
This is the **accepted version** of the journal article:

De Jaime-Soguero, Chabier; Mujal, Eudald; Oms, Oriol; [et al.]. «Palaeoenvironmental reconstruction of a lower to middle Permian terrestrial composite succession from the Catalan Pyrenees : Implications for the evolution of tetrapod ecosystems in equatorial Pangaea». *Palaeogeography, Palaeoclimatology, Palaeoecology*, Vol. 632 (December 2023), art. 111837. DOI 10.1016/j.palaeo.2023.111837

This version is available at <https://ddd.uab.cat/record/284718>

under the terms of the license

1 **Palaeoenvironmental reconstruction of a lower to middle Permian terrestrial
2 composite succession from the Catalan Pyrenees: implications for the evolution of
3 tetrapod ecosystems in equatorial Pangaea**

4

5 De Jaime-Soguero, C.^{1,*}, Mujal, E.^{2,1}, Oms, O.³, Bolet, A.^{4,1,5}, Dinarès-Turell, J.⁶, Ibáñez-
6 Insa, J.⁷, Fortuny, J.^{1,*}

7 ¹*Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat
8 Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193
9 Cerdanyola del Vallès, Barcelona, Spain.*

10 ²*Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart,
11 Germany.*

12 ³*Departament de Geologia, Universitat Autònoma de Barcelona, E-08193 Bellaterra,
13 Catalonia, Spain.*

14 ⁴*Departamento de Estratigrafía y Paleontología, Universidad de Granada, Avda. Fuente
15 Nueva s/n, 18071 Granada, Spain*

16 ⁵*School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road,
17 Bristol BS8 1RJ, United Kingdom*

18 ⁶*Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, I-00143 Roma,
19 Italy*

20 ⁷*Geosciences Barcelona (GEO3BCN-CSIC), C/ Lluís Solé i Sabarís s/n, 08028
21 Barcelona, Spain*

22 *Corresponding authors: chabier.dejaime@icp.cat (C. De Jaime-Soguero) and
23 josep.fortuny@icp.cat (J. Fortuny)

24

25 Abstract

26 Tetrapod diversity in Permian terrestrial ecosystems of southwestern Europe is poorly
27 recorded by bone specimens, but it is better represented by an important tetrapod
28 ichnological record that is relevant to our understanding of vertebrate communities in the
29 equatorial Pangaea. Herein, two tetrapod ichnoassociations from three new ichnosites,

30 within Cisuralian and Guadalupian volcanosedimentary terrestrial successions (the
31 Lower Red Unit and the Upper Red Unit deposits) of the Castellar de n'Hug sub-basin
32 (Catalan Pyrenees, NE Iberian Peninsula) are presented. Tetrapod ichnology in
33 combination with stratigraphic and facies analyses permit a characterisation of these
34 ecosystems. The sedimentary deposits show an evolution from fluvial meandering
35 systems to playa-lake floodplains, denoting increased aridification and seasonality under
36 a monsoonal regime. The ichnofossil record shows how tetrapod assemblages shifted
37 from a prevalence of non-amniotes and eureptiles to a dominance of therapsids, eureptiles
38 and parareptiles. The reported ichnotaxa are distributed in two ichnoassociations. The
39 first preserves *Batrachichnus*, *Dromopus*, *Hyloidichnus*, *Characichnos* and an
40 indeterminate tetrapod morphotype, whereas the second is defined by the presence of
41 *Dromopus*, *Hyloidichnus*, *Brontopus antecursor* and *Pachypes*. The stratigraphically
42 older ichnoassociation, preserved in volcaniclastic and fluvial deposits, presents features
43 of the early *Erpetopus* biochron, whereas the stratigraphically younger one, preserved in
44 playa-lake deposits, is constrained to the *Brontopus* sub-biochron. Biostratigraphic and
45 magnetostratigraphic data suggest a late Cisuralian to middle Guadalupian age for the
46 whole succession. The ichnoassemblage highlights a palaeobiogeographical connection
47 between the Pyrenean Basin and other peri-Tethyan basins, which allows us to expand
48 our knowledge about the palaeoecology and palaeobiodiversity of the Cisuralian to
49 Guadalupian terrestrial ecosystems.

50 Keywords: Tetrapod ichnology; biostratigraphy; Cisuralian; Guadalupian; Western
51 Tethys.

52

53 1. Introduction

54 The Permian period was marked by profound ecological changes resulting from
55 variations of climatic and environmental conditions. The assembling of all the landmasses
56 in one single continent, Pangaea, together with the reorganisation of cold-water currents
57 (Winguth et al., 2002; LePage et al., 2003; Weldon and Shi, 2003) prompted climate
58 changes and an aridification process, evolving from the Carboniferous ice-house
59 (Saltzman, 2003; Montañez et al., 2007, 2016; Montañez and Poulsen, 2013; Richey et
60 al., 2020) to the Triassic hot-house (MacLeod et al., 2017). During the Cisuralian (early
61 Permian) a change from humid to dry conditions took place, and an intensified monsoonal

62 climate linked to the configuration of landmasses was established (Tabor and Montañez,
63 2002; Roscher and Schneider, 2006; Roscher et al., 2011; Tabor et al., 2018). This multi-
64 stage warming process was interrupted by different short and relatively humid periods
65 throughout the Permian in low latitudes (Schneider et al., 2006; De la Horra et al., 2012;
66 Michel et al., 2015). These changes were followed by an increase of drought tolerant biota
67 during the Cisuralian that became dominant during the Guadalupian and Lopingian
68 (Marchetti et al., 2022a). Regarding tetrapod faunas, amniotes became widespread
69 throughout Pangaea, diversifying and replacing early tetrapod groups (Sues and Reisz,
70 1998; Benton et al., 2013). During the early Permian, terrestrial faunas were still
71 dominated by non-amniotes such as temnospondyls and reptiliomorphs, but faunal
72 composition became richer with the diversification of basal amniotes, parareptiles, early
73 diapsids and synapsids (Dunne et al., 2018). The harsh climate-induced environmental
74 conditions caused several ecological crises, such as the end-Guadalupian mass extinction,
75 which profoundly affected terrestrial tetrapod ecosystems (Lucas, 2009a, 2017, 2018;
76 Day et al., 2015; Schneider et al., 2020; Day and Rubidge, 2021). This climate change
77 caused the global extinction of dinocephalian therapsids, while other therapsid families,
78 eureptiles and parareptiles that were better adapted to arid conditions became dominant
79 in terrestrial ecosystems until the end-Permian mass extinction (Lucas, 2009a, 2009b;
80 Hoffman, 2016; Schneider et al., 2020).

81 The mentioned changes in terrestrial tetrapod ecosystems have been identified in different
82 Permian successions of the western peri-Tethys domain, an equatorial region of Pangaea,
83 which includes present-day Europe and northern Africa (Gand and Durand, 2006;
84 Roscher et al., 2011; De la Horra et al., 2012; Michel et al., 2015; Lucas, 2017, 2018;
85 Mujal et al., 2017, 2018; Schneider et al., 2020; Marchetti et al., 2022a, 2022b; Rmich et
86 al., 2023). The scarce skeletal fossil record of this region restricts our view of how
87 tetrapod faunas were affected through the Permian. Conversely, the tetrapod footprint
88 record is much more diverse, providing a more complete picture of those ecosystems and
89 their evolution (Marchetti et al., 2022a). In this regard, the Cisuralian tetrapod
90 ichnofaunas from the Catalan Pyrenees (NE Iberian Peninsula; Voigt and Haubold, 2015;
91 Mujal et al., 2016a; Marchetti et al., 2021a, preserved in relatively long and continuous
92 stratigraphic successions, are important to understand the evolution of tetrapod
93 communities along with palaeoenvironmental changes (Mujal et al., 2016a, 2018).
94 Regarding post-Cisuralian terrestrial ecosystems in the Pyrenees, tetrapod remains in the

95 form of ichnites and sparse bones have only been described from three localities (Robles
96 and Llompart, 1987; Fortuny et al., 2011; Mujal et al., 2016b, 2017). Outside of the
97 Pyrenees, only a few tetrapod remains have been recovered from Permian successions in
98 the Iberian Peninsula and Balearic Islands to date: Peña Sagra in the Cantabrian
99 Mountains based on tetrapod ichnofauna (Gand et al., 1997; Demathieu et al., 2008;
100 López-Gómez et al., 2019) and tetrapod (both skeletal and ichnological) specimens in the
101 Balearic Islands (Pretus and Obrador, 1987; Liebrecht et al., 2017; Matamales-Andreu et
102 al., 2021a, 2021b, 2021c, 2022, 2023). All in all, Cisuralian–Guadalupian tetrapod
103 ichnofaunas from Iberia remain poorly understood. This is largely because of the lack of
104 a general correlation of stratigraphic successions at Iberian scale allowing identification
105 of changes in the tetrapod communities in conjunction with palaeoenvironmental shifts
106 that can be compared to the global record.

107 The main goal of this work is to provide a comprehensive study of a continuous Permian
108 terrestrial succession of the Catalan Pyrenees (NE Iberian Peninsula) including both
109 Cisuralian and Guadalupian deposits. Three newly reported tetrapod footprint localities
110 record faunal changes due to a transition from relatively wet to dry environments. Also,
111 they record the coexistence of tetrapod tracks in fluvial deposits interbedded with
112 volcanic pyroclastic intervals, as previously observed in other Cisuralian deposits of the
113 Pyrenean Basin (Mujal et al., 2016a) enlarging our understanding of these complex
114 environments. This multidisciplinary work integrates new lithostratigraphic,
115 sedimentological, magnetostratigraphic and biostratigraphic data, enhancing an accurate
116 geochronological, palaeoenvironmental and faunistic interpretation. The new Permian
117 ichnoassemblage of the Pyrenean Basin shares several ichnotaxa with nearby basins from
118 southwestern Europe and northern Africa, strengthening our view of faunistic changes,
119 environmental evolution, and palaeobiogeography of equatorial Pangaea during the
120 Cisuralian–Guadalupian.

121

122 2. Geological setting

123 The Pyrenees are a WNW-ESE oriented mountain range situated in the NE of the
124 Iberian Peninsula (Fig. 1A–B) that formed during the Alpine orogeny as a result of the
125 collision between the Iberian and European tectonic plates. Their core is composed of
126 igneous and metamorphic rocks related to the Variscan orogeny and includes Cambrian

127 to lower Carboniferous strata (Pereira et al., 2014). The southeastern margin of the
128 Pyrenees is composed of deposits from the late Carboniferous to Oligocene, representing
129 the sedimentary cover deposited between the end of the Variscan and the Alpine cycles
130 (Mey et al., 1968; Nagtegaal, 1969; Gisbert, 1981; Martí, 1996; Pereira et al., 2014;
131 Mujal, 2017).

132 During the late Palaeozoic, the Iberian area (including the Iberian Peninsula and
133 the Balearic Islands) was located in the western peri-Tethys region, at the eastern part of
134 equatorial Pangaea (Scotese, 2014). The palaeogeographic position of this area was at the
135 East of the inferred suture of the Rheic ocean, between the western end of the subduction
136 zone of the PalaeoTethys sea and the southern margin of the Variscan mountains
137 (Stampfli and Kozur, 2007; Sinisi et al., 2014; Pereira et al., 2014). The western peri-
138 Tethys basins were dominated by fluvial systems, produced by the dismantling of the
139 Variscan orogen (Roscher and Schneider, 2006; Schaltegger and Brack, 2007; Torsvik
140 and Cocks, 2013; Pereira et al., 2014; Michel et al., 2015; Gretter et al., 2015; Mujal et
141 al., 2018). In the Pyrenean region, large amounts of sediments were deposited in
142 intramountain basins limited by directional faults (Gisbert, 1981). In southwestern
143 Europe, including the Iberian area, France, the north of Italy, Sardinia and the Balkan
144 Peninsula, an upper Carboniferouslower Permian magmatism is recorded (Cortesogno et
145 al., 1998, 2004; Lago et al., 2004; Schneider et al., 2006; Gretter et al., 2015; Michel et
146 al., 2015; Pellenard et al., 2017; Majarena et al., 2023). In northeastern Iberia, episodic
147 syn-sedimentary volcanic activity produced calc-alkaline volcanic deposits in these
148 basins (Barrachina and Martí, 1986; Martí, 1996; Pereira et al., 2014). During the
149 Permian, an aridification process and global warming replace the late Carboniferous
150 conditions (Saltzman, 2003; Montañez et al., 2007; Montañez and Poulsen, 2013; Richey
151 et al., 2020). In the southern margin of the Variscan mountain range, where the
152 northeastern of the Iberian area where located, a climatic shift from humid to semi-arid
153 and arid conditions is recorded in rocks of the Permian succession (Gascón and Gisbert,
154 1987; Gretter et al., 2015; Mujal et al., 2018), which makes this a region of great
155 importance for understanding the environmental evolution of equatorial Pangaea. During
156 the late Palaeozoic, the area corresponding to the present-day Catalan Pyrenees was a rift
157 system developed in the latest phases of the Variscan orogeny. The so-called Pyrenean
158 Basin is a rift system divided into four depocentres or sub-basins: Erillcastell-Estac, Cadí,
159 Castellar de n'Hug, and Campelles-Camprodón (Gisbert 1981, 1986; Speksnijder, 1985;

160 Saura and Teixell, 2006; Izquierdo-Llavall et al., 2014; Gretter et al., 2015; Mujal, 2017;
161 Fig. 1A). These depocentres have been identified as isolated terrestrial basins limited by
162 strike-slip faults (Gisbert, 1981; Speksnijder, 1985; Saura and Teixell, 2006). Their
163 infilling consists of upper Carboniferous–Middle Triassic volcanic, volcanosedimentary
164 and sedimentary deposits composed of andesitic, dacitic and rhyolitic rocks, pyroclastic
165 successions and rhyodacitic ignimbrites along with sedimentary rocks, dominated by
166 mudstones, sandstones, conglomerates and breccias in alluvial settings and, to a lesser
167 degree, with limestones in palustrine to lacustrine settings (Barrachina and Martí, 1986;
168 Gisbert, 1981; Martí, 1996; Gretter et al., 2015; Lloret et al., 2018; Mujal et al., 2018).
169 The upper Carboniferous–Middle Triassic succession of the Catalan Pyrenees was
170 divided by Gisbert (1981) into five depositional units: Grey Unit (upper Carboniferous),
171 Transition Unit (upper Carboniferous–early Permian), Lower Red Unit (Cisuralian;
172 equivalent to the Peranera Formation in the western Catalan Pyrenees, see Nagtegaal,
173 1969; Gisbert, 1981; Mujal et al., 2016a, 2016b, 2018), Upper Red Unit (Guadalupian–
174 Lopingian) and Buntsandstein facies unit (Lower–Middle Triassic). These Permian units
175 record highly explosive volcanism that produced great amounts of pyroclastic material,
176 mainly deposited as ignimbrites and cinerites (Barrachina and Martí, 1986; Martí, 1996;
177 Pereira et al., 2014).

178 The Castellar de n’Hug sub-basin, the focus of this study, is in the eastern part of
179 the Pyrenean rift system (Fig. 1A–B). The stratigraphic sequence encompasses materials
180 from the Carboniferous (Culm facies) to the Triassic, recording four of the five
181 depositional units of Gisbert (1981): the Transition Unit (TU), Lower Red Unit (LRU),
182 the Upper Red Unit (URU) and the Buntsandstein facies units (see also Gisbert et al.,
183 1985; Gretter et al., 2015). Contrary to other upper Palaeozoic sequences of the Pyrenean
184 Basin, the Grey Unit is not recorded in the Castellar de n’Hug sub-basin (Broutin and
185 Gisbert, 1985; Gisbert et al., 1985). The Permian volcanic deposits of this sub-basin have
186 a calc-alkaline composition and appear from the base of the Lower Red Unit to the base
187 of the Upper Red Unit (Pereira et al., 2014). The present study focuses on the Permian
188 red-bed depositional units (LRU, URU).

189

190 3. Material and methods

191 3.1. *Stratigraphy and sedimentology*

192 Geological and palaeontological analyses were conducted in three closely located
193 outcrops of the Castellar de n'Hug sub-basin that excellently expose the Permian
194 volcanosedimentary successions: Castellar de n'Hug (CnH, 699.1 m thick), Riera de
195 Monell (RM, 353.0 m thick) and Coll Roig (CR, 268.2 m thick) (Fig. 2). For this study,
196 three stratigraphic sections have been logged, one at each outcrop, by means of a Jacobs
197 staff and a measuring tape with a minimum resolution of 1 cm of bed thickness (see
198 Supplementary Logs). Coordinates are provided in ETRS89 UTM 31T: the
199 stratigraphically lower section of Castellar de n'Hug (699.1 m; base, 419966 E, 4681751
200 N; top, 419762 E, 4680959 N) and the stratigraphically upper sections of Riera de Monell
201 (353.0 m; base, 416396 E, 4680888 N; top, 416422 E, 4680437 N) and Coll Roig (268.2
202 m; base, 413306 E, 4681286 N; top, 413133 E, 4680848 N). A correlation of the three
203 sections was also conducted by using synthetic logs of each section (Fig. 2). The lower
204 part of the succession has been studied in the Castellar de n'Hug (CnH) section, the
205 middle part in the three sections and the upper part in the Riera de Monell (RM) and Coll
206 Roig (CR) sections. In the CnH section the upper part is highly tectonised, precluding an
207 appropriate stratigraphic analysis. As will be discussed below, the selected *datum* to
208 correlate the three sections is the change from volcaniclastic deposits to the mudstones
209 with conspicuous mud-cracked surfaces.

210 A lithofacies analysis was performed through the observation and measurement of the
211 thickness of each stratum, its composition, geometry, sedimentological structures, and
212 fossil content, and follows the nomenclature of Miall (2006) and Gretter et al. (2015).
213 The volcaniclastic materials present in the succession were classified following Martí
214 (1996), Branney and Kokelaar (2002), and Gretter et al. (2015). The architectural
215 interpretation and the facies associations were performed according to the procedures of
216 Miall (2006), Branney and Kokelaar (2002), Gretter et al. (2015) and Matamales-Andreu
217 et al. (2021a). The GPS data of the stratigraphic logs is provided in KMZ format.
218 Additionally, an unnamed aerial vehicle (UAV) was used to create a 3D photogrammetric
219 model of RM and CR sections in high resolution. The great thickness of CnH section
220 precluded obtaining a similar resolution level as in the other two sections and, therefore,

221 it was discarded. 3D models of the sections are freely available in PLY format in
222 Morphosource repository (see Data Availability section below).

223 *3.2. Magnetostратigraphy*

224 For the purpose of retrieving the geomagnetic polarity of the studied Permian succession,
225 26 samples were taken along the three reported stratigraphic logs (see Fig. 2,
226 Supplementary Logs, Fig. S1, Table S1). The collected samples were named referring to
227 the stratigraphic section from which they were recovered: Castellar de n'Hug (CH1 to
228 CH8 sites), Riera de Monell (RM1 and RM2 sites) and Coll Roig (CR1 to CR16 sites).
229 These were supplemented with an additional 23 samples taken from equivalent outcrops
230 located less than 1 km from the Coll Roig section (sites SG1 and SG2, Solell de la
231 Gallarda from the LRU unit, and CP1 to CP21, la Pardinella de Gavarrós, from the URU
232 unit, respectively, see Supplementary GPS data). As such, the magnetostratigraphic data
233 includes 49 sites spanning most of the studied stratigraphic units. Dip of strata is similar
234 in all the sections, which prevents performing a proper and meaningful fold test. One to
235 three oriented hand-samples were taken from each site and were subsequently cut in
236 standard regular samples ($\sim 10 \text{ cm}^3$) for palaeomagnetic measurements. Additionally,
237 powder from representative lithologies were obtained by crushing and pestling samples
238 in an agate mortar for rock-magnetic experiments. Initial natural remanent magnetization
239 (NRM) and remanence during stepwise demagnetization were measured in a 2G
240 Enterprises DC SQUID high-resolution pass-through cryogenic magnetometer
241 (manufacturer noise level of 10^{-12} Am^2) operated in a shielded room at the Istituto
242 Nazionale di Geofisica e Vulcanologia in Rome, Italy. A Pyrox oven in the shielded room
243 was used for thermal demagnetisations and alternating field (AF) demagnetisation was
244 performed with three orthogonal coils installed in line with the cryogenic magnetometer.
245 Progressive stepwise AF demagnetisation was routinely used and applied after a single
246 heating step to 150 °C. AF demagnetisation usually included 14 steps (4, 8, 13, 17, 21,
247 25, 30, 35, 40, 45, 50, 60, 80, 100 mT). Subsequently, thermal demagnetisation resumed
248 through variable temperature increments (20–100 °C) up to 690 °C. In the context of the
249 studied red-beds, applying a first heating step followed by AF demagnetisation prior to
250 full thermal demagnetisation, makes it possible to both unblock eventual magnetisation
251 carried by goethite (usually unblocking occurs below 120 °C) and also magnetite-like low
252 coercivity ferromagnetic phases. Consequently, magnetic phases even unblocking at
253 relatively low temperatures during the final thermal protocol must be assigned to high

254 coercivity phases (i.e., hematite). Characteristic remanent magnetisations (ChRM) were
255 calculated by Principal Component Analysis (Kirschvink, 1980) from orthogonal vector
256 endpoint demagnetisation diagrams (Zijderveld, 1967) using the online open-source
257 software Paleomagnetism.org (Koymans et al., 2016, 2020). The magnetic stratigraphy is
258 based on virtual geomagnetic pole (VGP) latitudes.

