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Abstract Global change, encompassing rising temperatures and an increase in extreme
precipitation events, has influenced vegetation photosynthesis; this can be seen in the
gross primary productivity (GPP) of terrestrial ecosystems, which, over time affects the
global carbon cycle. The impact of climate on interannual variability in GPP (GPP)av)
has been extensively explored in the literature. Other changing factors driven by global
change, such as biodiversity and soil nutrient availability, are vital in predicting the
future of the biosphere. However, the roles of these factors remain unclear. We
combined i) data from 454 community plots collected using standard protocols from
2013 to 2019 across China, ii) plant trait data and phylogenetic information of more
than 2,500 plant species, and iii) soil nutrient data that we measured. Using these data
from 72 "real-world" ecosystems located across a range of environmental conditions
and species pools, we investigated the role of environmental factors including
temperature, precipitation and soil nutrients and multifaceted diversity (i.e., species
richness, hypervolume-based functional diversity, and phylogenetic diversity) in
mediating the magnitude of GPPiav using multi-model averaging and structural
equation modeling. We found that soil nutrients and functional diversity are the main
determinants of the magnitude of GPP\av and that climate effects are predominantly
mediated by multifaceted diversity. We provide strong evidence that ecosystems with
higher biodiversity have less variable annual biomass production and decrease the
extent of GPPjav through compensatory effects across diverse ecosystems. Nutrient-
rich ecosystems are likely to buffer the impact of climate variability on ecosystem
carbon uptake better than nutrient-poor ecosystems. Our results demonstrate that
biodiversity plays a crucial role in buffering the effects of environmental variability on

carbon uptake in terrestrial ecosystems.

Keywords: Biodiversity, climate change, compensatory effect, gross primary
productivity, hypervolume, interannual variation, soil nutrients
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1. Introduction
The interannual variability of gross primary productivity (GPPiav) in terrestrial

ecosystems is an important feature of the global C cycle (Ballantyne et al., 2012). It has
a major impact on ecosystem C balance and ultimately affects the C sink, which is of
paramount importance in predicting the future of the biosphere under the current
changing climate (Piao et al., 2020, Fernandez-Martinez et al., 2019). Global change is
not only restricted to climate change, including rising global temperatures and changing
rainfall regimes, but is also related to different factors causing biodiversity loss. Both
climate change and biodiversity loss threaten ecosystem function stability; for example,
they affect the stability of ecosystem biomass production, consequently affecting the
GPPav, ultimately affecting the ecosystem services they underpin. Changes in climatic
conditions, such as rainfall shifts over years, will lead to variations in ecosystem
productivity between different years (Yao et al., 2018, Ferndndez-Martinez et al., 2020,
Li and Xiao, 2020).

The concentrations of soil nutrients, such as N and P, are also important abiotic
factors, besides climatic factors, that may affect the magnitude of the GPPiav
(Fernandez-Martinez et al., 2020, Ferndndez-Martinez et al., 2014). Across broad
environmental gradients, from desert steppes to forests, nutrient-rich ecosystems have
higher ecosystem productivity than nutrient-poor ecosystems (Roy et al., 2001). This
directly reduces the interannual variability (IAV) in productivity (Piao et al., 2020).
With increasing nutrient levels along broad environmental gradients, ecosystems can
potentially host more species, increasing their diversity, which results in an increase in
ecosystem productivity due to the diversity—productivity relationship (Oehri et al.,
2017). Thus it also reduces the magnitude of the GPP,av via indirect effect. However,
the direct and indirect effects of soil nutrients on GPPav are still poorly understood.

Given that a substantial body of evidence from ecological research has demonstrated
that biodiversity stabilizes ecosystem productivity over time (Craven et al., 2018,

Garcia-Palacios et al., 2018, Oehri et al., 2017, Isbell et al., 2015), higher diversity is
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understood to reduce the magnitude of GPPiav (Chapin I11, 2003, Richardson et al.,
2007, Zhang et al., 2016, Zhou et al., 2016). It is now widely accepted that ecosystems
with high diversity have higher resistance (productivity deviates slightly from average
levels during disturbances) and/or resilience (productivity returns to average levels
rapidly after disturbances), which reduces their variation in productivity over time
(Isbell et al., 2015, Craven et al., 2018, Musavi et al., 2017, Wanglsbell et al., 2021).
Evidence from single ecosystem types also clearly demonstrates the important role of
species richness (Musavi et al., 2017) and functional traits (Garcia-Palacios et al., 2018)
in stabilizing ecosystem production functions. However, compared with that of climatic
factors, the role of multifaceted diversity (i.e. taxonomic diversity, functional diversity,
and phylogenetic diversity) in the GPPiav has not been fully elucidated. In particular,
most of the current research focuses on a single vegetation type, such as forests (Wales
et al., 2020, Guo et al., 2021, Dolezal et al., 2020) or grasslands (Isbell et al., 2015,
Cadotte et al., 2012, Loreau and De Mazancourt, 2013); studies that span multiple
vegetation types are required.

