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Abstract Global change, encompassing rising temperatures and an increase in extreme 

precipitation events, has influenced vegetation photosynthesis; this can be seen in the 

gross primary productivity (GPP) of terrestrial ecosystems, which, over time affects the 

global carbon cycle. The impact of climate on interannual variability in GPP (GPPIAV) 

has been extensively explored in the literature. Other changing factors driven by global 

change, such as biodiversity and soil nutrient availability, are vital in predicting the 

future of the biosphere. However, the roles of these factors remain unclear. We 

combined i) data from 454 community plots collected using standard protocols from 

2013 to 2019 across China, ii) plant trait data and phylogenetic information of more 

than 2,500 plant species, and iii) soil nutrient data that we measured. Using these data 

from 72 "real-world" ecosystems located across a range of environmental conditions 

and species pools, we investigated the role of environmental factors including 

temperature, precipitation and soil nutrients and multifaceted diversity (i.e., species 

richness, hypervolume-based functional diversity, and phylogenetic diversity) in 

mediating the magnitude of GPPIAV using multi-model averaging and structural 

equation modeling. We found that soil nutrients and functional diversity are the main 

determinants of the magnitude of GPPIAV and that climate effects are predominantly 

mediated by multifaceted diversity. We provide strong evidence that ecosystems with 

higher biodiversity have less variable annual biomass production and decrease the 

extent of GPPIAV through compensatory effects across diverse ecosystems. Nutrient-

rich ecosystems are likely to buffer the impact of climate variability on ecosystem 

carbon uptake better than nutrient-poor ecosystems. Our results demonstrate that 

biodiversity plays a crucial role in buffering the effects of environmental variability on 

carbon uptake in terrestrial ecosystems. 
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1. Introduction 2 

The interannual variability of gross primary productivity (GPPIAV) in terrestrial 3 

ecosystems is an important feature of the global C cycle (Ballantyne et al., 2012). It has 4 

a major impact on ecosystem C balance and ultimately affects the C sink, which is of 5 

paramount importance in predicting the future of the biosphere under the current 6 

changing climate (Piao et al., 2020, Fernández-Martínez et al., 2019). Global change is 7 

not only restricted to climate change, including rising global temperatures and changing 8 

rainfall regimes, but is also related to different factors causing biodiversity loss. Both 9 

climate change and biodiversity loss threaten ecosystem function stability; for example, 10 

they affect the stability of ecosystem biomass production, consequently affecting the 11 

GPPIAV, ultimately affecting the ecosystem services they underpin. Changes in climatic 12 

conditions, such as rainfall shifts over years, will lead to variations in ecosystem 13 

productivity between different years (Yao et al., 2018, Fernández-Martínez et al., 2020, 14 

Li and Xiao, 2020).  15 

The concentrations of soil nutrients, such as N and P, are also important abiotic 16 

factors, besides climatic factors, that may affect the magnitude of the GPPIAV 17 

(Fernández-Martínez et al., 2020, Fernández-Martínez et al., 2014). Across broad 18 

environmental gradients, from desert steppes to forests, nutrient-rich ecosystems have 19 

higher ecosystem productivity than nutrient-poor ecosystems (Roy et al., 2001). This 20 

directly reduces the interannual variability (IAV) in productivity (Piao et al., 2020). 21 

With increasing nutrient levels along broad environmental gradients, ecosystems can 22 

potentially host more species, increasing their diversity, which results in an increase in 23 

ecosystem productivity due to the diversity–productivity relationship (Oehri et al., 24 

2017). Thus it also reduces the magnitude of the GPPIAV via indirect effect. However, 25 

the direct and indirect effects of soil nutrients on GPPIAV are still poorly understood. 26 

Given that a substantial body of evidence from ecological research has demonstrated 27 

that biodiversity stabilizes ecosystem productivity over time (Craven et al., 2018, 28 

García-Palacios et al., 2018, Oehri et al., 2017, Isbell et al., 2015), higher diversity is 29 



understood to reduce the magnitude of GPPIAV (Chapin III, 2003, Richardson et al., 30 

2007, Zhang et al., 2016, Zhou et al., 2016). It is now widely accepted that ecosystems 31 

with high diversity have higher resistance (productivity deviates slightly from average 32 

levels during disturbances) and/or resilience (productivity returns to average levels 33 

rapidly after disturbances), which reduces their variation in productivity over time 34 

(Isbell et al., 2015, Craven et al., 2018, Musavi et al., 2017, WangIsbell et al., 2021). 35 

Evidence from single ecosystem types also clearly demonstrates the important role of 36 

species richness (Musavi et al., 2017) and functional traits (García-Palacios et al., 2018) 37 

in stabilizing ecosystem production functions. However, compared with that of climatic 38 

factors, the role of multifaceted diversity (i.e. taxonomic diversity, functional diversity, 39 

and phylogenetic diversity) in the GPPIAV has not been fully elucidated. In particular, 40 

most of the current research focuses on a single vegetation type, such as forests (Wales 41 

et al., 2020, Guo et al., 2021, Dolezal et al., 2020) or grasslands (Isbell et al., 2015, 42 

