SR, and bacteria diversity (Fig. S6). Under moderate and high levels of
192 grazing, RRs of soil TN content was positively related to RRs of soil MBC content and SR, RRs of
193 AP activity under all three levels of grazing and longer-term grazing (>10 years) (Fig. S7).

194 Overall, RRs of soil TP content were positively related to RRs of SA and UA activity, soil MBP
195 content, and SR (Fig. S8). Under high levels of grazing, soil TP content RRs were positively related
196 to SA activity RRs, while under light and high levels of grazing and short-term grazing (0–5 years),
197 soil TP content RRs were positively related to soil MBP content RRs; soil TP content RRs were
198 positively related to RRs of SR under moderate and high levels of grazing (Fig. S9).

199

200 4 Discussion

201 4.1 Effects of grazing intensity on soil C cycling and microbe traits

202 Our meta-analysis provides direct evidence for degradation of grassland soils and a reduction
203 in grassland ecosystem stability by intense levels of livestock grazing. We found reductions in SOC
204 and soil microbial biomass content, and activity of enzymes under increasing grazing pressure,
205 whereas, light and moderate grazing intensity tended to increase microbe diversity (Fig. 7), likely

206 as a result of the belowground reallocation of plant biomass (root growth) by low-intensity grazing
207 that improves and maintains soil moisture content and supports higher levels of soil microorganism
208 abundance (Wilson et al., 2018; Mipam et al., 2019). Livestock grazing has been shown to aggravate
209 water and wind erosion of soil C content, due to changes in soil structure (Zhou et al., 2017), and
210 intense levels of grazing, which tend to decrease plant diversity and cover, soil aeration, and water
211 permeability, due to foraging and trampling effects (Jeffery et al., 2009), limit the contribution of
212 soil microorganisms to ecosystem function, such as in soil C cycling, due to negative impacts on
213 environmental conditions (Birgander et al., 2014; McSherry et al., 2013). We found that moderately
214 intense grazing increased F:B ratios, whereas under high levels of grazing, ratios decreased,
215 indicating contrasting dominance of fungi and bacteria under moderate and high levels of grazing,
216 respectively (Xun et al., 2018), likely due to the greater sensitivity of soil fungi to disturbance than
217 bacteria (Tolkkinen et al., 2015); for example, fungal hyphae are particularly vulnerable to intense
218 grazing (Tordoff et al., 2011).

219 **4.2 Effects of grazing duration on soil C cycling and microbe traits**

220 We found that RRs of SOC decreased with grazing duration, supporting previous meta-
221 analyses (Tang et al., 2019; Zhou et al., 2017). Soil enzyme activity RRs and soil microbial biomass
222 are reduced under longer-term grazing duration (>10 years), likely as a result of prolonged decreases
223 in the return of plant-based organic matter to the soil (Zhang et al., 2022a) and negative impacts of
224 trampling on soil erosion and associated increases in nutrient losses, including C, and decreases in
225 soil moisture content that limit availability of resources required for microbial growth (Van Syoc et
226 al., 2022). Although our analysis showed that grazing for >10 years leads to increases in the diversity
227 of bacteria and fungi, this finding requires verification, due to a lack of data for sites grazed for 5–

228 10 years; however, it is likely that large variations in soil, vegetation, and climate conditions of the
229 global-scale dataset may partly explain such response patterns (Wilson et al., 2018; Li et al., 2020).
230 Our results provide clear evidence that effects of grazing on soil C and microbe communities largely
231 depend on grazing duration, where 10 years may represent a critical threshold for impacts of
232 livestock grazing on soil enzyme activity and microbial biomass and overall grassland soil
233 ecosystem stability. We suggest, however, that soil fungi and bacteria diversity and evenness
234 responses to grazing duration should be investigated further.

235 **4.3 Effects of livestock species assemblage on soil C cycling and microbe traits**

236 Livestock species is a key driver of grazing effects on soil microbe community traits (van der
237 Weerden et al., 2020; Traore et al., 2021). Indeed, we found negative effects of sheep grazing on
238 SOC and MBC content, enzyme activity (SA and AP), and AMF abundance were greater than for
239 grazing by cattle, likely due to contrasting dietary preferences. For example, large grazers, such as
240 cattle, tend to consume plants of greater palatability and use their tongue and teeth to remove higher
241 level vegetation (Pruszenski & Hernandez, 2020), whereas smaller grazers, such as sheep, tend to
242 use teeth to nibble vegetation close to ground-level (Li et al., 2021; Song et al., 2017); this difference
243 results in a larger foraging area under sheep grazing than under cattle (Rook et al., 2004), with
244 greater impacts on soil C and microbe community traits. Similarly, differences in organic inputs
245 between grazing species affect soil properties: larger amounts of manure under cattle grazing that
246 alleviate associated reductions soil nutrients and soil moisture (Cai et al., 2017) may explain the
247 lower negative effects of cattle grazing we found in this study and could slow the reductions in soil
248 C content and microorganism activity.