259 In order to characterise ferromagnetic mineralogy, some rock magnetic experiments were
260 performed in representative samples. Thermomagnetic heating and cooling cycles were
261 measured with an AGICO KLY5 susceptibility bridge with a CS4 furnace attachment
262 with nominal sensitivity (5×10^{-7} SI) and open air into the tube. Hysteresis measurement
263 loops, isothermal remanent magnetization (IRM) acquisition and back-field IRM were
264 measured at room temperature with a Princeton Measurements Corp. Model 3900
265 MicroMagTM Vibrating Sample Magnetometer (VSM) (noise level 5×10^{-9} Am²). IRM
266 curve unmixing to identify separated magnetic components was performed with IRM
267 MaxUnmix package (Maxbauer et al., 2016).

268 3.3. *Tetrapod trace fossils*

269 Tetrapod ichnites were analysed following Haubold (1971) and Leonardi (1987) (see
270 Tables S2, S3). Parameters have mainly been measured on footprints with a medium to
271 high degree (2 to 3) of morphological preservation (*sensu* Marchetti et al., 2019a). Three-
272 dimensional (3D) models of selected ichnites were obtained with the photogrammetry
273 technique. Photographs were taken with a digital reflex camera Nikon D3200 with a lens
274 AF-S Nikkor 15-55 mm 1:3.5-5.6 GII Nikon following the procedures of Falkingham
275 (2012), Mallison and Wings (2014) and Mujal et al. (2020). 3D models were processed
276 with three different software: Agisoft Metashape (Professional edition, educational
277 version, v.1.8.3) to generate the mesh and the texture, MeshLab (v.2020.07) to edit the
278 mesh, and ParaView (v.5.5.0) to generate false colour depth maps and contours.

279 Tetrapod ichnites have been found on the three outcrops, CnH, RM and CR. The material
280 consists of footprints preserved on 19 recovered slabs and 12 unrecovered surfaces that
281 also include trackways. All recovered specimens are stored at the Institut Català de
282 Paleontologia Miquel Crusafont (ICP) and were prepared, when necessary, in its lab. The
283 material was collected during the palaeontological surveillances of 2015, 2019 and 2021,
284 all undertaken with the corresponding legal permits issued by the Servei de Patrimoni
285 Arqueològic i Paleontològic (Departament de Cultura of the Generalitat de Catalunya,

286 Catalan Government). Specimens left in the field have been referenced using the
287 acronyms identifying the locality (CnH, RM or CR), the corresponding position in metres
288 from the base of the stratigraphic section, and an Arabic number to refer to each ichnite
289 in the given surface (as for example RM-176-1).

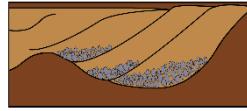
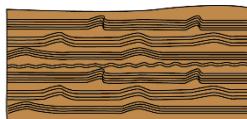
290 *3.4. Mineralogy*

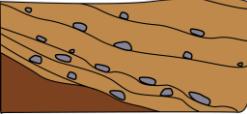
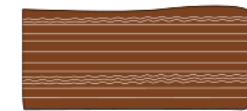
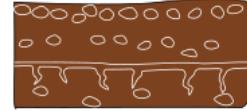
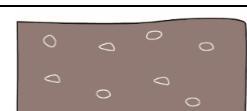
291 Powder x-ray diffraction (XRD) measurements were performed in order to characterise
292 the mineralogy of the investigated succession (see Text S2 and Table S4). The XRD
293 results were also employed to provide information on the possible origin of samples that
294 were not identified unambiguously in the field or in thin section. Three samples of the
295 LRU were analysed (CH-6, CH-8, CH-9), nine from the lower URU (CH-13, CH-14,
296 RUS-1 to RUS-7) and three of the upper URU (RM-223, RM-254 and CR-246). XRD
297 measurements were acquired at Geosciences Barcelona (GEO3BCN-CSIC) using a
298 Bruker D8-A25 diffractometer (Cu K α radiation), equipped with a LynxEye position
299 sensitive detector (PSD). The XRD scans were performed between 4° and 60° in 2 θ with
300 a 0.035° step size and equivalent counting times of 192 s. Phase identification was carried
301 out by using Bruker's DIFFRAC.EVA software in combination with the Powder
302 Diffraction File (PDF-2) database from the International Center for Diffraction Data
303 (ICDD).

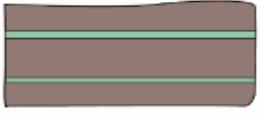
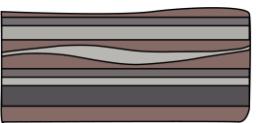
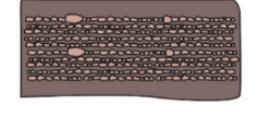
304 *3.5. Institutional abbreviation*

305 **IPS**, Institut Català de Paleontologia Miquel Crusafont (formerly Institut de
306 Paleontologia de Sabadell), Sabadell, Catalonia, Spain.

307 **4. Results and interpretation**



308 *4.1. Stratigraphy and sedimentology*





309 The stratigraphy of the Permian succession in the Catalan Pyrenees has been previously
310 studied by Mey et al. (1968), Nagtegaal (1969), Gisbert (1981), Gisbert et al. (1985),
311 Speksnijder (1985), Martí (1996), Gretter et al. (2015), Mujal et al. (2016a, 2016b, 2017,
312 2018) and Lloret et al. (2018, 2021a, 2021b). Particularly, Gisbert et al. (1985), Martí
313 (1996), Barrachina and Martí (1986), and Gretter et al. (2015) focused on the origin,
314 composition, and evolution of the Permian red-beds and volcaniclastic deposits of the
315 analysed area of this work. Considering these previous studies, new stratigraphical and

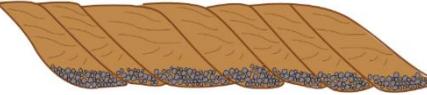
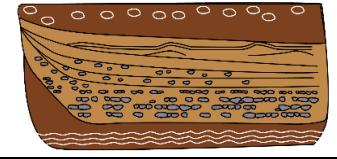
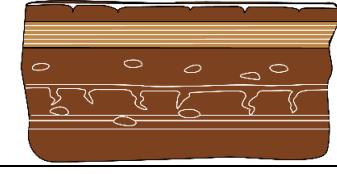
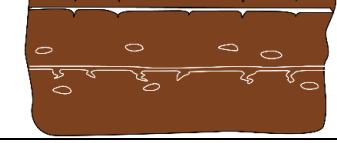
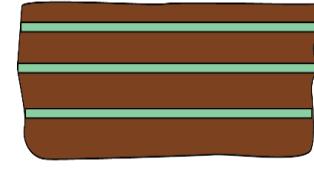



316 sedimentological analyses have been carried out in the outcrops of Castellar de n'Hug
317 (CnH) and, for the first time, also in Riera de Monell (RM) and Coll Roig (CR) (see
318 Supplementary Logs). Also, the palaeontological content of the Permian deposits is
319 analysed in detail for the first time. In this way, a renewed stratigraphic framework is
320 provided, including new data for the Lower Red Unit (LRU) and Upper Red Unit (URU).
321 Based on this, a robust palaeoenvironmental setting and its evolution is provided,
322 allowing for a detailed contextualisation of the palaeontological record. As a whole, a
323 composite section >900 m thick has been obtained (Fig. 2), including volcaniclastic
324 successions interbedded with mudstone, sandstone and conglomerate deposits in the
325 lower portion and mudstone-sandstone deposits in the middle and upper portions.

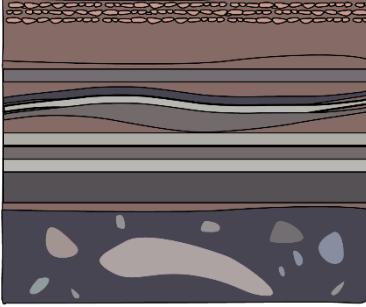
326 4.1.1. *Facies description and interpretation*327 This section includes a formal description of the facies observed in the Permian continental deposits of the present study. Eighteen different facies
328 have been identified and classified in two groups: ten sedimentary facies and six volcanic facies (Table 1).

329 Table 1. Sedimentary lithofacies identified in the study area.

Code (Depositional unit)	Description	Formation process	Scheme
Sedimentary facies			
<i>Gt</i> (LRU)	Clast-supported breccias with normal grading and trough cross-bedding. Their composition is polymictic, with clasts of lithic fragments. Strata show sigmoidal shape. Between 20 cm to almost 3 m thick.	Stream flow	
<i>Sr</i> (LRU, URU)	Fine-grained sandstones to mudstones with climbing, unidirectional or wave ripples. Between 10 to 80 cm thick.	Traction plus fallout flows	
<i>Sh</i> (LRU, URU)	Very fine- to coarse fine-grained sandstones with horizontal parallel lamination. Clasts or pebbles are not common in these facies and may show tabular geometry. Between 10 cm to 1 m thick.	High flow regime	
<i>Sl</i> (LRU, URU)	Fine-grained to very fine sandstones with low angle cross-stratification. They may erode the previous layer and may contain unidirectional ripples. Between 6 cm to 1.4 m thick.	Traction plus fallout flows	

<i>Ss</i> (LRU, URU)	Very fine- to medium-grained sandstones with crude crossbedding (occasionally with presence of pebbles or clasts of quartz, feldspar, andesite, and lithic fragments). Between 20 cm and 1.5 m thick. Lower contact is sometimes erosive into deposits of facies <i>Fm</i> or <i>Fl</i> .	Scour fills	
<i>Sm</i> (LRU, URU)	Massive beds composed of very fine- to medium-grained sandstones. They show neither lamination nor arrangement in the grains. Tabular geometry. Most are relatively thin (the average maximum thickness is 20 cm) deposits.	Massive fallout	
<i>Fl</i> (LRU, URU)	Mudstones and very fine-grained (occasionally fine-grained) sandstones with fine lamination, mostly parallel, and occasionally cross lamination (current and wave ripples). Root and vertebrate bioturbation, small edaphic nodules, and plant remains can be present. Tabular geometry. Between 15 cm and 4 m thick.	Fallout and occasionally traction flows	
<i>Fm</i> (LRU, URU)	Massive mudstones with mud-cracked surfaces on top. Some mud-cracked surfaces present a decoloured (greyish-greenish colouration) calcareous level on the top of the layer. Vertebrate and invertebrate ichnites, and plant impressions may be present, with raindrop impressions, carbonate and reduction (green) mottles. Centimetric to several metres thick.	Fallout and subaerial exposition	
<i>P</i> (LRU, URU)	Massive deposits. They are tabular layers of mudstones and very fine- to fine-grained sandstones with carbonate nodules and root traces that produce a calcareous layer over them. Centimetric to several metres thick.	Pedogenesis	
<i>Ps</i> (URU)	Massive mudstones with tabular geometry and with intervals including abundant septariform nodules, floating on the matrix. Up to 15 m thick. The nodules measure between 12 and 45 cm of diameter. Their surface is ornamented with fractures filled with calcite crystal, which are radial or concentric.	Pedogenesis and diagenesis	
Volcaniclastic facies			
<i>mT</i> (LRU)	Crystal-rich massive tuffs. They are the most common facies. Weathering makes them resemble mudstones. Centimetric to metric layers in thickness. Deposits homogeneous and very well sorted with a vitric matrix composition. Brownish-purple dark colours. Equivalent to facies <i>MF</i> of Martí (1996).	Massive fallout	






<i>bT</i> (LRU, URU)	Fine-grained deposits that can appear as greenish tabular and solated thin layers (between 2 to 10 cm thick). Thicker deposits can be found at the top of ignimbrites.	Ashfall (cinerites)	
<i>sT</i> (LRU)	Subparallel finely laminated to low-angle bedforms facies that could show antidune structures. Centimetric to subcentimetric laminated deposits containing crystals of quartz and feldspar, and fragments of rhyolite and andesite. They show a tabular shape and display greenish and purples deposits. Equivalent to facies <i>PLF</i> of Martí (1996).	Pyroclastic flow	
<i>MLT</i> (LRU)	Massive, poorly sorted deposits, usually matrix supported, composed of a chaotic, non-stratified vitric ash matrix deposits, which may contain fragments of pumice and lithic lapilli. The matrix presents purple-dark colour, and the original components have been altered during the diagenesis, as discussed by Martí (1996). Equivalent to facies <i>PF</i> of Martí (1996).	Pyroclastic flow	
<i>bL</i> (LRU)	Thin-bedded lapilli moderately sorted, with lithic and pumice clasts 1-6 cm wide. The organisation of the clasts may be chaotic, poorly graded.	Rapidly stacked fallout flows	
<i>mlBr</i> (LRU)	Massive lithic breccias located at the base of ignimbrites or appearing isolated.. They are chaotically distributed, display angular clasts without lateral accretion composed of angulous fragments and pebbles, included in a matrix of facies <i>mT</i> or <i>MLT</i> . They are tabular, 2-3 m thick, highly erosive, and very similar to sedimentary breccias.	Dense pyroclastic flow	


330

331 4.1.2. *Facies associations and architectural elements*

332 Based on the arrangement of the previously described facies, five architectural elements have been recognised (Table 2).

333 Table 2. Architectural elements recognised in the study area. In brackets, facies that appear only occasionally in the association. The arrows show
 334 the vertical succession.

Architectural element	Facies associations	Description and interpretation	Unit	Scheme
Lateral accretion (LA)	$Gt \rightarrow Ss \rightarrow Sr/Sm \rightarrow Fl$	Point bars (sigmoidal shape) of meandering channel deposits. Composed of conglomerates at the base and coarse-grained sandstones, grading to medium-/fine-grained sandstone (normal grading).	LRU	
Crevasse splays (CS)	$Fl \rightarrow Ss \rightarrow Fm \rightarrow P$	Composed of sandstones (sometimes with intraclasts) with crossbedding and interbedded laminated mudstone, showing a grain-size reduction, with biotic activity recorded in the upper part. They are originating from floodplain systems and are arranged in cyclic events with palaeosols (facies P) developed in them.	LRU	
Floodplain fines (FF)	$Fl \rightarrow Fm \rightarrow (P) \rightarrow (Sh/Sm) \rightarrow Fm$	Massive deposits of mudstone produced by slow sedimentation, interrupted by sporadic flooding events. Long-term evaporation and desiccation resulted in localised mud-cracked surfaces and palaeosols.	LRU	
Ephemeral lacustrines (L)	$(Fl)Fm \rightarrow (P) \rightarrow Sh/Sm \rightarrow Fm$	Massive deposits of mudstone produced by seasonal sedimentation, followed by long-time desiccation, producing isolated ponds, massive mud-cracked surfaces and palaeosols. They are interpreted as ephemeral lacustrine facies.	URU	
Cinerite (C)	bT	Centimetric and isolated layers could eventually be associated to non-observed facies located in distant and different volcanic areas.	LRU	

Ignimbrite (IG)	$mLA \rightarrow sT \rightarrow mL$ $mT \rightarrow P$ $(mL) \rightarrow mlBr$	<p>Volcanic massive materials produced by different pyroclastic flows of thin bedded tuff deposits, massive lapilli-tuf beccias, cinerites and pedogenetic activity.</p>	LRU	
--------------------	--	--	-----	---

335

336 4.1.3. Lower Red Unit (LRU)

337 The Lower Red Unit (LRU) represents an alternation of different sets of fluvial and
338 volcanic deposits (Fig. 3A–J). The base and the top of this unit contact with the Transition
339 Unit (TU) and Upper Red Unit (URU), respectively. Sedimentary facies include reddish-
340 maroon mudstones (facies *Fl* and *Fm*), sandstones (facies *Sh*, *Sl*, *Sm* and *Ss*) and gravels
341 (facies *Gt*), corresponding to floodplain deposits, meandering fluvial channels and related
342 crevasse splays (architectural elements *LA*, *FF* and *CS*). These fluvial sequences are
343 usually between 10 and 20 m thick, but some are up to 49 m thick (Fig. 2, Supplementary
344 logs). The fluvial sequences are interbedded with red-bed volcanoclastic deposits,
345 occasionally reworked, composed of massive ash-flow deposits (facies *mT*, *bT*, *sT*,
346 architectural element *IG*) and sporadic pyroclastic and lithic breccias (facies *mLT*, *BL*,
347 *mlBT*, architectural element *IG*) produced by calc-alkaline volcanism (Martí, 1996). The
348 thickness of these volcanic sequences is very variable, from deposits a few centimetres
349 thick, such as cinerites (facies *bT*), to long sequences of massive pyroclastic deposits that
350 underwent pedogenesis (12 m thick) and ignimbrite deposits (14 m thick). Calcareous
351 palaeosols (facies *P*) are observed in both fluvial and volcanic deposits, denoting long-
352 time exposure of the sediments. The complete succession of the LRU is only visible at
353 the CnH section, whereas RM and CR sections only include the uppermost volcanoclastic
354 levels (Fig. 2).

355 At the base of the CnH section, the LRU is dominated by massive ash-flow deposits
356 (facies *mT*, *bT*, *sT*) highly affected by pedogenesis, represented by calcareous nodules
357 and rizoliths (facies *P*), abundant greenish cinerites (facies *bT*), and sporadic deposits of
358 interbedded mudstones (facies *Fm*), sandstones (facies *Ss*) and breccias (facies *Gt*). All
359 these detritic deposits are interpreted as floodplains deposits and isolated channels with
360 lateral accretions (architectural elements *FF* and *LA*). Even though the Transition Unit
361 has been recognised in the studied area (Gisbert et al., 1985; Gretter et al., 2015), the base
362 of the LRU in the CnH section directly but unconformably overlie the marine
363 Carboniferous Culm facies and Devonian carbonates by means of a tectonized
364 unconformity. Some deposits of grey-yellowish sandstones with plant remains (see Text
365 S1) record the presence of the Transition Unit (UT) in the area (Broutin and Gisbert,
366 1985; Gisbert et al., 1985). However, these levels are not clearly connected to the LRU
367 in the studied succession. Therefore, the Lower Red Unit at CnH starts at 23.5 m of the
368 CnH section and ends at 609 m, coinciding with the disappearance of the volcanic record.

369 The first part of the CnH section is dominated by volcanic layers, such as massive
370 ignimbrites (facies *bL* and *mlBT*) and ashfall deposits (facies *mT* and *bT*). These deposits
371 are sporadically cut by fluvial deposits, composed of sandstones (facies *Sp*, *Sh*, *Sl*, *Sm*
372 and *Ss*) and gravels (facies *Gt*), as well as reddish-maroon mudstones (facies *Fl* and *Fm*).
373 The detritic deposits appear as massive mudstone layers (architectural element *FF*) and
374 small-sized (sometimes <10 m wide) lateral accretion bars of meandering channels
375 (architectural element *LA*). As a whole, all these deposits correspond to floodplain
376 systems with meandering rivers, represented as small stream channels with low lateral
377 continuity.

378 At the top of these mainly volcanic stages of the CnH section, other volcanic sequence
379 accounting for 54 m of pyroclastic deposits is found (from 124.6 to 178.8 m in CnH
380 section). This sequence is composed of massive mudstones to fine-grained size ash
381 deposits with microcrystals. They are organised in layers of 2–3 metres, separated by
382 slightly coarser deposits, centimetric ash-beds (facies *bT*) of very fine- to coarse-grain
383 size, or volcanic breccia deposits (facies *mlBr*) containing polymictic clasts of quartz,
384 feldspar, rhyolite, andesite and, occasionally, lithic fragments (Martí, 1996). Calcareous
385 nodules and root traces (facies *P*) are abundant in these ash-flow deposits. Most of the
386 identified ignimbrites show a thickness from 0.5 to 2 m (facies *mT*). However, at 165 m
387 in CnH section, a 13.4 m thick ignimbrite (architectural element *IG*) is present, showing
388 different depositional stages. The base of these deposits comprises a massive purple layer
389 (facies *mLT*) with intraclasts of unvitrified and silicified pumice fall deposits (Martí,
390 1996; Pereira et al., 2014). The overlying strata show successive levels of subparallel
391 laminated deposits (facies *sT*) with antidune structures (Fig. 3F), representing different
392 volcanic episodes. The thickness of these layers ranges from a subcentimetric level to 60
393 cm. The complete ignimbritic body is composed of green/white vitreous matrix with
394 small and isolated crystals, including malachite.

