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Abstract: This study focuses on the design of a robust PD gain-scheduling controller (PD-GS-C) for
an unstable SISO (single-input, single-output) magnetic levitation system with two electromagnets
(MLS2EM). Magnetic levitation systems offer various advantages, including friction-free, reliable,
fast, and cost-effective operations. However, due to their unstable and highly nonlinear nature,
these systems require sophisticated feedback control techniques to ensure optimal performance
and functionality. To address these challenges, in this study, we derive the nonlinear state-space
mathematical model of the MLS2EM and linearize it around five different operating points. The PD-
GS-C controller aims to stabilize the system and improve steady-state control error. The strategy for
obtaining the PD controller gains involves a parameter space technique, which specifies performance
requirements. This technique results in ranges of proportional (KP) and derivative (KD) gains that
are used by the PD-GS-C structure. To optimize the controller’s performance further, we utilize the
big bang–big crunch optimization technique (BB-BC) to determine the optimal PD gains within the
specified ranges. The optimization process focuses on achieving optimal performance in terms of a
specific performance index function. This function quantifies the system’s time-domain step response
criteria, which include minimizing overshoot percentage, settling time, and rising time. The index
function is inversely proportional to the desired performance criteria, meaning that the goal is to
maximize the index function to optimize the system’s performance. To validate the effectiveness and
viability of the proposed strategy, we conducts MATLAB simulations and real-time experiments. The
simulations and experimental findings serve to demonstrate the controller’s performance and verify
its capabilities in stabilizing the MLS2EM magnetic levitation system.

Keywords: magnetic levitation system; proportional-derivative controller; robust PD gain-scheduling
controller (PD-GS-C); parameter space technique; Big Bang–Big Crunch optimization technique (BB-
BC); real-time experiment

MSC: 93B51

1. Introduction

A magnetically levitated mechanism (MAGLEV), also called magnetic suspension, is a
naturally occurring phenomenon whereby an antigravity ferromagnetic item is maintained
without any other sources except an electromagnetic field with no interaction with the exter-
nal field [1]. Considering the sophistication of electromagnetic theory, this phenomenon has
a broad range of applications, such as high-speed trains, frictionless melting, and magnetic
bearings. With the rapid advancement of electronics and advanced control theory, magnetic
levitation can be applied for a variety of practical purposes [2]. MAGLEV is a nonlinear,
open-loop, unstable system that is challenging to model and control. Magnetic levitation
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systems are controlled as SISO system architectures, and just one electromagnet in the sim-
plest and most common arrangement [3]. Such systems (MLS1EM) utilize magnetic forces
created by providing the electromagnet and one-axis distance sensor with the necessary
voltage [4]. In more complex arrangements (MLS2EM), a secondary electromagnet can be
used to produce an external gravitational pull that is distinct from that produced by the
first [5].

For magnetic levitation systems, various well-known linear and nonlinear control
techniques have been developed. Highly nonlinear operating differential equations make
nonlinear controllers more desirable. To provide excellent productivity, many nonlinear
control schemes require precise understanding of nonlinear plant effects. Practical imple-
mentations of nonlinear controllers are made challenging by the modeling of uncertain
parameters in the MAGLEV model. On the other hand, the approximating linear model
obtained by adjusting the system behavior around a preferred operating point is used
in linear controller design, and as a result, the controllers are typically valid around the
operating point. Linear controller performance is enhanced by using a gain-scheduling
process to accommodate different operating points and enlarge the operating region [6].

Numerous efforts have recently been published in the literature to control magnetic
levitation systems. Input–output and input-state linearization approaches are among the
feedback linearization-based controllers that have been developed [7–12], in addition to
the design of linear state feedback controls [13], observer-based controls [14,15], cognitive
strategies [16–18], slide mode control [19–21], backstepping control [22], model-based
predictive control (MPC) [23,24], adaptive H-infinity tracking control [25], and proportional–
integral–derivative (PID) control [4,26]. In addition, there are several adaptive control
schemes that have already been presented in the past few years for positioning control
schemes and magnetic levitation technologies. Some of these constructions can be found
in [27–35]. An interesting method to consider for magnetic levitation positioning is that of
finite time control, such as those mentioned in [36].