249 **4.4 Effects of climate on soil C cycling and microbe traits**

250 Regional climate factors, such as temperature and precipitation, contribute to element cycling
251 and nutrient availability, and soil microbe community structure and function in grassland
252 ecosystems (McDaniel et al., 2013; Wang et al., 2021; Yang et al., 2021). However, we found no
253 evidence for relationships between SOC content RRs and MAP or MAT, possibly because most of
254 the studies included in our meta-analysis were conducted in areas of relatively low precipitation and
255 temperature where there are low accumulation levels of SOC, indicating that disturbance from
256 grazing may be a stronger driver of grassland soil C turnover, particularly in dry and cold regions,
257 such as tundra, than local climate conditions. In contrast, we found that MAP was positively related
258 to RRs of microbial biomass (MBC and MBN) and MAT was positively related to UA activity, soil
259 microbial biomass content, fungi diversity, and PLFA content under grazed conditions, where shifts
260 from negative to positive relationships with increasing MAP and MAT occurred at critical threshold
261 points of c. 500 mm and 5 °C, respectively. It is possible that these trends in relationship are
262 explained by accelerated rates of litter decomposition rate with increasing MAP and MAT (González
263 & Seastedt, 2001; Pillay et al., 2021) that provide a positive feedback for soil microbe community
264 foraging of nutrients (Ren et al., 2018) and/or changes in soil physicochemical properties driven by
265 temperature and precipitation patterns lead to shifts in soil microbe communities (Zhou et al., 2020;
266 Tang et al., 2022).

267 **4.5 Links between SOC content and soil microbe traits under contrasting grazing regimes**

268 An important finding in our study is that, while livestock grazing often induced a linear
269 relationship between microbe community traits and SOC content, there was no similar effect on
270 relationships with soil TN or TP. These results indicate that microbe communities may be more
271 active in C cycling than in N or P cycling under grazing pressure, possibly because grazing livestock

272 tend to prefer non-legume taxa, such as the Poaceae and Cyperaceae, to leguminous species that are
273 a major source of soil N content in grasslands (Frache et al., 2009; Li et al., 2019). Thus, it is likely
274 that while most livestock grazing of grasslands may have limited impacts on soil N derived from
275 leguminous plants (Song et al., 2017; Li et al., 2021), there could be a decrease in microbial activity
276 that may lead to weakened relationships between soil TN and microorganisms. Likewise, the
277 combination of continuous leaching and losses of P from livestock-grazed grasslands soils (Vadas
278 et al., 2015) and slow soil gains in P from rock weathering may lead to a decoupling of P cycling
279 and microbial activities. Thus, a consequence of livestock grazing of grassland may increase the
280 dependence of soil C cycling on microbial activities, with no impact on the relationships of N and
281 P with microorganisms. Furthermore, we found that such dependence of SOC content on microbe
282 traits tended to be stronger under moderate and high levels of grazing than under low intensity
283 grazing, that led to the subsequent increase in other soil processes, including UA activity, soil
284 microbial biomass content, and soil respiration, indicating that SOC-microbial activity relationships
285 intensify with grazing intensity. Given the key role of microbe community traits in soil C cycling
286 (Delgado-Baquerizo et al., 2020), grazing-mediated impacts on SOC-microbe relationships may
287 operate through effects on plant productivity and litter decomposition (Liu et al., 2015; Eldridge et
288 al., 2017; López-Mársico et al., 2015).

289 Negative effects of grazing on plant growth and cover tend to increase with grazing intensity
290 (Tang et al., 2019; Wang & Tang, 2019; Montenegro-Díaz et al., 2022), reducing the return of C and
291 nutrients to the soil via litter decomposition (Traore et al., 2021) that then decrease food source
292 availability for soil microbes (Eldridge et al., 2017), leading to microbial nutrient limitation (Van
293 Syoc et al., 2022) and lower levels of SOC conversion (McSherry et al., 2013; McBride et al., 2020).

294 Similarly, intense levels of grazing may inhibit microbial growth and function in soil C cycling (Van
295 Syoc et al., 2022; Tang et al., 2021), due to effects of higher soil temperatures and levels of water
296 evaporation (Rehschuh et al., 2022) following greater exposure of the soil surface to solar radiation
297 (Niu et al., 2014), while livestock trampling increases soil erosion (Kosmalla et al., 2022) and soil
298 microbe mortality and/or migration (Joshua et al., 2007; Qiu et al., 2021) that adversely influences
299 microbe growth and associated ecosystem C processes (Malik & Bouskill, 2022; Mariappan et al.,
300 2022).