The possible mechanism by which biodiversity reduces the variability in ecosystem
biomass production such as GPPav is through the compensation effect (Wanglsbell et
al., 2021). Studies on the leaf economics spectrum predict that fast-growing species
namely, resource-acquisitive species with faster growth rates, resource uptake, and
tissue turnover would have higher resilience to disturbance because of their rapid
recovery. In contrast, slow-growing species, which are conservative species with
slower growth rates, resource uptake, and tissue turnover, would have higher resistance
to environmental stress (Reich, 2014, Craven et al., 2018, Li et al., 2021). Compared
with communities with low diversity, communities with high diversity have more
diverse ecological strategies (increasing their portfolio effects). They also have a higher
ability to resist disturbances and weaken the impact of climate change on ecosystem
production, thus reducing the GPPjav (Tilman and Downing, 1994, Schnabel et al.,

2019, Wanglsbell et al., 2021, Garcia-Palacios et al., 2018). However, biodiversity is
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not simply equal to the number of species, but also includes functional and phylogenetic
diversity, which encompass different diversity components and better reflect the
differences in ecological strategies among the species in a community (Brun et al., 2019,
Craven et al., 2018). Additionally, the mass ratio hypothesis states that ecosystem
function is largely dependent on the trait values of the main contributors to plant
biomass and is therefore better expressed as community weighted mean (CWM) trait
values. The dominant effect based on the mass ratio hypothesis can also influence the
GPPav to increase plant resistance to climatic variability by the selection of slower
species (Craven et al., 2018, Garnier et al., 2004). However, a community dominated
by fast species may also increase the stability of ecosystem production through higher
resilience, and ultimately reduce the GPPiav (Craven et al., 2018, Majekova et al.,
2014). Therefore, the final net effect of the dominant effect across multiple ecosystems
can be relatively low because the opposing effects of slow yet more resistant and fast
and more resilient communities may cancel each other out.

The aim of the present study was to assess the relative importance of climate factors,
soil nutrients, and multifaceted diversity on the GPP,av at large scales across multiple
vegetation types, and to reveal the change pattern of GPPiav and its main drivers along
different vegetation types across a wide range of environmental conditions. We
combined field survey data from a large scale ecosystem investigation with high-quality
GPP data derived from a satellite near-infrared reflectance dataset. The data included
1) data from 454 plant community plots surveyed across China from 2013 to 2019, 2)
trait and phylogenetic information of more than 2,500 plant species, and 3) measured
plot soil nutrient data (Fig. 1; Table S1). Monthly GPP and climate data were used to
reflect temporal variability in productivity and climate over long time scales from
2000-2018. A multi-model averaging procedure was performed to evaluate the relative
importance of climate factors, soil nutrients, and biodiversity, including CWM traits,
species richness, functional diversity, and phylogenetic diversity for the GPPjay. We

hypothesized that (1) a large proportion of the effect of climate variability on the
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GPPiav can be attributed to diversity as an indirect effect, (2) species-rich ecosystems
with high functional diversity reduce GPPav through the compensation effect, and (3)
ecosystems with higher soil nutrients can “buffer” the disturbance of climate variability
on biomass production with higher functional diversity, directly and indirectly reducing
the GPPjav.
2. Materials and methods
2.1. Study region and sites

We conducted our study across China, one of the most biodiverse countries in the
world (McNeely et al., 1990). Based on the vegetation distribution of terrestrial
ecosystems in China, we investigated 72 natural ecosystems and set up approximately
1,000 plots from 2013 to 2019. The plots were far away from areas with the main human
disturbances according to standard sampling and plant community composition survey
protocols (He et al., 2019). The 72 sites spanned a range of 50 degrees in longitude
(78.46-128.89 °E) and 35 degrees in latitude (18.75-53.33 °N; Table S1) and
encompassed deciduous needle-leaf forests, evergreen needle-leaf forests, deciduous
broad-leaved forests, evergreen broad-leaved forests, meadows, sparse grasslands,
steppes, sparse shrubbery, and desert steppes. The mean annual temperatures for these
sites ranged from —3.8 °C to 22.2 °C, and the mean annual precipitation ranged from
25 mm to 1,785 mm (Table S1; Fig. 1). The soil types varied considerably in terms of
nutrient concentration, from black earth with high organic content in cold temperate
zones to tropical red soils with low organic content (Liu et al., 2018). We collected
plant community structure data using the quadrat method and collected samples during
the peak period of plant growth from July to August (four 30 m x 40 m for forest, six
10 m x 10 m for shrubland, and eight 1 m x 1 m for grassland). We set up plots within
an area of approximately 1 x 1 km for the community structure survey and sampling.
We plotted species accumulation curves using the vegan R package to check the
representation of the field survey. Detailed site information has been reported in

previous studies (Zhang et al., 2020, Zhao et al., 2020, He et al., 2019); these details
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are provided in Appendix S1.
2.2. Functional traits and diversity