Gain-scheduling controlled systems are common in today’s adaptive control applica-
tions, and they are succinctly examined as follows. Slide mode control and fuzzy-based
gain scheduling of exact feed-forward linearization control for a magnetic levitation system
are described in [37]. The authors in [38] discusse a high-gain adaptive output feedback
control for a maglev apparatus. Using a Smith predictor, The authors of [39] provided a
proportional–integral–derivative (PID) gain-scheduling control with second-order linear
parameter variation, which eliminates time-varying delay. Additional intriguing adaptive
gain-scheduling control mechanisms for practical, applications are discussed in [40–44].
The authors of [45] presented the design of a proportional–integral gain-scheduling control
for position control of a sphere in a laboratory magnetic levitation system. The unstable and
nonlinear mathematical model of the process is linearized at seven operating points. The au-
thors of [46] presented a gain-scheduling control design procedure for classical proportional–
integral–derivative controllers (PID-GS-C) for a positioning system. The method was applied
to a laboratory magnetic levitation system with two electromagnets (MLS2EM), which
allowed for several experimental verifications of the proposed solution.

The authors of [47] provided a coherent approach to the tuning of PID controllers.
By using the model-reference robust tuning (MoReRT) method, the authors proposed a
way to achieve robust and effective PID controller tuning. The authors in [48] delved
into deterministic multiobjective optimization methods, which are used to solve control
system design problems that involve multiple conflicting objectives. The authors developed
algorithms for two-degree-of-freedom PID control. An optimal indirect internal model
control-proportional derivative (iIMC-PD) controller was designed as a two-loop control
structure to regulate the dynamics of integrating processes with dead time [49]. The
authors in [50,51] focused on analyzing optimal controller settings for controllers with a
proportional–integral–derivative (PID) structure. Analysis was conducted by considering
two key factors: the operating mode of the control loop (either servo or regulation mode)
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and the tuning mode of the controller. The goal was to determine controller settings that
lead to optimal performance based on the specific operating and tuning modes.

The position control of a ferromagnetic sphere in a laboratory magnetic levitation
system with two electromagnets (MLS2EM) is the topic of this research. The control
input is provided only to the upper electromagnet, and the bottom electromagnet can be
subjected to the generated external disturbance. Two control architectures are developed to
stabilize the system: proportional-derivative control (PD-C) and proportional-derivative
gain-scheduling control (PD-GS-C). To enable the use of straightforward control techniques,
the given mathematical model of the MLS2EM nonlinear system is linearized around five
operating points. This linearization simplifies the control design process by allowing for
the application of conventional control methods. For the PD-C controller, a parameter space
technique is employed to design five robust PD controllers. The goal is to guarantee system
stabilization and improve the steady-state control error. The parameter space approach
provides ranges of proportional (KP) and derivative (KD) gains, which are crucial for the
PD-GS-C structure. In the PD-GS-C architecture, the control gains are adaptively adjusted
to match changes in the operating points. This adaptability is important because the
bottom electromagnet of the MLS2EM system may be subjected to external disturbances,
which could affect the system’s behavior and performance. To optimize the PD-GS-C
controller’s performance, we use the big bang–big crunch optimization technique (BB-BC)
to determine the optimal PD gains within the specified ranges obtained by the parameter
space approach. The goal of optimization is to achieve the best possible performance for
MLS2EM magnetic levitation. Finally, this research aims to demonstrate effective position
control for a ferromagnetic sphere in an MLS2EM system using both PD-C and PD-GS-C
controllers. By considering external disturbances and adapting the control gains to changing
operating conditions, the proposed control architectures seek to stabilize the system and
ensure accurate positioning of the ferromagnetic sphere. The use of linearization, parameter
space techniques, and optimization methods contributes to the achievement of robust and
efficient control of an MLS2EM magnetic levitation system.

The structure of this article is described as follows. Potential models for the MAGLEV
system are described in Section 2, including an explanation of the physical principles of
magnetic levitation and how the system can be mathematically modeled. The parameter space
approach, which sets the boundaries for the stabilization of PD gains, is described in Section 3.
The utilization of the big bang–big crunch optimization technique (BB-BC) to obtain an optimal
set of PD gains is also discussed in the same section. The PD gain-scheduling control (PD-
GS-C) is presented in detail in Section 4, and the concept and architecture of the controller
are explained. Section 5 contains illustrations and discussions of the experimental outcomes
obtained through simulations, including graphs and charts that showcase the performance
of the proposed PD-GS-C controller in the magnetic levitation system. Finally, Section 6
presents the key observations and findings of this research; we summarize the achievements
of the study, discuss the effectiveness of the proposed PD-GS-C controller, and highlight any
potential areas for further improvement or research.