301

302 **5 Conclusions**

303 Our meta-analysis indicates that global grassland soil content of C, N, and P, and microbial
304 biomass, along with microbe diversity and activity are sensitive to livestock grazing. Grazing
305 intensity and duration tend to be negatively related to soil content of C, N, and P, enzyme activities,
306 soil microbial biomass content, and levels of soil respiration. In contrast to high levels of grazing
307 intensity, light and moderately intense grazing increase soil bacteria and fungi diversity. Most
308 importantly, grazing intensity, rather than grazing duration, strengthens SOC-microbial trait
309 relationships, while there were no such effects on relationships with soil TN or TP. Our findings
310 highlight the importance of livestock grazing in soil microbe-mediated C processes and we suggest
311 these relationships should be accounted for in grassland ecosystem C-cycling models.

312

313 **Acknowledgements**

314

315 **Author contributions**

316

317 **Conflict of interest statement**

318 The authors declare no conflicts of interest.

319

320 **Data availability statement**

321 The data supporting the findings of this study are available in Supplementary Dataset 1.

322

323 **References**

324 Allison, S.D., Treseder, K.K., 2008. Warming and drying suppress microbial activity and carbon
325 cycling in boreal forest soils. *Global Change Biology* 14, 2898-2909.

326 Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning.
327 *Nature* 515, 505-511.

328 Birgander, J., Rousk, J., Olsson, P.A., 2014. Comparison of fertility and seasonal effects on
329 grassland microbial communities. *Soil Biology & Biochemistry* 76, 80-89.

330 Cai, Y., Du, Z., Yan, Y., Wang, X., Liu, X., 2017. Greater stimulation of greenhouse gas emissions
331 by stored yak urine than urea in an alpine steppe soil from the Qinghai-Tibetan Plateau: A
332 laboratory study. *Grassland Science* 63, 196-207.

333 Davidson, K.E., Fowler, M.S., Skov, M.W., Doerr, S.H., Beaumont, N., Griffin, J.N., 2017.
334 Livestock grazing alters multiple ecosystem properties and services in salt marshes: a meta-
335 analysis. *Journal of Applied Ecology* 54, 1395-1405.

336 Delgado-Baquerizo, M., Reich, P.B., Trivedi, C., Eldridge, D.J., Abades, S., Alfaro, F.D., Bastida,
337 F., Berhe, A.A., Cutler, N.A., Gallardo, A., Garcia-Velazquez, L., Hart, S.C., Hayes, P.E., He,

338 J.-Z., Hseu, Z.-Y., Hu, H.-W., Kirchmair, M., Neuhauser, S., Perez, C.A., Reed, S.C., Santos,
339 F., Sullivan, B.W., Trivedi, P., Wang, J.-T., Weber-Grullon, L., Williams, M.A., Singh, B.K.,
340 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. *Nature*
341 *Ecology & Evolution* 4, 210-220.

342 Dlamini, P., Chivenge, P., Chaplot, V., 2016. Overgrazing decreases soil organic carbon stocks the
343 most under dry climates and low soil pH: A meta-analysis shows. *Agriculture Ecosystems and*
344 *Environment* 221, 258-269.

345 Egger, M., Davey, S.G., Schneider, M., Minder, C., 1997. Bias in meta-analysis detected by a simple,
346 graphical test. *British Medical Journal* 315, 629–634.,

347 Eldridge, D.J., Delgado-Baquerizo, M., Travers, S.K., Val, J., Oliver, I., 2017. Do grazing intensity
348 and herbivore type affect soil health? Insights from a semi-arid productivity gradient. *Journal*
349 *of Applied Ecology* 54, 976-985.

350 Franche, C., Lindstrom, K., Elmerich, C., 2009. Nitrogen-fixing bacteria associated with
351 leguminous and non-leguminous plants. *Plant and Soil* 321, 35-59.

352 Filazzola, A., Brown, C., Dettlaff, M.A., Batbaatar, A., Grenke, J., Bao, T., Heida, I.P., Cahill, J.F.,
353 2020. The effects of livestock grazing on biodiversity are multi-trophic: a meta-analysis.
354 *Ecology Letters* 23, 1298-1309.

355 Gao, D., Bai, E., Yang, Y., Zong, S., Hagedorn, F., 2021. A global meta-analysis on freeze-thaw
356 effects on soil carbon and phosphorus cycling. *Soil Biology & Biochemistry* 159, 108283.

357 Gao, J., Carmel, Y., 2020. A global meta-analysis of grazing effects on plant richness. *Agriculture*
358 *Ecosystems and Environment* 302, 107072.

359 Ghosh, A., Mahanta, S.K., Manna, M.C., Singh, S., Bhattacharyya, R., Tyagi, V.C., Singh, J.B., Ram,

360 S.N., Srinivasan, R., Singh, A.K., Gupta, A., Govindasamy, P., Rokde, S.N., 2022. Long-Term
361 Grazing Mediates Soil Organic Carbon Dynamics by Reorienting Enzyme Activities and
362 Elemental Stoichiometry in Semi-arid Tropical Inceptisol. *Journal of Soil Science and Plant*
363 *Nutrition* 22, 1422-1433.

364 González, G., Seastedt, T.R., 2001. Soil fauna and plant litter decomposition in tropical and
365 subalpine forests. *Ecology* 82, 955-964.