Functional traits include size traits that reflect plant size and light competitiveness
and economic traits that reflect leaf photosynthesis capacity and nutrient economies
(Diaz et al., 2015, Maynard et al., 2021). The GPP,av reflects the fluctuations in the
ecosystem-level photosynthetic capacity. We selected five representative traits,
including three economic traits namely, specific leaf area (SLA, cm?/(g), leaf N
concentration (LN, mg/g), and leaf P concentration (LP, mg/g), and two size traits, leaf
area (LA, cm?), and leaf dry mass (LM, g). All of these are closely related to the plant
light competitiveness and photosynthetic capacity of the ecosystem. More detailed trait
measurements and calculations are shown in Appendix S2 as well as in other peer-
reviewed papers published by our group (He et al., 2020, Zhang et al., 2020, Zhao et
al., 2020). We also used the average number of species within each plot (i.e., species
richness) to represent taxonomic diversity as a fundamental driver of other diversity
measures.

We calculated the CWM values for the five leaf traits (LA, LM, SLA, LN, and LP)
using the vegan R package (Oksanen et al., 2013). We then calculated several functional
diversity indices, including functional richness, dispersion, and evenness, based on
kernel density n-dimensional hypervolumes (Blonder et al., 2018, Mammola and
Cardoso, 2020). In stead of using distance-based functional trees, n-dimensional
hypervolumes represent the functional space of a species or community as a
Hutchinsonian niche, which is an abstract Euclidean space defined by a set of
independent axes corresponding to individual or species traits. This technique shows
considerable application potential in the field of trait-based ecology (Mammola and
Cardoso, 2020), especially given that the Hutchinsonian hypervolume is a foundational
concept in many fields of ecological and evolutionary research (Blonder et al., 2014).
This approach does not require transforming the data into dissimilarities, but relies on

the raw position of an individual or species within a multidimensional space (Mammola
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and Cardoso, 2020, Blonder et al., 2018), while accounting for possible empty spaces
within some extreme trait values (Blonder, 2016). To eliminate size-dependent trait
biases and remove the influence of different units and scales, we log-transformed and
then scaled (mean =0, SD = 1) all five traits before creating the hypervolume (Blonder
et al., 2018). We built the hypervolume with species abundance data and a species x
traits matrix using the kernel.build function of the BAT package in R. We used the
recommended settings of high-dimensional kernel density estimation (method =
gaussian) to estimate the stochastic points that determine the shape and volume of the
hypervolume (Mammola, 2019, Mammola and Cardoso, 2020). We used the
kernel.alpha, kernel.dispersion, and kernel.evenness functions to calculate the
functional richness, divergence, and regularity, respectively. We used a combination
of these three indices as a proxy for functional diversity.

We used the R package Taxonstand based on The Plant List database

(http://www.theplantlist.org) to correct and confirm the names of the species found in
our 72 sites. We constructed a phylogenetic tree with all these species using the
V.PhyloMaker package with the PhytoPhylo megaphylogeny as its backbone (Jin and
Qian, 2019, Tsirogiannis and Sandel, 2016, Qian and Jin, 2015). Further, we calculated
three commonly used indices to represent the phylogenetic diversity using the
PhyloMeasures package, including i) Faith's index (PD, sum of branch lengths in the
minimum spanning subtree for a given set of species, reflecting the evolutionary
distances between species), ii) the mean pairwise distance (MPD, mean phylogenetic
distance [branch length] among all pairs of species within a community, reflecting the
phylogenetic structuring across the whole phylogeny), and iii) the mean nearest taxon
distance (MNTD, mean distance between each species within a community and its
nearest neighbor, reflecting the phylogenetic structure closer to the tips). We used a
combination of these three indices of phylogenetic diversity as a proxy for overall
phylogenetic diversity, after which we assessed its impact on the GPP,av (Tsirogiannis

and Sandel, 2016, Webb, 2000).
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2.3. Soil nutrients

