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Abstract 22 

Understanding the causes of the arrest of species distributions has been a fundamental 23 

question in ecology and evolution.  These questions are of particular interest for trees due to 24 

their long lifespan and sessile nature. A surge in data-availability evokes for a macro-25 

ecological analysis to determine the underlying forces limiting distributions. Here we analyse 26 

the spatial distribution of >3600 major tree species to determine geographical areas of range-27 

edge hotspots and find drivers for their arrest. We confirmed biome edges to be strong 28 

delineators of distributions. Importantly, we identified a stronger contribution of temperate 29 

than tropical biomes to range edges, adding strength to the notion that tropical areas are 30 

centers of radiation. We subsequently identified a strong association of range-edge hotspots 31 

with steep spatial climatic gradients. We linked spatial and temporal homogeneity and high 32 

potential evapotranspiration in the tropics as the strongest predictors for this phenomenon. 33 

We propose that the poleward migration of species in light of climate change might be 34 

hindered due to steep climatic gradients. 35 

 36 

Main Text  37 

Introduction  38 

The geographical distributions of species are marked by their range limits. Understanding the 39 

causes of distribution arrest has been a fundamental question in ecology and evolution1–4. 40 

Given the strong interplay between biotic, abiotic, demographic, physical and historical 41 

forces in predicting range-edges, it has been challenging to find underpinnings for their 42 
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formation. Two main environmental forces seem to play a major role in the formation of 43 

range edges; spatial environmental heterogeneity and habitat quality4,54,5. Most models on the 44 

formation of species-range edges rely on the interplay between either one of these two forces 45 

with non-climatic pressures to explain their formation. For example, steep climate gradients 46 

combined with high dispersal and gene flow reduces species’ fitness and genetically 47 

constrains their evolution into novel environments6,7. Likewise, low habitat quality reduces 48 

population size2,8, increasing drift and migration load9–11. Nevertheless, the significance of 49 

climate in the interplay between these two environmental components in defining range edges 50 

for an array of species or on a wide biogeographical scale remains elusive12,13.  51 

 52 

The field of biogeography has long sought understanding of species ranges despite having 53 

limited tools (e.g. 3,14). Given the surge of large-scale datasets, it is now possible to better 54 

identify the underpinnings of species distributions by studying the macro eco-evolutionary 55 

processes involved in their formation11,12,15–17. Although methods and results are disparate 56 

between studies, there is almost a consensus that the presence of large-scale biogeographical 57 

units confine species with climate as their primary predictor. For example, Bontager et al.11 58 

suggested distinct characteristics for range edge populations dependent on their latitude. 59 

Likewise, niche conservatism and strong beta-diversity patterns seem to withhold at large 60 

macro-ecological scales16–18. This is generally true for plant species, with biomes being the 61 

most consistent classifier based on structural and functional similarity19,20. Recent efforts 62 

have been made to understand how accurate and substantial biome entities are at defining 63 

species distributions 20,21. Nevertheless, it remains an open question if, and to what extent, the 64 

intersection between biomes is a source of species range edge hotspots. Deciphering such 65 

patterns will enable the proper understanding of how communities of species redistribute and 66 

are structured geographically, and if similar biomes in distinct geographic areas have similar 67 

effects on the distribution of species.  68 

 69 

However, although there has been an increased interest in defining the biogeographical 70 

underpinnings of species distributions, most techniques have used species relatedness and 71 

diversity metrics to test for the existence of shared niche space between species and 72 

communities. The direct analysis of the ecological and climatic limitations to geographic 73 

space, although trivial, remain elusive. Here, we look at the universal set of climatic factors 74 

and geographical patterns of species distributions by focusing directly on species’ range edge 75 

distributions.  76 
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 77 

We present the first-to-date global study of tree species range edges, applying a novel, 78 

simple, yet effective method of delineating range edges (REs) in order to: (1) identify 79 

deterministic patterns of REs, as seen by RE-dense areas (RE hotspots: REH); (2) determine 80 

whether the classification of biomes as distinct community-level patterns of biodiversity 81 

properly delineate the niche of species; (3) identify global-scale REH patterns, and; (4) 82 

discern the underlying niche factors responsible for RE formation. In particular, we 83 

investigate whether spatial heterogeneity of abiotic factors or a universal predictor for habitat 84 

quality are determinants of RE formation. We focus specifically on tree species, as they are 85 

an exemplary group of species in the study of the ecological changes predicted to occur at the 86 

peripheries of distributions, given their long-lived characteristics and fundamental role in 87 

many ecosystems25,26, specifically biomes 18,27.  88 

 89 

Although we do not study the interplay between climate and other ecological and 90 

evolutionary limiting factors to species distributions (e.g., seed dispersal, plasticity, and 91 

adaptation), discerning these patterns and the climatic components leading to such 92 

distributions will enable a better understanding of interplays between biotic and abiotic 93 

factors in future studies. A better understanding of the climatic factors affecting dispersal 94 

enable for better predictions of the success of species to track changing climates, and in turn, 95 

if they will be subject of migration lags22–24.  96 

 97 

Results 98 

Global data set and REH distribution 99 

We present the first report of the global distribution of tree range edge hotspots (REH) (Fig. 100 

1), marked by the hexagons with significant clustering of REs (Supplementary Fig. 1). We 101 

did not identify any significant coldspots, given the baseline presence of REs around the 102 

globe. The visual patterns emerging from these distributions indicated that distributions 103 

stopped disproportionally more at the edges of biomes than within them. For example, 104 

northern REH occurred mostly at the intersection between a montane (Himalayas) and a 105 

desert biome (Gobi Desert) or at the edge of the tundra in North America. Southern REH in 106 

Africa and southern Eurasia tended to stop at the edges of desert biomes (e.g. Sahara Desert) 107 

but stopped mainly at the edges of temperate and montane grasslands in the Southern 108 

Hemisphere (pampas and Andes, respectively). Eastern and western REH were notably 109 
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mostly in similar geographical locations, e.g. at the intersections between the Himalayas and 110 

central Asian deserts or at the edge of the Atacama Desert in South America. 111 

 112 

In order to identify the underlying niche factors that define REs, we focused only on inland 113 

REs, since REs at the edge of a water source is probably due to an obvious geographical 114 

barrier rather than an ecological effect. The fraction of inland REs was globally similar 115 

between the continents (between 65 and 75%), except for Australia (~45%, Supplementary 116 

Fig. 2a). The large fraction of inland REs (Supplementary Fig. 2b) was mainly associated 117 

with the edges of biomes (e.g. northern REs in Africa, Asia, and North America were 118 

associated with the Sahara Desert, montane grasslands of the Himalayas, and the tundra 119 

biome, respectively; Fig. 1). A significant fraction of eastern inland REs were in Europe, but 120 

almost no significant REH were identified, implying the sparse distribution of REs 121 

throughout the continent, or as an effect from a smaller area for distribution compared to 122 

other continents. 123 

 124 

Contribution of biome-biome intersections to REHs 125 

We quantitatively identified the global patterns of arrest by analysing the fraction of REH 126 

that stopped at biome-biome intersections (14 central global ecological regions best 127 

distinguished by their climate, fauna, and flora obtained from World Wild Life (WWF, 128 

http://www.worldwildlife.org/; Fig. 1) and by delineating a buffer zone at points of 129 

intersection between two or more biomes. Although not significant, the number of REH was 130 

strongly associated with the intersection between biomes (Fig. 2a, first panel), indicating that 131 

climatic conditions were a probable cause for the REs of tree species at biome edges. Our 132 

results, however, identified an unequal contribution of the different biome edges to the 133 

fraction of REH (Fig 2a). We then analysed the individual biome-biome intersections 134 

normalised by a global permutation (i.e., from permutation of the global distribution of REH, 135 

see Materials and Methods). Here we identified (1) a strong contribution of REH at the 136 

intersections between temperate and desert biomes (Fig. 2b, left panel) in comparison to (2) a 137 

weaker contribution at the intersections of tropical and subtropical biomes (between 138 

themselves and with temperate biomes). The significance of the contribution of REH 139 

(p<0.05) (see Materials and Methods) was attributed almost exclusively to the intersections 140 

within temperate biomes (asterisks in Fig. 2b). This unequal contribution between the 141 

temperate vs tropical and subtropical biomes was globally consistent. Nevertheless, under a 142 
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per-biome permutation (i.e., normalising each intersect by a selective permutation from the 143 

respective biome combinations separately; Fig 2b right panel), we observed a much weaker 144 

contribution of range edges to the formation of biomes. Only a selected number of biome-145 

biome intersections had a significant contribution to the formation of REH, yet no specific 146 

pattern between temperate and tropical biomes was observed. Indeed, the strong positive 147 

correlation between the number of REs between biomes with the number of REs within 148 

biomes (Fig. 2c; R = 0.9, linear regression, p < 0.001) reflects such discrepancy between 149 

panels in Fig 2b, as the number of REH at the edge of biomes had a strong linear association 150 

with the number of REH within that biome. We identified five biomes, however, outside the 151 

95% confidence interval (CI) of the regression (Fig. 2c). The two biomes above the 152 

regression CI (desert; and boreal) were biomes where the number of REH at the edges was 153 

larger than predicted (Fig 2c). In contrast, temperate coniferous forest, mangrove and flooded 154 

grasslands fell below the CI of the regression, indicating a much larger number of REH 155 

within the biome compared to the edge.  156 

 157 

A parallel analysis using the distribution of REs (rather than REH) was conducted to identify 158 

similarities and differences between the distributions. The results indicated a similar pattern 159 

of distribution (Supplementary Fig. 4a-b compared to Fig. 2b-c), suggesting global forces 160 

associated with REH.  161 

 162 

Climatic predictors of RE formation 163 

Intersections between biomes were a significant cause of RE formation, so we also 164 

investigated the dependence of RE formation on climate. We tested both the ‘absolute 165 

climate’ (i.e. annual and seasonal average temperature and precipitation) and the ‘spatial 166 

heterogeneity of climate’ (SH, i.e. spatial variability of absolute climate) at each of the global 167 

hexagons using 19 bioclimatic variables obtained from WorldClim (see Materials and 168 