395 Overlying this ignimbrite, at 178.8 m of CnH section, a fluvial-dominated succession is
396 found. These fluvial deposits are mainly composed of finely laminated and massive
397 mudstones (facies *Fl* and *Fm*; Fig. 3H) sometimes altered to carbonate palaeosols (facies
398 *P*; Fig. 3G), and alternated with sandstone beds (facies *Sh*, *Sl* and *Sm*; Fig. 3I, J). They
399 correspond to overbank and floodplain successions. Despite the presence of massive
400 mudstones (facies *Fm*) in this section, the common mud-cracked surfaces that dominate
401 in the Upper Red Unit (see below) are scarcely represented in the LRU. All these

402 materials are floodplain deposits (architectural element *FF*) with long term exposure, as
403 denoted by the pedogenetic activity and the scarcity of mud-cracks. Occasionally, these
404 deposits exhibit greyish and brownish ignimbrite layers (facies *mT* and *mL*) with long
405 lateral extensions. The thickness of these deposits is very variable, ranging from 0.4 to 3
406 m, and they also show well-developed palaeosols (facies *P*). At 232.5 m of section CnH,
407 some crevasse splay deposits (architectural element *CS*) appear. They are composed of
408 mudstones and sandstones deposited episodically in a floodplain, arranged in three events
409 with pedogenesis (facies *P*). The whole crevasse splay sequence is 20.2 m thick and
410 integrates three depositional stages of 9.5, 5.2 and 5.4 m. Each event starts with cross-
411 laminated mudstones (facies *Fl*), with wave ripples and bioturbated surfaces: invertebrate
412 traces (especially *Rusophycus*), triopsid and clam shrimp body fossils and plant remains
413 are present (see Text S1). This first interval within each event is the thinner and is
414 interpreted as fluvial deposits. The top of this interval is partially eroded by greyish
415 medium-grained cross-stratified sandstones (facies *Ss*), with greyish mudstones
416 intercalated. Sometimes, these cross-stratified levels contain pebbles, producing local
417 microbreccias (facies *Gt*) without lateral extension. Other sedimentological structures
418 observed in these levels are rip-up clasts and clastic dikes. Finally, the sandstones levels
419 show a decrease of grain size, appearing massive mudstone deposits (facies *Fm* and *Fl*)
420 (Fig. 3H). The uppermost mudstones of each event show pedogenic features, such as
421 calcareous nodules (facies *P*). This part tends to be the thickest within each event,
422 representing sporadic flooding periods where soils developed in nearby areas of a fluvial
423 channel. All these deposits are interpreted as crevasse splay deposits.

424 These deposits grade vertically into mudstone and sandstone layers, with a progressive
425 increase in grain-size, denoting a higher energy environment. Some metres above (267.5
426 m of section CnH), we observe a channel composed of cross bedded clast-supported
427 breccias with small (2–3 cm) rounded polymictic pebbles and displaying lateral accretion.
428 The base of these deposits erodes the previous material, and some clastic dikes are
429 preserved. Rip-up clasts show gradation, decreasing in size from the base to the top of the
430 breccias. These structures are interpreted as ribbon point bars of meandering channel
431 deposits (architectural element *LA*).

432 The meandriform structures are overlaid by polymictic non-graded matrix supported
433 ignimbrite deposits composed of large clasts (up to 10 cm) and without lateral accretion
434 (facies *mlBr*; 287.2 m of section CnH). These ignimbritic breccias give way to a large

435 volcanic sequence dominated by ash fall deposits (facies *mT*) with development of
436 palaeosols (facies *P*). On the top of this volcanic stage (331 m in CnH section) another
437 volcanic event is recorded. Ignimbrites (facies *bT*, *mLT* and *bL*, architectural element *IG*)
438 up to 14.9 m thick and composed of crystal rich layers are recorded. At the base, the
439 ignimbrite shows a massive deposit of purple lapilli-pumice with a chaotic organisation
440 that is progressively cut by successive levels of parallel laminated deposits (facies *sT*),
441 representing different volcanic episodes (Fig. 3C). The thickness of these layers ranges
442 from a subcentimetric level to 80 cm. They show a vitrified matrix and greenish to pinkish
443 colours. In the upper part of the ignimbrite, the vitreous matrix parallel bedded levels
444 change into lapillistone deposits (facies *bL*) with a similar vitreous matrix, showing the
445 last stages of the volcanic event. The following deposits change again to fluvial settings,
446 consisting of crevasse splay deposits (architectural element *CS*) composed of successions
447 of fine-grained sandstones (facies *Ss*, *Sr*, *Sl* and *Sm*), fine laminated and massive
448 mudstones (facies *Fm* and *Fl*), and well developed palaeosols (facies *P*) with presence of
449 reworked fragments of ignimbrites. Some tetrapod ichnites appear in these mudstone
450 deposits (facies *Fm*) at 420 m of the CnH section.

451 Between 440 and 609 m of the CnH section, deposits comprise ignimbrite breccias (facies
452 *mlBr*) and lapillistones (facies *bL*) (Fig. 3D–E) composed of a vitreous matrix and
453 magmatic crystals. The breccia deposits are clast-supported but matrix-supported breccias
454 containing large-sized angular-shaped clasts (up to 14 cm wide) and without any
455 organisation of grain nor clast size are also present. These layers also do not display any
456 lateral structure, in opposition to point bar deposits, which display a clear lateral
457 accretion. They are interpreted as magmatic material deposited after explosive volcanic
458 activity (Gisbert, 1981; Martí, 1996; Gretter et al., 2015). These volcaniclastic levels tend
459 to become thinner towards the top of the LRU, with a reduction of the clast size between
460 metres 605–627 of the section CnH. These deposits are the uppermost layers of the LRU.

461 4.1.4. *Upper Red Unit (URU)*

462 This unit (Fig. 4A–H) is recorded in the three studied sections (CnH, RM and CR). The
463 entire unit (Fig. 4) is present and has been measured in the sections RM and CR, whereas
464 in the section CnH, the URU is recorded in the upper 73 m of the logged succession. The
465 URU can be divided in two subunits: (1) the lower URU, with its uppermost part
466 characterised by a very fine to medium grain-sized sandstone deposits interlayered with

467 massive or laminated mudstones, and the presence of an interval of septariform nodules
468 at the top, often found in multiple levels; and (2) the upper URU, which consist of a
469 predominantly alternating and cyclic sequence of very fine-grained deposits that
470 continues until the base of the Buntsandstein facies. This division of the URU is the same
471 as documented by Mujal et al. (2017) in a westward, sedimentologically similar area of
472 the Catalan Pyrenees. The lowermost part of the URU is characterised by: (1) a decrease
473 of the grain size with respect to the underlying Lower Red Unit (LRU), starting with
474 reworked conglomerates of the LRU, changing to mudstone and medium grain-sized
475 sandstone in the lower URU and (2) the disappearance of primary volcaniclastic deposits,
476 which are very abundant in the LRU. Progressively, massive mudstones with mud-
477 cracked surfaces (facies *Fm*; Fig. 4B, 4C, 4D, 4E) and sporadic very fine- to fine-grained
478 sandstones (facies *Sh*, *Sl* and *Sm*; Fig 4F) become the dominant lithofacies. Another
479 characteristic element of this unit is the septariform nodules at the top of the lower URU
480 (facies *Ps*), equivalent to the facies 4A2 of Gisbert (1981) (see also Mujal et al., 2017).

481 At metre 425 of the CnH section, the primary volcanic materials disappear, and the
482 presence of fluvial deposits increases. The clast supported breccias become sporadic,
483 giving way to microconglomerates, sandstones and mudstones. They may still contain
484 volcanic crystals and lithic pebbles resulting from the erosion and reworking of
485 ignimbrites. Nevertheless, the presence of volcanic clasts suddenly stops at the 608.8 m
486 mark of this section and floodplain mudstones (facies *Fm/Fl*) become dominant. A similar
487 transitory interval is observed at the base of the RM and CR sections. The lithofacies and
488 architectural elements present in the lower URU are restricted to a few dominant types
489 (Tables 1, 2). Over these breccias, mudstones (facies *Fm*) with mature palaeosols (facies
490 *P*) and thin, sporadic sandstone layers (facies *Sh*, *Sl* and *Sm*) appear. From the base to the
491 top of this subunit a reduction in the grain-size of the sediments is observed, with
492 sandstones being more common closer to the last volcanics of the LRU. Also, the
493 appearance of massive mudstone deposits, sometimes with mud-cracks in the upper parts
494 are recorded. These sedimentary changes reflect a transition between the floodplain
495 deposits of the LRU (architectural element *FF*) and the well-developed playa lake
496 deposits of the upper URU (architectural element *L*). The top of the lower URU is marked
497 by the presence of septariform nodules (facies *Ps*; Fig. 4G, H). They appear in massive
498 mudstones between 2 and 15 m thick. The thickness of these levels is maximum at the

499 CR section, where the nodules reach up to 40 cm of diameter, while in CnH and RM
500 sections, these nodules rarely exceed 14 cm of diameter.

501 The top of the lower URU is characterised by a depositional shift. The subsequent
502 deposits are marked by a reduction of the grain-size, being dominated by massive
503 mudstones with mud-cracks (facies *Fm*), defining the upper URU (from the 111.1 to 350
504 m of RM section and from the 50.3 to 272.8 m of the CR section). Sometimes, these
505 mudstone layers contain carbonate nodules and rhizoconcretions - products of
506 pedogenetic processes (facies *P*). However, they are less abundant in comparison with
507 the underlying unit. These deposits correspond to shallow ephemeral lacustrine deposits
508 (architectural element *L*), representing massive cyclic mud periodically deposited in wet
509 seasons. After the sedimentation, these environments underwent prolonged desiccation,
510 marked by the development of mud-cracks in cyclic periods of hydration-desiccation.
511 Rarely, these mud-cracked surfaces present lateral changes, showing shallow greyish
512 deposits. Sporadically, the massive mudstone deposits are interbedded by laminated
513 sandy beds of the facies *Fl*, *Sh*, *Sl* and *Sm*. The deposits of the upper URU have a reddish-
514 maroon colour but some of the mud-cracked surfaces display greenish colours because of
515 reduction conditions. The thickness of these deposits generally ranges from 0.5 to 3 m;
516 however, some deposits display successive mud-cracked levels 10–15 cm apart (see the
517 abundant mud-cracked levels between the metres 220–235 of the CR section), sometimes
518 accompanied by fine laminated sandstone (facies *Fl*). Three centimetric deposits are
519 observed that do not display the typical red-bed colour and show an increasing grain-size
520 (at 223 and 254 metres from the RM section and at 246 metres from the CR section) (See
521 Fig. 2). Mineralogical analyses suggest a highly reduced organic-matter-rich fluvial
522 origin for these deposits (see also Text S2 and Table S4). The mud-crack shape is another
523 difference between the lower and upper URU deposits. The lower URU desiccation marks
524 frequently show a shallower gap between mud-cracks, whereas the upper URU deposits
525 display a considerable deeper gap and comparatively rougher surface. These mud-cracked
526 mudstone levels (facies *Fm*) preserve tetrapod footprints, as well as insect and clam
527 shrimp body fossils, invertebrate traces, plant remains, and raindrop impressions in the
528 RM and CR sections.

529 Although the dominant lithofacies in the uppermost layers of the URU are still mudstone
530 deposits (facies *Fm* and *Fl*), the mudstone levels show changes: (1) the deposits change
531 from the characteristic brown colour of the underlying succession to an orange-reddish

532 colour, (2) the exposed surfaces of facies *Fm* are reduced, becoming pale blue, (3)
533 palaeosols (facies *P*) are almost absent, and (4) grain size gradually increases in the
534 uppermost metres, with some mudstone levels grading to very fined-grained sandstones
535 (facies *Sm*). Fine- to coarse-grained sandstones are not present in this interval. At the top
536 of this unit, the deposits turn into a reddish colour, and the mudstone layers show
537 crystallised veins generated due to tectonic stress. These layers are eroded by the basal
538 conglomerates of the Triassic Buntsandstein facies (facies *Gt*).

539

540 *4.2. Magnetostратigraphy/magnetic mineralogy*

541 Studied samples present relatively high NRM intensities ranging from 7 mA/m to 20
542 mA/m and usually produce linear demagnetization trajectories trending toward the
543 demagnetization orthogonal plots after removal of a small viscous secondary overprint at
544 the first demagnetization steps (150 °C and fields below 20 mT) (Fig. 5). Stepwise AF
545 demagnetization after the first heating step does not usually remove much remanence,
546 thus indicating that magnetization is most likely dominated by hematite which unblocks
547 by 680 °C. Reddish sedimentary lithologies exhibit a broad range of unblocking
548 temperatures from about 400 °C up to the maximum applied temperature (Fig. 5A, B, D,
549 E) whereas ignimbrites unblock remanence mostly in the range 610–670 °C (Fig. 5C).
550 Grey sediments unblock remanence below 610 °C (Fig. 5F). All samples have provided
551 negative characteristic remanent magnetization (ChRM) components and taken as
552 primary components indicating reverse polarity throughout the studied succession (Fig.
553 S1 and Table S1). Due to similar bedding attitude in all sections no meaningful fold-test
554 can be performed and statistical parameters both before and after bedding correction are
555 similar (Fig. 6A, B). The mean calculated ChRM component (Dec/Inc = 170.3/-7.1, α_{95}
556 = 7.2) is compatible with data from previous studies (igneous and sedimentary Permian
557 and Triassic rocks) from the Cadí structural unit (Van Dongen 1967) and the Permian
558 reference direction from the Pyrenees (Oliva-Urcia et al., 2012). Although it is
559 recommended a minimum population of 80-100 directions for testing the inclination bias
560 in magnetization, we have attempted the elongation/inclination (E/I) method of Tauxe
561 and Kent (2004), for detection of potential inclination shallowing (Fig. S2C, D). Our
562 limited population of $N = 42$ suggests only a small shallowing effect of about 2° that
563 would require confirmation with a larger study.

564 The thermomagnetic curves (magnetic susceptibility vs. temperature curves, Fig. S3) 565 indicate the presence of both magnetite and hematite magnetic phases. The heating curves 566 display a prominent drop of susceptibility between ~500 and 580 °C (Fig. S3A, B) which 567 is consistent with the Curie temperature of magnetite. Susceptibility continues to drop up 568 to 680 °C which denotes the presence of hematite for the red-beds, while its proportion is 569 minor for the greyish beds (Fig. S3C). Thermomagnetic curves are not reversible and new 570 magnetic phases (magnetite, titanomagnetite/maghemite) are created upon heating. 571 Hysteresis measurements for red volcanoclastic lithologies and red sandstones/siltstones 572 usually produce wasp-waisted shaped loops, which is consistent with the presence of both 573 magnetite (low-coercivity) and hematite (high-coercivity) in various proportions (Fig. 574 S2A, B). Grey strata display hysteresis loops dominated by magnetite. IRM acquisition 575 curves and backfield IRM further confirm previous rockmagnetic inferences. For the 576 reddish lithologies IRM do not saturate at the maximum applied field of 1 T and exhibit 577 a “shoulder” at relatively low fields around 0.1 T denoting the magnetite contribution 578 although these samples appear to be dominated by hematite. Conversely, grey lithologies 579 almost saturate at low field (around 01-02 T) (Fig S2C) as is expected for dominance of 580 low-coercivity phases like magnetite. Furthermore, the relatively high coercivity of 581 remanence (Hc) as deduced from the backfield IRM acquisition curves of around 150- 582 300 mT (Fig. S2A, B) singularizes the presence of both magnetite and hematite magnetic 583 carriers. Finally, decomposition of IRM coercivity spectra demonstrate the occurrence of 584 two remanence-bearing components with distinct coercivities (Fig. S2 right panels).

585

586 *4.3. Systematic ichnology*

587

588 ***Batrachichnus* Woodworth, 1900**

589 ***Batrachichnus salamandroides* (Geinitz, 1861)**

590 ***Batrachichnus* isp**

591 **Fig. 7A–F**

592 **Material.** Lower Red Unit (LRU): one partial imprint in concave epirelief (IPS126631, 593 at 179 m of CnH section), one footprint with digital scratches not recovered in convex

594 hyporelief (CnH-233-1) and one isolated footprint in convex hyporelief with drag traces
595 (IPS88724, at 236 m of CnH section, Fig. 7E). Lower Upper Red Unit (lower URU): a
596 partial trackway composed of three tracks (one right partial manus-pes sets and one
597 unpaired right manus) in convex hyporelief (Fig. 7A, B), one isolated partial track, and
598 two small-size ichnites (pes and manus, Fig. 7C) with numerous scratches in convex
599 hyporelief in IPS88731 (at 14 m of CR section); three relatively large, rounded digit tips
600 (Fig. 7D) and one smaller imprint associated with swimming traces, in convex hyporelief,
601 in IPS88734 (at 15 m of CR section) (Fig. 7F).

602 **Description.** Small to very small digitigrade and semiplantigrade footprints (Table S2).
603 The imprints are slightly wider than long, and the sole and palm impressions are rarely
604 preserved. This morphotype is mostly represented by partial footprints composed of three
605 rounded digit tip imprints, only a few tracks preserve the complete digital and sole/palm
606 impression. Manus tracks (2.31–11.20 mm long, 2.79–12.90 mm wide) are digitigrade to
607 semiplantigrade and tetracyclic. The digit imprints are straight, slender and end in
608 rounded tips, without claw traces. The length of the digit imprints increases from I to III,
609 being digit IV slightly shorter than digit III, and sometimes subequal to digit II in the
610 largest tracks. Imprints of digit IV and digit I show a similar length, being digit I slightly
611 shorter. The deepest digit imprints are those of II and III, which display two phalangeal
612 pads each one. The palm impression is short, has an oval shape and is deeper in the central
613 area, under the imprints of digits II, III and IV, suggesting a median-medial functional
614 prevalence of the autopodia. In some tracks, digit tip imprints are accompanied by narrow,
615 short and sinuous scratches, probably produced by drag movements of the digit tips on
616 the substrate.

617 All pes impressions are semidigitigrade and incomplete. They are likely longer than the
618 manus imprints, but the absence of complete footprints precludes a confident measuring.
619 Most of the pes imprints are represented by the straight digits I to III, which are in
620 increasing length and rounded digit tips. Pes tracks show slightly longer digit imprints
621 than those of the manus. Pes tracks suggest a medial-medial prevalence, because only
622 the first three digits are preserved, with the imprints of digits II and III being the deepest.
623 The manus-pes set is observable in the partial trackway present in IPS88731. The
624 trackway shows a manus pace angulation of 95° and the manus stride measures 66.21
625 mm. The pace angulation and stride of pes imprints are impossible to obtain due to the

626 presence only of two consecutive pes tracks. The manus is not overstepped by the pes,
627 being separated by a mean distance of 15.88 mm.

628 **Remarks.** The semiplantigrade tetradactyl manus imprints with short and straight digits
629 ending in rounded and clawless digit tips, and the median-medial area more deeply
630 impressed are diagnostic features of the ichnogenus *Batrachichnus* (Gand, 1987; Voigt,
631 2005; Marchetti et al., 2022b). In upper Palaeozoic–lower Mesozoic terrestrial deposits,
632 tetradactyl imprints with an inferred medial-median functional prevalence of autopodia,
633 relatively short digits and clawless rounded digit tips are diagnostic features of amphibian
634 tracks (Gand, 1987; Voigt, 2005; Voigt et al., 2012; Mujal and Schoch, 2020; Mujal et
635 al., 2020; Marchetti et al., 2022b). These traits are found in two Permian ichnotaxa,
636 *Batrachichnus* and *Limnopus*, sometimes referred as a unique plexus (*Batrachichnus*-
637 *Limnopus*) when diagnostic features are not recognisable (Tucker and Smith, 2004; Voigt
638 et al., 2011a). Despite the similar morphology between both ichnotaxa, *Batrachichnus*
639 never shows impressions >35 mm long (Haubold, 1970, 1996; Voigt, 2005; Voigt et al.,
640 2011a), and diagnostic features to distinguish them remain in their digit proportions
641 (Voigt, 2005). Imprints assigned to *Batrachichnus* have relatively longer and parallel
642 digit impressions, and the digit IV is markedly longer than digit II in *Limnopus* (Voigt,
643 2005; Voigt and Haubold, 2015). The described impressions show a digit II markedly
644 larger than IV, and digits II to IV are almost parallelly orientated. Based on these features,
645 the relatively small size, together with the tetradactyl manus with rounded clawless digits
646 allow a referral of these tracks to *Batrachichnus*. The potential trackmakers of
647 *Batrachichnus* have been attributed to small and medium-sized semiaquatic to terrestrial
648 amphibians, including temnospondyls, lepospondyls and “microsaurs” (Haubold and
649 Lucas, 2003; Voigt, 2005; Voigt et al., 2012; Stimson et al., 2012; Petti et al., 2014; Voigt
650 and Haubold, 2015; Cisneros et al., 2020; Allen et al., 2022; Marchetti et al., 2022a).