Cadotte et al., 2012, Loreau and De Mazancourt, 2013); studies that span multiple 43 

vegetation types are required. 44 

The possible mechanism by which biodiversity reduces the variability in ecosystem 45 

biomass production such as GPPIAV is through the compensation effect (WangIsbell et 46 

al., 2021). Studies on the leaf economics spectrum predict that fast-growing species 47 

namely, resource-acquisitive species with faster growth rates, resource uptake, and 48 

tissue turnover would have higher resilience to disturbance because of their rapid 49 

recovery. In contrast, slow-growing species, which are conservative species with 50 

slower growth rates, resource uptake, and tissue turnover, would have higher resistance 51 

to environmental stress (Reich, 2014, Craven et al., 2018, Li et al., 2021). Compared 52 

with communities with low diversity, communities with high diversity have more 53 

diverse ecological strategies (increasing their portfolio effects). They also have a higher 54 

ability to resist disturbances and weaken the impact of climate change on ecosystem 55 

production, thus reducing the GPPIAV (Tilman and Downing, 1994, Schnabel et al., 56 

2019, WangIsbell et al., 2021, García-Palacios et al., 2018). However, biodiversity is 57 



not simply equal to the number of species, but also includes functional and phylogenetic 58 

diversity, which encompass different diversity components and better reflect the 59 

differences in ecological strategies among the species in a community (Brun et al., 2019, 60 

Craven et al., 2018). Additionally, the mass ratio hypothesis states that ecosystem 61 

function is largely dependent on the trait values of the main contributors to plant 62 

biomass and is therefore better expressed as community weighted mean (CWM) trait 63 

values. The dominant effect based on the mass ratio hypothesis can also influence the 64 

GPPIAV to increase plant resistance to climatic variability by the selection of slower 65 

species (Craven et al., 2018, Garnier et al., 2004). However, a community dominated 66 

by fast species may also increase the stability of ecosystem production through higher 67 

resilience, and ultimately reduce the GPPIAV (Craven et al., 2018, Majeková et al., 68 

2014). Therefore, the final net effect of the dominant effect across multiple ecosystems 69 

can be relatively low because the opposing effects of slow yet more resistant and fast 70 

and more resilient communities may cancel each other out. 71 

The aim of the present study was to assess the relative importance of climate factors, 72 

soil nutrients, and multifaceted diversity on the GPPIAV at large scales across multiple 73 

vegetation types , and to reveal the change pattern of GPPIAV and its main drivers along 74 

different vegetation types across a wide range of environmental conditions. We 75 

combined field survey data from a large scale ecosystem investigation with high-quality 76 

GPP data derived from a satellite near-infrared reflectance dataset. The data included 77 

1) data from 454 plant community plots surveyed across China from 2013 to 2019, 2) 78 

trait and phylogenetic information of more than 2,500 plant species, and 3) measured 79 

plot soil nutrient data (Fig. 1; Table S1). Monthly GPP and climate data were used to 80 

reflect temporal variability in productivity and climate over long time scales from 81 

2000–2018. A multi-model averaging procedure was performed to evaluate the relative 82 

importance of climate factors, soil nutrients, and biodiversity, including CWM traits, 83 

species richness, functional diversity, and phylogenetic diversity for the GPPIAV. We 84 

hypothesized that (1) a large proportion of the effect of climate variability on the 85 



GPPIAV can be attributed to diversity as an indirect effect, (2) species-rich ecosystems 86 

with high functional diversity reduce GPPIAV through the compensation effect, and (3) 87 

ecosystems with higher soil nutrients can “buffer” the disturbance of climate variability 88 

on biomass production with higher functional diversity, directly and indirectly reducing 89 

the GPPIAV.  90 

2. Materials and methods 91 

2.1. Study region and sites 92 

We conducted our study across China, one of the most biodiverse countries in the 93 

world (McNeely et al., 1990). Based on the vegetation distribution of terrestrial 94 

ecosystems in China, we investigated 72 natural ecosystems and set up approximately 95 

1,000 plots from 2013 to 2019. The plots were far away from areas with the main human 96 

disturbances according to standard sampling and plant community composition survey 97 

protocols (He et al., 2019). The 72 sites spanned a range of 50 degrees in longitude 98 

(78.46–128.89 °E) and 35 degrees in latitude (18.75–53.33 °N; Table S1) and 99 

encompassed deciduous needle-leaf forests, evergreen needle-leaf forests, deciduous 100 

broad-leaved forests, evergreen broad-leaved forests, meadows, sparse grasslands, 101 

steppes, sparse shrubbery, and desert steppes. The mean annual temperatures for these 102 

sites ranged from −3.8 °C to 22.2 °C, and the mean annual precipitation ranged from 103 

25 mm to 1,785 mm (Table S1; Fig. 1). The soil types varied considerably in terms of 104 

nutrient concentration, from black earth with high organic content in cold temperate 105 

zones to tropical red soils with low organic content (Liu et al., 2018). We collected 106 

plant community structure data using the quadrat method and collected samples during 107 

the peak period of plant growth from July to August (four 30 m × 40 m for forest, six 108 

10 m × 10 m for shrubland, and eight 1 m × 1 m for grassland). We set up plots within 109 

an area of approximately 1 × 1 km for the community structure survey and sampling. 110 