2. Magnetic Levitation and Modeling

Figure 1 illustrates the ML2SEM magnetic levitation equipment, which serves as an
experimental benchmark for the theoretical validation of the magnetic levitation principle
by suspending a ball of steel in the air while applying magnetic force. Due to its significant
nonlinearity, this system is suited for use in university laboratories and is safe for assessment
of the effectiveness of various controller types [52].

A schematic diagram of the ML2SEM-controlled plant is shown in Figure 2, where
EM1 and EM2 are the top and bottom electromagnets, respectively; m is the sphere’s mass;
Fem1 and Fem2 are the electromagnetic forces; and Fg is the force of gravity [52].
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Figure 1. ML2SEM magnetic levitation equipment.

Figure 2. Block diagram of the ML2SEM-controlled plant [52].

The state-space mathematical model of the ML2SEM’s is expressed as:

ẋ1 = x2

ẋ2 = −
Fem1(x1,x3)

m + g +
Fem2(x1,x4)

m
ẋ3 = 1

fi(x1)
(kiu1 + ci − x3)

ẋ3 = 1
fi(xd−x1)

(kiu2 + ci − x4)

(1)

The nonlinear functions in Equation (1) can be described as follows.

Fem1(x1, x3) = x2
3

Femp1
Femp2

exp(− x1
Femp2

)

Fem2(x1, x4) = x2
4

Femp1
Femp2

exp(− d−x1
Femp2

)

fi(x1) =
fip1
fip2

exp(−−x1
fip2

)

(2)

where, x1 ∈ [0, 0.016m] is the sphere position, x2 ∈ < is the speed of the sphere, and
x3 and x4 ∈ [0.03884, 2.38] are the currents in the electromagnetic coil in amperes. The con-
trol signals that are applied to EM1 and EM2 are u1 and u2 ∈ [0.00498, 1], respectively;
d denotes the spacing between electromagnets minus the diameter of the ball; fg = mg is the
gravitational force; m is the ball mass; and g is the gravitational acceleration. The parameters
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k1 and ci are related to the actuator nonlinear dynamic, and fi(x1) is a function of x1 for both
actuators. Table 1 shows the numerical values for the variables in Equations (1) and (2).

Table 1. ML2SEM maglev model parameters [52].

Parameter Parameter Value Unit

m 0.0571 [kg]

g 9.81 [m/s2]

Femp1 1.7521× 10−2 [H]

Femp2 5.8231× 10−3 [m]

fip1 1.4142× 10−4 [ms]

fip2 4.5626× 10−3 [m]

ci 0.0243 [A]

ki 2.5165 [A]

xd 0.075 [m]

The ferromagnetic ball is depicted in Figure 2 between EM1 and EM2. The basic
objective is to achieve levitation of the ball at the location specified by the input reference
signal. The stabilization and tracking of the input reference signal are the control system’s
first two objectives [53]. multi-input–multioutput (MIMO) control systems can be created
while both electromagnets are in use by adding an additional force from the control
signal applied to EM2. Robust applications can benefit from this capability as well. As
a disturbance input, the control signal (u2) can considered as the opposite. As a result,
the third goal of the control system is to guarantee stability with regard to this kind
of disturbance.

Due to the nonlinearity of the controlled plant illustrated in Equations (1) and (2),
establishing control systems that can achieve these three control objectives is rather difficult.
In order to enable low-cost automation solutions, we overcome this challenge by linearizing
around five operating points (o.p.s), utilizing coordinates (x(j)

1 , x(j)
2 , x(j)

3 , x(j)
4 ), where j is the

operating point’s index and j = 1 . . . 5. The general linearized state-space mathematical
model can be applied in this situation by accepting u2 = 0, as follows [46]:

∆ẋ(j) = A(j)∆x(j) + B(j)∆u(j)
1

∆y(j) = CT(j)∆x(j) (3)

where the differences between variables u(j)
1 and y(j) with regard to their numbers cor-

responding to the equilibrium point (u(j)
10 and y(j)

0 , respectively) are represented by the

formulas ∆u(j)
1 = u(j)

1 − u(j)
10 and ∆y(j) = y(j) − y(j)

0 ; y(j) = x(j)
1 is the output; the state vector

is ∆x(j) = [∆x(j)
1 , ∆x(j)

2 , ∆x(j)
3 , ∆x(j)

4 ]T ; and matrix transposition is indicated by superscript
T [53].