651 The herein studied *Batrachichnus* present a low to medium preservation degree (1-2).
652 Also, the *Batrachichnus* specimens show different preservation that results in
653 morphological differences. A major group composed by partial and isolated tracks is
654 observed. Each track is composed of two or three rounded digit tip imprints (IPS126631,
655 CnH-233-1, IPS88724 and IPS88734). Only one complete right manus is observed
656 (IPS88731, 11.20 mm wide and 10.93 mm long, Fig. 7A) related to two semiplantigrade
657 imprints. This imprint preserves part of sole and shows the clear proportions of the digits.
658 It should be remarked that digitigrade imprints seem to be larger than those that are

659 semiplantigrade and they are recovered in the Lower Red Unit and the lower Upper Red
660 Unit. On the other hand, the semiplantigrade imprints seem to be smaller, and they are
661 restricted to the lower Upper Red Unit levels. Those differences probably would be
662 related to different preservation states due to different substrate conditions at the time of
663 impression.

664 In IPS88731 and IPS88734 a smaller group of ichnites of 2–4 mm manus width and 2–5
665 mm manus length is preserved. They are related with abundant swimming traces
666 (ichnogenus *Characichnos*, see below). Although most of the swimming scratches and
667 the tracks follow a similar direction, it is difficult to identify complete trackways.

668 *Batrachichnus* is one of the most widespread ichnogenus from the upper Palaeozoic that
669 has also been identified in Triassic deposits (Gand, 1987; Voigt, 2012; Schneider et al.,
670 2020; Marchetti et al., 2022a, 2022b). It has been recovered in localities from Europe,
671 northern Africa and North and South America, including northeastern Iberian Peninsula
672 (Voigt and Haubold, 2015; Mujal et al., 2016a), southern France (Gand and Durand,
673 2006; Marchetti et al., 2022b), northern Italy (Marchetti, 2016; Marchetti et al., 2019b),
674 Poland (Voigt et al., 2012) and Germany (Voigt, 2005), Morocco (Voigt et al., 2011b;
675 Lagnaoui et al., 2014, 2018), in different localities from the USA (Fillmore et al., 2012;
676 Lucas et al., 2014; Voigt and Lucas, 2015; Klein and Lucas, 2021), Canada (Stimson et
677 al., 2012; Allen et al., 2022) and Argentina (Melchor and Sarjeant, 2004). Despite the
678 virtually worldwide distribution of this ichnogenus in terrestrial Permian (and
679 Carboniferous) basins, it is mostly restricted to wet floodplain palaeoenvironments
680 (Voigt, 2005; Voigt et al., 2011a; Mujal et al., 2016a), being absent in other Permian
681 ichnosites of the Iberian area such as Mallorca, suggesting a potential
682 preservational/environmental bias (Matamales-Andreu et al., 2022). The ichnospecies *B.*
683 *salamandroides* is also recorded in the Artinskian deposits of Lower Red Unit (Peranera
684 Fm.) of the Erillcastell-Estac sub-basin, western Catalan Pyrenees (Voigt and Haubold,
685 2015; Mujal et al., 2016a, 2018), but there the general morphology differs, being
686 predominantly digitigrade with wider and rounded digits. On the other hand, the studied
687 tracks show several similarities with the upper Guadalupian tracks of Le Luc Basin
688 (Gonfaron, France; Marchetti et al., 2022b), which present a similar length, straight digits
689 with thin rounded and clawless digit tips with a higher pace angulation and a moderate
690 smaller manus stride length. Due to the wide time range of the ichnogenus *Batrachichnus*
691 and the wide taxonomical assignment to small-sized non-amniotes, the morphological

692 variability of this ichnogenus could be explained as similar ichnofossil record produced
693 by different trackmakers. However, the differences may also be related with different
694 locomotion styles of the trackmakers (Leonardi, 1987). Therefore, as *Batrachichnus*
695 *salamandroides* trackways recovered from the Pyrenean Basin and Le Luc Basin are few
696 and not excellently preserved, more samples are necessary to establish better comparisons
697 between tracks from these basins.

698

699 ***Dromopus* Marsh, 1984**

700 ***Dromopus* isp.**

701 Figs. 8A, S4A–E

702 **Material.** Lower Red Unit (LRU): A non-recovered partial manus-pes set in concave
703 epirelief (CnH-121-1 and CnH-121-2, Fig. S4E) and one isolated footprint in concave
704 epirelief (Fig. S4A) from Castellar de n'Hug section (IPS126632, at 315 m). Lower Upper
705 Red Unit (lower URU): a manus-pes set (Fig. S4C) and an isolated track in concave
706 epirelief recovered from IPS88733 (at 14 m in CR section); two recovered ichnites in
707 convex hyporelief (Fig. S4B, IPS88734, 15 m in CR section) and three non-related and
708 unrecovered ichnites CR-15-1 (Fig. 8A), CR-15-2 and CR-15-3. Upper Upper Red Unit
709 (upper URU): two slabs from RM section (Fig. S4D, IPS88735 recovered at 129 m and
710 IPS126630 recovered at 205 m) with partial imprints in concave epirelief, one isolated
711 footprint in convex hyporelief (IPS126634) and one unrecovered ichnite (CR-69-1)
712 preserved in concave epirelief on the same surface as the unrecovered *Brontopus*
713 *antecursor* ichnites from CR section (see below).

714 **Description.** Lacertoid-like, pentadactyl asymmetric tracks with long, slender and
715 slightly inward curved digit imprints. Impressions are relatively small, ectaxonic,
716 digitigrade to semiplantigrade and mostly incomplete. Manus and pes footprints are
717 longer (8.31–21.28 mm) than wide (5.90–15.22 mm). The digit imprints usually end with
718 acute triangular claw impressions. The digit I–IV imprints are arranged in a prominent
719 group. On the other hand, the short digit V imprint is directed outwards, straight and more
720 proximally (posteriorly) positioned than the other digit imprints. The relative length of
721 the digits increases from I to IV, digit IV being longer than digit III. Digit V imprint is
722 slightly shorter than digit II. The depth of each digit impression increases towards the tip.

723 Some well-preserved tracks (Figs. 8A, S4A–C) display phalangeal pad impressions in
724 digits II, III, IV and V. The digit II imprint shows two phalangeal pads, being the
725 distalmost the deepest. Digit III imprint presents three phalangeal pads of which the
726 intermediate one is the deepest. Digit IV imprint presents four phalangeal pads, being the
727 distalmost three the deepest. Digit V imprint has two phalangeal pads. The sole/palm
728 impression is mainly absent or very shallow; when present, it shows a short and convex
729 proximal margin (Fig. S4A, B).

730 Only two manus-pes sets have been observed. They are composed of partial imprints that
731 preserve digits II-IV (CnH-121-1, 2 and IPS88733). The imprints of the sets show similar
732 orientation without overlapping, and the manus occupy an inner position in comparison
733 with the pes. Footprints of each set display the same morphology, only differentiated by
734 a slightly larger size of the pes than the manus. The manus-pes distance (17.1–73.4 mm)
735 is two times the size of the manus. All these imprints are partial (preserve digital imprints
736 of digits II to IV) and no trackways have been identified. Regarding preservation, some
737 surfaces yield mostly complete ichnites (Figs. 8A, S4A, B), whereas in others only the
738 imprints of digits II, III and IV are preserved (Fig. S4C, D). The isolated nature of the
739 majority of the tracks of this morphotype precludes a clear distinction between manus and
740 pes imprints.

741 **Remarks.** The digitigrade to semiplantigrade imprints, the slender digits, their
742 proportions (being digit IV markedly longer than digit III) and arrangement (digits I to
743 IV grouped and inwardly curved and digit V more proximal, laterally-oriented and
744 straight), and the deeper impression of the distal parts of digits II, III and IV, are all
745 diagnostic features of *Dromopus* (Haubold and Lucas, 2003; Voigt et al., 2011b, 2012;
746 Voigt and Lucas, 2015; Marchetti et al., 2021b). Morphological preservation degree of
747 1.5-2 in most of study tracks.- This ichnogenus shares many features with
748 *Rhynchosauroides* (Marchetti et al., 2017). Usually, in the Permian record, *Dromopus* has
749 been recognised in Cisuralian to Lopingian outcrops, whereas *Rhynchosauroides* is
750 identified in Lopingian and younger strata. Therefore, the ichnological record of both
751 ichnotaxa overlaps at the late Permian. Therewith, *Rhynchosauroides* show a heteropodial
752 manus-pes set with a markedly shorter digits impressions and more semiplantigrade
753 tracks in manus impression. On the other hand, *Dromopus* shows a high degree of
754 homopody resulting from an only slightly smaller size of the manus (Voigt et al., 2012,
755 Marchetti et al., 2021b, 2022b) and a pes with lesser curved digit imprints than in

756 *Rhynchosauroides* (Marchetti et al., 2019c). Another difference to the latter is that Digit
757 V in *Dromopus* is relatively long (as digit II) and is outward oriented, in comparison with
758 *Rhynchosauroides*, which presents a short digit V (similar to digit I) with a backward
759 orientation (Marchetti et al., 2022b). Finally, the manus-pes set of the herein study
760 presents a manus positioned in front of the pes imprint, with slightly more deeply
761 impressed pes track, which is a feature more related to *Dromopus* imprints (Valentini et
762 al., 2007; Marchetti et al., 2017). Therefore, in spite of the similarity between the
763 ichnogenus *Dromopus* and *Rhynchosauroides*, the observed features in the herein studied
764 ichnites best match the description of *Dromopus*.

765 This ichnotaxon is the most common and widespread one, together with *Batrachichnus*,
766 in Pennsylvanian (upper Carboniferous) to Cisuralian (lower Permian) strata (Schneider
767 et al., 2020; Marchetti et al., 2021b, 2022a). *Dromopus* shows an extremely wide
768 extramorphological variation. Tridactyl and didactyl footprints, mostly complete
769 footprints, lacking digit I imprint, or showing digit IV as an isolated tip imprint have been
770 recovered in localities from Mallorca (Matamales-Andreu et al., 2022), France (Gand and
771 Durand, 2006), Italy (Marchetti et al., 2015a, 2015b, 2017, 2019b, 2019c 2020a), United
772 Kingdom (Haubold and Sarjeant, 1973), Germany (Voigt, 2005, 2012), Poland (Voigt et
773 al., 2012), USA (Lucas and Hunt, 2005; Lucas et al., 2014; Voigt et al., 2015) and
774 Morocco (Voigt et al., 2011a, 2011b). Focusing on the Pyrenean Basin, *Dromopus* is
775 recorded in the Peranera Formation (Voigt and Haubold, 2015; Mujal et al., 2016a). Also,
776 westwards from the study area a similar morphotype assigned to a *Dromopus*-
777 *Rhynchosauroides* plexus from the uppermost Permian facies has been reported (Mujal
778 et al., 2017). *Dromopus* has been related to small- to medium-sized araeoscelid diapsids
779 and non-varanodontine varanopids (Gand, 1988; Haubold and Lucas, 2003; Voigt, 2005;
780 Gand and Durand, 2006; Spindler et al., 2019, Marchetti et al., 2021a, 2022a).

781

782 b

783 ***Hyloidichnus* Gilmore, 1927**

784 ***Hyloidichnus* isp.**

785 Figs. 8B–C, S5A–C

786 **Material.** Lower Red Unit (LRU): a right manus-pes set in convex hyporelief
787 (IPS135414, at 232m in the CnH section) and one isolated footprint in concave epirelief
788 (Fig. S5C) from CnH section (IPS126632, at 315 m in the CnH section). Lower Upper
789 Red Unit (lower URU): one isolated unrecovered footprint (CR-15-5) and one ichnite
790 related to scratches (IPS126633) in concave epirelief from CR section (at 15 m). Upper
791 Upper Red Unit (upper URU): a manus-pes set and two partial imprints unrecovered
792 (Figs. 8C, S5A) in concave epirelief (RM-177-14 to RM-177-17) accompanied by few
793 scratches, two partial imprints in recovered concave epirelief in IPS88735 from RM
794 section (at 129 m) (Fig. S5B).

795 **Description.** Footprints of a quadrupedal tetrapod with plantigrade to digitigrade and
796 pentadactyl imprints. The manus and pes imprints show a marked heteropody in shape,
797 but presenting wide digit tips in both, which may show curved and inwardly rotated claw
798 traces (Fig. 8C). In some samples, digits are only represented by isolated tip imprints,
799 separated from the basal part of the digit (Figs. 8C, S5B).

800 Manus are semiplantigrade and pentadactyl imprints, wider (26.82 mm) than long (18.00
801 mm). The digit imprints are slender and slightly hourglass-shaped, showing a slight
802 inward rotation and rounded digit tip imprints. Digit imprints show an increase in length
803 from I to IV, being digit III subequal to digit IV. Digits I and II are the deepest. Digit V
804 is outward rotated, its length is like that of digit I and it is only preserved by the tip. Only
805 the distal part of the palm imprint is preserved, being deeper under digits II, III and IV.
806 The divarication between digits I and V is $>100^\circ$. The manus is rotated inwards and
807 anteriorly positioned with respect to the pes.

808 Pes tracks are larger than manus tracks and they show a similar length and width
809 proportions (19.68–26.83 mm long, 22.68–27.74 mm wide). Digits are straight and
810 relatively thinner and longer in comparison with those of the manus tracks. Imprints of
811 digits I-IV are in increasing length, being digit IV slightly longer than digit III, and digits
812 II and I markedly shorter. Imprints of digits I and II are deeper, indicative of a medial
813 functional prevalence of the autopodium, like in the manus. Digit V imprint is rotated
814 outwards, being as long as digit I. The sole imprint is deeper under the imprints of digits
815 I and II, reducing progressively in digit III and being absent in digit IV and V. The sole
816 has a rounded shape with a shallow proximal convex margin, being more complete and
817 better preserved than the palm imprint. The mean divarication angle of the digits also
818 varies in manus and pes tracks being higher in the manus (Table S2).

819 In the manus-pes sets of the studied material, two main arrangements have been observed.
820 In most cases the pes is not overstepping the manus imprints, but in one specimen
821 (IPS135414, Fig. 8C) the pes digit imprints are overprinting the palm impression.

822 **Remarks.** Pentadactyl semiplantigrade footprints with straight, hourglass-shaped long
823 and elongated digits terminate in pointed tips, heteropody with an inward rotated manus
824 smaller than pes, digit proportions and digit I as long as digit V are all diagnostic features
825 of *Hyloidichnus* (Haubold, 1971; Gand, 1987; Gand and Durand, 2006; Marchetti et al.,
826 2013, 2020b; Marchetti, 2016; Mujal et al., 2016a; Voigt and Lucas, 2018; Marchetti et
827 al., 2013, 2020b; Logghe et al., 2021; Matamales-Andreu et al., 2021b, 2022, 2023).
828 Although not very common, overstepping of the manus tracks by the corresponding pes
829 imprints has been observed elsewhere, which might be related to different locomotion
830 styles (walking vs. running; see Logghe et al., 2021; Matamales-Andreu et al., 2023). This
831 ichnogenus shares many features, like the shape of the digits, the short palm/sole and the
832 rotated digit tips with *Varanopus*, *Notalacerta* and *Merifontichnus* (Gand and Durand,
833 2006; Voigt et al., 2010; Voigt and Haubold, 2015; Marchetti et al., 2020b). In comparison
834 with *Varanopus*, the relatively short digit V is a diagnostic character of *Hyloidichnus*,
835 against the markedly longer digit V (similar to digit III) (Voigt et al., 2010). Additionally,
836 the marked inward rotation of the manus impressions and the straight digit impressions
837 are also diagnostic features of *Hyloidichnus* that differ from *Varanopus* (Voigt et al.,
838 2005, 2010). Moreover, the ichnogenus *Notalacerta* is characterised by inwardly curved
839 slender digits imprints and a relatively longer pedal digit V imprint, close to the length of
840 digits II and III (Lucas et al., 2004; Marchetti et al., 2020b). Finally, the assignment to
841 *Merifontichnus* is also discarded, because this ichnogenus is characterised by homopody
842 with tracks wider than long, and slender and radiating digit imprints (Gand et al., 2000;
843 Gand and Durand, 2006; Marchetti, 2016).

844 This ichnotaxon has been recovered in different Cisuralian outcrops of the Iberian area,
845 in the Pyrenean Peranera Formation (Voigt and Haubold, 2015; Mujal et al., 2016a), in
846 the Cantabrian Mountains (Gand et al., 1997) and in the Balearic Islands (Matamales-
847 Andreu et al., 2021b, 2022, 2023). Similarly, *Hyloidichnus* is a well-known ichnotaxon
848 from France (Gand, 1987; Gand and Durand, 2006; Logghe et al., 2021; Marchetti et al.,
849 2022b), Italy (Marchetti et al., 2013, 2015a, 2015b; Marchetti, 2016), Morocco (Voigt et
850 al., 2010; Hminna et al., 2012; Zouicha et al., 2021; Rmich et al., 2023), USA (Lucas et
851 al., 2014) and Argentina (Melchor and Sarjeant, 2004).

852 The herein described specimens present a morphological degree of 1.5-2. The studied
853 footprints are markedly smaller than other *Hyloidichnus* described in the Permian of the
854 Pyrenean Basin. The samples described by Voigt and Haubold (2015) and Mujal et al.
855 (2016a) measure between 41 and 75 mm of length, a similar size observed in other peri-
856 Tethyan Permian tracks: in Mallorca (Matamales-Andreu et al., 2022) or in the Ikakern
857 Formation in Morocco (Voigt et al., 2010; Rmich et al., 2023). However, they are similar
858 in size with those from Menorca (Matamales-Andreu et al. 2021b), some of them
859 measuring between 22.8–26.4 mm of length. Also, the small size of these samples is
860 similar to some *Hyloidichnus* imprints from other peri-Tethyan basins, such as the
861 Guadalupian locality of Gonfaron (France) (Logghe et al., 2021; Marchetti et al., 2022b).

862 *Hyloidichnus* has been referred to captorhinid producers (Haubold, 1971, 2000; Voigt et
863 al., 2010; Marchetti, 2016, Logghe et al., 2021, Matamales-Andreu et al., 2021b). Voigt
864 et al. (2010) considered that *Hyloidichnus* could be referred to more derived
865 captorhinomorphs, the moradisaurines, a correlation supported by the recent study of
866 Matamales-Andreu et al. (2023). The presence of *Hyloidichnus* in the Pyrenean Basin and
867 the recent discoveries of moradisaurines in Mallorca and Menorca islands, as well as
868 captorhinomorph tracks (Liebrecht et al. 2017, Matamales-Andreu et al., 2021b, 2022,
869 2023), reinforce the common presence of these herbivorous reptiles in the Permian
870 equatorial latitudes of Pangaea (Logghe et al., 2021; Matamales-Andreu et al., 2021b,
871 2022).

872

873 ***Brontopus* Heyler and Lessertisseur, 1963**

874 ***Brontopus antecursor* (Ellenberger, 1983)**

875 Figs. 9A–D

876 **Material.** Upper Upper Red Unit (upper URU): A mud-cracked surface including two
877 isolated footprints and a trackway composed of six complete manus-pes sets in concave
878 epirelief (RM-177-1 to RM-177-14; Fig. 9A–C) and two isolated manus footprints in
879 concave epirelief (RM-207-1, 2) of RM section. One isolated pes (CR-69-1), a muddy
880 surface with 12 imprints in concave epirelief (CR-69-2 to CR-69-13) (Fig. 9D) and one
881 isolated footprint (CR-69-14) from the same stratigraphic level of CR section. All
882 material remains in situ (uncollected).