We determined all the soil nutrients in each plot using standard protocols (Liu et al.,
2018). We used a soil auger to collect soil samples (0-10 cm) from each plot after
removing the surface litter layer. To reduce soil heterogeneity, we combined the soil
samples (30-50 random points in each plot) collected within each plot into a
composite sample. We then sieved the composite soil samples through a 2-mm mesh
and air-dried them:; all the visible roots and organic debris were separated by hand. We
ground the samples into a fine powder using a ball mill (MM400 ball mill, Retsch,
Germany) and an agate mortar grinder (RM200, Retsch, Haan, Germany). We
measured the total C and N concentrations in the soil using an elemental analyzer (Vario
MAX CN Elemental Analyzer, Elemental, Hanau, Germany). We measured the total P
concentration using molybdenum antimony spectrophotometry and a continuous flow
analyzer (AutoAnalyzer3 Continuous-Flow Analyzer; Bran Luebbe, Germany). The
soil pH was measured an Ultrameter-2 pH meter (Myron L. Company, Carlsbad, CA,
USA). We calculated the average concentration of nutrients and pH of the samples from
each site to represent the site nutrient status.
2.4. Interannual variation in climate and productivity

We downloaded the data on the long term global monthly GPP product from 2000 to
2018 (228 months) from https://doi.org/10.6084/m9.figshare.12981977.v2 with a

spatial resolution of 5.5 km (satellite-based near-infrared reflectance [NIRv]. The GPP
data product, hereafter GPPniry, was used to determine the GPP\av across different sites
(WangZhang et al., 2021). The near-infrared reflectance of vegetation is strongly
correlated with solar-induced chlorophyll fluorescence a direct index of photons
intercepted by chlorophyll as well as with site-level and globally gridded estimates of
GPP (Badgley et al., 2017). This dataset has been verified and found to outperform
similar GPP products in capturing seasonal variability in productivity (WangZhang et
al., 2021). Therefore, we used this product to investigate the variation in GPP over the

last two decades (Fig. 1c).
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We calculated the GPP1av using the coefficient of variation (CV), the most commonly
used index in the research field of the diversity-ecosystem stability relationship. The
CV was calculated as the mean value divided by the standard deviation of annual GPP.

We downloaded the high-resolution grids of climate data from 2000-2018 from

CHELSA V2.1 (https://chelsa-climate.org/downloads/), with a 1 km spatial resolution.

We calculated the multiyear mean value of the climate variables per site including mean
annual temperature (MAT), mean annual precipitation (MAP), and AV in temperature
and precipitation using the same method used for calculating the GPPav. All ecosystem
productivity and climate (including temperature and precipitation) data were extracted
according to the latitude and longitude coordinates of each site. As there was a spatial
scale mismatch between the field areas surveyed (1 km x 1 km) and the remote sensing
data GPP (5.5 km x 55 km), we quantitatively assessed whether the spatial
heterogeneity would cause GPP data to be insufficiently representative of the surveyed
area (Appendix S3). We used a validation method from Garcia-Palacios et al. (2018) to
verify that the spatial mismatch does not affect the robustness of the results of our study
(Figure S1).
2.5. Statistical analysis

To simplify model construction and avoid collinearity, which would disrupt robust
parameter estimation, we first performed four principal component analyses to reduce
the dimensions of the CWM trait values, functional diversity (functional richness,
divergence, and regularity), phylogenetic diversity (PD, MPD, and MNTD), and soil
nutrient values (soil total C, N, P, and soil pH). We adopted Kaiser’s rule to temporarily
retain the principal component axes (PCA) with eigenvalue > 1, and then finally reserve
a PCA for each type of variable through the best subset selection procedure (Table S2).
The first PCA explained 53% of the variability in CWM, 50% of the variability in
functional diversity, 48% of the variability in phylogenetic diversity, and 61% of the
variability in soil nutrients (Fig. S2). In addition, to assure normality of the response

variable, the GPP,av values were log-transformed before the analyses.
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We used the multi-model averaging method based on the spatially controlled linear
mixed effects model with random effects of vegetation type and locality to evaluate the
effects of CWM traits, diversity, climate, and soil nutrients on GPPiav. We controlled
for spatial autocorrelation by generating a spatial matrix with longitude and latitude
coordinates of each locality for each site following an established approach (Kubelka
et al., 2018) and incorporated it into the mixed effects model. In our statistical models,
we set the vegetation type as a random factor to account for the inherent differences in
productivity and temporal variability among different vegetation types. The rationality
of the random factor setting in the full model was also checked from a statistical
perspective using an intraclass correlation coefficient (ICC). This was calculated by
dividing the random effect variance by the total variance (i.e., the sum of the random
effect variance and the residual variance). We used the relmatLmer function of the
Ime4qtl package in R to fit the full model and then we used the “dredge” function in the
Multi-Model Inference (MuMIn) R package to generate a complete set of submodels
from the full model. We ranked all the possible models following the Akaike
information criterion (AIC) and selected those models with AAIC values < 4 to
calculate the average model using the model.avg function (Grueber et al., 2011). We
standardized all the explanatory variables (mean=0, SD =1) prior to analysis using the
z-score to interpret parameter estimates at a comparable scale. We checked the
collinearity before model construction using the VIF; the VIF of all the variables was
< 5, far from problematic collinearity thresholds (Lldecke et al., 2021). We examined
the residuals of the full model using the Performance package and did not find any
deviations in the model assumptions. The interaction between the variables was not
significant; therefore, we fitted the models using only the main effects.