We plotted species accumulation curves using the vegan R package to check the 111 

representation of the field survey. Detailed site information has been reported in 112 

previous studies (Zhang et al., 2020, Zhao et al., 2020, He et al., 2019); these details 113 



are provided in Appendix S1.  114 

2.2. Functional traits and diversity 115 

Functional traits include size traits that reflect plant size and light competitiveness 116 

and economic traits that reflect leaf photosynthesis capacity and nutrient economies 117 

(Diaz et al., 2015, Maynard et al., 2021). The GPPIAV reflects the fluctuations in the 118 

ecosystem-level photosynthetic capacity. We selected five representative traits, 119 

including three economic traits namely, specific leaf area (SLA, cm2/g), leaf N 120 

concentration (LN, mg/g), and leaf P concentration (LP, mg/g), and two size traits, leaf 121 

area (LA, cm2), and leaf dry mass (LM, g). All of these are closely related to the plant 122 

light competitiveness and photosynthetic capacity of the ecosystem. More detailed trait 123 

measurements and calculations are shown in Appendix S2 as well as in other peer-124 

reviewed papers published by our group (He et al., 2020, Zhang et al., 2020, Zhao et 125 

al., 2020). We also used the average number of species within each plot (i.e., species 126 

richness) to represent taxonomic diversity as a fundamental driver of other diversity 127 

measures. 128 

We calculated the CWM values for the five leaf traits (LA, LM, SLA, LN, and LP) 129 

using the vegan R package (Oksanen et al., 2013). We then calculated several functional 130 

diversity indices, including functional richness, dispersion, and evenness, based on 131 

kernel density n-dimensional hypervolumes (Blonder et al., 2018, Mammola and 132 

Cardoso, 2020). In stead of using distance-based functional trees, n-dimensional 133 

hypervolumes represent the functional space of a species or community as a 134 

Hutchinsonian niche, which is an abstract Euclidean space defined by a set of 135 

independent axes corresponding to individual or species traits. This technique shows 136 

considerable application potential in the field of trait-based ecology (Mammola and 137 

Cardoso, 2020), especially given that the Hutchinsonian hypervolume is a foundational 138 

concept in many fields of ecological and evolutionary research (Blonder et al., 2014). 139 

This approach does not require transforming the data into dissimilarities, but relies on 140 

the raw position of an individual or species within a multidimensional space (Mammola 141 



and Cardoso, 2020, Blonder et al., 2018), while accounting for possible empty spaces 142 

within some extreme trait values (Blonder, 2016). To eliminate size-dependent trait 143 

biases and remove the influence of different units and scales, we log-transformed and 144 

then scaled (mean = 0, SD = 1) all five traits before creating the hypervolume (Blonder 145 

et al., 2018). We built the hypervolume with species abundance data and a species × 146 

traits matrix using the kernel.build function of the BAT package in R. We used the 147 

recommended settings of high-dimensional kernel density estimation (method = 148 

gaussian) to estimate the stochastic points that determine the shape and volume of the 149 

hypervolume (Mammola, 2019, Mammola and Cardoso, 2020). We used the 150 

kernel.alpha, kernel.dispersion, and kernel.evenness functions to calculate the 151 

functional richness, divergence, and regularity, respectively. We used a combination 152 

of these three indices as a proxy for functional diversity. 153 

We used the R package Taxonstand based on The Plant List database 154 

(http://www.theplantlist.org) to correct and confirm the names of the species found in 155 

our 72 sites. We constructed a phylogenetic tree with all these species using the 156 

V.PhyloMaker package with the PhytoPhylo megaphylogeny as its backbone (Jin and 157 

Qian, 2019, Tsirogiannis and Sandel, 2016, Qian and Jin, 2015). Further, we calculated 158 

three commonly used indices to represent the phylogenetic diversity using the 159 

PhyloMeasures package, including i) Faith's index (PD, sum of branch lengths in the 160 

minimum spanning subtree for a given set of species, reflecting the evolutionary 161 

distances between species), ii) the mean pairwise distance (MPD, mean phylogenetic 162 

distance [branch length] among all pairs of species within a community, reflecting the 163 

phylogenetic structuring across the whole phylogeny), and iii) the mean nearest taxon 164 

distance (MNTD, mean distance between each species within a community and its 165 

nearest neighbor, reflecting the phylogenetic structure closer to the tips). We used a 166 

combination of these three indices of phylogenetic diversity as a proxy for overall 167 

phylogenetic diversity, after which we assessed its impact on the GPPIAV (Tsirogiannis 168 

and Sandel, 2016, Webb, 2000). 169 



2.3. Soil nutrients 170 

We determined all the soil nutrients in each plot using standard protocols (Liu et al., 171 

2018). We used a soil auger to collect soil samples (0–10 cm) from each plot after 172 

removing the surface litter layer. To reduce soil heterogeneity, we combined the soil 173 

samples (30–50 random points in each plot) collected within each plot  into a 174 

composite sample. We then sieved the composite soil samples through a 2-mm mesh 175 

and air-dried them; all the visible roots and organic debris were separated by hand. We 176 

ground the samples into a fine powder using a ball mill (MM400 ball mill, Retsch, 177 

Germany) and an agate mortar grinder (RM200, Retsch, Haan, Germany). We 178 

measured the total C and N concentrations in the soil using an elemental analyzer (Vario 179 