Methods). Elevation (absolute and SH) and latitude were also accounted for at each hexagon 169 

resolution. Generalised linear models of regression between each climatic variable as an 170 

independent predictor indicated that all 40 climatic variables were significant predictors of 171 

RE formation (p<0.05) (Supplementary Fig5a). Interestingly, most absolute climatic 172 

variables were negatively associated with the global RE distribution (Fig. 3a and b), implying 173 

a general prediction of REs occurring in climates with low temperatures and low 174 
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precipitation. A positive association was attributed to the four climatic variables that defined 175 

the temporal heterogeneity of temperature and precipitation (mean diurnal range, temperature 176 

seasonality temperature annual range and precipitation seasonality; BioClim variables 2, 4, 7, 177 

and 15, respectively; Fig. 3a, Supplementary Fig. 5) and all of the SH climatic variables. A 178 

mixed model with biomes and continents as random factors gave a reduced number of 179 

variables that significantly predicted the formation of RE (Fig. 3a). A crossed model with 180 

both continents and biomes consistently gave a stronger fit (AIC values) than only 181 

considering either of these categorical random factors independently (Supplementary Fig 6b). 182 

In this more stringent global analysis, latitude, absolute temperature and SH temperature, 183 

precipitation and elevation were significant predictors of REH. The goodness of fit (R2) of 184 

each model, as a measure of predictive strength, indicated that spatial heterogeneity 185 

accounted for RE formation better than did their absolute equivalents. A model selection was 186 

carried out to identify the most important factors associated with RE formation, followed by a 187 

model averaging of the models with a ∆AIC < 2, (Figs. 3c). The SH climatic variables again 188 

defined RE better than the absolute climatic variables. Although absolute climatic variables 189 

such as isothermality (BioClim3), temperature of the wettest quarter (BioClim8) (both 190 

characteristic of tropical and subtropical climates), and annual precipitation (BioClim12) 191 

were strongly associated with REs in a generalised linear model, temperature of the warmest 192 

quarter (BioClim10) was the only predictor strongly associated with RE under the mixed 193 

model (Figs. 3a and S6). This difference in results can be visually seen when comparing 194 

between continents (Fig. 3b) e.g. in panel 3; with temperature of wettest quarter (BioClim8) 195 

having partial dissociations in Africa and South America, i.e. the two continents with the 196 

most tropical biomes. Furthermore, SH isothermality (BioClim3), temperature of coldest 197 

month (SH BioClim 6), precipitation (SH BioClim13 and 16) and elevation change (SH 198 

elevation) were all predictors of REs. Interestingly, the absolute climatic predictors 199 

(BioClim8 and BioClim10) were strongly negatively correlated with spatial heterogeneity at 200 

the minimum temperature of the coldest month (SH BioClim6) (Supplementary Fig. 7b), 201 

indicating its representation of a tropical biome climate. The weaker relative importance of 202 

SH precipitation (Fig. 3c, left panel) is due to its dissociation with the continents that most 203 

strongly represent temperate regions; Europe and North America (Fig 3b, panel 4).  204 

 205 

In parallel, we ran models with the ENVIREM dataset, a dataset of environmental variables 206 

complementary to WorldClim that are more ecophysiologically meaningful for plant 207 

species28. Most ENVIREM variables associated with REH are spatially heterogeneous 208 
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variables (Fig. 3c, Supplementary Fig. 7). Absolute potential evapotranspiration (PET) of the 209 

coldest quarter was strongly correlated with both absolute temperature of the warmest quarter 210 

(BioClim10) and SH temperature of the coldest month (BioClim6); the two predictors 211 

indicative of a transition between tropical and temperate biomes (Supplementary Fig. 7b). SH 212 

EmbergerQ and SH PET of warmest quarter were strongly associated with SH precipitation 213 

(BioClim13 and 16) and SH temperature of the warmest quarter (BioClim10), respectively. 214 

Albeit the strong correlation of all absolute ENVIREM variables with absolute BioClim 215 

variables28, we identified several SH ENVIREM variables to be weakly correlated to BioClim 216 

(e.g., SH moisture index and PET of driest month). All results in Fig. 3 were robust against 217 

spatial autocorrelation. (Supplementary Fig. 5b, see Materials and Methods for further 218 

information). 219 

 220 

The REH distribution from our generated polygons was compared to a REH distribution from 221 

expert polygons (see Materials and Methods), in order to test for the accuracy of our 222 

generated dataset. Indeed, results of GLMs converge, indicating the robustness of our 223 

generated dataset to describe REs (Supplementary Fig. S8).  224 

 225 

Discussion 226 

The results support our hypothesis of a nonrandom distribution of REs. We were able to 227 

confirm that many tree species range edges were clustered rather than sparsely (stochastic) 228 

distributed, by obtaining a larger number of significant REH. This finding suggests the 229 

underlying presence of ecological and evolutionary forces governing REH formation. 230 

Similarly, the matching results obtained from the biome analyses when accounting for REs 231 

(Supplementary Fig. 4) or REH (Fig. 2) was also indicative of the deterministic clustering of 232 

species REs at these specific ecological barriers (biome edges). Nevertheless, we identified 233 

case-specific exceptions such as the scattered distribution of eastern REs throughout Europe, 234 

indicated by the strong identification of internal REs (Supplementary Fig. 2b) but not REH 235 

(Fig. 1c). This could potentially have occurred as a consequence of either the intense 236 

anthropogenic activity throughout29,30 that prevented the distribution of tree species to reach 237 

their natural REs, or the effect of smaller land area compared to other continents, altering the 238 

effect of how species interact with abiotic factors, thus affecting their distribution and 239 

adaptation. 240 

 241 
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Our results also indicated a strong dependence of REH on the edges of biomes, strongly 242 

supporting the many efforts to determine whether the division of the planet into discrete 243 

geographical units has been appropriately delineated21,31–34. Our findings, however, were 244 

unexpectedly biome-specific, identifying the biome borders that most defined tree 245 

distributions (Fig. 2). There is no seemingly obvious pattern of differential contribution to 246 

REH when analysing each biome independently (per-biome bootstrap; Fig 2a). Yet, a clear 247 

distinction between a tropical/temperate distribution of REH is strongly observed under a 248 

biome-biome pairs analysis (global bootstrap; Fig 2b). Specifically, REs were strongly 249 

dependent on desert, temperate, and montane edges compared to the weak dependence on 250 

tropical and subtropical biome edges. Despite the marginally significant association of range 251 

edges to biomes globally (Fig 2a), a tropical-temperate REH distribution is not specifically 252 

dependent on biome edges, but rather, it represents a global biome trend (Fig 2b, left panel; 253 

Fig. 2c). In addition, the importance of biomes in describing climate’s association to REs, as 254 

seen from a mixed effects model (Fig. 3a, S6c), as well as the absence of latitude in 255 

predicting REs in a global model (Fig 3c) is further indicative of the importance of biomes 256 

(rather than a latitudinal effect) in defining REs. 257 

 258 

The large differences in the relative number of REs between the tropical and temperate 259 

biomes can indicate adaptive mechanisms between species residing in either of these two 260 

types of biomes. These nontrivial results may have been related to the Latitude Diversity 261 

Gradient35–37, a well-established pattern in which biodiversity is higher in the tropics than in 262 

temperate regions. Firstly, the notion that these differences surged through the effective 263 

evolutionary time hypothesis36,38 suggests that genetic diversity is higher in the tropics due to 264 

the possible longer times needed for adaptation and expansion. Similarly, long-term climatic 265 

oscillations have been suggested to reduce cladogenesis at higher latitudes, consistent with 266 

the observation that tropical areas are centers of evolutionary novelty36,39,40 and evolve faster 267 

than temperate regions35, leading to the notion of tropics as centers for radial expansion of 268 

clades and species. Recent studies have identified mechanisms for this ‘out of the tropics 269 

expansion’ model41,42 and have reported a higher fraction of bridge species (species violating 270 

niche conservatism) from the tropics compared to temperate regions. We conclude that the 271 

lower contribution to REs in tropical vs temperate regions is consistent with stronger radial 272 

expansions from the tropics than temperate regions.  273 

 274 
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However, other mechanisms could explain the distinctive REH patterns between the tropic 275 

and temperate regions. For example, based on several studies demonstrating the large 276 

physiological and evolutionary effects of forest fragmentation29,43,44, the increased long-term 277 

anthropogenic activity, and consequently excessive fragmentation, in forests in temperate 278 

regions compared to tropical and subtropical regions may have hindered the adaptation of 279 

species to novel climates. The lack of association of REH specifically to temperate 280 

grasslands, temperate conifers and Mediterranean biomes specifically (Fig 2a) could be 281 

indicative of such an effect, as these biomes have been historically subject to strong 282 

anthropogenic activity.  283 

 284 

Our analyses confirmed the strong dependence of RE on climate. Lower temperature, higher 285 

climatic heterogeneity (both temporal and spatial), and elevation changes were the strongest 286 

climatic predictors of REs. The analysis of the best predictive variables indicated a noticeable 287 

weak correlation between most of the leading factors determining REs (Supplementary Fig. 288 