We used piecewise structural equation modeling (SEM) to explore the direct and
indirect effects of diversity, climate, and soil nutrients on the GPPjav. In order to
maintain consistency and simplify the model construction, we also performed PCA

analysis on climate variables (MAT, MAP and their 1AV), finally retaining the first
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PCA. As a confirmatory path analysis method (Shipley, 2009), piecewise SEM is a
collection of regression models; it is a flexible framework that can contain different
model structures, distributions, and assumptions. The core of its principle is the d-
separation test (Lefcheck, 2016), which evaluates whether any necessary paths are
missing from the model. This is necessary because the goodness-of-fit tests used in a
standard SEM are inappropriate for a piecewise SEM (Shipley, 2013). We established
a near-saturated initial model containing all the potential relationships between
environmental factors, biodiversity, and the GPP,av based on a priori knowledge from
the literature on the study of diversity-stability relationships. In this model, we also
included direct paths from species richness to functional diversity and phylogenetic
diversity. This is because according to existing studies, their variation can be directly
attributed to the change of species richness in a community (Craven et al., 2018). The
step AIC procedure of model selection method (Shipley, 2013) was used to select the
model with the minimum AIC value, based on the initial structural equation model. The
process selects and retains the most important paths and removes the majority of
nonsignificant paths. We obtained the model that best fit our data. Given that the CWM
traits has been found to have a weak effect on the GPPav through the multi-model
averaging procedure based on the mixed effects model, our final SEM did not include
CWM trait. Furthermore, given that GPPjav is driven by its two fundamental
components (GPPmean and GPPsp), we built a separate SEM to provide additional
insight into the driving mechanisms of GPPay. Based on the above analysis, we used
a concise bar chart to show the regulatory effects of soil nutrients and functional
diversity on the GPP1av among different vegetation types in the context of variability
driven by environmental conditions.
3. Results

According to the model averaging procedure, soil nutrients (relative importance,
RI=1; AAIC <4, N =25) and functional diversity (RI=0.97; AAIC <4, N =24) were

the two most important factors explaining the variability in the GPPav (Table 1).
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Across all the sites, ecosystems with higher soil nutrients and functional diversity
tended to have lower GPPav values (Fig. 2).

The results from the SEM confirmed that soil nutrients and functional diversity
had significant negative direct effects on the GPPjav, with standardized path
coefficients of —0.47 and —0.34, respectively (Fig. 2a). However, the SEM results also
revealed the important role of climate factors (including MAT and MAP and their IAV)
in species richness and functional diversity, which indirectly affects the GPPav (Fig.
2b). The SEM approach highlighted that climate (negatively related to MAT and MAP
and positively related to their IAV) had significant negative direct effects on species
richness and functional diversity, with standardized path coefficients of —0.58 and
—0.28, respectively (Fig. 2a). Ecosystems with higher MAT and MAP and less variable
climate (IAV of MAT and MAP ) had higher species richness, which ultimately reduced
their GPPiav (Fig. 2). In addition to affecting the species richness, climate also affects
functional and phylogenetic diversity. We found that climate had a significant direct
impact on functional and phylogenetic diversity, with standardized path coefficients of
—0.28 and —0.27, respectively (Fig. 2). Across all sites, warmer and wetter ecosystems
had higher functional diversity, which ultimately reduced their GPP av (Fig. 3; Fig. S5),
whereas ecosystems with higher climate variability tended to have lower functional
diversity, which ultimately increased their GPPav (Fig. 3; Fig. S5).

By additionally including the two basic components of GPPay (i.e. GPPmean and
GPPsp) in a separate SEM, we provided added insight into the mechanisms by which
soil nutrients and diversity affect GPP ay. Functional diversity reduce the GPPiav by
increasing the GPPmean and decreasing the GPPsp with standardized path coefficients of
0.29 and —0.35, respectively, while the direct effect of soil nutrients on GPPav may be
influenced by its negative effects on the GPPsp with a standardized path coefficient of
~0.28 (Fig. S3).