366 Hedges, L.V., Gurevitch, J., Curtis, P.S., 1999. The meta-analysis of response ratios in experimental
367 ecology. *Ecology* 80, 1150-1156.

368 Hu, S.R.K., Herrera, E.L., Smith, A.R., Pachiadaki, M.G., Edgcomb, V.P., Sylva, S.P., Chan, E.W.,
369 Seewald, J.S., German, C.R., Huber, J.A., 2021. Protistan grazing impacts microbial
370 communities and carbon cycling at deep-sea hydrothermal vents. *Proceedings of the National*
371 *Academy of Sciences of the United States of America* 118, e2102674118.

372 Jeffery, S., Harris, J.A., Rickson, R.J., Ritz, K., 2009. The spectral quality of light influences the
373 temporal development of the microbial phenotype at the arable soil surface. *Soil Biology &*
374 *Biochemistry* 41, 553-560.

375 Joshua, S., Balser, T.C., Matthew, W., 2007. Microbial stress-response physiology and its
376 implications for ecosystem function. *Ecology* 88, 1386-1394.

377 Kosmalla, V., Keimer, K., Schuerenkamp, D., Lojek, O., Goseberg, N., 2022. Erosion resistance of
378 vegetation-covered soils: Impact of different grazing conditions in salt marshes and analysis of
379 soil-vegetation interactions by the novel DiCoastar method. *Ecological Engineering* 181,
380 106657.

381 Li, Z., Tian, D., Wang, B., Wang, J., Wang, S., Chen, H., Xu, X., Wang, C., He, N., Niu, S., 2019.

382 Microbes drive global soil nitrogen mineralization and availability. *Global Change Biology* 25,
383 1078-1088.

384 Li, J., Chai, H., Ding, S., Wang, J., Li, X., Li, Y., Li, T., Liu, J., Wang, H., Liang, C., Wang, C., Liu,
385 Y., Luo, Y., Wang, L., Wang, D., 2021. Species-specific herbivore grazing of type-specific
386 grassland can assist with promotion of shallow layer of soil carbon sequestration.
387 *Environmental Research Letters* 16, 114033.

388 Li, W., Hodzic, J., Su, J., Zheng, S., Bai, Y., 2020. A dataset of plant and microbial community
389 structure after long-term grazing and mowing in a semiarid steppe. *Scientific Data* 7, 403.

390 Liu, N., Kan, H.M., Yang, G.W., Zhang, Y.J., 2015. Changes in plant, soil, and microbes in a typical
391 steppe from simulated grazing: explaining potential change in soil C. *Ecological Monographs*
392 85, 269-286.

393 López-Mársico, L., Altesor, A., Oyarzabal, M., Baldassini, P., Paruelo, J.M., 2015. Grazing
394 increases below-ground biomass and net primary production in a temperate grassland. *Plant*
395 and *Soil* 392, 155–162.

396 Malik, A.A., Bouskill, N.J., 2022. Drought impacts on microbial trait distribution and feedback to
397 soil carbon cycling. *Function Ecology* 36, 1442-1456.

398 Mariappan, S., Hartley, I.P., Cressey, E.L., Dungait, J.A.J., Quine, T.A., 2022. Soil burial reduces
399 decomposition and offsets erosion-induced soil carbon losses in the Indian Himalaya. *Global*
400 *Change Biology* 28, 1643-1658.

401 McBride, S.G., Choudoir, M., Fierer, N., Strickland, M.S., 2020. Volatile organic compounds from
402 leaf litter decomposition alter soil microbial communities and carbon dynamics. *Ecology*
403 101(10).

404 McDaniel, M.D., Kaye, J.P., Kaye, M.W., 2013. Increased temperature and precipitation had limited
405 effects on soil extracellular enzyme activities in a post-harvest forest. *Soil Biology &*
406 *Biochemistry* 56, 90-98.

407 McSherry, M.E., Ritchie, M.E., 2013. Effects of grazing on grassland soil carbon: a global review.
408 *Global Change Biology* 19, 1347-1357.

409 Mipam, T.D., Zhong, L.L., Liu, J.Q., Miehe, G., Tian, L.M., 2019. Productive Overcompensation
410 of Alpine Meadows in Response to Yak Grazing in the Eastern Qinghai-Tibet Plateau. *Frontiers*
411 in *Plant Science* 10, 925.

412 Montenegro-Diaz, P., Alvear, R.C., Wilcox, B.P., Carrillo-Rojas, G., 2022. Effects of heavy grazing
413 on the microclimate of a humid grassland mountain ecosystem: Insights from a biomass
414 removal experiment. *Science of The Total Environment* 832, 155010-155010.

415 Myrgiotis, V., Harris, P., Revill, A., Sint, H., Williams, M., 2021. Inferring management and
416 predicting sub-field scale C dynamics in UK grasslands using biogeochemical modelling and
417 satellite-derived leaf area data. *Agricultural and Forest Meteorology* 307, 108466.