Equation (3) can be expressed in general matrix form as follows:

A(j) =


0 1 0 0

a(j)
21 0 a(j)

23 a(j)
24

a(j)
31 0 a(j)

33 0
a(j)

41 0 0 a(j)
44

, B(j) =


0
0

b(j)
3

b(j)
4

,

CT(j) =
[
1 0 0 0

]
,

(4)
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Equation (5) describes the elements of matrices A(j) and B(j) in Equation (4).

a(j)
21 =

x2(j)
30
m

Femp1

F2
emp2

exp(− x(j)
10

Femp2
)+

x2(j)
40
m

Femp1

F2
emp2

exp(− d−x(j)
10

Femp2
),

a(j)
23 = − 2x(j)

30
m

Femp1
Femp2

exp(− x(j)
10

Femp2
),

a(j)
24 =

2x(j)
40

m
Femp1
Femp2

exp(− d−x(j)
10

Femp2
),

a(j)
31 = −(kiu

(j)
1 + ci − x(j)

30 )(x(j)
10 / fip2) f−1

i (x(j)
10 ),

a(j)
33 = − f (−1)

i (x(j)
10 ),

a(j)
41 = −(kiu

(j)
1 + ci − x(j)

40 )(x(j)
10 / fip2) f−1

i (d− x(j)
10 ),

a(j)
44 = − f (−1)

i (d− x(j)
10 ),

b(j)
3 = ki f (−1)

i (x(j)
10 ),

b(j)
4 = ki f (−1)

i (d− x(j)
10 ),

(5)

The operating points in Equation (6) are selected in order to cover the typical operating
conditions within the steady-state area of the ball position feedback input–output map and
eliminate the input–output map’s extreme values due to potential instability [46].

P(1)(0.0063, 0, 1.22, 0.39),
P(2)(0.007, 0, 1.145, 0.39),
P(3)(0.0077, 0, 1.07, 0.39),
P(4)(0.0098, 0, 0.89, 0.39),
P(5)(0.009, 0, 0.9345, 0.39),

(6)

3. Stability Analysis

The proportional-derivative gain-scheduling Control system (PD-GS-C) solution based
on the control system structure is shown in Figure 3, which can be considered the stabilizing
control solution starting with the linearized state-space model in Equation (4).

Figure 3. Block diagram of the PD-GS-C system structure.

Where the reference input is defined by r, the PD gain parameters are Kp and KD,
and the ML2SEM model is described by the plant, which also contains the actuators and
sensors. The minimum and maximum values of the PD gain controllers are typically set to
limit the control action within certain bounds. By setting these limits, the control system
can prevent excessive control efforts that could potentially destabilize the system or cause
other undesirable effects. These values are used in equations of the proportional-derivative
gain-scheduling control system (PD-GS-C), as shown in Section 4.2. The applied technique
is based on a performance specification in terms of a parameter-space technique in order to
determine the maximum and minimum of the PD gain controllers (Kpmax, KDmax, Kpmin,
and KDmin), as shown in the next subsections.



Mathematics 2023, 11, 4040 7 of 21

Stabilizing Controller Gains

A parameter-space approach can be defined by the method of drawing lines that
indicate the boundaries of the stabilizing gain set using the frequency response of the
plant [54].

G(s) is a single-input–single-output plant’s transfer function with a frequency response
that can be illustrated by the following equation:

G(jω) = a(ω) + jb(ω), ω ∈ R (7)

where a, b are real-valued functions.
Equation (8) shows the transfer function of the proportional-derivative controller plant

Gpd(s).
Gpd(jω) = Kp + jωKD, ω ∈ R (8)

The characteristic equation of a closed-loop system with a PD controller is expressed
as:

1 + (Kp + jωKD)(a(ω) + jb(ω)) = 0 (9)

Equation (9) can be rewritten in matrix form as:[
a −ωb
b ωa

][
KP
KD

]
=

[
−1
0

]
(10)

By solving Equations (9) or (10), Kp and KD can be expressed by the following equation:

Kp = −a
a2(ω)+b2(ω)

KD = b
ω(a2(ω)+b2(ω))

(11)

When ω changes, the parameter plane can be separated into regions by drawing
Equation (11) and the root real boundary line (at ω = 0). The number of unstable poles
in each region is guaranteed to be kept fixed by the boundary-crossing theorem [55]. This
characteristic allows us to calculate the stability set at each operating point [54,56,57].
The KP − KD planes for operating points p(1), p(2), p(3), p(4), and p(5) are illustrated in
Figure 4a–e, respectively. Table 2 demonstrates the stability of each zone for operating
points p(1), p(2), p(3), p(4), and p(5) by picking one polynomial for each region and testing
its stability. The numbers (0, 1, 2, and 3) that appear in figures represent the number of
unstable poles in the zone. The green zones in all figures represent the stable regions
with zero unstable poles. In this research, the robust PD controller for p(j) is involved by
computing all stabilizing PD controller gains for the characteristic polynomial using the
parameter-space approach, as shown in Figure 4.