Finally, the bar graph shows that the GPPiav increased with the decrease in soil

nutrients and functional diversity across different vegetation types (Fig. 3). Although
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the first axis of the PCA with the CWM trait (positively correlated with soil C, N, and
P; Fig. S4a) was not significantly correlated with GPPav in forests, it was significantly
negatively correlated with GPPjav in grasslands (Fig. S4).
4. Discussion

Our results supported our main hypothesis stating that ecosystems with higher
diversity would have lower GPPiayv because of compensation effects and that soil
nutrients would buffer the impact of climate variability on the GPPav through direct
and indirect effects. However, the effect of biodiversity on the GPPav was not directly
promoted by species richness but by functional diversity, which includes information
about the functional dissimilarity between species within the community.
4.1. Influence of multidimensional diversity on GPPiav

Our results provided strong evidence that biodiversity can stabilize ecosystem
production and reduce the magnitude of the GPPiav (Fig. 2 and 3). Ecosystems with
higher diversity tended to have lower GPPjav, which is consistent with the positive
relationship between diversity and ecosystem stability according to the insurance
hypothesis (Garcia-Palacios et al., 2018). As numerous studies have shown, higher
diversity of plant resource utilization strategies promotes higher asynchrony in species
responses to environmental fluctuations, ultimately suppressing GPPiav (Garcia-
Palacios et al., 2018, Craven et al., 2018, Loreau and De Mazancourt, 2013, Morin et
al., 2014). Over longer timescales, the response of vegetation to climate change can
explain the IAV in ecosystem flux better than only the climate variables (Ma et al.,
2011, Richardson et al., 2007). Climate change can affect the properties of ecosystem
vegetation, leading to further variations in productivity (Chapin 111, 2003). Although
species richness can also partially characterize the role of diversity in the GPPjav
(Musavi et al., 2017), using a multidimensional diversity measure that contains more
information is a better choice because multiple diversity measures can reflect the impact
of diversity, prevent the omission of dissimilar information among species, and prevent

underestimations of the role of diversity (Craven et al., 2018, Dolezal et al., 2020). The
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multifaceted nature of diversity, beyond the number of species, is highly important for
understanding ecosystem functions and stability (Craven et al., 2018, Mahaut et al.,
2020, Brun et al., 2019, Dolezal et al., 2020). A negative relationship between diversity
and the GPPav can predominantly be seen in compensation effects (Cardinale et al.,
2012, Ferndndez-Martinez et al., 2020). The complementary effect promotes the
temporal asynchrony of community species productivity and increases ecosystem
resistance through the combination of species with diversified ecological strategies,
both of which help reduce the GPPav (Loreau and De Mazancourt, 2013, Ammer,
2019).

Functional diversity has the strongest effect among different biotic factors on the
GPPiav. A previous large-scale study on global drylands has also found that leaf trait
diversity promotes ecosystem stability (Garcia-Palacios et al., 2018). This suggests that
niche differences between species are better captured by functional diversity. However,
these niche differences were not captured by the species richness and phylogenetic
diversity. Instead, species richness was found to affect the GPPiav mainly through the
pathway of functional diversity. Higher species richness means that an ecosystem has
a greater probability of containing species with more ecological strategies (increasing
their portfolio effects) due to niche differentiation (Craven et al., 2018), ensuring a
stronger ability to resist disturbances and mitigate the effects of climate change on
ecosystem production, thereby reducing the GPPiav (Isbell et al., 2015). Additional
analyses also provided evidence that functional diversity reduces GPPiav by directly
reducing the variability of biomass production over time (i.e. GPPsp). This may be
because an assemblage of species with high functional diversity increases ecosystem
resistance, thus weakening the fluctuation of productivity over time in response to
extreme climatic events (Isbell et al., 2015, Loreau and De Mazancourt, 2013). In
contrast, functional diversity could also reduce the GPPav by directly increasing the
production potential (i.e., GPPmean). This is because the strong compensatory effect

produced by higher functional diversity leads to improvements in resource availability,
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absorption, and use efficiency (Ammer, 2019). All of these vital processes involved in
the complementary effects have been identified in forests (Morin et al., 2011, Jing et
al., 2021) and grasslands (Grace et al., 2007, Huang et al., 2020), as well as above and
below ground components (Ammer, 2019, Jing et al., 2021).

Unlike phylogenetic diversity, which describes only the differentiation of
information between species over their evolutionary history (Huang et al., 2020,
Cadotte et al., 2012), functional diversity is closely related to the traits measured in this
study (Huang et al., 2020). Although we selected functional traits closely related to
ecosystem production (Garnier et al., 2016, Perez-Harguindeguy et al., 2016), this does
not guarantee the inclusion of all the necessary information (Huang et al., 2020, Barry
et al., 2019). Our results showed that the role of CWM traits representing the dominant
effect on GPPiav was highly pronounced in grassland ecosystems (with forest
ecosystems excluded), but less so across multiple ecosystems. It implies that
conclusions drawn from studies conducted in one ecosystem-type are worthy of further
investigation in other ecosystem-types by employing a macroecology approach (McGill,
2019); new phenomena may emerge once the scale of study is changed.