MAX CN Elemental Analyzer, Elemental, Hanau, Germany). We measured the total P 180 

concentration using molybdenum antimony spectrophotometry and a continuous flow 181 

analyzer (AutoAnalyzer3 Continuous-Flow Analyzer; Bran Luebbe, Germany). The 182 

soil pH was measured an Ultrameter-2 pH meter (Myron L. Company, Carlsbad, CA, 183 

USA). We calculated the average concentration of nutrients and pH of the samples from 184 

each site to represent the site nutrient status. 185 

2.4. Interannual variation in climate and productivity 186 

We downloaded the data on the long term global monthly GPP product from 2000 to 187 

2018 (228 months) from https://doi.org/10.6084/m9.figshare.12981977.v2 with a 188 

spatial resolution of 5.5 km (satellite-based near-infrared reflectance [NIRV]. The GPP 189 

data product, hereafter GPPNIRv, was used to determine the GPPIAV across different sites 190 

(WangZhang et al., 2021). The near-infrared reflectance of vegetation is strongly 191 

correlated with solar-induced chlorophyll fluorescence a direct index of photons 192 

intercepted by chlorophyll as well as with site-level and globally gridded estimates of 193 

GPP (Badgley et al., 2017). This dataset has been verified and found to outperform 194 

similar GPP products in capturing seasonal variability in productivity (WangZhang et 195 

al., 2021). Therefore, we used this product to investigate the variation in GPP over the 196 

last two decades (Fig. 1c). 197 



We calculated the GPPIAV using the coefficient of variation (CV), the most commonly 198 

used index in the research field of the diversity-ecosystem stability relationship. The 199 

CV was calculated as the mean value divided by the standard deviation of annual GPP. 200 

We downloaded the high-resolution grids of climate data from 2000–2018 from 201 

CHELSA V2.1 (https://chelsa-climate.org/downloads/), with a 1 km spatial resolution. 202 

We calculated the multiyear mean value of the climate variables per site including mean 203 

annual temperature (MAT), mean annual precipitation (MAP), and IAV in temperature 204 

and precipitation using the same method used for calculating the GPPIAV. All ecosystem 205 

productivity and climate (including temperature and precipitation) data were extracted 206 

according to the latitude and longitude coordinates of each site. As there was a spatial 207 

scale mismatch between the field areas surveyed (1 km × 1 km) and the remote sensing 208 

data GPP (5.5 km × 5.5 km), we quantitatively assessed whether the spatial 209 

heterogeneity would cause GPP data to be insufficiently representative of the surveyed 210 

area (Appendix S3). We used a validation method from García-Palacios et al. (2018) to 211 

verify that the spatial mismatch does not affect the robustness of the results of our study 212 

(Figure S1). 213 

2.5. Statistical analysis 214 

To simplify model construction and avoid collinearity, which would disrupt robust 215 

parameter estimation, we first performed four principal component analyses to reduce 216 

the dimensions of the CWM trait values, functional diversity (functional richness, 217 

divergence, and regularity), phylogenetic diversity (PD, MPD, and MNTD), and soil 218 

nutrient values (soil total C, N, P, and soil pH). We adopted Kaiser’s rule to temporarily 219 

retain the principal component axes (PCA) with eigenvalue > 1, and then finally reserve 220 

a PCA for each type of variable through the best subset selection procedure (Table S2). 221 

The first PCA explained 53% of the variability in CWM, 50% of the variability in 222 

functional diversity, 48% of the variability in phylogenetic diversity, and 61% of the 223 

variability in soil nutrients (Fig. S2). In addition, to assure normality of the response 224 

variable, the GPPIAV values were log-transformed before the analyses. 225 



We used the multi-model averaging method based on the spatially controlled linear 226 

mixed effects model with random effects of vegetation type and locality to evaluate the 227 

effects of CWM traits, diversity, climate, and soil nutrients on GPPIAV. We controlled 228 

for spatial autocorrelation by generating a spatial matrix with longitude and latitude 229 

coordinates of each locality for each site following an established approach (Kubelka 230 

et al., 2018) and incorporated it into the mixed effects model. In our statistical models, 231 

we set the vegetation type as a random factor to account for the inherent differences in 232 

productivity and temporal variability among different vegetation types. The rationality 233 

of the random factor setting in the full model was also checked from a statistical 234 

perspective using an intraclass correlation coefficient (ICC). This was calculated by 235 

dividing the random effect variance by the total variance (i.e., the sum of the random 236 

effect variance and the residual variance). We used the relmatLmer function of the 237 

lme4qtl package in R to fit the full model and then we used the “dredge” function in the 238 

Multi-Model Inference (MuMIn) R package to generate a complete set of submodels 239 

from the full model. We ranked all the possible models following the Akaike 240 

information criterion (AIC) and selected those models with ΔAIC values < 4 to 241 

calculate the average model using the model.avg function (Grueber et al., 2011). We 242 

standardized all the explanatory variables (mean=0, SD =1) prior to analysis using the 243 

z-score to interpret parameter estimates at a comparable scale. We checked the 244 

collinearity before model construction using the VIF; the VIF of all the variables was 245 