(a) (b)
Figure 4. Cont.
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(c) (d)

(e)
Figure 4. (a) KP − KD plane with boundaries of P(1); (b) KP − KD plane with boundaries of P(2);
(c) KP − KD plane with boundaries of P(3); (d) KP − KD plane with boundaries of P(4); (e) KP − KD

plane with boundaries of P(5).

Table 2. The stability of each zone for operating points p(1), p(2), p(3), p(4), and p(5).

p(j) Test Point [KP KD] System Poles Number of Unstable Poles in a
Specific Area Stability of the Area

[−100 5]
1× 102 *

−2.4885 + 0.0000i −0.6406 + 2.0984i
−0.6406 − 2.0984i 0.3144 + 0.0000i

1 unstable area

P(1) [100 5]
1× 102 *

−2.4722 + 0.0000i −0.4420 + 2.0257i
−0.4420 − 2.0257i −0.0991 + 0.0000i

0 stable area

[1000 5]
1× 102 *

0.3379 + 2.2962i 0.3379 − 2.2962i
−2.2768 + 0.0000i −1.8542 + 0.0000i

2 unstable area

[−100 5]
1× 102 *

−0.8189 + 1.9817i −0.8189 − 1.9817i
−2.0321 + 0.0000i 0.3107 + 0.0000i

1 unstable area

P(2) [100 5]
1× 102 *

−2.0265 + 0.0000i −0.6212 + 1.8939i
−0.6212 − 1.8939i −0.0901 + 0.0000i

0 stable area

[1000 5]
1× 102 *

0.2069 + 2.1753i 0.2069 − 2.1753i
−1.8864 + 0.1139i −1.8864 − 0.1139i

2 unstable area
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Table 2. Cont.

p(j) Test Point [KP KD] System Poles Number of Unstable Poles in a
Specific Area Stability of the Area

[−100 5]
1× 102 *

−1.0710 + 1.8602i −1.0710 − 1.8602i
−1.5108 + 0.0000i 0.3105 + 0.0000i

1 unstable area

P(3) [100 5]
1× 102 *

−0.8812 + 1.7439i −0.8812 − 1.7439i
−1.5089 + 0.0000i −0.0710 + 0.0000i

0 stable area

[1000 5]
1× 102 *

0.0458 + 2.0269i 0.0458 − 2.0269i
−1.9027 + 0.0000i −1.5311 + 0.0000i

2 unstable area

[−100 5]
1× 102 *

−1.9547 + 1.8215i −1.9547 − 1.8215i
0.3581 + 0.0000i −0.2211 + 0.0000i

1 unstable area

P(4) [2000 5]
1× 102 *

−3.2066 + 0.0000i −0.2722 + 2.1504i
−0.2722 − 2.1504i −0.0213 + 0.0000i

0 stable area

[2000 − 5]
1× 102 * −4.7157 + 0.0000i 0.4825 +
1.7053i 0.4825 − 1.7053i −0.0217 +

0.0000i
2 unstable area

[1000 − 5]
1× 102 *

−4.4271 + 0.0000i 0.3200 + 1.2076i
0.3200 − 1.2076i 0.0146 + 0.0000i

3 unstable area

[−100 5]
1× 102 *

−1.6553 + 1.7938i −1.6553 − 1.7938i
−0.5373 + 0.0000i 0.3268 + 0.0000i

1 unstable area

P(5) [200 5]
1× 102 *

−1.4543 + 1.5878i −1.4543 − 1.5878i
−0.4857 + 0.0000i −0.1269 + 0.0000i

0 stable area

[200 − 5]

−377.1251
−60.7665
67.2404
18.5370

2 unstable area

4. Controller Design

The results of the parameter-space approach are ranges of PD gains (KP, KD). In the next
subsection, the optimal PD gains were chosen using the Big Bang–Big Crunch Optimization
Algorithm [58] to achieve optimal performance for ML2SEM magnetic levitation.