418 Niu, F., He, J., Zhang, G., Liu, X., Liu, W., Dong, M., Wu, F., Liu, Y., Ma, X., An, L., Feng, H.,
419 2014. Effects of enhanced UV-B radiation on the diversity and activity of soil microorganism
420 of alpine meadow ecosystem in Qinghai-Tibet Plateau. *Ecotoxicology* 23, 1833-1841.

421 Pillay, T., Ward, D., Mureva, A., Cramer, M., 2021. Differential effects of nutrient addition and
422 woody plant encroachment on grassland soil, litter and plant dynamics across a precipitation
423 gradient. *Pedobiologia* 85-86, 150726.

424 Powers, J.S., Corre, M.D., Twine, T.E., Veldkamp, E., 2011. Geographic bias of field observations
425 of soil carbon stocks with tropical land-use changes precludes spatial extrapolation.

426 Proceedings of the National Academy of Sciences of the United States of America 108, 6318-

427 6322.

428 Pruszenski, J.M., Hernandez, D.L., 2020. White-tailed Deer in Tallgrass Prairie: Novel Densities of

429 a Native Herbivore in Managed Ecosystems. *Natural Areas Journal* 40, 101-110.

430 Qiu, L.P., Zhang, Q., Zhu, H.S., Reich, P.B., Banerjee, S., van der Heijden, M.G.A., Sadowsky, M.J.,

431 Ishii, S., Jia, X.X., Shao, M.G., Liu, B.Y., Jiao, H., Li, H.Q., Wei, X.R., 2021. Erosion reduces

432 soil microbial diversity, network complexity and multifunctionality. *The ISME Journal* 15,

433 2474-2489.

434 Rehschuh, R., Rehschuh, S., Gast, A., Jakab, A.L., Lehmann, M.M., Saurer, M., Gessler, A., Ruehr,

435 N.K., 2022. Tree allocation dynamics beyond heat and hot drought stress reveal changes in

436 carbon storage, belowground translocation and growth. *New Phytologist* 233, 687-704.

437 Ren, C., Chen, J., Lu, X., Doughty, R., Zhao, F., Zhong, Z., Han, X., Yang, G., Feng, Y., Ren, G.,

438 2018. Responses of soil total microbial biomass and community compositions to rainfall

439 reductions. *Soil Biology & Biochemistry* 116, 4-10.

440 Rook, A.J., Dumont, B., Isselstein, J., Osoro, K., WallisDeVries, M.F., Parente, G., Mills, J., 2004.

441 Matching type of livestock to desired biodiversity outcomes in pastures - a review. *Biological*

442 *Conservation* 119, 137-150.

443 Song, X., Wang, L., Zhao, X., Liu, C., Chang, Q., Wang, Y., Xu, T., Wang, D., 2017. Sheep grazing

444 and local community diversity interact to control litter decomposition of dominant species in

445 grassland ecosystem. *Soil Biology & Biochemistry* 115, 364-370.

446 Tang, B., Man, J., Jia, R., Wang, Y., Bai, Y., 2021. Arbuscular Mycorrhizal Fungi Mediate Grazing

447 Effects on Seasonal Soil Nitrogen Fluxes in a Steppe Ecosystem. *Ecosystems* 24, 1171-1183.

448 Tang, S., Yuan, P., Tawaraya, K., Tokida, T., Fukuoka, M., Yoshimoto, M., Sakai, H., Hasegawa, T.,

449 Xu, X., Cheng, W., 2022. Winter nocturnal warming affects the freeze-thaw frequency, soil

450 aggregate distribution, and the contents and decomposability of C and N in paddy fields.

451 Science of the Total Environment 802, 149870.

452 Tang, S., Wang, K., Xiang, Y., Tian, D., Wang, J., Liu, Y., Cao, B., Guo, D., Niu, S., 2019. Heavy

453 grazing reduces grassland soil greenhouse gas fluxes: A global meta-analysis. Science of the

454 Total Environment 654, 1218-1224.

455 Teague, R., Kreuter, U., 2020. Managing Grazing to Restore Soil Health, Ecosystem Function, and

456 Ecosystem Services. Frontiers in Sustainable Food Systems 4, 534187.

457 Tolkkinen, M., Mykra, H., Annala, M., Markkola, A.M., Vuori, K.M., Muotka, T., 2015. Multi-

458 stressor impacts on fungi diversity and ecosystem functions in streams: natural vs.

459 anthropogenic stress. Ecology 96, 672-683.

460 Tordoff, G.M., Chamberlain, P.M., Crowther, T.W., Black, H.I.J., Jones, T.H., Stott, A., Boddy, L.,

461 2011. Invertebrate grazing affects nitrogen partitioning in the saprotrophic fungus

462 *Phanerochaete velutina*. Soil Biology & Biochemistry 43, 2338-2346.

463 Traore, S., Ouedraogo, P., Bayen, P., Bationo, B.A., Lee, N., Lorenz, N., Dick, R.P., 2021. Effect of

464 livestock manure on soil microbial and nutrient dynamics in zai cropping systems of the Sahel.