< 5, far from problematic collinearity thresholds (Lüdecke et al., 2021). We examined 246 

the residuals of the full model using the Performance package and did not find any 247 

deviations in the model assumptions. The interaction between the variables was not 248 

significant; therefore, we fitted the models using only the main effects. 249 

We used piecewise structural equation modeling (SEM) to explore the direct and 250 

indirect effects of diversity, climate, and soil nutrients on the GPPIAV. In order to 251 

maintain consistency and simplify the model construction, we also performed PCA 252 

analysis on climate variables (MAT, MAP and their IAV), finally retaining the first 253 



PCA. As a confirmatory path analysis method (Shipley, 2009), piecewise SEM is a 254 

collection of regression models; it is a flexible framework that can contain different 255 

model structures, distributions, and assumptions. The core of its principle is the d-256 

separation test (Lefcheck, 2016), which evaluates whether any necessary paths are 257 

missing from the model. This is necessary because the goodness-of-fit tests used in a 258 

standard SEM are inappropriate for a piecewise SEM (Shipley, 2013). We established 259 

a near-saturated initial model containing all the potential relationships between 260 

environmental factors, biodiversity, and the GPPIAV based on a priori knowledge from 261 

the literature on the study of diversity-stability relationships. In this model, we also 262 

included direct paths from species richness to functional diversity and phylogenetic 263 

diversity. This is because according to existing studies, their variation can be directly 264 

attributed to the change of species richness in a community (Craven et al., 2018). The 265 

step AIC procedure of model selection method (Shipley, 2013) was used to select the 266 

model with the minimum AIC value, based on the initial structural equation model. The 267 

process selects and retains the most important paths and removes the majority of 268 

nonsignificant paths. We obtained the model that best fit our data. Given that the CWM 269 

traits has been found to have a weak effect on the GPPIAV through the multi-model 270 

averaging procedure based on the mixed effects model, our final SEM did not include 271 

CWM trait. Furthermore, given that GPPIAV is driven by its two fundamental 272 

components (GPPmean and GPPSD), we built a separate SEM to provide additional 273 

insight into the driving mechanisms of GPPIAV. Based on the above analysis, we used 274 

a concise bar chart to show the regulatory effects of soil nutrients and functional 275 

diversity on the GPPIAV among different vegetation types in the context of variability 276 

driven by environmental conditions. 277 

3. Results 278 

According to the model averaging procedure, soil nutrients (relative importance, 279 

RI = 1; ΔAIC ≤ 4, N = 25) and functional diversity (RI = 0.97; ΔAIC ≤ 4, N = 24) were 280 

the two most important factors explaining the variability in the GPPIAV (Table 1). 281 



Across all the sites, ecosystems with higher soil nutrients and functional diversity 282 

tended to have lower GPPIAV values (Fig. 2). 283 

The results from the SEM confirmed that soil nutrients and functional diversity 284 

had significant negative direct effects on the GPPIAV, with standardized path 285 

coefficients of −0.47 and −0.34, respectively (Fig. 2a). However, the SEM results also 286 

revealed the important role of climate factors (including MAT and MAP and their IAV) 287 

in species richness and functional diversity, which indirectly affects the GPPIAV (Fig. 288 

2b). The SEM approach highlighted that climate (negatively related to MAT and MAP 289 

and positively related to their IAV) had significant negative direct effects on species 290 

richness and functional diversity, with standardized path coefficients of −0.58 and 291 

−0.28, respectively (Fig. 2a). Ecosystems with higher MAT and MAP and less variable 292 

climate (IAV of MAT and MAP ) had higher species richness, which ultimately reduced 293 

their GPPIAV (Fig. 2). In addition to affecting the species richness, climate also affects 294 

functional and phylogenetic diversity. We found that climate had a significant direct 295 

impact on functional and phylogenetic diversity, with standardized path coefficients of 296 

−0.28 and −0.27, respectively (Fig. 2). Across all sites, warmer and wetter ecosystems 297 

had higher functional diversity, which ultimately reduced their GPPIAV (Fig. 3; Fig. S5), 298 

whereas ecosystems with higher climate variability tended to have lower functional 299 

diversity, which ultimately increased their GPPIAV (Fig. 3; Fig. S5).  300 

By additionally including the two basic components of GPPIAV (i.e. GPPmean and 301 

GPPSD) in a separate SEM, we provided added insight into the mechanisms by which 302 

soil nutrients and diversity affect GPPIAV. Functional diversity reduce the GPPIAV by 303 

increasing the GPPmean and decreasing the GPPSD with standardized path coefficients of 304 

0.29 and −0.35, respectively, while the direct effect of soil nutrients on GPPIAV may be 305 

influenced by its negative effects on the GPPSD with a standardized path coefficient of 306 

−0.28 (Fig. S3). 307 

Finally, the bar graph shows that the GPPIAV increased with the decrease in soil 308 

nutrients and functional diversity across different vegetation types (Fig. 3). Although 309 



the first axis of the PCA with the CWM trait (positively correlated with soil C, N, and 310 