4.1. The Big Bang–Big Crunch Optimization Algorithm

The Big Bang–Big Crunch Optimization technique (BB-BC) is a population-oriented
optimized algorithm that derives motivation from the cosmological events of the Big Bang
and the Big Crunch. As a nature-inspired method for resolving challenging optimization
issues, it was initially proposed by Erol and Eksin in 2006 [58]. The technique begins
with a random population of candidate solutions that indicate potential solutions to the
optimization challenge. Every potential solution is represented in the search space by a
point. Depending on the scenario, the search space can be multidimensional. The BB-BC
algorithm can be separated into two phases: the Big Bang phase and the Big Crunch phase.



Mathematics 2023, 11, 4040 10 of 21

1. The Big Bang Phase: During the Big Bang phase, the candidate solutions are randomly
spread throughout the search space, comparable to the exploded atoms during the
Big Bang in cosmology. This phase is in control of exploration, allowing the solutions
to cover a large portion of the search space.

2. The Big Crunch Phase: Following the Big Bang phase, the algorithm initiates the
Big Crunch phase, which depicts the contraction of matter in the universe, resulting
in the construction of structures. During this phase, potential solutions are drawn
to promising parts of the search space, identical to the development of galaxies
and other cosmic structures. This phase focuses on exploitation, refining solutions,
and convergence toward optimal solutions.
The output of the Big Crunch phase can be defined as the center of mass. The center
of mass is denoted by

−→
xc , which can be expressed as follows:

−→
xc =

∑N
i=1

1
f i

−→
xi

∑N
i=1

1
f i

(12)

where
−→
xi and

−→
xc are vectors in an n-dimensional search space, f i is the value of this

point’s objective function, and N is the population size in the Big Bang phase.
The following stage generates new points that are used in the Big Bang phase following
the Big Crunch phase, generating the center of mass (

−→
xc ). The newly generated points

are redistributed in all directions around the center of mass (
−→
xc ):

xnew =
−→
xc +

rα(xmax − xmin)

k
(13)

where r is a random number, α is a parameter that limits the size of the search space,
and k is the number of iterations [58–62].

Iterations during the Big Crunch phase drive candidate solutions closer to the best
solutions in their area. Attractive forces guide the movements, which are determined by
the fitness values of the solutions. Based on the performance function, the fitness function
evaluates the level of accuracy of each solution.

The optimization approach is presented via a specific performance index function
that is inversely proportional to a dynamical system’s time-domain step response criteria
(small overshoot percentage (OS) with significant minimization of both settling (Ts) and
rising (Tr) times), which is demonstrated by Equation (14). A flow chart of the BB-BC
optimization algorithm is shown in Figure 5.

J =
100

0.05OS + 6Ts + 12Tr
(14)

The search domains for [KP KD] are shown in Figure 4 for each operating point.
Table 3 demonstrates that the performance varies in terms of overshoot (OS), rise time (Tr),
settling time (Ts), peak time (TP), and steady-state error (SSE) for the five operating points.
In addition, the optimal values of the PD gain controller, as well as the maximum and
minimum gains for each of the five operating points, are shown in Table 3. Furthermore,
Figure 6 shows the step response of the optimal PD gains controllers obtained by employing
the BB-BC algorithm for each of the five operating points.
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Table 3. For the given system with alternative values of operating points, the performance varies in
terms of overshot, rising time, settling time, peak time, and steady-state error.

P(j)
Lower

Bounds
[KP KD]

Upper
Bounds
[KP KD]

Optimal
Values of
[KP KD]

Value of
the Cost
Function

Tr (sec) TP (sec) Ts (sec) OS SSE

P(1) [500 50] [2000 100] [568 50] 23.26 0.0018 0.0048 0.1512 58.7 0.1085

P(2) [500 50] [2000 100] [716 50] 26.56 0.0018 0.0048 0.0980 63.1 0.0805

P(3) [500 50] [2000 100] [867 50] 30.77 0.0019 0.0049 0.0717 56.0 0.0846

P(4) [4000 50] [8000 100] [6934 66] 23.22 0.0020 0.0048 0.4870 27.2 0.2142

P(5) [500 50] [4000 100] [1012 50] 47.46 0.0230 0.0053 0.1650 28.8 0.1455

START

Form an initial generation of
N candidates in a random manner.