883 **Description.** The trackway (RM-177-1 to RM-177-12) is composed of six manus-pes
884 sets, both manus and pes being pentadactyl and plantigrade imprints. The ichnites are
885 relatively large and show high expulsion rims. The impressions show a general rounded,
886 smoothed shape except those affected by mud-cracks, which may present more angular
887 areas. The median-lateral area of the tracks is the deeper area, denoting a median-lateral
888 prevalence of the autopodia. A clear heteropody is distinguished between manus-pes
889 impressions, with manus tracks smaller than pes tracks. Manus imprints are larger than
890 wide, being 82.32–148.87 mm long and 82.21–117.26 mm wide, and sometimes they are
891 preserved as round digit tip imprints separated from the palm imprint. Digit imprints are
892 nearly equidistantly distributed around the palm impression, showing a length increase
893 from digit I to III, a subequal length in digits III and IV, and a shorter digit V, subequal
894 to digit II. Digits II-IV imprints are subparallel and compose a compact group anteriorly
895 oriented. Digits I, II and III imprints may show a slightly inward rotation. The digit I
896 imprint is sometimes not preserved. The palm impression is oval with a deep extension
897 of the outer (lateral) part of the heel, which produces a narrowing in the proximal part of
898 the imprint. The metacarpal-phalangeal portion is the most impressed area of the manus
899 imprints, occupying the inner and central part of the palm, suggesting a median functional
900 prevalence of the autopodium.

901 Pes imprints are 113.32–268.45 mm long and 95.70–132.65 mm wide, being notably
902 larger than manus tracks. Pes tracks are divided in three areas, from distal to proximal:
903 digit imprints (with rounded tips and sometimes separated from the sole), the distal part
904 of the sole imprint (which is the deepest area) and the proximal part of the sole (the heel
905 impression) (as extensive as the sole but markedly shallower). Pes digit imprints are
906 slightly larger and slenderer than those of the manus, though their relative lengths are
907 similar, as is the divarication between all of them (20–25° between each digit).
908 Sometimes, digits are preserved as rounded impressions separated from the sole imprint
909 by an expulsion rim, similar to what is observed in some manus tracks. The distal sole
910 impression is very compact and anteroposteriorly elongated. The distal sole imprint also
911 presents a markedly narrowing process in the inner part of the impression, developing
912 into the narrow connection between the distal sole and the heel in the lateral (outer) side,
913 and gives an asymmetric hourglass shape to the imprint. The heel impression is usually
914 of similar size to the distal sole; however, this area varies markedly in the pes tracks from
915 different specimens. In the pes tracks of RM section, the heel impression is of similar size

916 to the distal sole impression, and they show a marked inward elongation regarding the
917 rest of the footprint. Conversely, the heel impressions preserved in the CR section do not
918 show any inner elongation, and their proportions change, being the heel impression area
919 of the CR tracks smaller than the distal sole depression. As in manus tracks, the
920 metatarsal-phalangeal portion is the deepest part of the pes imprints.

921 In the trackway of RM (external width: 420–450 mm), manus and pes are alternately
922 arranged, with the manus impressions located at the height of the heel impression of the
923 pes track of the subsequent set. Both pes and manus tracks are subparallel to the trackway
924 midline, being pes impressions slightly inward rotated. The mean distance between
925 manus and pes tracks in a set is of 290 mm. The stride length of the tracks has a mean
926 value of 960 mm, and the pace angulation comprises values between 115° and 125° (see
927 Table S3).

928 **Remarks.** The presence of short digit imprints with a relatively wide sole and palm
929 imprints with a paw-like shape are distinctive features of *Dimetropus*, *Brontopus*,
930 *Dolomitipes* and *Dicynodontipus* (Marchetti et al., 2019c; Matamales-Andreu et al.,
931 2021c). The relatively large size, the paw-like shape of the tracks, the parallel tracks to
932 the trackway midline, the mesaxonic and the short digital impressions (sometimes point-
933 shaped) located equally around the distal area of the imprint are diagnostic features of
934 *Brontopus* (Gand et al., 2000; Marchetti et al., 2019c). The high pace angulation (higher
935 than 90°), the pes proportions (notably longer than wide) with hourglass shape, as well as
936 the relatively small manus in comparison with the pes (marked heteropody), allow a
937 referral of the ichnites from RM and CR to *Brontopus antecursor* (Ellenberger, 1983;
938 Gand et al., 2000; Marchetti et al., 2019c).

939 The quadrupedal trackway, with pentadactyl, plantigrade with a general median-lateral
940 functional prevalence inferred for the autopodia footprints is characteristic of synapsid
941 tracks (Mujal et al., 2020). The *B. antecursor* footprints herein studied are similar to other
942 ichnotaxa with heteropodal impressions presenting elongated/hourglass-shape and
943 attributed to synapsid trackmakers: *Brontopus giganteus* (Gand et al., 2000; Valentini et
944 al., 2009; Marchetti et al., 2019c), *Dolomitipes* (De Klerk, 2002; Marchetti et al., 2017),
945 *Dimetropus osageorum* (Sacchi et al., 2014; Romano et al., 2020), and *Dicynodontipus*
946 (Rühle von Lilienstern, 1944; De Klerk, 2002; Da Silva et al., 2012; Francischini et al.,
947 2018). The main difference between *B. antecursor* and *B. giganteus* is the oval shape
948 (instead of hourglass shape) of the sole, the lower pes/manus proportions, the similar

length and width of the pes (instead longer than wider) and the lower pace angulation of *B. giganteus* (Marchetti et al., 2019c). On the other hand, *Dolomitipes* is characterised by manus impressions markedly wider than long with a similar size or even larger than pes impressions, differing from *B. antecursor* and the herein studied specimens, thus precluding their assignation to *Dolomitipes*. In *Dimetropus osageorum* the manus-pes set show a primary overlapping, with the manus placed closely in contact or at a very short distance to the pes, and a slightly lesser pace angulation (110° in manus and 112° in pes). Their digits are short and robust. Digit IV is the longest, followed by digit III and II. Digit I shows inward rotation and extremely short length and digit V present a similar length to digit I (Sacchi et al., 2014; Romano et al., 2020). Instead, the ichnites of RM section show longer and thinner digits, located equally around the sole and palm impressions, and the digit V imprint is located closer to digits II, III and IV (i.e., more distally located); therefore, these tracks cannot be attributed to *D. osageorum*. Other Permian synapsid tracks reported from the Catalan Pyrenees and Mallorca have been assigned to *Dimetropus leisnerianus* (Mujal et al., 2016a; Matamales-Andreu et al., 2022), as well as to cf. *Dimetropus* isp. (Matamales-Andreu et al., 2021c). However, the relatively short digits, marked mesaxony, strong heteropody with hourglass-shaped pes, slender and relatively long of the studied ichnites differ from the Iberian record of *Dimetropus*. Other potential synapsid tracks in the Pyrenean Basin are the Morphotype I, from the uppermost Permian site of Coll de Terrers (Mujal et al., 2017), which may be similar to *Dolomitipes* (Mujal et al., 2020; Marchetti et al., 2022b). The quadrupedal ichnites of this morphotype display manus markedly wider than long with thin phalangeal impressions and rounded digit tip imprints, pes tracks overstep manus tracks, and the pace angulation (90°) is lower than in *B. antecursor* and the herein studied trackway. Also, the herein described footprints differ in some diagnostic features of *Dicynodontipes*, such as the strong mesaxony, the wider than long manus imprint, which is larger and deeper than the pes impression, and the low pace angulation (Marchetti et al., 2019c). According to all these observations, all ichnites from RM and CR sections can be confidently assigned to *B. antecursor*. The morphological preservation degree is 2-2.5.

B. antecursor has been identified from the French Guadalupian red-beds of La Lieude Formation and Pradineaux Formation (Ellenberger, 1983; Gand et al., 1995, 2000; Gand and Durand, 2006; Marchetti et al., 2019c). It was firstly described by Ellenberger (1983), who originally named these tracks as *Eodicynodontipes antecursor*. Recently, Marchetti

982 et al. (2019c) synonymised *Eodicynodontipus* with *Brontopus*, but maintaining the
983 material as a distinct ichnospecies, proposing the combination *B. antecursor*. Marchetti
984 et al. (2019c) also synonymised the ichnotaxa *Pseudopithecus recurvidigitus*,
985 *Eocynodontipus sibleyrazi*, *Planipes caudatus* and *Planipes brachydactylus* to *Brontopus*
986 *antecursor*. *Brontopus* has been related to dinocephalian trackmakers, a therapsid group
987 dominant in the Guadalupian (Day et al., 2015; Lucas, 2017, 2018). Due to the high pace
988 angulation and the manus-pes proportions, *Brontopus antecursor* has been related to
989 anteosaurid dinocephalian therapsids (Marchetti et al., 2019c).

990

991 ***Pachypes* Leonardi et al. 1975**

992 ***Pachypes* isp.**

993 Figs. 9E, S6A–B

994 **Material.** Upper Upper Red Unit (upper URU): a right footprint not recovered (RM-209-
995 1; Fig. 9E) and a partial and eroded unrecovered imprint (RM-209-2; Fig. S6A) in
996 concave epirelief, both from RM section. A left partial manus not recovered in concave
997 epirelief (CR-69-15) from CR section (Fig. S6B).

998 **Description.** Pentadactyl, semiplantigrade footprints wider (78.28–95.70 mm) than long
999 (60.40–93.30 mm). The impression shows quadrangular shape and is mesaxonic, being
1000 the palm area under digits II, III and IV the deepest. Digit imprints are sturdy, relatively
1001 short, and with rounded tips. The digit length increases from II to IV, which are rotated
1002 inwards, and these imprints compose a tight group, showing superposition at their base.
1003 Digit IV imprint is the longest and deepest. Digit I imprint is subequal in size to digit II,
1004 but the former shows a clear proximal orientation. Digit V imprint is the shortest and the
1005 thinnest, markedly proximally positioned. All digits are relatively short and are located
1006 closely to the palm/sole imprint, which is elliptical, wider than long and deeply impressed.
1007 The distal margin of the palm/sole imprint shows a semicircular embayment.

1008 **Remarks.** Relatively large-sized, pentadactyl, mesaxonic and semiplantigrade tracks
1009 with sturdy superimposed digits with rounded terminations that increase from II to IV,
1010 the small size of the digit V and deep sole/palm impression are diagnostic features of
1011 *Pachypes* (Leonardi et al., 1975; Valentini et al., 2008; 2009; Marchetti et al., 2021a).
1012 Currently, three ichnospecies are considered valid for this ichnogenus: *P. dolomiticus*, *P.*

1013 *ollieri* and *P. loxodactylus* (Marchetti et al., 2021a). They are distinguished by the
1014 thickness of the digit imprints, their organisation in the track and the level of
1015 superimposition, being *P. dolomiticus* the most compact morphotype, *P. loxodactylus* the
1016 larger and more spaced one, and *P. ollieri* presenting an intermediate configuration
1017 (Marchetti et al., 2021a). The morphological preservation degree of the studied samples
1018 is 1-1.5, hindering ichnospecific identification. The ichnite RM-209-2 shows tightly
1019 close, markedly thick and superimposed digits, and the digit V is proximally positioned
1020 and relatively small and thin in comparison with the rest. All these features are found in
1021 *P. dolomiticus* and *P. ollieri*. Due to the poor preservation, the absence of a complete
1022 manus-pes set and a trackway impression, and the absence of clear diagnostic features,
1023 an open ichnospecific identification is favoured.

1024 *Pachypes* has already been documented in the Lower Red Unit (Cisuralian) of the
1025 Pyrenean Basin, attributed to *P. ollieri* (Marchetti et al., 2021a). On the other hand,
1026 morphotype II described in the uppermost Permian of Coll de Terrers (Mujal et al., 2017)
1027 shares features with this ichnotaxon, such as the slightly wider than long and relatively
1028 large tracks with robust digits, but with a bit more superimposed and thicker digits in the
1029 manus track. The ichnogenus *Pachypes* as a whole shows a wide chronological and
1030 geographical range, found from the Cisuralian to the Lopingian of different countries such
1031 as Spain (Mujal et al., 2017, Marchetti et al., 2021a; Matamales-Andreu et al., 2022),
1032 France (Gand and Durand, 2006), Italy (Valentini et al., 2009; Dalla Vecchia et al., 2012;
1033 Marchetti et al., 2017, 2019b, 2020a, 2021a), Germany (Buchwitz et al., 2017; Marchetti
1034 et al., 2019d), Russia (Gubin et al., 2003; Surkov et al., 2007; Valentini et al., 2009),
1035 Morocco (Voigt et al., 2010), Niger (Smith et al., 2015) and the USA (Lucas and Hunt,
1036 2005; Marchetti et al., 2021a). *Pachypes* has been related with medium-large size
1037 pareiasauromorph parareptiles as probable trackmakers (Valentini et al., 2009; Marchetti
1038 et al., 2021a).

1039
1040
1041

Characichnos Whyte and Romano 2001

1042 ***Characichnos* isp.**

1043 Figs. 7A, 7F

1044 **Material.** Lower Upper Red Unit (lower URU): Associated with *Batrachichnus* (see
1045 above). Two recovered slabs (IPS88731, at 14 m from the base of CR section, and
1046 IPS88734 at 15 m of CR section) with numerous scratches in convex hyporelief (Fig. 7B).

1047 **Description.** The slabs IPS88731 and IPS88734 contain relatively small, narrow, straight
1048 and clawless digit scratches. Their size is relatively small, each scratch showing a mean
1049 width of 3-5 mm and variable length. Each track is composed of three elongated and
1050 parallel traces (scratches) produced by the drag of digits II, III and IV. Each scratch shows
1051 a deeper area in the same limit. Slab IPS88734 has six scratches, however, no clear groups
1052 of tracks nor trackways can be identified.

1053 **Remarks.** Elongated and parallel scratches are interpreted as drag traces of digits during
1054 swimming locomotion (Whyte and Romano, 2001). These scratches are the most
1055 representative ichnological remains of slab IPS88734. Due to the dimension of these
1056 swimming traces, the rounded and clawless ending of the scratches, and the presence of
1057 a complete footprint with similar proportions in the same slabs, traces can be assigned to
1058 *Characichnos* (Whyte and Romano, 2001). Previous swimming traces recovered from the
1059 Peranera Formation (Pyrenean Basin) were related to *Batrachichnus salamandroides*
1060 (Mujal et al., 2016a), and similar occurrences were recorded in Italy (Petti et al., 2014),
1061 Morocco (Voigt et al., 2011b), Germany (Voigt, 2005) and the USA (Lucas et al., 2011b).
1062 Some samples of the Italian Orobic Basin (Petti et al., 2014) show a clear transition from
1063 swimming to walking tracks in submerged environments. Considering previous
1064 interpretations, *Characichnos* tracks herein studied are assigned to natation tracks. Due
1065 to the similar size between *Characichnos* and *Batrachichnus* in the slabs IPS88731 and
1066 IPS88734, and the previous association between both ichnotaxa in other Permian basins,
1067 they were probably impressed by a similar trackmaker.

1068 5. Discussion

1069 5.1. Palaeoenvironmental and climatic interpretation

1070 Sedimentation of the Lower Red Unit in the Catalan Pyrenees has been interpreted to be
1071 undertaken in mass flows, stream floods and meandering channels (Nagtegaal, 1969;
1072 Gisbert, 1981; Speksnijder, 1985; Gretter et al., 2015; Mujal et al., 2016a, 2018; Lloret et
1073 al., 2018) (Fig. 10). In the same way, sedimentary rocks of the Castellar de n'Hug sub-
1074 basin correspond to fluvial settings, represented by floodplain massive deposits,

meandering channel and crevasse splay deposits, the latter containing all the tetrapod ichnites recovered from the LRU (Figs. 2, 10; Text S2 and Table S4). This fluvial system is similar to other LRU successions of the Catalan Pyrenees (Mujal et al., 2016a, 2018). However, this landscape changes in surrounding contemporaneous basins. The Artinskian–lower Kungurian succession of La Sagra Formation, in the Cantabrian Mountains, is interpreted as floodplain deposits exposed to drier intervals (Gand et al., 1997; Juncal et al., 2016; López-Gómez et al., 2019). In the Balearic Islands, the Cisuralian successions of the Bec de s’Àguila Formation (Mallorca) and P1 unit in Menorca are composed of alluvial fan deposits (Matamales-Andreu et al., 2021b; 2022). Finally, the Lodèvre Basin shows fluvial systems with sheetflood and braided rivers in strata of the Rabejac Formation (Sakmarian) (Schneider et al., 2006) that evolve into playa systems with calcareous desiccated surfaces in upper Cisuralian sections corresponding to the Salagou Formation (Artinskian–Kungurian) (Schneider et al., 2006; Michel et al., 2015). Furthermore, the fluvial deposits of the LRU herein studied are interlayered with volcaniclastic deposits. In fact, the volcaniclastic materials characterise this unit, being the most abundant of the CnH section of the LRU succession. These volcanic deposits are common in the Carboniferous–Permian basins of SW Europe (Lago et al., 2004; Dallagiovanna et al., 2009; Maino et al., 2012; Gretter et al., 2015). In the Catalan Pyrenees, volcanism was product of an extensive tectonic dynamics in intramountain basins (Martí, 1996). Its chronology ranges from the Pennsylvanian to the Guadalupian, and resulted in a wide range of igneous rocks, from calc-alkaline pyroclastic rhyolitic-andesitic rocks to alkaline basalts (Martí, 1996, 2022; Pereira et al., 2014).

Mujal et al. (2018) suggested a semi-arid to arid climatic conditions with strong seasonal precipitations for the Lower Red Unit red-beds of the Erillcastell-Estac sub-basin. The LRU in the Castellar de n’Hug sub-basin records similar climatic conditions, highlighted by the presence of reddish colour, calcic pedotypes, the presence of calcified roots (rhizoliths) and green mottles, which reinforce the palaeoclimatic interpretation for the climatic tendency described by Mujal et al. (2018) (see also Lloret et al., 2021a). Also, Nagtegaal (1969) proposed a relatively flat and laterally extended landscape and Martí (1996) proposed a possible local modification of the weather due to the injection of water vapour during the explosive eruptions in the Lower Red Unit of the Pyrenees, as supported also by Mujal et al. (2018).

1107 Regarding the Upper Red Unit (Fig. 11), it documents the described transition to arid
1108 conditions in central and southern European Permian deposits (Roscher and Schneider,
1109 2006; Durand, 2008; Tabor and Poulsen, 2008; De la Horra et al., 2012; Mujal et al.,
1110 2017). In the study area, the palaeoenvironments of the first deposits after the
1111 disappearance of volcaniclastic material from the LRU correspond to playa lakes with
1112 ephemeral lacustrine water bodies (lowermost deposits of the lower URU). Desiccation
1113 marks are present in this sub-unit, becoming more common in the uppermost deposits,
1114 and are only interrupted locally by small channels (Figs. 2, 4, 11). However, the
1115 desiccation marks in the mudstone surfaces do not reach their maximum maturity until
1116 the upper URU deposits. This is indicated by the mud-crack patterns, with Y-junctions
1117 that give an hexagonal shape characteristic of repeated dry-wet cycles (Bohn et al., 2005;
1118 Goehring et al., 2010; Goehring, 2013). Some mudstone surfaces preserve a shallow
1119 depression in their limits with a smooth surface, whereas other mud-crack surfaces show
1120 considerable deeper gap space and a rougher surface. These differences suggest a major
1121 desiccation exposition in the deeper gap spaced mud-cracks. Despite both structures are
1122 observed along the URU succession, the first one is less common in the upper URU
1123 deposits, suggesting the aridification process and the increased seasonality of this sub-
1124 unit in comparison with the lower URU.

1125 In other Permian localities of the Catalan Pyrenees, the limit between the lower and upper
1126 URU is recorded as a paraconformity or sedimentary hiatus between both units (Gisbert,
1127 1981; Mujal et al., 2017). In the present study, this hiatus is recorded between the coarser
1128 sedimentary systems in the lower URU, immediately followed by mature ephemeral lake
1129 deposits of mudstone in the upper URU. This depositional shift reflects a transition to
1130 finer-grained sediments, an increasing seasonality and the dominance of mud-cracked
1131 surfaces. This boundary is also accompanied by the appearance of septariform nodules in
1132 mudstones. These septariform nodules have been also described as indicators of the limit
1133 between the lower and upper URU in the Cadí sub-basin (Coll de Terrers locality)
1134 considered as middle–late Permian (Mujal et al., 2017). Also, Gisbert (1981) described
1135 mudstones with septarian nodules (facies 4A2) as typical facies from the Upper Red Unit
1136 of the Catalan Pyrenees. According to this author, these facies would represent
1137 peripheral areas of the playa system with ephemeral lacustrine water bodies with an
1138 intense formation of pedogenetic nodules, which develop into septariform nodules with
1139 nucleus composed of volcanic tuffs. The presence of septariform nodules in the

1140 lower/upper URU boundary (facies *Ps*), could be explained by a progressive
1141 environmental change from peripherical floodplain deposits with ephemeral shallow
1142 lakes with a higher humidity, to a central area of a playa system, with more developed
1143 mud-cracks.