P; Fig. S4a) was not significantly correlated with GPPIAV in forests, it was significantly 311 

negatively correlated with GPPIAV in grasslands (Fig. S4).  312 

4. Discussion 313 

Our results supported our main hypothesis stating that ecosystems with higher 314 

diversity would have lower GPPIAV because of compensation effects and that soil 315 

nutrients would buffer the impact of climate variability on the GPPIAV through direct 316 

and indirect effects. However, the effect of biodiversity on the GPPIAV was not directly 317 

promoted by species richness but by functional diversity, which includes information 318 

about the functional dissimilarity between species within the community. 319 

4.1. Influence of multidimensional diversity on GPPIAV 320 

Our results provided strong evidence that biodiversity can stabilize ecosystem 321 

production and reduce the magnitude of the GPPIAV (Fig. 2 and 3). Ecosystems with 322 

higher diversity tended to have lower GPPIAV, which is consistent with the positive 323 

relationship between diversity and ecosystem stability according to the insurance 324 

hypothesis (García-Palacios et al., 2018). As numerous studies have shown, higher 325 

diversity of plant resource utilization strategies promotes higher asynchrony in species 326 

responses to environmental fluctuations, ultimately suppressing GPPIAV (García-327 

Palacios et al., 2018, Craven et al., 2018, Loreau and De Mazancourt, 2013, Morin et 328 

al., 2014). Over longer timescales, the response of vegetation to climate change can 329 

explain the IAV in ecosystem flux better than only the climate variables (Ma et al., 330 

2011, Richardson et al., 2007). Climate change can affect the properties of ecosystem 331 

vegetation, leading to further variations in productivity (Chapin III, 2003). Although 332 

species richness can also partially characterize the role of diversity in the GPPIAV 333 

(Musavi et al., 2017), using a multidimensional diversity measure that contains more 334 

information is a better choice because multiple diversity measures can reflect the impact 335 

of diversity, prevent the omission of dissimilar information among species, and prevent 336 

underestimations of the role of diversity (Craven et al., 2018, Dolezal et al., 2020). The 337 



multifaceted nature of diversity, beyond the number of species, is highly important for 338 

understanding ecosystem functions and stability (Craven et al., 2018, Mahaut et al., 339 

2020, Brun et al., 2019, Dolezal et al., 2020). A negative relationship between diversity 340 

and the GPPIAV can predominantly be seen in compensation effects (Cardinale et al., 341 

2012, Fernández-Martínez et al., 2020). The complementary effect promotes the 342 

temporal asynchrony of community species productivity and increases ecosystem 343 

resistance through the combination of species with diversified ecological strategies, 344 

both of which help reduce the GPPIAV (Loreau and De Mazancourt, 2013, Ammer, 345 

2019).  346 

Functional diversity has the strongest effect among different biotic factors on the 347 

GPPIAV. A previous large-scale study on global drylands has also found that leaf trait 348 

diversity promotes ecosystem stability (García-Palacios et al., 2018). This suggests that 349 

niche differences between species are better captured by functional diversity. However, 350 

these niche differences were not captured by the species richness and phylogenetic 351 

diversity. Instead, species richness was found to affect the GPPIAV mainly through the 352 

pathway of functional diversity. Higher species richness means that an ecosystem has 353 

a greater probability of containing species with more ecological strategies (increasing 354 

their portfolio effects) due to niche differentiation (Craven et al., 2018), ensuring a 355 

stronger ability to resist disturbances and mitigate the effects of climate change on 356 

ecosystem production, thereby reducing the GPPIAV (Isbell et al., 2015). Additional 357 

analyses also provided evidence that functional diversity reduces GPPIAV by directly 358 

reducing the variability of biomass production over time (i.e. GPPSD). This may be 359 

because an assemblage of species with high functional diversity increases ecosystem 360 

resistance, thus weakening the fluctuation of productivity over time in response to 361 

extreme climatic events (Isbell et al., 2015, Loreau and De Mazancourt, 2013). In 362 

contrast, functional diversity could also reduce the GPPIAV by directly increasing the 363 

production potential (i.e., GPPmean). This is because the strong compensatory effect 364 

produced by higher functional diversity leads to improvements in resource availability, 365 



absorption, and use efficiency (Ammer, 2019). All of these vital processes involved in 366 

the complementary effects have been identified in forests (Morin et al., 2011, Jing et 367 

al., 2021) and grasslands (Grace et al., 2007, Huang et al., 2020), as well as above and 368 

below ground components (Ammer, 2019, Jing et al., 2021). 369 

  Unlike phylogenetic diversity, which describes only the differentiation of 370 

information between species over their evolutionary history (Huang et al., 2020, 371 

Cadotte et al., 2012), functional diversity is closely related to the traits measured in this 372 

study (Huang et al., 2020). Although we selected functional traits closely related to 373 

ecosystem production (Garnier et al., 2016, Perez-Harguindeguy et al., 2016), this does 374 

not guarantee the inclusion of all the necessary information (Huang et al., 2020, Barry 375 

et al., 2019). Our results showed that the role of CWM traits representing the dominant 376 

effect on GPPIAV was highly pronounced in grassland ecosystems (with forest 377 

ecosystems excluded), but less so across multiple ecosystems. It implies that 378 

conclusions drawn from studies conducted in one ecosystem-type are worthy of further 379 

investigation in other ecosystem-types by employing a macroecology approach (McGill, 380 