Respect the limits of the search space:
[KP KD]

Calculate the fitness function
values of all candidate solutions

J =
100

0.05OS + 6Ts + 12Tr

Find the center of mass for maximization case:

−→
xc =

∑N
i=1

1
f i

−→
xi

∑N
i=1

1
f i

Calculate new candidates around
the center of mass

xnew = xc +
rα(xmax − xmin)

k

Stopping criteria? STOP
No yes

Figure 5. Flow chart of the Big Bang–Big Crunch optimization algorithm for the proposed method.
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4.2. The Proportional-Derivative Gain-Scheduling Controller (PD-GS-C)

According to [63], swapping from one PD control scheme to another is a sensible
way to guarantee improved performance, although process nonlinearities depend on the
operating point as well. This method is defined as the PD gain schedule. Figure 3 depicts
the gain-scheduling PD voltage controller used in magnetic levitation. It is mathematically
represented by Equation (15).

∆u1(t) = KPe(t) + KD
de(t)

dt
(15)

where the proportional gain (KP(t)) and the derivative gain (KD(t)) are functions of e(t)
such that e(t) = r(t)− y(t). The following mathematical formula can be used to define the
proportional gain (KP(t)) and the derivative gain (KD(t)) as a function of e(t) [46]:

KP(t) = KPmax − (KPmax − KPmin)exp(−(α(t)|e(t)|)),
KD(t) = KDmax − (KDmax − KDmin)exp(−(α(t)|e(t)|)). (16)

where 0 ≤ α(t) ≤ 1 and KPmax , KPmin , KDmax , and KDmin are the maximum and minimum
values of the proportional gain (KP) and the derivative gain (KD), respectively.

Equation (16) demonstrates that the exponential term approaches zero (exp(−(α(t)|e(t)|))
→ 0) when e(t) is large. Consequentially, KP(t) = KPmax . Similarly, when the error (e(t)) is
minimal, the exponential term approaches one (exp(−(α(t)|e(t)|))→ 1), and as a result,
KP(t) = KPmin .

In this modification, KP and KD are evaluated by the control scheme so that when
the error (e(t)) is large, we predict maximum proportional and derivative gains (KPmax

and KDmax ) to enhance the control signal’s voltage up to the dynamic response, and when
the error (e(t)) is small, we anticipate minimal proportional derivative gains (KPmin and
KDmin ) to overcome the unfavorable issue of overshoot. These fluctuation in the gains
are generated by the variable “α(t)” to determine how quickly KP(t) and KP(t) change
between the maximum and minimum values [63].

Figure 6. Step response of the ML2SEM system for optimal proportion-derivative (KP, KD) values
achieved by utilizing the Big Bang–Big Crunch algorithm for each of the five operating points.
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In order to transfer from one PD controller to another using a smooth and steady
method, the parameter 0 ≤ α(t) ≤ 1 is included. To determine this parameter’s value, the
following equation is applied:

α(t) = tanh (ηβ(t)) =
(exp(2ηβ(t))− 1)
(exp(2ηβ(t)) + 1)

(17)

where the factor η was selected to guarantee specific dynamics of the fluctuation of α(t)
and specifies the rate at which α(t) varies from 0 to 1. The variable β(t) is defined in terms
of |e(t)| and r(t) [46]:

β(t) =
{

1, for |e(t)| > ξ
0, for |e(t)| ≤ ξ

, ξ = 0.9.r(t) (18)

where the parameter ξ is set according to [46].

5. Simulation Results

Simulink in MATLAB(R2015a) was used to simulate the two control mechanisms:
the optimal PD-C and PD-GS-C. Figure 7 demonstrates the control mechanism of PD-GS-C
by Simulink(R2015a). The reference input in each scenario was a signal that was set to
0.008 m from the upper coil, and the responses of the controls were examined during a time
period of 5 s. Graphs of the top electromagnet’s responses to the ball location, ball velocity,
coil current, and control signal are presented.

Figure 7. Block diagram of the PD-GS-C by Simulink(R2015a).
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A PD controller with five operating points was simulated in MATLAB(R2015a). The
simulation results of the control system with a PD controller developed specifically for
the two o.p.s ((1) and (4)) are presented in Figure 8a, which shows the control signal over
time. The time-varying coil current through EM1 is displayed in Figure 8b, the ball velocity
is shown in Figure 8c, and Figure 8d demonstrates the controlled output position of ball
over time.

(a) (b)

(c) (d)

Figure 8. (a) The PD control signal over time; (b) PD controller’s current iEM1 versus time; (c) ball
velocity over time for the PD controller; (d) ball position over time for the PD controller.

The results show that the system’s nonlinear effects generate oscillations at the start of
transient responses.

The specifications of the PD-GS-C component in Figure 3 have the variables KPmax ,
KPmin , KDmax , and KDmin . By using the optimal values from Table 3, η =∈ [0.001, 0.1]. These
values were obtained using the big bang–big crunch optimization technique (BB-BC) in the
context of a tradeoff for overshoot for the five operating points.