7b), suggesting that these factors were site-specific predictors of REs (e.g. desert biome with 289 

low annual precipitation, montane grassland with high elevation, and tropical and subtropical 290 

biomes with temperature homogeneity (isothermality, temperature of the wettest quarter and 291 

spatial heterogeneity of low temperature – SH6)). We suggest that the strong negative 292 

correlation between these absolute climatic variables and the spatial heterogeneity of low 293 

temperature is an indication of different temperature patterns between tropical and temperate 294 

regions, i.e. a buffered heterogeneous temperature in the tropics in contrast to the latitudinal 295 

effect of decreasing temperatures in the temperate biomes. There was an overall positive 296 

trend for the effect of precipitation (BC12-BC19) when controlling for biome since the signal 297 

appeared only when biome is included as a random factor (Supplementary Fig. 6). This 298 

means there must be other non-accounted confounding factors altering the relationship when 299 

analysing all biomes together, suggesting that the effect is not biome dependent. Although 300 

this study does not make a note of the complex interplay between biotic and abiotic forces or 301 

the ecological traits of tree species (e.g. seed dispersal, phenology) in the formation of RE, 302 

we find a consistent global effect of temperature and spatial heterogeneity of temperature and 303 

precipitation to predict their formation throughout the different models. This is indicative of 304 

their principal role as universal predictors of species distributions.  305 

 306 

The strong prediction of REH formation from PET of the coldest quarter and its covariance to 307 

the tropical-temperate transition variables (SH BioClim6 and absolute BioClim10), could 308 
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reflect a possible mechanistic evolutionary constrain for the distribution of woody species’ at 309 

temperate biomes. At higher latitudinal temperate biomes, where evapotranspiration is 310 

strongly reduced, especially during the coldest quarter, there is a strong limitation to 311 

photosynthesis and growth by the significant time reduction of stomatal conductance45,46. 312 

Similarly, given the strength of its prediction of REH, SH embergerQ (pluviothermic 313 

quotient) could indicate a more refined mechanism for RE formation than its covariates of 314 

precipitation (SH BioClim 13 and 16). This index describes mean annual precipitation in 315 

relation to annual changes in temperature. EmbergerQ thus increases the predictability of 316 

how precipitation also dictates the formation of REH in the more temperate biomes (Fig 3b, 317 

panel 4). The consistency of our results indicates spatial and temporal heterogeneity of 318 

climate and topography as overwhelmingly stronger predictors of RE formation than their 319 

absolute climatic counterparts (Fig. 3) and, in turn, frail evidence for a universal poor habitat 320 

quality. Even in the cases where mean climatic variables strongly predict REH, these were 321 

strongly associated with this transition between the spatial and temporal climatically 322 

homogenous tropical and subtropical biomes to the more heterogeneous temperate biomes. 323 

Nevertheless, we note the importance of a lack of evapotranspiration, particularly in cold 324 

climates, as a main predictor of RE formation.  325 

 326 

These observations have substantial implications for the effects of climate change on tree 327 

distributions and its effects on tree migration. Although predictions for future steeper 328 

temperature gradient as a result of greenhouse gas emission and climate change has not been 329 

trivial47–49, such an increase in temperature gradients could vastly affect the distribution of 330 

species. In particular, our results strengthen the growing understanding that the predicted 331 

poleward migration of tree species might not be as successful as previously predicted23,24. The 332 

increase of stronger spatial gradients (especially in the lower latitudes)24,48,50 or extreme and 333 

spontaneous events might all be causes of migration lags, despite the suitable temperatures at 334 

higher latitudes and altitudes. Likewise, the importance of PET from temperate biomes on the 335 

formation of REH presented here could also suggest a possible migration lag or loss of 336 

adaptation due to the predicted reduction in PET at higher latitudes51. Our results thus 337 

highlight the importance of accounting for more precise spatial heterogeneity of climate as a 338 

critical feature in future models of species distribution and the development of more precise 339 

conservation efforts such as assisted migration.  340 

 341 

Materials and Methods  342 
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Data acquisition and polygon formation 343 

Supplementary Fig. 9 visually summarises the methodologies used to obtain global range 344 

edge hotspot (REH) distributions. We downloaded a data set of tree species from the open-345 

source data set using R packages rgbif and taxize. Global Biodiversity Information Facility 346 

(GBIF; 05 July 2021, https://doi.org/10.15468/dl.ajen6k) using the Botanic Gardens 347 

Conservation list of 60000 tree species. We downloaded occurrences with entries from 1980 348 

onwards, removing any occurrence reported with a geospatial issue, species not belonging to 349 

the kingdom Plantae (in case of mismatched species names), and any occurrence marked as 350 

unlikely, mismatched, or invalid. We removed occurrences that had reported uncertainties of 351 

>100 km and records based on fossils and unknown sources. We then used the 352 

CoordinateCleaner R package52 to remove any occurrences with zero coordinates, equal x 353 

and y coordinates, duplicates, occurrences at sea, coordinates at capitals, and centroids. To 354 

finalise, we again removed species with <300 occurrences. The data we used undoubtedly 355 

contained sampling bias53, probably overrepresenting the number of REs in some regions 356 

with a reduced or negligible sampling effort. We tried to overcome this issue by basing our 357 

filtering steps on several previous studies52–54. The strength of the critical filtering steps 358 

applied in our analysis resembled those previously presented53.  359 

We converted the georeferenced species occurrences (x and y coordinates) into distributional 360 

polygons in parallel using two independent techniques; through concave-hull   361 

(Supplementary Methods) and multivariate kernel-density estimation (described below). 362 

Given the strong similarity between the two methods (Supplementary Fig. 8), we discuss the 363 

methods and results in detail only for the kernel-density estimated polygons. We created 364 

polygons using two-dimensional kernel density estimations. We first divided the extent of all 365 

the coordinates into 800 grid points in each dimension (longitude and latitude) in order to 366 

produce a matrix of 640,000 grid cells for each of the species. Subsequently, we selected for 367 

the grid cells with the highest 99% estimation of the species’ occurrence and subsequently 368 

rasterised these. Polygons were then delineated around the contour of the rasters.   369 

 370 

Polygon groupings 371 

All polygons belonging to the same species were grouped based on absolute distance from 372 

one another. Polygons separated by ≤500 km were grouped together, with the assumption that 373 

fragmentation, gene flow, and unreported data could all warrant two nearby populations to be 374 

considered as one. We used the hclust function (package stats, agglomeration method: 375 
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complete) to hierarchically cluster populations from a sequence of three or more populations 376 

by their distances, also using a cutoff of 500 km (cutree function, package stats) for 377 

determining the clusters. The final data set comprised >3600 tree species, ranging from one to 378 

nine populations (polygons) per species, for a total of 8500 populations. All spatial data was 379 

analysed using R packages sf and raster.  380 

 381 

RE determination 382 

RE dense areas were determined by (1) defining distinct global units, (2) identifying the RE 383 

of each species and (3) map species’ RE to the global units to calculate the density of 384 

REs/unit. In detail: (1) We rasterised the world map to spatially bin the density of REs. To 385 

overcome the problem of spatial distortion, we used hexagonal bins with the dggridR R 386 

package, developed using the ISEA Discrete Global Grids system, a repetition of polygons on 387 

the surface of an icosahedron, allowing for the projection of equal sized bins onto a 2D plane. 388 

We defined the size of each hexagon as ~23 000 km2 (with an average spacing between center 389 

nodes of 165 km). (2) We used coordinates of the cardinal directions (north, south, east, and 390 

west) to represent species REs by subdividing each polygon cluster into four quartiles in the 391 

four cardinal directions (NE, NW, SE, and SW). The REs for each quartile were determined 392 

as the two most-outward coordinates of the corresponding cardinal directions (e.g. north and 393 

east cardinal coordinates for the NE quartile). Eight REs were thus determined for each 394 

population (two for each cardinal direction). As a filtering step, we accounted for both REs 395 

from the same cardinal direction if they were >20 arc-degrees apart, otherwise we only 396 

accounted for the farthest point from the centroid. (3) The total number of REs obtained using 397 

this method was normalised by the total number of species intersecting its respective 398 

hexagon. In parallel, we also defined REs by accounting for the perimeter of the polygon for 399 

each species (Supplementary Fig. 10). The ‘perimeter’ system may be a more realistic and 400 

complete system for identifying REs, but the ‘cardinal coordinate’ system, although more 401 

simplistic in nature, (1) provides a clearer visual representation of the distribution of REs, and 402 

(2) allows for the directionality of REs to be compared, essential farther along the pipeline by 403 

distinguishing between coastline and inland REs and identifying hotspots in the four cardinal 404 

directions. 405 

 406 

We then classified coastline and inland REs, assuming that the arrest of species distribution at 407 

the edge of a water source was probably due to an obvious geographical barrier rather than an 408 

ecological effect. Coastline REs were determined by creating a semicircle (buffer of 3 arc-409 
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degrees) around each RE in the direction of its cardinal coordinate and measured the 410 

percentage overlap with water. Cardinal coordinates with >50% overlap were considered a 411 

“coastal RE”.  412 

 413 

In order to find the probability distribution of REs at the edge of water source 414 

(Supplementary Fig. 2), we permutated the global population of REs (except for the 415 

Australian population) and used the mean of this permutation to compare to the number of 416 

REs in each of the continents.  417 

 418 

Hotspot analysis 419 

Hotspots were identified using the Getis-Ord Gi* hotspot analysis55,56 to find spatial 420 

correlations between hexagon (inland and normalised) RE densities. We initially compiled a 421 

list of neighbors between all hexagons using the poly2nb function and then obtained the local 422 