1144 Finally, the upper URU is composed of cyclic alternations, from massive mud-cracked
1145 surfaces of mudstones or very fine-grained sandstones (usually at the top of the mud-
1146 cracked level; see also Text S2 and Table S4). These facies coincide with the description
1147 of the facies 4A1 (Gisbert, 1981), typical from the URU deposits of the central areas of
1148 the Pyrenean Basin (Gisbert, 1981; Speksnijder, 1985; Götter et al., 2015; Mujal et al.,
1149 2016b, 2017). They correspond to playa deposits in distal alluvial systems distinguished
1150 by wide mud-cracks produced by recurrent desiccation events, with temporal lacustrine
1151 environments (Gisbert, 1981). The environmental interpretation of these deposits in the
1152 western European Permian basins is that they are correlated to floodplain events under a
1153 monsoonal regime (Roscher et al., 2011). The wet season would be represented by the
1154 accumulation of massive levels of mudstones, whereas the dry season would result in the
1155 formation of shallow ephemeral lacustrine ponds and mud-cracks that denote prolonged
1156 subaerial exposition and desiccation (Gisbert, 1981; Gisbert et al., 1985; Mujal et al.,
1157 2016b, 2017). Another Permian succession of the peri-Tethyan region with a similar
1158 depositional system is the Salagou Formation (Lòdeve Basin, France), showing cyclic
1159 deposits of massive clayish siltstones with abundant desiccation cracks (Schneider et al.,
1160 2006). These deposits were firstly interpreted as Wuchiapingian (late Permian). However,
1161 recent studies suggest an age of topmost Artinskian–basal Roadian (Michel et al., 2015).
1162 Also, the sediments of La Lieude Formation (overlying the Salagou Formation) dated as
1163 Roadian–Wordian, were deposited in fluvio-alluvial environments. Similar depositional
1164 conditions are observed in the Permian basins of Provence (France). While the Le Motte
1165 Formation (late Capitanian) includes playa deposits with desiccation cracks and
1166 interlayered green coloured levels, the Pradineaux Formation (Roadian–Wordian)
1167 preserve streamflow and ignimbrite deposits (Durand, 2008; Marchetti et al., 2022b). In
1168 the Iberian Ranges, even though they present slightly younger deposits, similar climatic
1169 conditions are observed (De la Horra et al., 2012). These sedimentary materials, more
1170 related to alluvial fan, braided river and floodplain systems of the Alcotas Formation
1171 (Capitanian–Wuchiapingian), denote a climatic alternation of wet to arid/semiarid long-
1172 term phases (De la Horra et al., 2012). Similar Guadalupian and Lopingian successions

1173 recording marked seasonality have been reported from the central Pangaean Moradi
1174 Formation of Niger (Tabor et al., 2011; Smith et al., 2015; Looy et al., 2016) and the
1175 southern Pangaean Karoo Basin of southern Africa (Gastaldo et al., 2005, 2015; Belica et
1176 al., 2017; Marchetti et al., 2019c).

1177

1178 *5.2. Vertebrate fauna of the Pyrenean Basin*

1179 In agreement with the sedimentological record, the vertebrate ichnological assemblage
1180 herein reported shows changes along the stratigraphic succession, revealing two different
1181 tetrapod ichnoassociations: a first one in the Lower Red Unit (LRU) and lower Upper
1182 Red Unit (lower URU), and a second one in the upper Upper Red Unit (upper URU).

1183 The tetrapod ichnoassociation observed in the LRU and the lower URU is characterised
1184 by the presence of non-amniote tracks, and the absence of medium- to large-sized tracks
1185 (Figs. 10, 11). In the LRU, it includes *Batrachichnus* (IPS126631), *Dromopus* (CnH-112-
1186 1, CnH-112-2 and IPS126632) and *Hyloidichnus* (IPS126632). Tracks are scarce and are
1187 mostly restricted to floodplain fine-laminated mudstones (facies *Fl*) corresponding to
1188 crevasse splay deposits. On the other hand, these layers contain sometimes bioturbated
1189 surfaces, with invertebrate traces (especially *Rusophycus*), triopsid and clam shrimps
1190 body fossils and plant remains (see Text S1). However, the presence of ichnofossils is
1191 scarce in the studied LRU unit, including several laminated deposits barren of fossils,
1192 which are usually replaced by deposits of higher-energetic fluvial events (with presence
1193 of facies *Sl*, *Ss* and *Sm*). The fine-laminated mudstone beds with biotic activity represent
1194 rhythmical fluvial deposits of seasonal water bodies with suitable conditions for the
1195 establishment of relatively complex ecosystems, including small- to medium-sized
1196 tetrapods.

1197 Tetrapod tracks of this first ichnoassociation are more abundant in the lower URU (14–
1198 18 m from the CR section), including *Batrachichnus*, *Dromopus* isp., *Hyloidichnus* isp.
1199 and *Characichnos* isp. This ichnofauna appears related to shallow subaqueous conditions
1200 (fine-laminated mudstones with presence of unidirectional ripples, related with playa-
1201 lakes, facies *Fl*) and to dry subaerial conditions (massive mud-cracked mudstones, facies
1202 *Fm*). Firstly, some surfaces with poorly developed mud-cracks preserving *Dromopus* isp.
1203 and *Hyloidichnus* in concave epirelief appear at the 14 m of the CR section. While
1204 *Hyloidichnus* is only represented by partial impressions, *Dromopus* is represented by

1205 numerous specimens, though always isolated. In a fine-laminated mudstone layer (just
1206 one metre above, at 15 m of the CR section), some samples (IPS88731 and IPS88734)
1207 preserve ichnites in convex hyporelief in surfaces without mud-cracks. These samples are
1208 rich in small-sized and medium-sized *Batrachichnus* and preserve partial imprints of
1209 large-sized *Batrachichnus* and *Dromopus*. Also, numerous relatively small *Characichnos*
1210 isp. traces appear in both samples, being related with the small-sized *Batrachichnus*, as
1211 also identified elsewhere (Lucas et al., 2011b; Petti et al., 2014; Mujal et al., 2016a).
1212 Despite the environmental transition from a floodplain into a playa-lake recorded in the
1213 lower URU, these shallow aquatic bodies share the ichnodiversity with the layers with
1214 tetrapod imprints observed in the LRU, showing that small-sized temnospondyls were the
1215 dominant tetrapods, together with small-sized reptiles. Instead, the drier levels were
1216 dominated by small- to medium-sized reptiles. This is somewhat similar to the
1217 palaeoenvironmental distribution identified by Mujal et al. (2016a) on the LRU of the
1218 western Catalan Pyrenees (see further discussion below). The ichnofauna and facies in
1219 the lower URU suggest a change: despite the presence of temnospondyl tracks
1220 (*Batrachichnus* and *Characichnos*) in the shallow water bodies, the dry land ichnofaunas
1221 start to be dominated by tracks of non-diapsid eureptiles (*Hyloidichnus*) and araeoscelid
1222 diapsids and non-varanodontine varanopids (*Dromopus*), but with the absence of
1223 “pelycosaur”-grade synapsids (Schneider et al., 2020; Marchetti et al., 2022a).

1224 The palaeodiversity and palaeoenvironmental settings of this first tetrapod
1225 ichnoassociation are similar to the ones discussed by Mujal et al. (2016a, 2018) in fluvial
1226 deposits interbedded with volcaniclastic material westwards. These authors described an
1227 ichnoassemblage divided in two environmentally constrained ichnoassociations. In
1228 comparison with these ichnoassociations, the ichnites of the first ichnoassociation
1229 described in this work are related to floodplain deposits, represented by *Batrachichnus*,
1230 *Dromopus* and deformed impressions of *Hyloidichnus*. The ichnoassociation 1 described
1231 by Mujal et al. (2016a) and the LRU ichnites of the present work remark the presence of
1232 fauna dependent of water bodies, dominated by amphibians and small amniote tracks.
1233 Although reduced, the composition of the first ichnoassociation herein described
1234 generally fits with the ichnofauna related with the *Erpetopus* biochron (Lucas, 2007;
1235 Fillmore et al., 2012; Voigt and Lucas, 2013, 2018; Schneider et al., 2020; Marchetti et
1236 al., 2022b).

1237 The absence of large-sized animal might be as a result of an environmental bias. Large-
1238 sized ichnotaxa (e.g., *Limnopus*, *Ichniotherium*, *Amphisauropus*, *Hylodichnus*,
1239 *Tambachichnium* and *Dimetropus*) are common in Cisuralian ichnoassemblages from
1240 European, northern African, and North American strata (Gand and Durand, 2006; Voigt
1241 and Lucas, 2018; Schneider et al., 2020; Marchetti et al., 2021b). In fact, *Limnopus* and
1242 *Dimetropus* have been recorded in the Artinskian deposits of the Erillcastell-Estac sub-
1243 basin (Mujal et al. 2016a). In the same way, it is striking the lack of non-amniote tracks
1244 in similar palaeoenvironments from the Cisuralian of Mallorca (Matamales-Andreu et al.,
1245 2022). As discussed by these authors, this could be related to a
1246 palaeoenvironmental/taphonomic bias of non-amniote tracks linked to their low
1247 preservation potential due to the settings where the trackmakers inhabited (see also Mujal
1248 and Schoch, 2020). In the same way, these ecosystems were likely under wet conditions,
1249 allowing for the establishment of large non-amniotes. The absence of these ichnogenera
1250 in the studied area could be related to an environmental bias, maybe due to more localised
1251 drought areas that would preclude the presence of these faunas. The increasing arid
1252 conditions during the Cisuralian probably affected the diversity of the Iberian tetrapod
1253 faunas, particularly non-amniotes such as temnospondyls, with a life cycle related to
1254 water bodies (Schoch, 2014). However, the presence of large-sized non-amniotes has
1255 been described in strongly seasonal dry environments, such as the Nigerian
1256 temnospondyls from the Moradi Formation (central Pangaea) (Sidor et al., 2005; Steyer
1257 et al., 2006; Smith et al., 2015).

1258 Therefore, even though the composition of the first tetrapod ichnoassociation described
1259 in this work matches with the general tendencies of the earliest *Erpetopus* biochron in the
1260 northern hemisphere, the present results might be biased due to the scarce fossil material
1261 available and the possible presence of environmental and taphonomical biases. Regarding
1262 the presence of non-diapsid reptiles, the absence of “pelycosaurs”, but still a dominant
1263 presence of small- to medium-sized temnospondyls in the lower URU, tentatively points
1264 this first tetrapod ichnoassociation to the late *Dromopus*–early *Erpetopus* biochrons
1265 (Artinskian–Kungurian; Voigt and Lucas, 2018; Schneider et al. 2020).

1266 Regarding the second tetrapod ichnoassociation in the study area, the fluvial settings
1267 present in the LRU and lower URU disappear in the upper URU, giving path to ephemeral
1268 playa-lake conditions. This ichnoassociation contains footprints correlated to large-sized
1269 amniotes (*Brontopus antecursor* and *Pachypes*), but sporadic small- to medium-sized

1270 amniotes (represented by *Dromopus* and *Hyloidichnus*) are also present in extensively
1271 exposed surfaces with mud-cracks (Figs. 11, 12). These deposits correspond to shallow
1272 water playa-lakes (architectural element *L*). As the previous ichnoassociation, this second
1273 one also contains bioturbated surfaces, with invertebrate trace fossils identified as *Acripes*
1274 and *Rusophycus*, triopsid and clam shrimps body fossils, an insect wing and plant
1275 remains. This ichnoassociation is also characterised by the absence of non-amniote tracks.
1276 As abovementioned, the *Erpetopus* biochron starts with the decrease of non-amniote taxa
1277 (Schneider, 2020; Marchetti et al., 2022a). Also, in the late Cisuralian–early Guadalupian,
1278 a replacement took place among tetrapod communities, affecting non-amniotes as well as
1279 to-date “pelycosaur” dominated assemblages due to the radiation of great number of
1280 parareptiles and therapsid taxa (Lucas, 2017, 2018; Marchetti et al., 2022a). This event
1281 could be recorded in the upper URU by the presence of *Brontopus* and *Pachypes*.

1282 The main distinctive feature of this second ichnoassociation is the presence of large
1283 therapsid and parareptile tracks. Based on osteological record, a global faunal transition
1284 in the Guadalupian is related to basal synapsid extinction and the worldwide radiation of
1285 therapsids, especially dinocephalians, as also supported by the footprint record (Lucas,
1286 2006, 2009a, 2018; Day et al., 2015; Voigt and Lucas, 2018; Marchetti et al., 2019c;
1287 Schneider et al., 2020). The *Brontopus* tracks herein reported are an early record of this
1288 transition in the Iberian Peninsula. This ichnogenus is correlated to dinocephalian
1289 anteosaurids as most probable trackmakers (Marchetti et al., 2019c). These therapsids
1290 were the most widespread and abundant tetrapods during the Guadalupian, and their
1291 presence ceased at the end this epoch, in the dinocephalian extinction event (Lucas,
1292 2009a; Day et al., 2015; Voigt and Lucas, 2018; Schneider et al., 2020). *Brontopus*
1293 *antecursor* was first recovered in French Guadalupian deposits (Gand et al., 1995; Gand
1294 and Durand, 2006), where it is accompanied by other relatively large tapinocephalid-
1295 titanosuchid dinocephalian therapsid and parareptile tracks, like *Brontopus giganteus* and
1296 *Pachypes ollieri*, respectively (Marchetti et al., 2019c, 2021a).

1297 The presence of *Hyloidichnus* and *Dromopus* seems to be a constant along the Permian
1298 succession of the study area. It has been suggested that sauropsids (including *Hyloidichnus*
1299 trackmakers) underwent an expansion during the late Artinskian in fluvio-lacustrine,
1300 aeolian and near-marine environments of North America and Europe, replacing non-
1301 amniote faunas, due to their better adaption to dry environments (Modesto et al., 2016,
1302 Marchetti et al., 2019e, 2022a; Matamales-Andreu et al., 2021b). Following the

1303 aridification and increasing seasonality trend observed in Permian deposits of the
1304 Pyrenean Basin, the environmental conditions likely favoured the establishment of these
1305 reptiles in the floodplains. This could explain the increasing presence of captorhinomorph
1306 tracks (especially *Hyloidichnus*) in the URU. Fern fossil remains have been recovered in
1307 the upper URU (see Text S1), being a possible food source for these animals. In view of
1308 the *Hyloidichnus* tracks previously described in the Cisuralian deposits of the Erillcastell-
1309 Estac sub-basin (western Catalan Pyrenees), the studied tracks show a similar size to those
1310 described by Voigt and Haubold (2015) and Mujal et al. (2016a), the latter ichnites being
1311 slightly larger. On the other hand, in comparison with other *Hyloidichnus* tracks
1312 recovered in nearby Permian basins, the herein studied tracks are similar in shape and
1313 size to those from Menorca, southern France and Morocco (Voigt et al., 2010; Logghe et
1314 al., 2021, Marchetti et al., 2022b; Matamales-Andreu et al., 2021b).

1315 On the other hand, *Dromopus* is the most wide-spread ichnogenus along the succession,
1316 appearing in dry and subaquatic palaeoenvironments. This suggests an adaptative
1317 capability of the trackmakers to proliferate in different environments, or that this
1318 ichnogenus includes a wide variability of trackmakers, possibly explaining the wide
1319 distribution of this ichnotaxon (Schneider et al., 2020; Marchetti et al., 2022a, 2022b). In
1320 the same way as in the first ichnoassociation, the presence of *Dromopus* and *Hyloidichnus*
1321 in the upper URU tends to be more related to moist and soft substrates, sometimes
1322 accompanied by digit drags. This fact could be due to a taphonomic bias. After the track
1323 impression, these soft surfaces would have undergone a process of dehydration,
1324 manifested by desiccation marks and raindrop impressions. In hard substrates, the small
1325 sized trackmakers would not be heavy enough to produce imprints or these would
1326 disappear in the desiccation process, and only large-sized tetrapods would be recorded.
1327 Thus, the lesser abundance of *Dromopus* between the first ichnoassociation (the most
1328 abundant ichnogenus) in comparison with the second one (only three partial specimens)
1329 is most probably related to preservation/taphonomy biases.

1330 On a wider perspective, the reduction of non-amniote ichnotaxa, the appearance of
1331 therapsids and parareptiles and the constant presence of eureptile tracks in the
1332 stratigraphically youngest deposits seem to follow the ichnodiversity trend of Permian
1333 basins of the peri-Tethys (Voigt et al., 2010; Mujal et al., 2017; Schneider et al., 2020;
1334 Marchetti et al., 2017, 2019b, 2022b). These widespread ichnoassemblages in equatorial
1335 areas of Pangaea would result from faunistic corridors (areas with more humid conditions

1336 than the general arid settings) that allowed tetrapods to spread. In the same way, the
1337 previous (ichno-) faunas to the Guadalupian extinction event observed in intramountain
1338 basins of the peri-Tethyan region, tend to show similar compositions (Schneider et al.,
1339 2020), highlighting the continuous communication in continental basins of eastern
1340 equatorial Pangaea.

1341

1342 *5.3. Age constraints of the Permian succession*

1343 The analysed Permian succession is >900 metres long. Magnetostratigraphic samples
1344 from the Lower Red Unit (LRU) and the Upper Red Unit (URU) indicate that this
1345 succession falls within the Kiaman Reverse Superchron, which lasted from the late
1346 Carboniferous to the late Guadalupian (~318–267 Ma; Hounslow and Balabanov, 2018;
1347 Brandt et al., 2021). This wide age range is further constrained by previous radiometric
1348 dating (Pereira et al., 2014) and biostratigraphic data.

1349 Pereira et al. (2014) proposed an age of 290–286 Ma (Artinskian) for a Castellar de n’Hug
1350 ignimbrite of the LRU (Fig. 2), corresponding to the Artinskian. Most of the analysed
1351 crystals of the ignimbrite located in the LRU at 350 m of the base of CnH section yield a
1352 mean age of 290 ± 1.2 Ma, with the youngest population of crystals providing an age of
1353 283.4 ± 1.9 Ma (late Artinskian–early Kungurian), as the best estimation of depositional
1354 age (Pereira et al., 2014; Fig. 2), suggesting a late Cisuralian age (late *Dromopus*–early
1355 *Erpetopus* biochron; Figs. 2, 10, 13).

1356 The presence of *Brontopus* in the upper URU suggests a Guadalupian age for this
1357 succession in the study area, because this ichnotaxon is considered a biomarker of this
1358 epoch, defining the *Brontopus* sub-biochron (Marchetti et al., 2019d; Schneider et al.,
1359 2020). A Guadalupian age for the upper URU in the Castellar de n’Hug sub-basin
1360 contrasts with the age inferred westwards in the Pyrenean Basin (Mujal et al.,
1361 2017). Therefore, the URU might have different ages in different regions (likely, sub-
1362 basins) of the Pyrenean Basin, even if the stratigraphic stacking and palaeoenvironmental
1363 succession in general is similar (e.g., Gisbert, 1981; Speksnijder, 1985; Mujal et al.,
1364 2017). This might be supported by the fact that other palaeogeographically close Permian
1365 basins such as the French Lodèvre and Provence basins are built up by very similar
1366 sedimentological successions but of clearly different Permian ages (e.g., Schneider et al.,
1367 2006; Durand, 2008; Michel et al., 2015; Logghe et al., 2021; Marchetti et al., 2022b).

1368 Based on previous considerations, together with the absence of characteristic ichnotaxa
1369 from the late Guadalupian–Lopingian, such as *Dolomitipes*, *Karoopes*, *Capitosauroides*,
1370 *Dicynodontipes*, *Rhynchosauroides* or archosauromorph ichnogenera (Schneider et al.,
1371 2020; Marchetti et al., 2022b), we propose a Roadian–early Wordian age (early–middle
1372 Guadalupian) for the upper URU tetrapod ichnoassociation in the studied succession.
1373 These chronologies fit with the nearest recorded dinocephalian ichnoassemblages in La
1374 Lieude Formation (Lodève Basin, France) and Pradineaux Formation (Provence, France)
1375 (Zheng et al., 1992; Durand, 2008). Finally, the upper URU deposits stratigraphically
1376 above the last occurrence of *Brontopus*, which are >100 m thick, still show reverse
1377 polarity and are therefore likely still within the Kiaman Superchron, thus suggesting a
1378 middle Wordian age at most.

1379

1380 6. Conclusions

1381 A detailed stratigraphical and sedimentological study of the Permian succession from the
1382 central-eastern Catalan Pyrenees (NE Iberian Peninsula) has allowed to characterise the
1383 two depositional units. Firstly, the Lower Red Unit (LRU, Artinskian–Kungurian) is
1384 composed of volcaniclastic material interbedded with alluvial deposits. Secondly, the
1385 Upper Red Unit (URU, Kungurian–Guadalupian) can be divided in two depositional
1386 stages, a coarser sub-unit more related to peripheral floodplain deposits (lower URU) and
1387 a second sub-unit deposited under monsoonal conditions consisting of a repetition of
1388 flooding events exposed to drier conditions in a playa-lake system (upper URU). It is
1389 possible to identify an aridification process from the fluvial setting at the base of the
1390 succession to seasonal water bodies gradually becoming more common and exposed
1391 during prolonged periods of desiccation at the top.