Management, including thinning, and disturbance, such as grazing can directly affect
the primary production of an ecosystem and, subsequently, the GPPiav (Musavi et al.,
2017). Site age, including forest age, is also a potential factor affecting the GPPav
(Musavi et al., 2017). As succession progresses, forests may develop more diverse
canopy and root structures, allowing for more complementary use of nutrients and water
and reducing the impact of environmental change on production (Musavi et al., 2017).
In addition, atmospheric nitrogen deposition in the Anthropocene has increased the
bioavailable nitrogen in terrestrial ecosystems (Zhu et al., 2021), which may also affect
GPP)av. Firstly, nitrogen deposition especially its dry deposition component can be
absorbed by plants through stomata, leaf cuticle and bark in the canopy to stimulate
photosynthetic capacity (Yan et al., 2019), positively affecting GPP (Zhu et al., 2021),

and ultimately indirectly inhibiting GPPiav. Secondly, nitrogen deposition especially
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the wet deposition component can directly change the soil nutrient state (Yan et al.,
2019, Zhu et al., 2016). The increase of available nutrients in the soil will enhance the

resilience of ecosystems against climate extremes, and thus directly buffer the GPPav.
4.2. Effects of soil nutrients on interannual variation in ecosystem productivity

Consistent with our initial hypothesis, our results indicated that soil nutrients
“buffer” the impact of climate variability on biomass production and reduce the
magnitude of the GPPjav. The soil nutrient status in an ecosystem directly affects its
biomass production (Vicca et al., 2012) and determines the magnitudes of biomass
production and accumulation (Fernandez-Martinez et al., 2014). A study examining
temperate forests (Xu et al., 2020) has shown that soil nutrients, including nitrogen
availability, regulate the photosynthetic capacity of the vegetation canopy, which has
an important effect on the magnitude of productivity. Ecosystems with higher biomass
and productivity often have higher stability (Guo et al., 2021, Wales et al., 2020, Craven
et al., 2018). However, additional analyse showed that soil nutrients inhibited GPP av
primarily by attenuating productivity fluctuations over time (i.e. GPPsp) rather than by
increasing productivity potential (i.e. GPPmean). This may be because the soil nutrient
content is not equivalent to the soil nutrients available to plants, so the relationship
between soil nutrient content and GPPmean IS not significant. In addition, nutrient-rich
ecosystems tend to have higher net C uptake (Fernandez-Martinez et al., 2014), which
means that they can accommodate more species according to species-energy
relationships (Craven et al., 2020). Thus, soil nutrients may also affect GPP through
their indirect role in diversity.

Knowledge about the key effects of soil nutrients on the stability of ecosystem C
uptake is crucial, especially given the human-induced alterations in soil nutrient status
and biogeochemical cycles in many regions worldwide (Yu et al., 2019, Zhu et al.,
2016). Fertile soils will generally support more diverse plant communities by providing
a wider range of niches and imposing more relaxed ecological constraints on growth

(Yuan et al., 2019). This implies that soil nutrients are also expected to directly affect
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GPPiav. However, it is worth noting that soil total C, N, and P content does not equate
to available nutrient content that is directly available to plants. The available nutrients
in the soil depend both on the available (or unavailable) forms of N and P and the
corresponding soil texture variables, including sand, silt, and clay contents and soil pH.
Only labile nitrogen (such as NH4*—N and NOs™ —N) can be utilized by the fine roots of
plants and soil pH that is too high or too low will inhibit the absorption of soil nutrients
by plants. Therefore, our use of soil total N and P to represent overall N and P levels
can only be taken as rough estimates of soil fertility and quality. A precise assessment
of the relationship between the soil available nutrients and the GPP,av is necessary in

the future.
4.3. Inspiration for future studies on ecosystem C cycle

We undertook a holistic, multi-site assessment of how climate, soil nutrients, and
multifaceted diversity including species richness and functional and phylogenetic
diversity affect the GPPav across a geographic and climatic gradient. The Earth’s
vegetation cover is critical for maintaining the global C cycle and balance, but global
change is increasingly changing Earth’s natural vegetation by reducing its cover area
and changing its attributes (Chapin 111, 2003, Isbell et al., 2013). This has a profound
impact on the C balance in terrestrial ecosystems, especially given the key role of the
GPPav in the IAV of net C uptake (Piao et al., 2020). It is insufficient to determine
how plant functional traits and diversity affect the global C cycle, especially at large
scales. With the advancement of remote sensing technology, it has become possible to
directly retrieve data on functional diversity at the grid level and explore the
relationship between functional diversity and ecosystem functioning (Garnier et al.,
2016). Based on high-quality data, our findings provide strong evidence that the
diversity of functional traits affects the stability of ecosystem gross C uptake. Although
the direct role of climate cannot be ignored, considering the key role that vegetation
plays in the entire terrestrial C cycle, the effects of biodiversity (including phylogenetic,
functional, and taxonomic diversity) and plant functional traits on the terrestrial C cycle

should be studied in more detail in the future. Moreover, studies focusing on a single
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ecosystem type need to be extended to include a range of diverse ecosystem types to
reach more general conclusions. Combining observations from high-tech remote
sensing instruments with those from eddy-covariance towers distributed in various

biomes worldwide may represent an important approach for assessing these effects.