G statistic using the weighted density (normalised number of REs) of the global hexagons 423 

and their relative distance from each other. The G statistic calculates a Z-score (measure of 424 

standard deviation) for each hexagon. P values were then determined using the critical Z-425 

scores at 95% confidence levels followed by a Bonferroni correction using the p.adjustSP 426 

function (using the number of neighbors between hexagons rather than the total number of 427 

hexagons). All analyses were carried out using the R spdep package57.  428 

 429 

We compared the analysis from the linear models with expert based polygons from three 430 

different sources – IUCN, BIEN and EUFORGEN. A randomised weighted sample of all of 431 

this dataset was used to generate a global distribution of REH by running this sample through 432 

our pipeline. GLMs were run on the global distribution of expert-based REH in the same way 433 

as with our generated polygons. Given the uneven distribution of expert-based polygons 434 

globally (Supplementary Fig. 8a), we ran models excluding Asia and Africa, in order to 435 

account for this bias. As seen by the strong similarity between the GLMs of expert polygons 436 

in a global and filtered model (Supplementary Fig 8b and Fig 8c, panel 3), we observed an 437 

overrepresentation of the expert polygons for these continents. Likewise, the GLMs from our 438 

generated polygons are much similar to those obtained from the filtered model. In this case, 439 

practically all variables showed the same relationship with range edges (either positive or 440 

negative β values) as well as similar magnitudes.  441 

 442 

Statistical analyses  443 
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Contribution of biome edge to RE. We used the 14 biomes defined by the World Wildlife 444 

Fund (WWF) for our analyses. The distributions were downloaded from the WWF webpage 445 

(http://www.worldwildlife.org/). To identify the intersection between biomes, we reduced the 446 

complexity of the polygon edge using the rmapshaper package, which can perform 447 

topologically aware polygon simplifications, thus maintaining the intersection between 448 

biomes upon reduction of “edginess” of the polygons. The intersections were delineated and 449 

subsequently enlarged (with a buffer distance of 0.1 arc-minute, ~185 m at the equator). A: 450 

 451 

i.  Global permutation assay was carried out by randomising (1000 iterations) the 452 

global distribution of hexagons with REH (absolute Z-score)  453 

ii. Per-biome stratified permutation was carried out by randomising the distribution 454 

of hexagons with REH within each biome independently.  455 

 456 

The averaged global bootstrap shown in panel 1 of Fig 2a, was calculated using a per-biome 457 

bootstrap to obtain the probability distribution of REH at biome edges (Supplementary Fig. 458 

3a). Distributions that were not normally distributed as a result of their small size (flooded 459 

grassland, mangrove and tropical and subtropical coniferous forest; Supplementary Fig 3b), 460 

were removed from the analysis. A general trend for the probability of range edges falling at 461 

the intersection of biomes was therefore measured as a unified standardised z-distribution, 462 

and compared to the median z-score from the actual percent overlap for each biome. 463 

 464 

The density of hotspots at the intersection between biomes was calculated using the sum of 465 

Z-scores of the hotspots at that intersection, and the percentage contribution was then 466 

calculated using this value over the total Z-score at all biome intersections. The global or per-467 

biome 1000 permutation means were used as a normalising denominator for the values 468 

obtained from our data set (Fig 2b, Supplementary Fig 4a). The denominator could be either 469 

larger or smaller than the numerator, so we log-transformed the outcome to obtain a linear-470 

like relationship. Contribution within a biome was calculated the same way as for the 471 

contribution at the edge, using the mean from a permutated assay to normalise for the 472 

absolute value.   473 

 474 

Climatic dependency of RE. We tested the relationship between RE density and climatic 475 

features by assigning a set of environmental variables to each hexagon. We used the 476 

bioclimatic attributes downloaded from WorldClim Global Climate Data58 at a resolution of 5 477 
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arc-minutes. The 19 BIOCLIM variables and elevations for each hexagon were extracted 478 

using the R raster package. We also used the 16 ENVIREM variables described by 28, 479 

downloaded from their website, at a resolution of 2.5 arc-minutes. Absolute climate for each 480 

hexagon was obtained using the mean over all pixels. Climatic spatial heterogeneity (SH) 481 

was calculated using the proportional variability index59,60 (PV) over all pixels in each 482 

hexagon.  483 

 484 

We used an array of linear mixed models (Fig 3, Supplementary Fig 5 and 6) to test for the 485 

dependence of REs to climate and the robustness of the results. Linear mixed models were 486 

carried out to account for biomes and continents. Both of these variables were introduced as 487 

random effects in random intercept models. A model selection analysis  was used to 488 

determine the models that best predicted the formation of RE. Random intercept models 489 

using both continent and biome as random variables were run, and models with ∆AIC <2 490 

were selected for. Given the strong correlation between different predictor variables, we ran 491 

models only with variable combinations that had a Pearson’s correlation value r < 0.7. The 492 

relative contribution of the variable included in the model were calculated from the selected 493 

models. Analyses were run using R package MuMIn61.  494 

 495 

All statistical analyses (individual GLMs, and multiple-predictor GLMs) were tested for their 496 

robustness to spatial autocorrelation by creating a spatial autocovariate (autocov_dist 497 

function, spdep package), calculated as the distance-weighted average of neighboring 498 

dependent variables62, so hexagons in proximity were averaged and those farther away 499 

received a lower weighting average. We set the predetermined distance to 200 km based on 500 

the average distance between cells. The spatial autocovariate was then included in the 501 

regression model as a dependent variable.  502 

 503 

Data Availability 504 

The occurrence points used from GBIF can be found in the GBIF webpage 505 

(https://doi.org/10.15468/dl.ajen6k). Polygons generated from occurrence points are provided 506 

in the public Zenodo repository 10.5281/zenodo.7613535. Biome polygons were obtained 507 

from the WWF webpage (http://www.worldwildlife.org/). Bioclimatic attributes were 508 

downloaded from WorldClim Global Climate Data58. ENVIREM variables were downloaded 509 

from their webpage (https://envirem.github.io/).  510 

 511 
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Code Availability 512 

Custom codes related to this paper can be found in a GitHub repository at 513 

https://github.com/dlernerg/Global-Range-edges 514 

 515 
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 530 

Figure 1. Range-edge hotspots. Hotspots were identified using Getis-Ord Gi* analysis, 531 

which returns a Z-score for each hexagon in the world. Only hexagons with p<0.05 are 532 

considered hotspots and subsequently shown here. The Z-score of each hexagon is 533 

represented by the color gradient. Biomes (as defined by the World Wildlife Fund) are 534 

marked by colors. ‘T&sT’ and ‘Temp’ stand for ‘Tropic and Subtropic’ and ‘Temperate’, 535 

respectively. 536 

  537 

Figure 2. Range-edge hotspots at intersections between biomes. (a) Modeled distribution 538 

of the percentage of hotspots at the edges of biomes from a permutated (randomised) per-539 

biome distribution of hotspots. The first panel represented the median value of all the other 540 

biomes in the figure over a standardised z-distribution of biomes. The arrow marks the 541 

percentage of RE hotspots at biome intersections in the data set (one-sided p-values) (b) Heat 542 

maps of the percentage of RE hotspots (relative to the total number of hotspots) at the 543 
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intersection between two biomes. A biome-pair intersection with a significant number of 544 

hotspots (p-value < 0.08) is marked with an asterisk. Biome-pairs that have no intersections 545 

are gray. Panel 1 is normalised over a global bootstrap and panel 2 over a per-biome 546 

bootstrap. (c) Correlations (and regression lines) of the relationships between the number of 547 

REs at the edges of biomes and the number of REs within the biomes. The shaded area 548 

represents the 95% confidence interval around the regression line. P-values are calculated 549 

using a two-sided Student’s T-test (degrees of freedom = 12). See Methods and Materials for 550 

further information on the methodology for obtaining significance levels (for (b)) and hotspot 551 

permutations. ‘T&sT’ and ‘Temp’ stand for ‘Tropic and Subtropic’ and ‘Temperate’, 552 

respectively. 553 

 554 

 555 

Figure 3. Climatic predictors of range-edge formation. Models of RE formation using the 556 

absolute climate (mean) and the spatial heterogeneity (PV index) of the 19 WorldClim 557 

variables and elevation. (a) Individual (binomial) mixed regression models between each of 558 

the predictor variables and number of REs (1-19 are BioClim variables) and accounting for 559 

continents and biomes as random effects. The estimated coefficients of the explanatory 560 

variables (β) are represented by the color gradient. ‘*’ and ‘**’ represent p-values <0.05 and 561 

<0.01, respectively (two-sided Student T-test). 562 

BioClim1 – Annual Mean Temperature, BioClim2 - Mean Diurnal Range (Mean of monthly 563 

(max temp - min temp), BioClim3 – Isothermality, BioClim4 - Temperature Seasonality, 564 

BioClim5 - Max Temperature of Warmest Month, BioClim6 - Min Temperature of Coldest 565 

Month, BioClim7 - Temperature Annual Range, BioClim8 - Mean Temperature of Wettest 566 

Quarter, BioClim9 - Mean Temperature of Driest Quarter, BioClim10 - Mean Temperature of 567 

Warmest Quarter, BioClim11 - Mean Temperature of Coldest Quarter, BioClim12 - Annual 568 

Precipitation, BioClim13 – Precipitation of Wettest Month, BioClim14 – Precipitation of 569 

Driest Month, BioClim15 – Precipitation Seasonality (PV), BioClim16 – Precipitation of 570 

Wettest Quarter, BioClim17 – Precipitation of Driest Quarter, BioClim18 – Precipitation of 571 

Driest Quarter, BioClim19 – Precipitation of Coldest Quarter.   572 

 (b) Violin plots depicting the results from (a) for four predictor variables. The distribution of 573 

continental climates is shown in gray, contrasted with the climatic distribution specific to the 574 

RE hotspots (scaled to the intensity of the hotspot, i.e. the Z- score). (c) Forest plot of a 575 

model average from the highest predicting LMM with both BioClim and ENVRIEM 576 

variables (identified with a model selection). Beta values (log-odds) are shown for each 577 
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predictor. Absolute and SH climate was obtained from all of the inland global hexagonal 578 

units (n = 5851). Error bars represent 95% confidence interval around the average effect.  579 