1392 The tetrapod fossil record of the Pyrenean Basin shows the evolution of the faunas during
1393 the Cisuralian and the Guadalupian, as observed elsewhere. Two different tetrapod
1394 ichnoassociations have been identified: (1) an older ichnoassociation composed of tracks
1395 and trackways of small-medium size related to amphibian-eureptile trackmakers
1396 inhabiting shallow water bodies of fluvial environments of the LRU and lower URU; this
1397 ichnoassociation corresponds to the early *Erpetopus* biochron (Artinskian–Kungurian
1398 ages); (2) a second tetrapod ichnoassociation, recorded in shallow lacustrine deposits in
1399 the upper URU, dominated by tracks of medium-large size animals related to

1400 dinocephalian therapsids, but also with the presence of eureptile and parareptile tracks.
1401 The presence of *Brontopus antecursor* allows to assign the second ichnoassociation to the
1402 *Brontopus* sub-biochron, suggesting an early–middle Guadalupian age. In comparison to
1403 other Permian red-beds of the Iberian Peninsula, and despite the similar lithologies and
1404 palaeoenvironmental settings observed, the ichnoassociations denote different faunistic
1405 compositions. The whole ichnoassemblage shows a similar composition to that of other
1406 Permian peri-Tethyan basins, suggesting a close contact and interchange of the tetrapod
1407 faunas within this palaeoregion.

1408

1409 Acknowledgements

1410 We acknowledge support from the CERCA programme (ICP) from the Generalitat de
1411 Catalunya and the research projects “Evolució dels ecosistemes amb faunes de vertebrats
1412 del Permià i el Triàsic de Catalunya” (ref. 2014/100606), “Evolució dels ecosistemes
1413 durant la transició Paleozoic–Mesozoic a Catalunya” (ref. CLT009/18/00066) and “El
1414 final d’una Era i el sorgiment dels ecosistemes moderns: les faunes de vertebrats del
1415 Carbonífer al Triàsic de Catalunya (ref. ARQ001SOL-167-2022 - CLT009_22_000020)
1416 based at the ICP and financially supported by the Departament de Cultura (Generalitat de
1417 Catalunya). Our special thanks to Dr. Jean-Sébastien Steyer (MNHN, Paris), Dr. Romain
1418 Garrouste (MNHN, Paris), Dr. Mireia Plà and Daniel Falk (University College Cork) for
1419 fieldwork support. We thank Dr. Josep Gisbert (University of Zaragoza, Zaragoza) for
1420 sharing stratigraphic logs for comparison. We thank Dr. Lorenzo Marchetti (MfN, Berlin)
1421 for sharing a 3D model of *Brontopus antecursor* for comparison. Thanks to Terradron
1422 (Jaume Balagué) for UAV drone aerial images. Joan Casòliva and the Natural Park of
1423 Cadí-Moixeró are acknowledged for logistic support and permission for field actions. We
1424 thank Dr. David P. Groenewald (ICP) for a proofread of the manuscript. We thank Roc
1425 Olivé for the artwork, supported by a project of the Fundación Española para la Ciencia
1426 y la Tecnología (Ministerio de Ciencia e Innovación, Spanish Government). C.J.S. is
1427 granted by a FI AGAUR fellowship (ref. 2020 FI_B 00472) funded by the Secretaria
1428 d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de
1429 Catalunya and the European Social Fund. The present manuscript is part of the PhD thesis
1430 of C.J.S. within the Geology PhD program of the Universitat Autònoma de Barcelona.
1431 This work is part of the Ramon y Cajal grant to J.F. [RYC2021-032857-I] financed by

1432 MCIN/AEI/10.13039/501100011033 and the European Union «NextGenerationEU» /
1433 PRTR. C.J.S. and J.F. are members of the consolidated research group (GRC) 2021 SGR
1434 01184. J.F. acknowledges support of the grant PID2020-117118GB-I00 funded by
1435 Agencia Estatal de Investigación (MCIN/AEI/10.13039/501100011033). A.B. is
1436 supported by a María Zambrano Fellowship (funded by Ministerio de Universidades of
1437 the Spanish Government, the Plan de Recuperación, Transformación y Resiliencia and
1438 the European Union «Next Generation». A.B. acknowledges the support of the RNM 190
1439 (Basin Analysis) group of the Universidad the Granada. We acknowledge the reviewers
1440 Dr. Lorenzo Marchetti and Dr. Abdelouahed Lagnaoui for comments and suggestions,
1441 and Prof. Howard Falcon-Lang for editorial work.

1442 Data Availability

1443 Datasets (raw data and 3D models) related to this article can be found at MorphoSource
1444 (ark:/87602/m4/517940, ark:/87602/m4/517937, ark:/87602/m4/517933,
1445 ark:/87602/m4/517930), an open-source online 3D data repository hosted by Duke
1446 University Research Computing.

1447 For review purposes the following link provide access to the raw data and 3D models:
1448 https://www.morphosource.org/projects/000515081/temporary_link/xSQfZBS8Ygz9XTwB3YfHMxhp?locale=en
1449

1450

1451 References

1452 Allen, L.F., Stimson, M. R., King, O.A., Norrad, R.E., Lucas, S.G., Mann, A., Hinds, S.J.,
1453 Park, A.F., Calder, J.H., Maddin, H., Montplaisir, M., 2022. A *Batrachichnus*
1454 *salamandroides* trackway from the Minto Formation of central New Brunswick,
1455 Canada: implications for alternative trackmaker interpretations. *Atl. Geol.* 58, 239–
1456 260. <https://doi.org/10.4138/atlgeo.2022.010>

1457 Barrachina, A., Martí, J., 1986. Las ignimbritas de Castellar N'Hug (Pirineo Catalán).
1458 *Acta Geol Hisp.* 21, 561–568.

1459 Belica, M.E., Tohver, E., Pisarevsky, S.A., Jourdan, F., Denyszyn, S., George, A.D.,
1460 2017. Middle Permian paleomagnetism of the Sydney Basin, Eastern Gondwana:
1461 testing Pangea models and the timing of the end of the Kiaman Reverse Superchron.
1462 *Tectonophysics* 699, 178–198. <https://doi.org/10.1016/j.tecto.2016.12.029>

1463 Benton, M.J., Ruta, M., Dunhill, A.M., Sakamoto, M., 2013. The first half of tetrapod
1464 evolution, sampling proxies, and fossil record quality. *Palaeogeogr. Palaeoclimatol.*
1465 *Palaeoecol.* 372, 18–41. <https://doi.org/10.1016/j.palaeo.2012.09.005>

1466 Bohn, S., Pauchard, L., Couder, Y., 2005. Hierarchical crack pattern as formed by
1467 successive domain divisions. *Phys. Rev. E* 71, 046214

1468 Brandt, D., Ernesto, M., Constable, C., 2021. Consistent and contrasting aspects of the
1469 geomagnetic field across epochs with distinct reversal frequencies revealed by
1470 modeling the Kiaman superchron. *Geochem. Geophys. Geophys.* 22, e2021GC009866.
1471 <https://doi.org/10.1029/2021GC009866>

1472 Branney, M.J., Kokelaar, P., 2002. Pyroclastic density currents and the sedimentation of
1473 ignimbrites. *Geol. Soc. Lond. Mem.* 27, London. 192 pp.

1474 Broutin, J., Gisbert, J., 1985. Entorno paleoclimático y ambiental de la flora stephano-
1475 autuniense del Pirineo catalán. In: *Compte rendus Dixième International de*
1476 *Stratigraphie et de Géologie du Carbonifère*, pp. 53–66.

1477 Buchwitz, M., Luthardt, L., Marchetti, L., Trostheide, F., Voigt, S., Schneider, J.W.,
1478 2017. A Middle to Late Permian tetrapod tracksite from northern Germany. In
1479 Bordy, E. (ed.) *2nd conference of continental ichnology, Nuy Valley, Western Cape,*
1480 *South Africa, Abstract Book*, 15 pp.

1481 Cisneros, J.C., Day, O.M., Groenenwald, J., Rubidge, B., 2020. Small footprints expand
1482 Middle Permian amphibian diversity in the South African Karoo. *Palaios* 35 (1), 1–
1483 11. <https://doi.org/10.2110/palo.2018.098>

1484 Cortesogno, L., Cassinis, G., Dallagiovanna, G., Gaggero, L., Oggiano, G., Ronchi, A.,
1485 Seno, S., Vanossi, M., 1998. The post-Variscan volcanism in the Late Carboniferous–
1486 Permian sequences of Ligurian Alps, Southern Alps and Sardinia. *Lithos* 45, 305–
1487 328.

1488 Cortesogno, L., Gaggero, L., Ronchi, A., Yanev, S., 2004. Late orogenic magmatism
1489 and sedimentation within Late Carboniferous to Early Permian basins in the Balkan
1490 terrane (Bulgaria): geodynamic implications. *Int. J. Earth. Sci.* 93, 500–520.

1491 Da Silva, R.C., Sedor, F.A., Fernandes, A.C.S., 2012. Fossil footprints from the Late
1492 Permian of Brazil: an example of hidden biodiversity. *J. South Am. Earth Sci.* 38,
1493 31–43.

1494 Dalla Vecchia, F.M., Ponton, M., Muscio, G., 2012. Two new ichnosites from the Permo-
1495 Triassic of Carnic Alps (Friuli Venezia Giulia, NE Italy). *Gortania* 34, 41–50.

1496 Dallagiovanna, G., Gaggero, L., Maino, M., Seno, S., Tiepolo, M., 2009. U-Pb zircon
1497 ages for post-Variscan volcanism in the Ligurian Alps (northern Italy). *J. Geol. Soc.*
1498 London 166, 101–114. <https://doi.org/10.1144/001676492008-027>

1499 Day, M.O., Rubidge, B.S., 2021. The Late Capitanian Mass Extinction of terrestrial
1500 vertebrates in the Karoo Basin of South Africa. *Front. Earth Sci.* 9:631198.
1501 <https://doi.org/10.3389/feart.2021.631198>

1502 Day, M.O., Ramezani, J., Bowring, S.A., Sadler, P.M., Erwin, D.H., Abdala, F., Rubidge, B.S., 2015. When and how did the
1503 terrestrial mid-Permian mass extinction occur? Evidence from the tetrapod record of
1504 the Karoo Basin, South Africa. *Proc. Royal Soc. B.* 282 (1811), 1–8.
1505 <https://doi.org/10.1098/rspb.2015.0834>

1506 De Klerk, W.J., 2002. A dicynodont trackway from the *Cistecephalus* assemblage zone
1507 in the Karoo, east of Graaff-Reinet, South Africa. *Palaeont. Afr.* 38, 73–91.

1508 De la Horra, R., Galán-Abellán, A.B., López-Gómez, J., Sheldon, N.D., Barrenechea,

1509 J.F., Luque, F.J., Arche, A., Benito, M.I., 2012. Paleoecological and
 1510 paleoenvironmental changes during the continental Middle-Late Permian transition
 1511 at the SE Iberian Ranges, Spain. *Glob. Planet. Change* 94–95, 46–61.
 1512 <https://dx.doi.org/10.1016/j.gloplacha.2012.06.008>

1513 Demathieu, G.R.S., Torcida Fernández-Baldor, F., Urién Montero, P., Pérez-Lorente, F.,
 1514 2008. Icnitas de grandes vertebrados terrestres en el Pérmico de Peña Sagra
 1515 (Cantabria, España). Libro de resúmenes. XXIV Jornadas de la Sociedad Española
 1516 de Paleontología, 28–29.

1517 Dunne, E.M., Close, R.A., Button, D.J., Brocklehurst, N., Cashmore, D.D., Lloyd, G.T.,
 1518 Butler, R.J., 2018. Diversity change during the rise of tetrapods and the impact of
 1519 the 'carboniferous rainforest collapse'. *Proc. Royal Soc. B.* 285(1872), 20172730.
 1520 <https://doi.org/10.1098/rspb.2017.2730>

1521 Durand, M., 2008. Permian to Triassic continental successions in southern Provence
 1522 (France): an overview. *Boll. Soc. Geol. Ital.* 127, 697–716.

1523 Ellenberger, P., 1983. Sur l'intérêt paléontologique de la dalle à pistes de la Lieude
 1524 (commune de Mérifons, Hérault, France). Société de la Protection de la Nature du
 1525 Languedoc Roussillon Bulletin 1, 1–10.

1526 Falkingham, P.L., 2012. Acquisition of high resolution 3D models using free, open-
 1527 source, photogrammetric software. *Paleontol. Electron.* 15, 1–15. <https://doi.org/10.26879/264>

1529 Fillmore, D.L., Lucas, S.G., Simpson, E.L., 2012. Ichnology of the Mississippian Mauch
 1530 Chunk Formation, eastern Pennsylvania. *Bull. N. M. Mus. Nat. Hist Sci.* 54, 136.

1531 Fortuny, J., Bolet, A., Sellés, A.G., Cartanyà, J., Galobart, À., 2011. New insights on the
 1532 Permian and Triassic vertebrates from the Iberian Peninsula with emphasis on the
 1533 Pyrenean and Catalonian basins. *J. Iber. Geol.* 37(1), 65–86.
 1534 https://doi.org/10.5209/rev_JIGE.2011.v37.n1.5

1535 Francischini, H., Dentzien-Dias, P., Lucas, S.G., Schultz, C.L., 2018. Tetrapod tracks in
 1536 Permo-Triassic eolian beds of southern Brazil (Paraná Basin). *PeerJ* 6, e4764.
 1537 <https://doi.org/10.7717/peerj.4764>

1538 Gand, G., 1987. Les traces de Vertébrés tétrapodes du Permien français (paléontologie,
 1539 stratigraphie, paléoenvironnements). Dissertation thesis, Université de Bourgogne,
 1540 Dijon.

1541 Gand, G., 1988. Les traces de vertébrés tétrapodes du Permien français. PhD Thesis
 1542 Université de Bourgogne Edition Centre des Sciences de la Terre, Dijon.

1543 Gand, G., Durand, M., 2006. Tetrapod footprint ichno-associations from French Permian
 1544 basins. Comparisons with other Euramerican ichnofaunas. *Geol. Soc. Spec. Publ.*
 1545 265(1), 157–177. <https://doi.org/10.1144/GSL.SP.2006.265.01.07>

1546 Gand, G., Demathieu, G., Ballestra, F., 1995. La palichnofaune de vertébrés tétrapodes
 1547 du Permien supérieur de l'Estérel (Provence, France). *Palaeontogr. Abt.* 235, 97–
 1548 139.

1549 Gand, G., Kerp, H., Parsons, C., Martínez-García, E., 1997. Palaeoenvironmental and
 1550 stratigraphic aspects of the animal traces and plant remains in Spanish Permian red
 1551 beds (Peña Sagra, Canta-brian Mountains, Spain). *Geobios* 30(2), 295–318.

1552 Gand, G., Garric, J., Demathieu, G., Elleemberger, P., 2000. La palichnofaune de vertébrés
 1553 térapodes du Permien Supérieur du bassin de Lodève (Languedoc-France).
 1554 *Palaeovertebrata* 29, 1–82.

1555 Gascón, F., Gisbert, J., 1987. La evolución climática del Stephanense, Pérmico y
 1556 Buntsandstein del Pirineo catalán en base al estudio de paleosuelos. *Cuadernos de*
 1557 *Geología Ibérica* 11, 97–114.

1558 Gastaldo, R.A., Adendorff, R., Bamford, M., Labandeira, C.C., Neveling, J., Sims, H.,
 1559 2005. Taphonomic Trends of Macrofloral Assemblages Across the Permian–
 1560 Triassic Boundary, Karoo Basin, South Africa. *Palaios* 20 (5), 479–497.
 1561 <https://doi.org/10.2110/palo.2004.P04-62>

1562 Gastaldo, R.A., Kamo, S.L., Neveling, J., Geissman, J.W., Bamford, M., Looy, C.V.,
 1563 2015. Is the vertebrate-defined Permian-Triassic boundary in the Karoo Basin, South
 1564 Africa, the terrestrial expression of the end-Permian marine event? *Geology* 43,
 1565 939–942.

1566 Geinitz, H.B., 1861. *Dyas oder die Zechsteinformation und das Rothliegend: Die*
 1567 *animalischen Ueberreste der Dyas* (Vol. 1). Engelmann.

1568 Gilmore, G.W., 1927. Fossil footprints from the Grand Canyon II. *Smithson. Misc.*
 1569 *Collect.* 80, 1–78.

1570 Gisbert, J., 1981. Estudio geológico-petrológico del Estefaniense-Pérmico de la sierra del
 1571 Cadí (Pirineo de Lérida): Diagénesis y Sedimentología. PhD Thesis, Universidad de
 1572 Zaragoza, Spain.

1573 Gisbert, J., 1986. Els temps tardihercinians. A: Santa-nach, P. (Ed.), *Història Natural dels*
 1574 *Països Cata-lans, Geologia I*. Editorial Enciclopèdia Catalana, Barcelona, 197–242.

1575 Gisbert, J., Martí, J., Gascón, F., 1985. Guía de la excursión al Stephanense, Pérmico y
 1576 Triásico inferior del Pirineo catalán. II Coloquio de estratigrafía y paleogeografía
 1577 del Pérmico y Triásico de España, La Seu d'Urgell, 1–78.

1578 Goehring, L., 2013. Evolving fracture patterns: columnar joints, mud cracks and
 1579 polygonal terrain. *Philos. Trans. Royal Soc.* 371, 202120353,
 1580 <http://dx.doi.org/10.1098/rsta.2012.0353>

1581 Goehring, L., Conroy, R., Akther, A., Clegg, W.J., Routh, A.F., 2010. Evolution of mud-
 1582 crack patterns during repeated drying cycles. *Soft Matter* 6, 3562–3567.
 1583 <https://doi.org/10.1016/j.jpalaeo.2022.111181>

1584 Gretter, N., Ronchi, A., López-Gómez, J., Arche, A., De la Horra, R., Barrenechea, J.F.,
 1585 Lago, M., 2015. The Late Palaeozoic-Early Mesozoic from the Catalan Pyrenees
 1586 (Spain): 60 Myr of environmental evolution in the frame of the western peri-Tethyan
 1587 palaeogeography. *Earth Sci. Rev.* 150, 679–708.

1588 Gubin, Y.M., Golubev, V.K., Bulanov, V.V., Petuchov, S.V., 2003. Pareiasaurian tracks
 1589 from the Upper Permian of Eastern Europe. *Paleontol. J.* 37, 514–523.

1590 Haubold, H., 1970. Versuch der Revision der Amphibien-Fährten des Karbon und Perm.
 1591 *Freiberger Forschungshefte C* 260, 83–11.

1592 Haubold, H., 1971. *Ichnia Amphibiorum et Reptiliorum fossilium*. In: Wellnhofer, P.
 1593 (Ed.). *Encyclopedia of Paleoherpetology* 18. Fischer Verlag, Stuttgart and Portland,

1594 124 pp.

1595 1596 Haubold, H., 1996. Ichnotaxonomie und Klassifikation von Tetrapodenfährten aus dem
Perm. Hallesches Jahrbuch für Geowissenschaften B 18, 23–88.

1597 1598 Haubold, H. 2000. Tetrapodenfährten aus dem Perm-Kenntnisstand und Progress 2000.
Hallesches Jahrbuch für Geowissenschaften B 22, 1–16.

1599 1600 1601 Haubold, H., Lucas, S.G., 2001. Die Tetrapodenfährten der Choza Formation (Texas)
und das Artinsk-Alter der Redbed-Ichnofaunen des Unteren Perm. Hallesches
Jahrbuch für Geowissenschaften. B 23, 79–108.

1602 1603 1604 Haubold, H., Lucas, S.G., 2003. Tetrapod footprints of the lower permian choza
formation at Castle Peak, Texas. PalZ. 77, 247–261.
<https://doi.org/10.1007/bf03006940>

1605 1606 1607 Haubold, H., Sarjeant, W., 1973. Tetrapodenfährten aus dem Keele und Enville Groups
(Permokarbon; Stefan und Autun) von Shropshire und South Staffordshire,
Großbritannien. Zeitschrift der Dtsch. Gesellschaft., Berlin 1, 895–933.

1608 1609 1610 Haubold, H., Stäpf, H., 1998. The Early Permian tetrapod track assemblage of Nierstein,
Standenbühl Beds, Rotliegend, Saar-Nahe Basin, SW-Germany. Hallesches
Jahrbuch für Geowissenschaften B 20, 17–32.