Data accessibility

Ecosystem primary productivity and climate data come from databases that are freely
available databases as described in methodology; The plant trait data that support the
findings of this study will be made available in the dedicated repository of Figshare
upon publication. Plant occurrence data are available from the corresponding author

upon reasonable request.
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Table 1 Results of model analyses averaging the effects of diversity, climate, and soil
nutrients on the interannual variability (IAV) of gross primary productivity.

Type of Predictors Estimate | CI RI N
variable Intercept —2.46 —4.71~—0.20
Species richness 0.077 —0.086 ~ 0.46 0.41 12
o Functional diversity —0.38 —0.70~—0.08 0.97 24
Diversity
Phylogenetic diversity —0.002 —0.39 ~ 0.36 0.12 4
CWM traits’ 0.014 —0.12~0.33 0.14 4
Mean annual temperature 0.009 —0.26 ~0.42 0.11 4
IAV of temperature 0 —0.19~0.19 0.11 4
Climate .
Mean annual precipitation —0.18 —0.84 ~0.10 0.49 13
IAV of precipitation 0.002 —0.26~0.30 0.11 4
Soil Soil nutrients —0.38 —0.55 ~—0.21 1 25

The table shows standardized parameter estimates, 95% confidence interval (Cl) values, and relative
importance (RI) values derived from weighted averaging of parameter estimates over the best-fit models
(for models with AAICc < 4). Boldface indicates that the variable's RI is greater than the threshold of
0.8, usually indicating that the variable is very important, whereas N indicates the number of models
that contain the corresponding variables.

ICWM traits represent the first principal component axis of community weighted mean traits, including
specific leaf area [SLA, cm?/g], leaf N concentration (LN, mg/g), and leaf P concentration [LP, mg/g],
and two size traits, namely leaf area (LA, cm?), and leaf dry mass (LM, g); functional diversity represent
the first principal component axis of functional richness, divergence, and regularity; phylogenetic
diversity represent the first principal component axis of Faith index, mean pairwise distance, and the
mean nearest taxon distance; soil nutrients represent the first principal component axis of soil pH, soil
total C, N, and P concentrations (%).
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Fig. 1 (a) Map of sampling site distribution, (b) changes in gross primary
productivity (GPP) over time from 2000 to 2018, and (c) frequency distribution of
the interannual variability of GPP (GPPiav) in 72 sites across China. In panel c, the
red line shows the normal distribution of GPPav (after logarithmic transformation) in
the 72 sites fitted by the Gaussian function; the data passed the normality test (Shapiro—
Wilk, P =0.22).
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Fig. 2 Piecewise structural equation model revealing the direct and indirect effects
of multiple abiotic and biotic factors on the interannual variability in gross
primary productivity (GPPiav) across the 72 sites. Black arrows indicate positive
effects, whereas red arrows indicate negative effects; solid lines indicate statistically
significant effects, and dashed lines indicate non-significant effects; the width of each
significant path is proportional to its standardized path coefficient. Climate represents
the first principal component axis of mean annual temperature (°C), mean annual
precipitation (mm year ), and their interannual variability; soil nutrients represent the
first principal component axis of soil pH, soil total C, N, and P concentrations (%);
functional diversity represent the first principal component axis of functional richness,
divergence, and regularity; phylogenetic diversity represent the first principal
component axis of Faith's index, the mean pairwise distance, and the mean nearest taxon
distance. All explanatory variables were standardized (z-score, mean =0, SD = 1) prior
to analysis.
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Fig. 3 (a) The pattern of interannual variability in gross primary productivity
(GPP1av), soil nutrients, and functional diversity among different vegetation types,
and (b—c) the bivariate relationship between GPPiav and soil nutrients and
functional diversity. Each point in panels b and c represents the mean value for each
vegetation type. Soil nutrients represent the first principal component axis of soil pH,
soil total C, N, and P concentrations; functional diversity represents the first principal
component axis of functional richness, divergence, and regularity. All variables were
standardized (z-score, mean = 0, SD = 1) to eliminate dimensions and facilitate their
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