 580 
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 11 

Abstract 12 

Understanding the causes of the arrest of species distributions has been a fundamental 13 

question in ecology and evolution.  These questions are of particular interest for trees due to 14 

their long lifespan and sessile nature. A surge in data-availability evokes for a macro-15 

ecological analysis to determine the underlying forces limiting distributions. Here we analyse 16 

the spatial distribution of >3600 major tree species to determine geographical areas of range-17 

edge hotspots and find drivers for their arrest. We confirmed biome edges to be strong 18 

delineators of distributions. Importantly, we identified a stronger contribution of temperate 19 

than tropical biomes to range edges, adding strength to the notion that tropical areas are 20 

centers of radiation. We subsequently identified a strong association of range-edge hotspots 21 

with steep spatial climatic gradients. We linked spatial and temporal homogeneity and high 22 

potential evapotranspiration in the tropics as the strongest predictors for this phenomenon. 23 

We propose that the poleward migration of species in light of climate change might be 24 

hindered due to steep climatic gradients. 25 

 26 

Main Text  27 

Introduction  28 

The geographical distributions of species are marked by their range limits. Understanding the 29 

causes of distribution arrest has been a fundamental question in ecology and evolution1–4. 30 

Given the strong interplay between biotic, abiotic, demographic, physical and historical 31 

forces in predicting range-edges, it has been challenging to find underpinnings for their 32 

formation. Two main environmental forces seem to play a major role in the formation of 33 
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range edges; spatial environmental heterogeneity and habitat quality4,54,5. Most models on the 34 

formation of species-range edges rely on the interplay between either one of these two forces 35 

with non-climatic pressures to explain their formation. For example, steep climate gradients 36 

combined with high dispersal and gene flow reduces species’ fitness and genetically 37 

constrains their evolution into novel environments6,7. Likewise, low habitat quality reduces 38 

population size2,8, increasing drift and migration load9–11. Nevertheless, the significance of 39 

climate in the interplay between these two environmental components in defining range edges 40 

for an array of species or on a wide biogeographical scale remains elusive12,13.  41 

 42 

The field of biogeography has long sought understanding of species ranges despite having 43 

limited tools (e.g. 3,14). Given the surge of large-scale datasets, it is now possible to better 44 

identify the underpinnings of species distributions by studying the macro eco-evolutionary 45 

processes involved in their formation11,12,15–17. Although methods and results are disparate 46 

between studies, there is almost a consensus that the presence of large-scale biogeographical 47 

units confine species with climate as their primary predictor. For example, Bontager et al.11 48 

suggested distinct characteristics for range edge populations dependent on their latitude. 49 

Likewise, niche conservatism and strong beta-diversity patterns seem to withhold at large 50 

macro-ecological scales16–18. This is generally true for plant species, with biomes being the 51 

most consistent classifier based on structural and functional similarity19,20. Recent efforts 52 

have been made to understand how accurate and substantial biome entities are at defining 53 

species distributions 20,21. Nevertheless, it remains an open question if, and to what extent, the 54 

intersection between biomes is a source of species range edge hotspots. Deciphering such 55 

patterns will enable the proper understanding of how communities of species redistribute and 56 

are structured geographically, and if similar biomes in distinct geographic areas have similar 57 

effects on the distribution of species.  58 

 59 

However, although there has been an increased interest in defining the biogeographical 60 

underpinnings of species distributions, most techniques have used species relatedness and 61 

diversity metrics to test for the existence of shared niche space between species and 62 

communities. The direct analysis of the ecological and climatic limitations to geographic 63 

space, although trivial, remain elusive. Here, we look at the universal set of climatic factors 64 

and geographical patterns of species distributions by focusing directly on species’ range edge 65 

distributions.  66 

 67 
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We present the first-to-date global study of tree species range edges, applying a novel, 68 

simple, yet effective method of delineating range edges (REs) in order to: (1) identify 69 

deterministic patterns of REs, as seen by RE-dense areas (RE hotspots: REH); (2) determine 70 

whether the classification of biomes as distinct community-level patterns of biodiversity 71 

properly delineate the niche of species; (3) identify global-scale REH patterns, and; (4) 72 

discern the underlying niche factors responsible for RE formation. In particular, we 73 

investigate whether spatial heterogeneity of abiotic factors or a universal predictor for habitat 74 

quality are determinants of RE formation. We focus specifically on tree species, as they are 75 

an exemplary group of species in the study of the ecological changes predicted to occur at the 76 

peripheries of distributions, given their long-lived characteristics and fundamental role in 77 

many ecosystems25,26, specifically biomes 18,27.  78 

 79 

Although we do not study the interplay between climate and other ecological and 80 

evolutionary limiting factors to species distributions (e.g., seed dispersal, plasticity, and 81 

adaptation), discerning these patterns and the climatic components leading to such 82 

distributions will enable a better understanding of interplays between biotic and abiotic 83 

factors in future studies. A better understanding of the climatic factors affecting dispersal 84 

enable for better predictions of the success of species to track changing climates, and in turn, 85 

if they will be subject of migration lags22–24.  86 

 87 

Results 88 

Global data set and REH distribution 89 

We present the first report of the global distribution of tree range edge hotspots (REH) (Fig. 90 

1), marked by the hexagons with significant clustering of REs (Supplementary Fig. 1). We 91 

did not identify any significant coldspots, given the baseline presence of REs around the 92 

globe. The visual patterns emerging from these distributions indicated that distributions 93 

stopped disproportionally more at the edges of biomes than within them. For example, 94 

northern REH occurred mostly at the intersection between a montane (Himalayas) and a 95 

desert biome (Gobi Desert) or at the edge of the tundra in North America. Southern REH in 96 

Africa and southern Eurasia tended to stop at the edges of desert biomes (e.g. Sahara Desert) 97 

but stopped mainly at the edges of temperate and montane grasslands in the Southern 98 

Hemisphere (pampas and Andes, respectively). Eastern and western REH were notably 99 

mostly in similar geographical locations, e.g. at the intersections between the Himalayas and 100 

central Asian deserts or at the edge of the Atacama Desert in South America. 101 
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 102 

In order to identify the underlying niche factors that define REs, we focused only on inland 103 

REs, since REs at the edge of a water source is probably due to an obvious geographical 104 

barrier rather than an ecological effect. The fraction of inland REs was globally similar 105 

between the continents (between 65 and 75%), except for Australia (~45%, Supplementary 106 

Fig. 2a). The large fraction of inland REs (Supplementary Fig. 2b) was mainly associated 107 

with the edges of biomes (e.g. northern REs in Africa, Asia, and North America were 108 

associated with the Sahara Desert, montane grasslands of the Himalayas, and the tundra 109 

biome, respectively; Fig. 1). A significant fraction of eastern inland REs were in Europe, but 110 

almost no significant REH were identified, implying the sparse distribution of REs 111 

throughout the continent, or as an effect from a smaller area for distribution compared to 112 

other continents. 113 

 114 

Contribution of biome-biome intersections to REHs 115 

We quantitatively identified the global patterns of arrest by analysing the fraction of REH 116 

that stopped at biome-biome intersections (14 central global ecological regions best 117 

distinguished by their climate, fauna, and flora obtained from World Wild Life (WWF, 118 

http://www.worldwildlife.org/; Fig. 1) and by delineating a buffer zone at points of 119 

intersection between two or more biomes. Although not significant, the number of REH was 120 

strongly associated with the intersection between biomes (Fig. 2a, first panel), indicating that 121 

climatic conditions were a probable cause for the REs of tree species at biome edges. Our 122 

results, however, identified an unequal contribution of the different biome edges to the 123 

fraction of REH (Fig 2a). We then analysed the individual biome-biome intersections 124 

normalised by a global permutation (i.e., from permutation of the global distribution of REH, 125 

see Materials and Methods). Here we identified (1) a strong contribution of REH at the 126 

intersections between temperate and desert biomes (Fig. 2b, left panel) in comparison to (2) a 127 

weaker contribution at the intersections of tropical and subtropical biomes (between 128 

themselves and with temperate biomes). The significance of the contribution of REH 129 

(p<0.05) (see Materials and Methods) was attributed almost exclusively to the intersections 130 

within temperate biomes (asterisks in Fig. 2b). This unequal contribution between the 131 

temperate vs tropical and subtropical biomes was globally consistent. Nevertheless, under a 132 

per-biome permutation (i.e., normalising each intersect by a selective permutation from the 133 

respective biome combinations separately; Fig 2b right panel), we observed a much weaker 134 
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contribution of range edges to the formation of biomes. Only a selected number of biome-135 

biome intersections had a significant contribution to the formation of REH, yet no specific 136 

pattern between temperate and tropical biomes was observed. Indeed, the strong positive 137 

correlation between the number of REs between biomes with the number of REs within 138 

biomes (Fig. 2c; R = 0.9, linear regression, p < 0.001) reflects such discrepancy between 139 

panels in Fig 2b, as the number of REH at the edge of biomes had a strong linear association 140 

with the number of REH within that biome. We identified five biomes, however, outside the 141 

95% confidence interval (CI) of the regression (Fig. 2c). The two biomes above the 142 

regression CI (desert; and boreal) were biomes where the number of REH at the edges was 143 

larger than predicted (Fig 2c). In contrast, temperate coniferous forest, mangrove and flooded 144 

grasslands fell below the CI of the regression, indicating a much larger number of REH 145 

within the biome compared to the edge.  146 

 147 

A parallel analysis using the distribution of REs (rather than REH) was conducted to identify 148 

similarities and differences between the distributions. The results indicated a similar pattern 149 

of distribution (Supplementary Fig. 4a-b compared to Fig. 2b-c), suggesting global forces 150 

associated with REH.  151 

 152 

Climatic predictors of RE formation 153 

Intersections between biomes were a significant cause of RE formation, so we also 154 

investigated the dependence of RE formation on climate. We tested both the ‘absolute 155 

climate’ (i.e. annual and seasonal average temperature and precipitation) and the ‘spatial 156 

heterogeneity of climate’ (SH, i.e. spatial variability of absolute climate) at each of the global 157 

hexagons using 19 bioclimatic variables obtained from WorldClim (see Materials and 158 