The conditions listed below can be taken into consideration when designing the
PD-GS-C structure:

• KPmin and KDmin are enabled during the steady state to achieve a minimal value of
steady-state error (|e(t)|) to resolve the unacceptable challenge of overshoot as shown
in Figure 9.

• KPmax and KDmax are generated when the process steady-state error |e(t)| is large in
order to provide a significant control signal and to mitigate unfavorable fluctuation
and error, as illustrated in Figure 9.
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(a) (b)

Figure 9. (a) KP gain as a function of steady–state error (|e(t)|); (b) KD gain as a function of steady-
state error |e(t)|.

Figure 10 illustrates responses to various variables estimated in the proposed scheme.
The simulation results of the control system using the PD-GS controller are presented in
Figure 10a, which shows the control signal over time. The time-varying coil current through
EM1 is displayed in Figure 10b, and the ball velocity is shown in Figure 10c. Moreover,
Figure 10d shows the controlled output over time.

(a) (b)

(c) (d)

Figure 10. (a) Control signal (uEM1) over time for the PD–GS controller; (b) PD–GS controller’s
current iEM1 versus time; (c) ball velocity over time for the PD–GS controller; (d) ball position over
time for the PD–GS controller.
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Due to the PD-GS controller’s optimized dynamic response, which is characterized by
fewer oscillations and less settling time, its results are superior to those shown in Figure 8.
MATLAB simulation and nonlinear laboratory equipment were used to test and validate
the PD-C and PD-GS-C control structures in real-time experiments. Figure 11 shows the
MATLAB simulation results of a robust proportional-derivative gain-scheduling controller
(PD-GS -C).

Figure 11. MATLAB simulation results of a robust proportional-derivative gain-scheduling controller
(PD-GS-C).

Figure 12 displays the real-time experimental results of a robust Proportional-derivative
gain-scheduling controller (PD-GS-C). Significant agreement was observed between theo-
retical and practical observations.
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Figure 12. Real–time experimental results of a robust proportional-derivative gain-scheduling con-
troller (PD–GS–C); (a) ball position over time for the PD–GS controller; (b) ball velocity over time for
the PD–GS controller; (c) PD–GS controller’s current iEM1 versus time; (d) the pulses applied to coil2
as disturbance.

6. Conclusions

Two control schemes (PD-C and (PD-GS-C) were been designed to control the ori-
entation of a ball in an MLS2EM system. The PD-C (proportional-derivative controller)
is a straightforward control scheme that uses the proportional and derivative terms to
control the system’s orientation. The PD controller was designed based on a linearized
model of MLS2EM around five operating points, allowing for the application of conven-
tional control techniques. The PD-GS-C (proportional-derivative with gain scheduling
controller) was designed to switch between multiple PD controllers based on specific con-
ditions. To achieve this, a parameter-space approach was employed to design five robust
PD controllers with varying gains (KP and KD). The ranges of PD gains obtained using the
parameter-space approach were used in the PD-GS-C structure, allowing the controller to
adapt its gains according to different operating conditions. To find the optimal PD gains
for the PD-GS-C controller, we utilized the big bang–big crunch optimization technique
(BB-BC). This optimization method was applied to improve the system’s performance in
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terms of time-domain step response criteria, which include minimizing overshoot percent-
age, settling time, and rising time. The performance index function was defined to quantify
the desired performance criteria, and the optimization process aims to maximize this index
function, thereby optimizing the system’s performance. To evaluate the effectiveness of
the proposed control schemes, both PD-C and PD-GS-C configurations were tested using
Simulink/MATLAB simulations, as well as real-time experiments. By comparing the PD-
GS controller with the conventional PD controller, this research demonstrates the efficacy of
the PD-GS-C scheme in achieving optimal control performance for an MLS2EM magnetic
levitation system. As the gain-scheduling approach provided good results, we intend to
extend this idea to other controller configurations, such as PI and PID controls. There-
fore, in future research, a comparison of gain-scheduled PI/PD/PID controllers will be
conducted under the same scenario of operating points and controller scheduling. An inter-
esting approach to be considered in future research is that of finite-time control. Finite-time
control strategies aim to achieve desired control objectives within a specified time frame,
which can be particularly beneficial for systems wherein rapid and precise control is crucial.
Magnetic levitation systems often require precise control to maintain stable levitation and
positioning of objects, making them a suitable candidate for such research.
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