465 Land Degradation & Development 32, 3248-3258.

466 Trivedi, P., Delgado-Baquerizo, M., Trivedi, C., Hu, H.W., Anderson, I.C., Jeffries, T.C., Zhou, J.Z.,

467 Singh, B.K., 2016. Microbial regulation of the soil carbon cycle: evidence from gene-enzyme

468 relationships. The ISME Journal 10, 2593-2604.

469 Vadas, P.A., Busch, D.L., Powell, J.M., Brink, G.E., 2015. Monitoring runoff from cattle-grazed

470 pastures for a phosphorus loss quantification tool. *Agriculture Ecosystems and Environment*
471 199, 124-131.

472 van der Heyde, M., Bennett, J.A., Pither, J., Hart, M., 2017. Longterm effects of grazing on
473 arbuscular mycorrhizal fungi. *Agriculture Ecosystems & Environment* 243, 27-33.

474 van der Weerden, T.J., Noble, A.N., Luo, J., de Klein, C.A.M., Saggar, S., Giltrap, D., Gibbs, J., Rys,
475 G., 2020. Meta-analysis of New Zealand's nitrous oxide emission factors for rumi-nant excreta
476 supports disaggregation based on excreta form, livestock type and slope class. *Science of the*
477 *Total Environment* 732, 139235.

478 van Elsas, J.D., Chiurazzi, M., Mallon, C.A., Elhottova, D., Kristufek, V., Salles, J.F., 2012.
479 Microbial diversity determines the invasion of soil by a bacteria pathogen. *Proceedings of the*
480 *National Academy of Sciences of the United States of America* 109, 1159-1164.

481 Van Syoc, E., Albeke, S.E., Scasta, J.D., van Diepen, L.T.A., 2022. Quantifying the immediate
482 response of the soil microbial community to different grazing intensities on irrigated pastures.
483 *Agriculture, Ecosystems & Environment* 326, 107805.

484 Wang, B., Chen, Y., Li, Y., Zhang, H., Yue, K., Wang, X., Ma, Y., Chen, J., Sun, M., Chen, Z., Wu,
485 Q., 2021. Differential effects of altered precipitation regimes on soil carbon cycles in arid
486 versus humid terrestrial ecosystems. *Global Change Biology* 27, 6348-6362.

487 Wang, C., Tang, Y.J., 2019. A global meta-analyses of the response of multi-taxa diversity to grazing
488 intensity in grasslands. *Environmental Research Letters* 14, 114003.

489 Wilson, C.H., Strickland, M.S., Hutchings, J.A., Bianchi, T.S., Flory, S.L., 2018. Grazing enhances
490 belowground carbon allocation, microbial biomass, and soil carbon in a subtropical grassland.
491 *Global Change Biology* 24, 2997-3009.

492 Xu, H., Liu, Q., Wang, S., Yang, G., Xue, S., 2022a. A global meta-analysis of the impacts of exotic
493 plant species invasion on plant diversity and soil properties. *Science of the Total Environment*
494 810, 152286.

495 Xu, H., Qu, Q., Li, G., Liu, G., Geissen, V., Ritsema, C., Xue, S., 2022b. Impact of nitrogen addition
496 on plant-soil-enzyme C–N–P stoichiometry and microbial nutrient limitation. *Soil Biology &*
497 *Biochemistry* 170, 108714.

498 Xun, W., Yan, R., Ren, Y., Jin, D., Xiong, W., Zhang, G., Cui, Z., Xin, X., Zhang, R., 2018. Grazing-
499 induced microbiome alterations drive soil organic carbon turnover and productivity in meadow
500 steppe. *Microbiome* 6, 170.

501 Yang, Y., Li, T., Wang, Y., Cheng, H., Chang, S.X., Liang, C., An, S., 2021. Negative effects of
502 multiple global change factors on soil microbial diversity. *Soil Biology & Biochemistry* 156,
503 108229.

504 Zhang, R., Tian, D., Chen, H.Y.H., Seabloom, E.W., Han, G., Wang, S., Yu, G., Li, Z., Niu, S., 2022a.
505 Biodiversity alleviates the decrease of grassland multifunctionality under grazing disturbance:
506 A global meta-analysis. *Global Ecology and Biogeography* 31, 155-167.

507 Zhang, X., Zhang, W., Sai, X., Chun, F., Li, X., Lu, X., Wang, H., 2022b. Grazing altered soil
508 aggregates, nutrients and enzyme activities in a *Stipa kirschnii* steppe of Inner Mongolia. *Soil*
509 & *Tillage Research* 219, 105327.

510 Zhao, F., Ren, C., Shelton, S., Wang, Z., Pang, G., Chen, J., Wang, J., 2017. Grazing intensity
511 influence soil microbial communities and their implications for soil respiration. *Agriculture*
512 *Ecosystems & Environment* 249, 50-56.