Methods). Elevation (absolute and SH) and latitude were also accounted for at each hexagon 159 

resolution. Generalised linear models of regression between each climatic variable as an 160 

independent predictor indicated that all 40 climatic variables were significant predictors of 161 

RE formation (p<0.05) (Supplementary Fig5a). Interestingly, most absolute climatic 162 

variables were negatively associated with the global RE distribution (Fig. 3a and b), implying 163 

a general prediction of REs occurring in climates with low temperatures and low 164 

precipitation. A positive association was attributed to the four climatic variables that defined 165 

the temporal heterogeneity of temperature and precipitation (mean diurnal range, temperature 166 
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seasonality temperature annual range and precipitation seasonality; BioClim variables 2, 4, 7, 167 

and 15, respectively; Fig. 3a, Supplementary Fig. 5) and all of the SH climatic variables. A 168 

mixed model with biomes and continents as random factors gave a reduced number of 169 

variables that significantly predicted the formation of RE (Fig. 3a). A crossed model with 170 

both continents and biomes consistently gave a stronger fit (AIC values) than only 171 

considering either of these categorical random factors independently (Supplementary Fig 6b). 172 

In this more stringent global analysis, latitude, absolute temperature and SH temperature, 173 

precipitation and elevation were significant predictors of REH. The goodness of fit (R2) of 174 

each model, as a measure of predictive strength, indicated that spatial heterogeneity 175 

accounted for RE formation better than did their absolute equivalents. A model selection was 176 

carried out to identify the most important factors associated with RE formation, followed by a 177 

model averaging of the models with a ∆AIC < 2, (Figs. 3c). The SH climatic variables again 178 

defined RE better than the absolute climatic variables. Although absolute climatic variables 179 

such as isothermality (BioClim3), temperature of the wettest quarter (BioClim8) (both 180 

characteristic of tropical and subtropical climates), and annual precipitation (BioClim12) 181 

were strongly associated with REs in a generalised linear model, temperature of the warmest 182 

quarter (BioClim10) was the only predictor strongly associated with RE under the mixed 183 

model (Figs. 3a and S6). This difference in results can be visually seen when comparing 184 

between continents (Fig. 3b) e.g. in panel 3; with temperature of wettest quarter (BioClim8) 185 

having partial dissociations in Africa and South America, i.e. the two continents with the 186 

most tropical biomes. Furthermore, SH isothermality (BioClim3), temperature of coldest 187 

month (SH BioClim 6), precipitation (SH BioClim13 and 16) and elevation change (SH 188 

elevation) were all predictors of REs. Interestingly, the absolute climatic predictors 189 

(BioClim8 and BioClim10) were strongly negatively correlated with spatial heterogeneity at 190 

the minimum temperature of the coldest month (SH BioClim6) (Supplementary Fig. 7b), 191 

indicating its representation of a tropical biome climate. The weaker relative importance of 192 

SH precipitation (Fig. 3c, left panel) is due to its dissociation with the continents that most 193 

strongly represent temperate regions; Europe and North America (Fig 3b, panel 4).  194 

 195 

In parallel, we ran models with the ENVIREM dataset, a dataset of environmental variables 196 

complementary to WorldClim that are more ecophysiologically meaningful for plant 197 

species28. Most ENVIREM variables associated with REH are spatially heterogeneous 198 

variables (Fig. 3c, Supplementary Fig. 7). Absolute potential evapotranspiration (PET) of the 199 

coldest quarter was strongly correlated with both absolute temperature of the warmest quarter 200 
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(BioClim10) and SH temperature of the coldest month (BioClim6); the two predictors 201 

indicative of a transition between tropical and temperate biomes (Supplementary Fig. 7b). SH 202 

EmbergerQ and SH PET of warmest quarter were strongly associated with SH precipitation 203 

(BioClim13 and 16) and SH temperature of the warmest quarter (BioClim10), respectively. 204 

Albeit the strong correlation of all absolute ENVIREM variables with absolute BioClim 205 

variables28, we identified several SH ENVIREM variables to be weakly correlated to BioClim 206 

(e.g., SH moisture index and PET of driest month). All results in Fig. 3 were robust against 207 

spatial autocorrelation. (Supplementary Fig. 5b, see Materials and Methods for further 208 

information). 209 

 210 

The REH distribution from our generated polygons was compared to a REH distribution from 211 

expert polygons (see Materials and Methods), in order to test for the accuracy of our 212 

generated dataset. Indeed, results of GLMs converge, indicating the robustness of our 213 

generated dataset to describe REs (Supplementary Fig. S8).  214 

 215 

Discussion 216 

The results support our hypothesis of a nonrandom distribution of REs. We were able to 217 

confirm that many tree species range edges were clustered rather than sparsely (stochastic) 218 

distributed, by obtaining a larger number of significant REH. This finding suggests the 219 

underlying presence of ecological and evolutionary forces governing REH formation. 220 

Similarly, the matching results obtained from the biome analyses when accounting for REs 221 

(Supplementary Fig. 4) or REH (Fig. 2) was also indicative of the deterministic clustering of 222 

species REs at these specific ecological barriers (biome edges). Nevertheless, we identified 223 

case-specific exceptions such as the scattered distribution of eastern REs throughout Europe, 224 

indicated by the strong identification of internal REs (Supplementary Fig. 2b) but not REH 225 

(Fig. 1c). This could potentially have occurred as a consequence of either the intense 226 

anthropogenic activity throughout29,30 that prevented the distribution of tree species to reach 227 

their natural REs, or the effect of smaller land area compared to other continents, altering the 228 

effect of how species interact with abiotic factors, thus affecting their distribution and 229 

adaptation. 230 

 231 

Our results also indicated a strong dependence of REH on the edges of biomes, strongly 232 

supporting the many efforts to determine whether the division of the planet into discrete 233 

geographical units has been appropriately delineated21,31–34. Our findings, however, were 234 
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unexpectedly biome-specific, identifying the biome borders that most defined tree 235 

distributions (Fig. 2). There is no seemingly obvious pattern of differential contribution to 236 

REH when analysing each biome independently (per-biome bootstrap; Fig 2a). Yet, a clear 237 

distinction between a tropical/temperate distribution of REH is strongly observed under a 238 

biome-biome pairs analysis (global bootstrap; Fig 2b). Specifically, REs were strongly 239 

dependent on desert, temperate, and montane edges compared to the weak dependence on 240 

tropical and subtropical biome edges. Despite the marginally significant association of range 241 

edges to biomes globally (Fig 2a), a tropical-temperate REH distribution is not specifically 242 

dependent on biome edges, but rather, it represents a global biome trend (Fig 2b, left panel; 243 

Fig. 2c). In addition, the importance of biomes in describing climate’s association to REs, as 244 

seen from a mixed effects model (Fig. 3a, S6c), as well as the absence of latitude in 245 

predicting REs in a global model (Fig 3c) is further indicative of the importance of biomes 246 

(rather than a latitudinal effect) in defining REs. 247 

 248 

The large differences in the relative number of REs between the tropical and temperate 249 

biomes can indicate adaptive mechanisms between species residing in either of these two 250 

types of biomes. These nontrivial results may have been related to the Latitude Diversity 251 

Gradient35–37, a well-established pattern in which biodiversity is higher in the tropics than in 252 

temperate regions. Firstly, the notion that these differences surged through the effective 253 

evolutionary time hypothesis36,38 suggests that genetic diversity is higher in the tropics due to 254 

the possible longer times needed for adaptation and expansion. Similarly, long-term climatic 255 

oscillations have been suggested to reduce cladogenesis at higher latitudes, consistent with 256 

the observation that tropical areas are centers of evolutionary novelty36,39,40 and evolve faster 257 

than temperate regions35, leading to the notion of tropics as centers for radial expansion of 258 

clades and species. Recent studies have identified mechanisms for this ‘out of the tropics 259 

expansion’ model41,42 and have reported a higher fraction of bridge species (species violating 260 

niche conservatism) from the tropics compared to temperate regions. We conclude that the 261 

lower contribution to REs in tropical vs temperate regions is consistent with stronger radial 262 

expansions from the tropics than temperate regions.  263 

 264 

However, other mechanisms could explain the distinctive REH patterns between the tropic 265 

and temperate regions. For example, based on several studies demonstrating the large 266 

physiological and evolutionary effects of forest fragmentation29,43,44, the increased long-term 267 

anthropogenic activity, and consequently excessive fragmentation, in forests in temperate 268 
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regions compared to tropical and subtropical regions may have hindered the adaptation of 269 

species to novel climates. The lack of association of REH specifically to temperate 270 

grasslands, temperate conifers and Mediterranean biomes specifically (Fig 2a) could be 271 

indicative of such an effect, as these biomes have been historically subject to strong 272 

anthropogenic activity.  273 

 274 

Our analyses confirmed the strong dependence of RE on climate. Lower temperature, higher 275 

climatic heterogeneity (both temporal and spatial), and elevation changes were the strongest 276 

climatic predictors of REs. The analysis of the best predictive variables indicated a noticeable 277 

weak correlation between most of the leading factors determining REs (Supplementary Fig. 278 