2019); new phenomena may emerge once the scale of study is changed. 381 

  Management, including thinning, and disturbance, such as grazing can directly affect 382 

the primary production of an ecosystem and, subsequently, the GPPIAV (Musavi et al., 383 

2017). Site age, including forest age, is also a potential factor affecting the GPPIAV 384 

(Musavi et al., 2017). As succession progresses, forests may develop more diverse 385 

canopy and root structures, allowing for more complementary use of nutrients and water 386 

and reducing the impact of environmental change on production (Musavi et al., 2017). 387 

In addition, atmospheric nitrogen deposition in the Anthropocene has increased the 388 

bioavailable nitrogen in terrestrial ecosystems (Zhu et al., 2021), which may also affect 389 

GPPIAV. Firstly, nitrogen deposition especially its dry deposition component can be 390 

absorbed by plants through stomata, leaf cuticle and bark in the canopy to stimulate 391 

photosynthetic capacity (Yan et al., 2019), positively affecting GPP (Zhu et al., 2021), 392 

and ultimately indirectly inhibiting GPPIAV. Secondly, nitrogen deposition especially 393 



the wet deposition component can directly change the soil nutrient state (Yan et al., 394 

2019, Zhu et al., 2016). The increase of available nutrients in the soil will enhance the 395 

resilience of ecosystems against climate extremes, and thus directly buffer the GPPIAV. 396 

4.2. Effects of soil nutrients on interannual variation in ecosystem productivity 397 

Consistent with our initial hypothesis, our results indicated that soil nutrients 398 

“buffer” the impact of climate variability on biomass production and reduce the 399 

magnitude of the GPPIAV. The soil nutrient status in an ecosystem directly affects its 400 

biomass production (Vicca et al., 2012) and determines the magnitudes of biomass 401 

production and accumulation (Fernández-Martínez et al., 2014). A study examining 402 

temperate forests (Xu et al., 2020) has shown that soil nutrients, including nitrogen 403 

availability, regulate the photosynthetic capacity of the vegetation canopy, which has 404 

an important effect on the magnitude of productivity. Ecosystems with higher biomass 405 

and productivity often have higher stability (Guo et al., 2021, Wales et al., 2020, Craven 406 

et al., 2018). However, additional analyse showed that soil nutrients inhibited GPPIAV 407 

primarily by attenuating productivity fluctuations over time (i.e. GPPSD) rather than by 408 

increasing productivity potential (i.e. GPPmean). This may be because the soil nutrient 409 

content is not equivalent to the soil nutrients available to plants, so the relationship 410 

between soil nutrient content and GPPmean is not significant. In addition, nutrient-rich 411 

ecosystems tend to have higher net C uptake (Fernández-Martínez et al., 2014), which 412 

means that they can accommodate more species according to species-energy 413 

relationships (Craven et al., 2020). Thus, soil nutrients may also affect GPP through 414 

their indirect role in diversity.  415 

Knowledge about the key effects of soil nutrients on the stability of ecosystem C 416 

uptake is crucial, especially given the human-induced alterations in soil nutrient status 417 

and biogeochemical cycles in many regions worldwide (Yu et al., 2019, Zhu et al., 418 

2016). Fertile soils will generally support more diverse plant communities by providing 419 

a wider range of niches and imposing more relaxed ecological constraints on growth 420 

(Yuan et al., 2019). This implies that soil nutrients are also expected to directly affect 421 



GPPIAV. However, it is worth noting that soil total C, N, and P content does not equate 422 

to available nutrient content that is directly available to plants. The available nutrients 423 

in the soil depend both on the available (or unavailable) forms of N and P and the 424 

corresponding soil texture variables, including sand, silt, and clay contents and soil pH. 425 

Only labile nitrogen (such as NH4
+–N and NO3

- –N) can be utilized by the fine roots of 426 

plants and soil pH that is too high or too low will inhibit the absorption of soil nutrients 427 

by plants. Therefore, our use of soil total N and P to represent overall N and P levels 428 

can only be taken as rough estimates of soil fertility and quality. A precise assessment 429 

of the relationship between the soil available nutrients and the GPPIAV is necessary in 430 

the future.  431 

4.3. Inspiration for future studies on ecosystem C cycle 432 

We undertook a holistic, multi-site assessment of how climate, soil nutrients, and 433 

multifaceted diversity including species richness and functional and phylogenetic 434 

diversity affect the GPPIAV across a geographic and climatic gradient. The Earth’s 435 

vegetation cover is critical for maintaining the global C cycle and balance, but global 436 

change is increasingly changing Earth’s natural vegetation by reducing its cover area 437 

and changing its attributes (Chapin III, 2003, Isbell et al., 2013). This has a profound 438 

impact on the C balance in terrestrial ecosystems, especially given the key role of the 439 

GPPIAV in the IAV of net C uptake (Piao et al., 2020). It is insufficient to determine 440 

how plant functional traits and diversity affect the global C cycle, especially at large 441 

scales. With the advancement of remote sensing technology, it has become possible to 442 

directly retrieve data on functional diversity at the grid level and explore the 443 

relationship between functional diversity and ecosystem functioning (Garnier et al., 444 