513 Zhou, G., Zhou, X., He, Y., Shao, J., Hu, Z., Liu, R., Zhou, H., Hosseinibai, S., 2017. Grazing

514 intensity significantly affects belowground carbon and nitrogen cycling in grassland

515 ecosystems: a meta-analysis. *Global Change Biology* 23, 1167-1179.

516 Zhou, Z., Wang, C., Luo, Y., 2020. Meta-analysis of the impacts of global change factors on soil

517 microbial diversity and functionality. *Nature Communications* 11, 3072.

518 **Table and figure captions**

519 Fig. 1 The response ratios of soil enzyme activities, microbial parameters, and chemical properties to
520 grazing. Notes: dots with error bars denote overall means and 95% confidence intervals (CI). Numbers
521 in parentheses indicates sample sizes. *indicates that grazing significantly affected soil properties. SA,
522 saccharase enzyme. UA, urease enzyme. AP, acid phosphatase. MBC, microbial biomass carbon. MBN,
523 microbial biomass nitrogen. MBP, microbial biomass phosphorus. SR, soil basal respiration. qCO₂,
524 microbial metabolic quotient. Bacteria D, bacterial diversity index. Bacteria R, bacterial richness index.
525 Fungi D, fungal diversity index. Fungi R, fungal richness index. AMF, arbuscular mycorrhizal fungi.
526 PLFA, Total phospholipidfatty acid. F:B, fungi to bacteria ratio. GP:GN, Gram-positive bacteria to Gram-
527 negative bacteria ratio. SOC, soil organic carbon. TN, soil organic nitrogen. TP, soil organic phosphorus.

528

529 Fig. 2 Effects of grazing intensity on soil enzyme activities, microbial parameters, and chemical
530 properties. Notes: dots with error bars denote overall means and 95% confidence intervals (CI). Numbers
531 in parentheses indicates sample sizes. *indicates that grazing significantly affected soil properties. LG,
532 light grazing. MG, moderate grazing. HG, heavy grazing. AP, acid phosphatase. SA, saccharase enzyme.
533 UA, urease enzyme. MBC, microbial biomass carbon. MBN, microbial biomass nitrogen. MBP,
534 microbial biomass phosphorus. SR, soil basal respiration. qCO₂, microbial metabolic quotient. Bacteria
535 D, bacterial diversity index. Bacteria R, bacterial richness index. Fungi D, fungal diversity index. Fungi
536 R, fungal richness index. AMF, arbuscular mycorrhizal fungi. PLFA, Total phospholipidfatty acid. F:B,
537 fungi to bacteria ratio. GP:GN, Gram-positive bacteria to Gram-negative bacteria ratio.

538

539 Fig. 3 Effects of grazing duration on soil enzyme activities, microbial parameters, and chemical

540 properties. Notes: dots with error bars denote overall means and 95% confidence intervals (CI). Numbers
541 in parentheses indicates sample sizes. *indicates that grazing significantly affected soil properties. AP,
542 acid phosphatase. SA, saccharase enzyme. UA, urease enzyme. MBC, microbial biomass carbon. MBN,
543 microbial biomass nitrogen. MBP, microbial biomass phosphorus. SR, soil basal respiration. qCO₂,
544 microbial metabolic quotient. Bacteria D, bacterial diversity index. Bacteria R, bacterial richness index.
545 Fungi D, fungal diversity index. Fungi R, fungal richness index. AMF, arbuscular mycorrhizal fungi. F:B,
546 fungi to bacteria ratio. PLFA, Total phospholipidfatty acid. GP:GN, Gram-positive bacteria to Gram-
547 negative bacteria ratio.

548

549 Fig. 4 Effects of herbivore assemblage on soil enzyme activities, microbial parameters, and chemical
550 properties. Notes: dots with error bars denote overall means and 95% confidence intervals (CI). Numbers
551 in parentheses indicates sample sizes. *indicates that grazing significantly affected soil properties. AP,
552 acid phosphatase. SA, saccharase enzyme. UA, urease enzyme. MBC, microbial biomass carbon. MBN,
553 microbial biomass nitrogen. MBP, microbial biomass phosphorus. SR, soil basal respiration. qCO₂,
554 microbial metabolic quotient. Bacteria D, bacterial diversity index. Bacteria R, bacterial richness index.
555 Fungi D, fungal diversity index. Fungi R, fungal richness index. AMF, arbuscular mycorrhizal fungi. F:B,
556 fungi to bacteria ratio. PLFA, Total phospholipidfatty acid. GP:GN, Gram-positive bacteria to Gram-
557 negative bacteria ratio.

558

559 Fig. 5 Relationships of (a) mean annual precipitation (MAP) with the response ratio of acid
560 phosphatase (AP), microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN); (b)
561 mean annual temperature (MAT) with the response ratio of urease enzyme (UA), microbial biomass

562 carbon (MBC), microbial biomass nitrogen (MBN), fungi diversity index (Fungi D) and
563 Phospholipdfatty acid (PLFA).