7b), suggesting that these factors were site-specific predictors of REs (e.g. desert biome with 279 

low annual precipitation, montane grassland with high elevation, and tropical and subtropical 280 

biomes with temperature homogeneity (isothermality, temperature of the wettest quarter and 281 

spatial heterogeneity of low temperature – SH6)). We suggest that the strong negative 282 

correlation between these absolute climatic variables and the spatial heterogeneity of low 283 

temperature is an indication of different temperature patterns between tropical and temperate 284 

regions, i.e. a buffered heterogeneous temperature in the tropics in contrast to the latitudinal 285 

effect of decreasing temperatures in the temperate biomes. There was an overall positive 286 

trend for the effect of precipitation (BC12-BC19) when controlling for biome since the signal 287 

appeared only when biome is included as a random factor (Supplementary Fig. 6). This 288 

means there must be other non-accounted confounding factors altering the relationship when 289 

analysing all biomes together, suggesting that the effect is not biome dependent. Although 290 

this study does not make a note of the complex interplay between biotic and abiotic forces or 291 

the ecological traits of tree species (e.g. seed dispersal, phenology) in the formation of RE, 292 

we find a consistent global effect of temperature and spatial heterogeneity of temperature and 293 

precipitation to predict their formation throughout the different models. This is indicative of 294 

their principal role as universal predictors of species distributions.  295 

 296 

The strong prediction of REH formation from PET of the coldest quarter and its covariance to 297 

the tropical-temperate transition variables (SH BioClim6 and absolute BioClim10), could 298 

reflect a possible mechanistic evolutionary constrain for the distribution of woody species’ at 299 

temperate biomes. At higher latitudinal temperate biomes, where evapotranspiration is 300 

strongly reduced, especially during the coldest quarter, there is a strong limitation to 301 

photosynthesis and growth by the significant time reduction of stomatal conductance45,46. 302 
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Similarly, given the strength of its prediction of REH, SH embergerQ (pluviothermic 303 

quotient) could indicate a more refined mechanism for RE formation than its covariates of 304 

precipitation (SH BioClim 13 and 16). This index describes mean annual precipitation in 305 

relation to annual changes in temperature. EmbergerQ thus increases the predictability of 306 

how precipitation also dictates the formation of REH in the more temperate biomes (Fig 3b, 307 

panel 4). The consistency of our results indicates spatial and temporal heterogeneity of 308 

climate and topography as overwhelmingly stronger predictors of RE formation than their 309 

absolute climatic counterparts (Fig. 3) and, in turn, frail evidence for a universal poor habitat 310 

quality. Even in the cases where mean climatic variables strongly predict REH, these were 311 

strongly associated with this transition between the spatial and temporal climatically 312 

homogenous tropical and subtropical biomes to the more heterogeneous temperate biomes. 313 

Nevertheless, we note the importance of a lack of evapotranspiration, particularly in cold 314 

climates, as a main predictor of RE formation.  315 

 316 

These observations have substantial implications for the effects of climate change on tree 317 

distributions and its effects on tree migration. Although predictions for future steeper 318 

temperature gradient as a result of greenhouse gas emission and climate change has not been 319 

trivial47–49, such an increase in temperature gradients could vastly affect the distribution of 320 

species. In particular, our results strengthen the growing understanding that the predicted 321 

poleward migration of tree species might not be as successful as previously predicted23,24. The 322 

increase of stronger spatial gradients (especially in the lower latitudes)24,48,50 or extreme and 323 

spontaneous events might all be causes of migration lags, despite the suitable temperatures at 324 

higher latitudes and altitudes. Likewise, the importance of PET from temperate biomes on the 325 

formation of REH presented here could also suggest a possible migration lag or loss of 326 

adaptation due to the predicted reduction in PET at higher latitudes51. Our results thus 327 

highlight the importance of accounting for more precise spatial heterogeneity of climate as a 328 

critical feature in future models of species distribution and the development of more precise 329 

conservation efforts such as assisted migration.  330 

 331 

Materials and Methods  332 

Data acquisition and polygon formation 333 

Supplementary Fig. 9 visually summarises the methodologies used to obtain global range 334 

edge hotspot (REH) distributions. We downloaded a data set of tree species from the open-335 

source data set using R packages rgbif and taxize. Global Biodiversity Information Facility 336 
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(GBIF; 05 July 2021, https://doi.org/10.15468/dl.ajen6k) using the Botanic Gardens 337 

Conservation list of 60000 tree species. We downloaded occurrences with entries from 1980 338 

onwards, removing any occurrence reported with a geospatial issue, species not belonging to 339 

the kingdom Plantae (in case of mismatched species names), and any occurrence marked as 340 

unlikely, mismatched, or invalid. We removed occurrences that had reported uncertainties of 341 

>100 km and records based on fossils and unknown sources. We then used the 342 

CoordinateCleaner R package52 to remove any occurrences with zero coordinates, equal x 343 

and y coordinates, duplicates, occurrences at sea, coordinates at capitals, and centroids. To 344 

finalise, we again removed species with <300 occurrences. The data we used undoubtedly 345 

contained sampling bias53, probably overrepresenting the number of REs in some regions 346 

with a reduced or negligible sampling effort. We tried to overcome this issue by basing our 347 

filtering steps on several previous studies52–54. The strength of the critical filtering steps 348 

applied in our analysis resembled those previously presented53.  349 

We converted the georeferenced species occurrences (x and y coordinates) into distributional 350 

polygons in parallel using two independent techniques; through concave-hull   351 

(Supplementary Methods) and multivariate kernel-density estimation (described below). 352 

Given the strong similarity between the two methods (Supplementary Fig. 8), we discuss the 353 

methods and results in detail only for the kernel-density estimated polygons. We created 354 

polygons using two-dimensional kernel density estimations. We first divided the extent of all 355 

the coordinates into 800 grid points in each dimension (longitude and latitude) in order to 356 

produce a matrix of 640,000 grid cells for each of the species. Subsequently, we selected for 357 

the grid cells with the highest 99% estimation of the species’ occurrence and subsequently 358 

rasterised these. Polygons were then delineated around the contour of the rasters.   359 

 360 

Polygon groupings 361 

All polygons belonging to the same species were grouped based on absolute distance from 362 

one another. Polygons separated by ≤500 km were grouped together, with the assumption that 363 

fragmentation, gene flow, and unreported data could all warrant two nearby populations to be 364 

considered as one. We used the hclust function (package stats, agglomeration method: 365 

complete) to hierarchically cluster populations from a sequence of three or more populations 366 

by their distances, also using a cutoff of 500 km (cutree function, package stats) for 367 

determining the clusters. The final data set comprised >3600 tree species, ranging from one to 368 
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nine populations (polygons) per species, for a total of 8500 populations. All spatial data was 369 

analysed using R packages sf and raster.  370 

 371 

RE determination 372 

RE dense areas were determined by (1) defining distinct global units, (2) identifying the RE 373 

of each species and (3) map species’ RE to the global units to calculate the density of 374 

REs/unit. In detail: (1) We rasterised the world map to spatially bin the density of REs. To 375 

overcome the problem of spatial distortion, we used hexagonal bins with the dggridR R 376 

package, developed using the ISEA Discrete Global Grids system, a repetition of polygons on 377 

the surface of an icosahedron, allowing for the projection of equal sized bins onto a 2D plane. 378 

We defined the size of each hexagon as ~23 000 km2 (with an average spacing between center 379 

nodes of 165 km). (2) We used coordinates of the cardinal directions (north, south, east, and 380 

west) to represent species REs by subdividing each polygon cluster into four quartiles in the 381 

four cardinal directions (NE, NW, SE, and SW). The REs for each quartile were determined 382 

as the two most-outward coordinates of the corresponding cardinal directions (e.g. north and 383 

east cardinal coordinates for the NE quartile). Eight REs were thus determined for each 384 

population (two for each cardinal direction). As a filtering step, we accounted for both REs 385 

from the same cardinal direction if they were >20 arc-degrees apart, otherwise we only 386 

accounted for the farthest point from the centroid. (3) The total number of REs obtained using 387 

this method was normalised by the total number of species intersecting its respective 388 

hexagon. In parallel, we also defined REs by accounting for the perimeter of the polygon for 389 

each species (Supplementary Fig. 10). The ‘perimeter’ system may be a more realistic and 390 

complete system for identifying REs, but the ‘cardinal coordinate’ system, although more 391 

simplistic in nature, (1) provides a clearer visual representation of the distribution of REs, and 392 

(2) allows for the directionality of REs to be compared, essential farther along the pipeline by 393 

distinguishing between coastline and inland REs and identifying hotspots in the four cardinal 394 

directions. 395 

 396 

We then classified coastline and inland REs, assuming that the arrest of species distribution at 397 

the edge of a water source was probably due to an obvious geographical barrier rather than an 398 

ecological effect. Coastline REs were determined by creating a semicircle (buffer of 3 arc-399 

degrees) around each RE in the direction of its cardinal coordinate and measured the 400 

percentage overlap with water. Cardinal coordinates with >50% overlap were considered a 401 

“coastal RE”.  402 
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 403 

In order to find the probability distribution of REs at the edge of water source 404 

(Supplementary Fig. 2), we permutated the global population of REs (except for the 405 

Australian population) and used the mean of this permutation to compare to the number of 406 

REs in each of the continents.  407 

 408 

Hotspot analysis 409 

Hotspots were identified using the Getis-Ord Gi* hotspot analysis55,56 to find spatial 410 

correlations between hexagon (inland and normalised) RE densities. We initially compiled a 411 

list of neighbors between all hexagons using the poly2nb function and then obtained the local 412 