2016). Based on high-quality data, our findings provide strong evidence that the 445 

diversity of functional traits affects the stability of ecosystem gross C uptake. Although 446 

the direct role of climate cannot be ignored, considering the key role that vegetation 447 

plays in the entire terrestrial C cycle, the effects of biodiversity (including phylogenetic, 448 

functional, and taxonomic diversity) and plant functional traits on the terrestrial C cycle 449 

should be studied in more detail in the future. Moreover, studies focusing on a single 450 



ecosystem type need to be extended to include a range of diverse ecosystem types to 451 

reach more general conclusions. Combining observations from high-tech remote 452 

sensing instruments with those from eddy-covariance towers distributed in various 453 

biomes worldwide may represent an important approach for assessing these effects. 454 

 455 

 456 

Data accessibility 457 

Ecosystem primary productivity and climate data come from databases that are freely 458 

available databases as described in methodology; The plant trait data that support the 459 

findings of this study will be made available in the dedicated repository of Figshare 460 

upon publication. Plant occurrence data are available from the corresponding author 461 

upon reasonable request. 462 
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 713 

Table 1 Results of model analyses averaging the effects of diversity, climate, and soil 714 

nutrients on the interannual variability (IAV) of gross primary productivity. 715 

Type of 

variable 

Predictors Estimate
†
 CI RI N 

Intercept −2.46 −4.71~ −0.20   

Diversity 

Species richness 0.077 −0.086 ~ 0.46 0.41 12 

Functional diversity −0.38 −0.70~ −0.08 0.97 24 

Phylogenetic diversity −0.002 −0.39 ~ 0.36 0.12 4 

CWM traits
‡
 0.014 −0.12 ~ 0.33 0.14 4 

Climate 

Mean annual temperature 0.009 −0.26 ~ 0.42 0.11 4 

IAV of temperature 0 −0.19 ~ 0.19 0.11 4 

Mean annual precipitation −0.18 −0.84 ~ 0.10 0.49 13 

IAV of precipitation 0.002 −0.26~ 0.30 0.11 4 

Soil Soil nutrients −0.38 −0.55 ~ −0.21 1 25 

†The table shows standardized parameter estimates, 95% confidence interval (CI) values, and relative 716 

importance (RI) values derived from weighted averaging of parameter estimates over the best-fit models 717 

(for models with ΔAICc < 4). Boldface indicates that the variable's RI is greater than the threshold of 718 

0.8, usually indicating that the variable is very important, whereas N indicates the number of models 719 

that contain the corresponding variables. 720 
‡CWM traits represent the first principal component axis of community weighted mean traits, including 721 

specific leaf area [SLA, cm2/g], leaf N concentration (LN, mg/g), and leaf P concentration [LP, mg/g], 722 

and two size traits, namely leaf area (LA, cm2), and leaf dry mass (LM, g); functional diversity represent 723 

the first principal component axis of functional richness, divergence, and regularity; phylogenetic 724 

diversity represent the first principal component axis of Faith index, mean pairwise distance, and the 725 

mean nearest taxon distance; soil nutrients represent the first principal component axis of soil pH, soil 726 

total C, N, and P concentrations (%). 727 
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 745 

Fig. 1 (a) Map of sampling site distribution, (b) changes in gross primary 746 

productivity (GPP) over time from 2000 to 2018, and (c) frequency distribution of 747 

the interannual variability of GPP (GPPIAV) in 72 sites across China. In panel c, the 748 

red line shows the normal distribution of GPPIAV (after logarithmic transformation) in 749 

the 72 sites fitted by the Gaussian function; the data passed the normality test (Shapiro–750 

Wilk, P = 0.22). 751 
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Fig. 2 Piecewise structural equation model revealing the direct and indirect effects 766 

of multiple abiotic and biotic factors on the interannual variability in gross 767 

primary productivity (GPPIAV) across the 72 sites. Black arrows indicate positive 768 

effects, whereas red arrows indicate negative effects; solid lines indicate statistically 769 

significant effects, and dashed lines indicate non-significant effects; the width of each 770 

significant path is proportional to its standardized path coefficient. Climate represents 771 

the first principal component axis of mean annual temperature (°C), mean annual 772 

precipitation (mm year–1), and their interannual variability; soil nutrients represent the 773 

first principal component axis of soil pH, soil total C, N, and P concentrations (%); 774 

functional diversity represent the first principal component axis of functional richness, 775 

divergence, and regularity; phylogenetic diversity represent the first principal 776 

component axis of Faith's index, the mean pairwise distance, and the mean nearest taxon 777 

distance. All explanatory variables were standardized (z-score, mean = 0, SD = 1) prior 778 

to analysis. 779 
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 784 

Fig. 3 (a) The pattern of interannual variability in gross primary productivity 785 

(GPPIAV), soil nutrients, and functional diversity among different vegetation types, 786 

and (b–c) the bivariate relationship between GPPIAV and soil nutrients and 787 

functional diversity. Each point in panels b and c represents the mean value for each 788 

vegetation type. Soil nutrients represent the first principal component axis of soil pH, 789 

soil total C, N, and P concentrations; functional diversity represents the first principal 790 

component axis of functional richness, divergence, and regularity. All variables were 791 

standardized (z-score, mean = 0, SD = 1) to eliminate dimensions and facilitate their 792 

comparison. 793 
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