564

565 Fig. 6 Relationships between microbial diversity and soil organic carbon (SOC) with grazing intensity.

566 Notes: *, $p<0.05$. **, $p<0.01$. ***, $p<0.001$. SA, saccharase enzyme. MBC, microbial biomass carbon.

567 MBN, microbial biomass nitrogen. MBP, microbial biomass phosphorus. SR, soil basal respiration.

568 Bacteria D, bacterial diversity index. Fungi D, fungal diversity index.

569 Fig. 7 Conceptual framework of the effects of grazing on soil enzyme activity and microbial
570 community. Notes: Gray means insignificant. “-” indicate grazing intensity and duration had
571 negative effects on soil enzyme activity and microbial community. “+” indicate grazing intensity
572 and duration had positive effects on soil enzyme activity and microbial community.

573

574

575

576

577

578

579

580

581

582

583

584 Table S1. 25 variables included in this study.

585 Table S2 Effect test summary of grazing intensity, grazing duration and herbivore assemblage on
586 each response variable under the random effects model.

587

588 Fig. S1 Frequency distribution of the response ratios of acid phosphatase (AP), saccharase enzyme (SA),
589 urease enzyme (UA), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), microbial
590 biomass phosphorus (MBP), soil basal respiration (SR), microbial metabolic quotient ($q\text{CO}_2$), bacterial
591 diversity index (Bacteria D), bacterial richness index (Bacteria R), fungal diversity index (Fungi D),
592 fungal richness index (Fungi R), arbuscular mycorrhizal fungi (AMF), fungi to bacteria ratio (F:B),
593 Gram-positive bacteria to Gram-negative bacteria ratio (GP:GN), soil organic carbon (SOC), total
594 nitrogen (TN) and total phosphorus (TP).

595

596 Fig. S2 The funnel plot of the response ratios of acid phosphatase (AP), saccharase enzyme (SA),
597 urease enzyme (UA), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN),
598 microbial biomass phosphorus (MBP), soil basal respiration (SR), microbial metabolic quotient
599 ($q\text{CO}_2$), bacterial diversity index (Bacteria D), bacterial richness index (Bacteria R), fungal diversity
600 index (Fungi D), fungal richness index (Fungi R), arbuscular mycorrhizal fungi (AMF),
601 Phospholipidfatty acid (PLFA), fungi to bacteria ratio (F:B), Gram-positive bacteria to Gram-
602 negative bacteria ratio (GP:GN), soil organic carbon (SOC), total nitrogen (TN) and total
603 phosphorus (TP).

604

605 Fig. S3 Relationships of grazing duration with the response ratio of acid phosphatase (AP), microbial

606 biomass carbon (MBC), microbial biomass nitrogen (MBN), soil basal respiration (SR), fungal diversity
607 (Fungi D) and arbuscular mycorrhizal fungi (AMF).

608

609 Fig. S4 Relationships of the response ratio of different individual observations with soil organic carbon
610 (SOC). Notes: AP, acid phosphatase. SA, saccharase enzyme. MBC, microbial biomass carbon. MBN,
611 microbial biomass nitrogen. MBP, microbial biomass phosphorus. SR, soil basal respiration. Bacteria D,
612 bacterial diversity index. Fungi D, fungal diversity index.

613

614 Fig. S5 Relationships between microbial diversity and soil organic carbon (SOC) with grazing
615 duration. Notes: *, $p<0.05$. **, $p<0.01$. ***, $p<0.001$. SA, saccharase enzyme. UA, urease enzyme.
616 AP, acid phosphatase. MBC, microbial biomass carbon. MBN, microbial biomass nitrogen. SR, soil
617 basal respiration. Bacteria D, bacterial diversity index. Fungi D, fungal diversity index.

618

619 Fig. S6 Relationships of the response ratio of different individual observations with soil total nitrogen
620 (TN). Notes: AP, acid phosphatase. MBC, microbial biomass carbon. MBN, microbial biomass nitrogen.
621 MBP, microbial biomass phosphorus. SR, soil basal respiration. Bacteria D, bacterial diversity index.

622 Fig. S7 Relationships between microbial diversity and soil total nitrogen (TN) with grazing intensity
623 (a) and duration (b). Notes: *, $p<0.05$. **, $p<0.01$. ***, $p<0.001$. AP, acid phosphatase. MBC,
624 microbial biomass carbon. SR, soil basal respiration.

625

626 Fig. S8 Relationships of the response ratio of different individual observations with soil total
627 phosphorus (TP). Notes: SA, saccharase enzyme. UA, urease enzyme. MBP, microbial biomass

628 phosphorus. SR, soil basal respiration.

629

630 Fig. S9 Relationships between microbial diversity and soil total phosphorus (TP) with grazing

631 intensity (a) and duration (b). Notes: *, $p<0.05$. **, $p<0.01$. SA, saccharase enzyme. AP, acid

632 phosphatase. MBP, microbial biomass phosphorus. SR, soil basal respiration.