G statistic using the weighted density (normalised number of REs) of the global hexagons 413 

and their relative distance from each other. The G statistic calculates a Z-score (measure of 414 

standard deviation) for each hexagon. P values were then determined using the critical Z-415 

scores at 95% confidence levels followed by a Bonferroni correction using the p.adjustSP 416 

function (using the number of neighbors between hexagons rather than the total number of 417 

hexagons). All analyses were carried out using the R spdep package57.  418 

 419 

We compared the analysis from the linear models with expert based polygons from three 420 

different sources – IUCN, BIEN and EUFORGEN. A randomised weighted sample of all of 421 

this dataset was used to generate a global distribution of REH by running this sample through 422 

our pipeline. GLMs were run on the global distribution of expert-based REH in the same way 423 

as with our generated polygons. Given the uneven distribution of expert-based polygons 424 

globally (Supplementary Fig. 8a), we ran models excluding Asia and Africa, in order to 425 

account for this bias. As seen by the strong similarity between the GLMs of expert polygons 426 

in a global and filtered model (Supplementary Fig 8b and Fig 8c, panel 3), we observed an 427 

overrepresentation of the expert polygons for these continents. Likewise, the GLMs from our 428 

generated polygons are much similar to those obtained from the filtered model. In this case, 429 

practically all variables showed the same relationship with range edges (either positive or 430 

negative β values) as well as similar magnitudes.  431 

 432 

Statistical analyses  433 

Contribution of biome edge to RE. We used the 14 biomes defined by the World Wildlife 434 

Fund (WWF) for our analyses. The distributions were downloaded from the WWF webpage 435 

(http://www.worldwildlife.org/). To identify the intersection between biomes, we reduced the 436 
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complexity of the polygon edge using the rmapshaper package, which can perform 437 

topologically aware polygon simplifications, thus maintaining the intersection between 438 

biomes upon reduction of “edginess” of the polygons. The intersections were delineated and 439 

subsequently enlarged (with a buffer distance of 0.1 arc-minute, ~185 m at the equator). A: 440 

 441 

i.  Global permutation assay was carried out by randomising (1000 iterations) the 442 

global distribution of hexagons with REH (absolute Z-score)  443 

ii. Per-biome stratified permutation was carried out by randomising the distribution 444 

of hexagons with REH within each biome independently.  445 

 446 

The averaged global bootstrap shown in panel 1 of Fig 2a, was calculated using a per-biome 447 

bootstrap to obtain the probability distribution of REH at biome edges (Supplementary Fig. 448 

3a). Distributions that were not normally distributed as a result of their small size (flooded 449 

grassland, mangrove and tropical and subtropical coniferous forest; Supplementary Fig 3b), 450 

were removed from the analysis. A general trend for the probability of range edges falling at 451 

the intersection of biomes was therefore measured as a unified standardised z-distribution, 452 

and compared to the median z-score from the actual percent overlap for each biome. 453 

 454 

The density of hotspots at the intersection between biomes was calculated using the sum of 455 

Z-scores of the hotspots at that intersection, and the percentage contribution was then 456 

calculated using this value over the total Z-score at all biome intersections. The global or per-457 

biome 1000 permutation means were used as a normalising denominator for the values 458 

obtained from our data set (Fig 2b, Supplementary Fig 4a). The denominator could be either 459 

larger or smaller than the numerator, so we log-transformed the outcome to obtain a linear-460 

like relationship. Contribution within a biome was calculated the same way as for the 461 

contribution at the edge, using the mean from a permutated assay to normalise for the 462 

absolute value.   463 

 464 

Climatic dependency of RE. We tested the relationship between RE density and climatic 465 

features by assigning a set of environmental variables to each hexagon. We used the 466 

bioclimatic attributes downloaded from WorldClim Global Climate Data58 at a resolution of 5 467 

arc-minutes. The 19 BIOCLIM variables and elevations for each hexagon were extracted 468 

using the R raster package. We also used the 16 ENVIREM variables described by 28, 469 

downloaded from their website, at a resolution of 2.5 arc-minutes. Absolute climate for each 470 
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hexagon was obtained using the mean over all pixels. Climatic spatial heterogeneity (SH) 471 

was calculated using the proportional variability index59,60 (PV) over all pixels in each 472 

hexagon.  473 

 474 

We used an array of linear mixed models (Fig 3, Supplementary Fig 5 and 6) to test for the 475 

dependence of REs to climate and the robustness of the results. Linear mixed models were 476 

carried out to account for biomes and continents. Both of these variables were introduced as 477 

random effects in random intercept models. A model selection analysis  was used to 478 

determine the models that best predicted the formation of RE. Random intercept models 479 

using both continent and biome as random variables were run, and models with ∆AIC <2 480 

were selected for. Given the strong correlation between different predictor variables, we ran 481 

models only with variable combinations that had a Pearson’s correlation value r < 0.7. The 482 

relative contribution of the variable included in the model were calculated from the selected 483 

models. Analyses were run using R package MuMIn61.  484 

 485 

All statistical analyses (individual GLMs, and multiple-predictor GLMs) were tested for their 486 

robustness to spatial autocorrelation by creating a spatial autocovariate (autocov_dist 487 

function, spdep package), calculated as the distance-weighted average of neighboring 488 

dependent variables62, so hexagons in proximity were averaged and those farther away 489 

received a lower weighting average. We set the predetermined distance to 200 km based on 490 

the average distance between cells. The spatial autocovariate was then included in the 491 

regression model as a dependent variable.  492 

 493 

Data Availability 494 

The occurrence points used from GBIF can be found in the GBIF webpage 495 

(https://doi.org/10.15468/dl.ajen6k). Polygons generated from occurrence points are provided 496 

in the public GitHub repository https://github.com/dlernerg/Global-Range-edges. Biome 497 

polygons were obtained from the WWF webpage (http://www.worldwildlife.org/). 498 

Bioclimatic attributes were downloaded from WorldClim Global Climate Data58. ENVIREM 499 

variables were downloaded from their webpage (https://envirem.github.io/).  500 

 501 

Code Availability 502 

Custom codes related to this paper can be found in a GitHub repository at 503 

https://github.com/dlernerg/Global-Range-edges 504 
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 520 

Figure 1. Range-edge hotspots. Hotspots were identified using Getis-Ord Gi* analysis, 521 

which returns a Z-score for each hexagon in the world. Only hexagons with p<0.05 are 522 

considered hotspots and subsequently shown here. The Z-score of each hexagon is 523 

represented by the color gradient. Biomes (as defined by the World Wildlife Fund) are 524 

marked by colors. ‘T&sT’ and ‘Temp’ stand for ‘Tropic and Subtropic’ and ‘Temperate’, 525 

respectively. 526 

  527 

Figure 2. Range-edge hotspots at intersections between biomes. (a) Modeled distribution 528 

of the percentage of hotspots at the edges of biomes from a permutated (randomised) per-529 

biome distribution of hotspots. The first panel represented the median value of all the other 530 

biomes in the figure over a standardised z-distribution of biomes. The arrow marks the 531 

percentage of RE hotspots at biome intersections in the data set (one-sided p-values) (b) Heat 532 

maps of the percentage of RE hotspots (relative to the total number of hotspots) at the 533 

intersection between two biomes. A biome-pair intersection with a significant number of 534 

hotspots (p-value < 0.08) is marked with an asterisk. Biome-pairs that have no intersections 535 

are gray. Panel 1 is normalised over a global bootstrap and panel 2 over a per-biome 536 
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bootstrap. (c) Correlations (and regression lines) of the relationships between the number of 537 

REs at the edges of biomes and the number of REs within the biomes. The shaded area 538 

represents the 95% confidence interval around the regression line. P-values are calculated 539 

using a two-sided Student’s T-test (degrees of freedom = 12). See Methods and Materials for 540 

further information on the methodology for obtaining significance levels (for (b)) and hotspot 541 

permutations. ‘T&sT’ and ‘Temp’ stand for ‘Tropic and Subtropic’ and ‘Temperate’, 542 

respectively. 543 

 544 

 545 

Figure 3. Climatic predictors of range-edge formation. Models of RE formation using the 546 

absolute climate (mean) and the spatial heterogeneity (PV index) of the 19 WorldClim 547 

variables and elevation. (a) Individual (binomial) mixed regression models between each of 548 

the predictor variables and number of REs (1-19 are BioClim variables) and accounting for 549 

continents and biomes as random effects. The estimated coefficients of the explanatory 550 

variables (β) are represented by the color gradient. ‘*’ and ‘**’ represent p-values <0.05 and 551 

<0.01, respectively (two-sided Student T-test). 552 

BioClim1 – Annual Mean Temperature, BioClim2 - Mean Diurnal Range (Mean of monthly 553 

(max temp - min temp), BioClim3 – Isothermality, BioClim4 - Temperature Seasonality, 554 

BioClim5 - Max Temperature of Warmest Month, BioClim6 - Min Temperature of Coldest 555 

Month, BioClim7 - Temperature Annual Range, BioClim8 - Mean Temperature of Wettest 556 

Quarter, BioClim9 - Mean Temperature of Driest Quarter, BioClim10 - Mean Temperature of 557 

Warmest Quarter, BioClim11 - Mean Temperature of Coldest Quarter, BioClim12 - Annual 558 

Precipitation, BioClim13 – Precipitation of Wettest Month, BioClim14 – Precipitation of 559 

Driest Month, BioClim15 – Precipitation Seasonality (PV), BioClim16 – Precipitation of 560 

Wettest Quarter, BioClim17 – Precipitation of Driest Quarter, BioClim18 – Precipitation of 561 

Driest Quarter, BioClim19 – Precipitation of Coldest Quarter.   562 

 (b) Violin plots depicting the results from (a) for four predictor variables. The distribution of 563 

continental climates is shown in gray, contrasted with the climatic distribution specific to the 564 

RE hotspots (scaled to the intensity of the hotspot, i.e. the Z- score). (c) Forest plot of a 565 

model average from the highest predicting LMM with both BioClim and ENVRIEM 566 

variables (identified with a model selection). Beta values (log-odds) are shown for each 567 

predictor. Absolute and SH climate was obtained from all of the inland global hexagonal 568 

units (n = 5851). Error bars represent 95% confidence interval around the average effect.  569 

 570 
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