1611 1612 Heyler, D., Lessertisseur, J., 1963. Pistes de Tetrapodes permiens dans la region de
Lodève (Hérault). Mem. Mus. Natl. Hist. Nat. 11, 125–221.

1613 1614 1615 1616 Hminna, A., Voigt, S., Saber, H., Schneider, J.W., Hmich, D., 2012. On a moderately
diverse continental ichnofauna from the Permian Ikakern Formation (Argana Basin,
Western High Atlas, Morocco). J. African Earth Sci. 68, 15–23.
<https://doi.org/10.1016/j.jafrearsci.2012.03.011>

1617 1618 1619 Hoffman, R., 2016. The end-Permian mass extinction. In: Mángano, M.G., Buatois, L.A.
(Eds.), The Trace-Fossil Record of Major Evolutionary Events. Precambrian and
Paleozoic Vol. 1. Springer, Dordrecht, pp. 325–349.

1620 1621 1622 Hounslow, M.W., Balabanov, Y.P., 2018. A geomagnetic polarity timescale for the
Permian, calibrated to stage boundaries. Geol. Soc. Spec. Publ. 450 (1), 61.
<https://doi.org/10.1144/SP450.8>

1623 1624 1625 1626 Izquierdo-Llavall, E., Casas-Sainz, A., Oliva-Urcia, B., Scholger, R., 2014.
Palaeomagnetism and magnetic fabrics of the Late Palaeozoic volcanism in the
Castejón-Laspaúles basin (Central Pyrenees). Implications for palaeoflow directions
and basin configuration. Geol. Mag. 151, 777–797.

1627 1628 1629 Juncal, M., Diez., J.B., Broutin, J., Martínez-García, E., 2016. Palynoflora from the
Permian Sotres Formation (Picos de Europa, Asturias, Northern Spain). Span. J.
Palaeontol. 31 (1), 85–94.

1630 1631 Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of
palaeomagnetic data. Geophys. J. Int. 62(3), 699–718.

1632 1633 Klein, H., Lucas, S.G., 2021. The Triassic tetrapod footprint record. Bul. N. M. Mus.
Nat. Hist. Sci. Bul. 83, 1–194.

1634 Koymans, M.R., Langereis, C.G., Pastor-Galán, D., van Hinsbergen, D.J.J., 2016.

1635 Paleomagnetism.org: An online multi-platform open source environment for
1636 paleomagnetic data analysis. *Comput. and Geosci.* 93, 127–137.
1637 <https://doi.org/10.1016/j.cageo.2016.05.007>

1638 Koymans, M.R., van Hinsbergen, D.J.J., Pastor-Galán, D., Vaes, B., Langereis, C.G.,
1639 2020. Towards FAIR Paleomagnetic Data Management Through
1640 Paleomagnetism.org 2.0. *Geochem. Geophys. Geophys.* 21(2), e2019GC008838.
1641 <https://doi.org/10.1029/2019GC008838>

1642 Lagnaoui, A., Voigt, S., Saber, H., Schneider, J.W., 2014. First occurrence of tetrapod
1643 footprints from Westphalian strata of the Sidi Kassem Basin, Central Morocco.
1644 *Ichnos* 21:4, 223–233. <https://doi.org/10.1080/10420940.2014.955096>

1645 Lagnaoui, A., Voigt, S., Belahmira, A., Saber, H., Klein, H., Hminna, A., Schneider, J.W.,
1646 2018. Late carboniferous tetrapod footprints from the Souss basin, western High
1647 Atlas mountains. *Morocco. Ichnos* 25 (2–3), 81–93.
1648 <https://doi.org/10.1080/10420940.2017.1320284>

1649 Lago, M., Arranz, E., Pocovi, A., Gale, C., Gil-Imaz, A., 2004. Permian magmatism and
1650 basin dynamics in the southern Pyrenees: a record of the transition from late
1651 Variscan transtension to early Alpine extension. In: Wilson, M., Neumann, E.-R.,
1652 Davies, G.R., Timmerman, M.J., Heeremans, M., Larsen, B.T. (Eds.), *Permoo-*
1653 *Carboniferous Magmatism and Rifting in Europe. Geol. Soc. Spec. Publ.*, 223, 439–
1654 464.

1655 Leonardi, G., 1987. *Glossary and Manual of Tetrapod Footprint Palaeoichnology*.
1656 Departamento Nacional de Produção Mineral, Brasilia, 117 pp.

1657 Leonardi , P., Conti , M.A., Leonardi , G., Mari-Otti , N., Nicosia, U., 1975. *Pachypes*
1658 *dolomiticus* n. gen. n.sp.; Pareiasaur footprint from the ‘Val Gardena
1659 Sandstone’(Middle Permian) in the western Dolomites (N. Italy).
1660 *Atti Accad. Naz. dei Lincei* 57, 221–232.

1661 LePage, B.A., Beauchamp, B., Pfefferkorn, H.W., Utting, J., 2003. Late Early Permian
1662 plant fossils from the Canadian High Arctic: a rare palaeoenvironmental/climatic
1663 window in northwest Pangea. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 191, 345–
1664 372.

1665 Liebrecht, T., Fortuny, J., Galobart, A., Müller, J., Sander, P.M., 2017. A large, multiple-
1666 tooth-rowed captorhinid reptile (Amniota: Eureptilia) from the Upper Permian of
1667 Mallorca (Balearic Islands, Western Mediterranean). *J. Vertebr. Paleontol.* 37
1668 (1),e1251936. <https://doi.org/10.1080/02724634.2017.1251936>

1669 Logghe, A., Mujal, E., Marchetti, L., Nel, A., Pouillon, J-M., Giner, S., Garrouste, R.,
1670 Steyer, J.-S., 2021. *Hyloidichnus* trackways with digit and tail drag traces from the
1671 Permian of Gonfaron (Var, France): New insights on the locomotion of
1672 captorhinomorph eureptiles. *Palaeogeogr. Palaeoclimatol. Palaeoecol.*, 573, 110436.
1673 <https://doi.org/10.1016/j.palaeo.2021.110436>

1674 Lloret, J., Ronchi, A., López-Gómez, J., Gretter, N., De la Horra, R., Barrenechea, J.F.,
1675 Arche, A., 2018. Syn-tectonic sedimentary evolution of the continental late
1676 Palaeozoic-early Mesozoic Erill Castell-Estac Basin and its significance in the
1677 development of the central Pyrenees Basin. *Sediment. Geol.* 374, 134–
1678 157. <https://doi.org/10.1016/j.sedgeo.2018.07.014>

1679 Lloret, J., De la Horra, R., López-Gómez, J., Barrenechea, J.F., Gretter, N., Ronchi, A.,
1680 2021a. Permian and Triassic paleosols in the fluvial-lacustrine record of the central
1681 Pyrenees Basin, Spain: A stratigraphic tool for interpreting syn-tectonic sedimentary
1682 evolution and paleoclimate. *Newslett. Stratigr.* 54 (3), 377–404. <https://doi.org/10.1127/nos/2021/0625>

1684 Lloret, J., López-Gómez, J., Heredia, N., Martín-González, F., De la Horra, R., Borrue-
1685 Abadía, V., Ronchi, A., Barrenechea, J.F., García-Sansegundo, J., Galé, C., Ubide,
1686 T., Gretter, N., Diez, J.B., Juncal, M., Lago, M., 2021b. Transition between Variscan
1687 and Alpine cycles in the Pyrenean-Cantabrian Mountains (N Spain): Geodynamic
1688 evolution of near-equator European Permian basins, *Glob. Planet. Change* 207,
1689 103677. <https://doi.org/10.1016/j.gloplacha.2021.103677>

1690 Looy, C.V., Ranks, S.L., Chaney, D.S., Sanchez, S., Steyer, J.S., Smith, R.M.H., Sidor,
1691 C.A., Myers, T.S., Ide, O., Tabor, N.J., 2016. Biological and physical evidence for
1692 extreme seasonality in central Permian Pangea. *Palaeogeogr. Palaeoclimatol.*
1693 *Palaeoecol.* 451, 210–226.

1694 López-Gómez, J., Martín-González, F., Heredia, N., De la Horra, R., Barrenechea, J.F.,
1695 Cadenas, P., Juncal, M., Diez, J.B., Borrue-Abadía, V., Pedreira, D., García-
1696 Sansegundo, J., Farias, P., Galé, C., Lago, M., Ubide, T., Fernández-Viejo, G., Gand,
1697 G., 2019. New lithostratigraphy for the Cantabrian Mountains: a common
1698 tectonostratigraphic evolution for the onset of the Alpine cycle in the W Pyrenean
1699 realm, N Spain. *Earth Sci. Rev.* 188, 249–271.

1700 Lucas, S.G., 2006. Global Permian tetrapod biostratigraphy and biochronology. In:
1701 Lucas, S.G., Cassinis, G., Schneider, J.W. (Eds.), *Non-Marine Permian*
1702 *Biostratigraphy and Biochronology*. Geol. Soc. London, Special Publications 265
1703 (1), 65–93.

1704 Lucas, S.G., 2007. Tetrapod footprint biostratigraphy and biochronology. *Ichnos* 14 (1–
1705 2), 5–38. <https://doi.org/10.1080/10420940601006792>

1706 Lucas, S.G., 2009a. Global middle Permian reptile mass extinction: the dinocephalian
1707 extinction event. *Geol. Soc. Am. Abstr. Programs* 41 (7), 360.

1708 Lucas, S.G., 2009b. Timing and magnitude of tetrapod extinctions across the Permio-
1709 Triassic boundary. *J. Asian Earth Sci.* 36 (6), 491–502.

1710 Lucas, S.G., 2017. Permian tetrapod extinction events. *Earth Sci. Rev.* 170, 31–60.
1711 <https://doi.org/10.1016/j.earscirev.2017.04.008>

1712 Lucas, S.G., 2018. Permian tetrapod biochronology, correlation and evolutionary events.
1713 *Geol. Soc. Spec. Publ.* 450, 405–444. <https://doi.org/10.1144/SP450.12>

1714 Lucas, S.G., Hunt, A.P., 2005. Permian tetrapod tracks from Texas. *Bull. N. M. Mus. Nat.*
1715 *Hist Sci.* 30, 202–206.

1716 Lucas, S.G., Spielmann, J.A., 2009. Tetrapod footprints from the Lower Permian
1717 YesoGroup, Mockingbird Gap, Socorro County, New Mexico. New Mexico
1718 Geological Society Guidebook, 60th Field Conference, Geology of the Chupadera
1719 Mesa Region, 305–310.

1720

1721 Lucas, S.G., Lerner, A.J., Bruner, M., Shipman, P., 2004. Middle Pennsylvanian

1722 ichnofauna from eastern Oklahoma, USA. *Ichnos* 11, 45–55.
 1723 <https://doi.org/10.1080/10420940490442322>

1724 Lucas, S.G., Voigt, S., Lerner, A.J., Nelson, W.J., 2011. Late Early Permian continental
 1725 ichnofauna from Lake Kemp, north-central Texas, USA. *Palaeogeogr.*
 1726 *Palaeoclimatol.* *Palaeoecol.* 308, 39–404.
 1727 <https://doi.org/10.1016/j.palaeo.2011.05.047>

1728 Lucas, S.G., Krainer, K., Voigt, S., Berman, D.S., Henrici, A., 2014. The Lower Permian
 1729 Abo Formation in the northern Sacramento Mountains, southern New Mexico. New
 1730 Mexico Geological Society, 65th Fall Field Conference Guidebook, Geology of the
 1731 Sacramento Mountains Region 65, 287–302.

1732 MacLeod, K.G., Quinton, P.C., Bassett, D.J., 2017. Warming and increased aridity during
 1733 the earliest Triassic in the Karoo Basin, South Africa. *Geology* 45(6), 483–486.
 1734 <https://doi.org/10.1130/G38957.1>

1735 Maino, M., Dallagiovanna, G., Gaggero, L., Seno, S., Tiepolo, M., 2012. U–Pb zircon
 1736 geochronological and petrographic constraints on late to post-collisional Variscan
 1737 magmatism and metamorphism in the Ligurian Alps, Italy. *Geol. J.* 47, 632–
 1738 652. <https://doi.org/10.1002/gj.2421>

1739 Majarena, U., Galé, C., Esteban, J.J., Lago, M., Gil-Imaz, A., 2023. The magmatism of
 1740 Atienza (NW Iberian Chain, Spain): age, origin and architecture of the magmatic
 1741 plumbing system. *J. Iber. Geol.* 49, 47–69. <https://doi.org/10.1007/s41513-023-00206-w>

1743 Mallison, H., Wings, O., 2014. Photogrammetry in Paleontology, a practical guide.
 1744 *Journal of Paleontological Techniques* 12, 1–31.

1745 Marchetti, L., 2016. New occurrences of tetrapod ichnotaxa from the Permian Orobic
 1746 Basin (Northern Italy) and critical discussion of the age of the ichnoassociation. *Pap.*
 1747 *Palaeontol.* 2(3), 1–24. <https://doi.org/10.1002/spp2.1045>

1748 Marchetti, L., Avanzini, M., Conti, M.A., 2013. *Hyloidichnus bifurcatus* Gilmore, 1927
 1749 and *Limnopus heterodactylus* (King, 1845) from the Early Permian of Southern Alps
 1750 (N Italy): A new equilibrium in the ichnofauna. *Ichnos* 20(4), 202–217.
 1751 <http://dx.doi.org/10.1080/10420940.2013.846261>

1752 Marchetti L., Ronchi, A., Santi, G., Schirolli, P., Conti, M.A., 2015a. Revision of a classic
 1753 site for Permian tetrapod ichnology (Collio Formation, Trompia and Caffaro valleys,
 1754 N. Italy), new evidences for the radiation of captorhinomorph footprints.
 1755 *Palaeogeogr.* *Palaeoclimatol.* *Palaeoecol.* 433, 140–155.
 1756 <https://doi.org/10.1016/j.palaeo.2015.04.005>

1757 Marchetti L., Ronchi, A., Santi, G., Voigt, S., 2015b. The Gerola Valley site (Orobic
 1758 Basin, Northern Italy): A key for understanding late Early Permian tetrapod
 1759 ichnofaunas. *Palaeogeogr.* *Palaeoclimatol.* *Palaeoecol.* 439, 97–116.
 1760 <https://doi.org/10.1016/j.palaeo.2015.02.032>

1761 Marchetti, L., Belvedere, M., Mietto, P., 2017. Lopingian tetrapod footprints in the
 1762 Venetian Prealps (Italy): new discoveries in a largely incomplete panorama. *Acta*
 1763 *Palaeontol. Pol.* 62, 801–817. <https://doi.org/10.4202/app.00392.2017>

1764 Marchetti, L., Belvedere, M., Voigt, S., Klein, H., Castanera, D., Díaz-Martínez, I.,

1765 Marty, D., Xing, L., Feola, S., Melchor, R.N., Farlow, J.O., 2019a. Defining the
1766 morphological quality of fossil footprints. Problems and principles of preservation
1767 in tetrapod ichnology with examples from the Palaeozoic to the present. *Earth Sci.*
1768 *Rev.* 193, 109–145. <https://doi.org/10.1016/j.earscirev.2019.04.008>

1769 Marchetti, L., Voigt, S., Klein, H., 2019b. Revision of the Late Permian tetrapod tracks
1770 from the Dolomites (Trentino-Alto Adige, Italy). *Hist. Biol.* 31, 748–783.
1771 <https://doi.org/10.1080/08912963.2017.1391806>

1772 Marchetti, L., Klein, H., Buchwitz, M., Ronchi, A., Smith, R.M.H., Klerk, W.J. De,
1773 Sciscio, L., Groenewald, G.H., 2019c. Permian-Triassic vertebrate footprints from
1774 South Africa: Ichnotaxonomy, producers and biostratigraphy through two major
1775 faunal crises. *Gondwana Res.* 72, 139–168. <https://doi.org/10.1016/j.gr.2019.03.009>

1776 Marchetti, L., Voigt, S., Lucas, S.G., 2019d. An anatomy-based study of the Lopingian
1777 eolian tracks of Germany and Scotland reveals the first evidence of the end-
1778 Guadalupian mass extinction at low paleolatitudes of Pangea. *Gondwana Res.* 73,
1779 32–53. <https://doi.org/10.1016/j.gr.2019.03.013>

1780 Marchetti, L., Voigt, S., Lucas, S.G., Francischini, H., Dentzien-Dias, P., Sacchi, R.,
1781 Mangiacotti, M., Scali, S., Gazzola, A., Ronchi, S., Millhouse, A., 2019e. Tetrapod
1782 ichnotaxonomy in eolian paleoenvironments (Coconino and De Chelly formations,
1783 Arizona) and late Cisuralian (Permian) sauropsid radiation. *Earth Sci. Rev.* 190,
1784 148–170. <https://doi.org/10.1016/j.earscirev.2018.12.0>

1785 Marchetti, L., Ceoloni, P., Leonardi, G., Massari, F., Mietto, P., Sacchi, E., Valentini, M.,
1786 2020a. The Lopingian tetrapod ichnoassociation from Italy, a key for the
1787 understanding of low-latitude faunas before the end-Permian crisis. *J. Mediterr.*
1788 *Earth Sci.* 12, 61–81. <https://doi.org/10.3304/jmes.2020.17065>

1789 Marchetti, L., Voigt, S., Lucas, S.G., Stimson, M.R., King, O.A., Calder, J.H., 2020b.
1790 Footprints of the earliest reptiles: *Natalacerta missouriensis*—Ichnotaxonomy,
1791 potential trackmakers, biostratigraphy, palaeobiogeography and palaeoecology.
1792 *Ann. Soc. Geol. Pol.* 90, 271–290. <https://doi.org/10.14241/asgp.2020.13>

1793 Marchetti, L., Voigt, S., Mujal, E., Lucas, S.G., Francischini, H., Fortuny, J., Santucci,
1794 V.L., 2021a. Extending the footprint record of Pareiasauromorpha to the Cisuralian:
1795 earlier appearance and wider palaeobiogeography of the group. *Pap. Palaeontol.* 7,
1796 1297–1319. <https://doi.org/10.1002/spp2.1342>

1797 Marchetti, L., Voigt, S., Buchwitz, M., MacDougall, M.J., Lucas, S.G., Fillmore, D.L.,
1798 Stimson, M.R., King, O.A., Calder, J.H., Fröbisch, J., 2021b. Tracking the origin
1799 and early evolution of reptiles. *Front. Ecol. Evol.*, 9:696511.
1800 <https://doi.org/10.3389/fevo.2021.696511>

1801 Marchetti, L., Forte, G., Kustatscher, E., DiMichele, W.A., Lucas, S.G., Roghi, G.,
1802 Juncal, M.A., Hartkopf-Fröder, C., Krainer, K., Morelli, C., Ronchi, A., 2022a. The
1803 Artinskian Warming Event: an Euramerican change in climate and the terrestrial
1804 biota during the early Permian. *Earth Sci. Rev.* 226, 103922.
1805 <https://doi.org/10.1016/j.earscirev.2022.103922>

1806 Marchetti, L., Logghe A., Mujal, E., Barrier, P., Montenat, C., Nel, A., Pouillon, J.M.,
1807 Garrouste, R., Steyer, S., 2022b. Vertebrate tracks from the Permian of Gonfaron
1808 (Provence, Southern France) and their implications for the late Capitanian terrestrial

1809 extinction event. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 599, 111043.
1810 <https://doi.org/10.1016/j.palaeo.2022.111043>

1811

1812 Marsh, O.C., 1894. Footprints of vertebrates in the Coal Measures of Kansas. *Am. J. Sci.*
1813 48, 81–84.

1814 Martí, J., 1996. Genesis of crystal-rich volcaniclastic facies in the Permian red beds of
1815 the Central Pyrenees (NE Spain). *Sediment. Geol.* 106, 1–19.
1816 [https://doi.org/10.1016/0037-0738\(95\)00143-3](https://doi.org/10.1016/0037-0738(95)00143-3)

1817 Martí, J. 2022. Volcano Geology Applications to Ancient Volcanism-Influenced
1818 Terrains: Paleovolcanism. In *Updates in Volcanology - Linking Active Volcanism*
1819 and the Geological Record. IntechOpen. <https://doi.org/10.5772/intechopen.108770>

1820 Matamales-Andreu, R., Peñalver, E., Mujal, E., Oms, O., Scholze, F., Juárez, J., Galobart,
1821 À., Fortuny, J., 2021a. Early–Middle Triassic fluvial ecosystems of Mallorca
1822 (Balearic Islands): biotic communities and environmental evolution in the equatorial
1823 western peri-Tethys. *Earth Sci. Rev.* 222, 103783.
1824 <https://doi.org/10.1016/j.earscirev.2021.103783>

1825 Matamales-Andreu, R., Roig-Munar, F.X., Oms, O., Galobart, À., Fortuny, J., 2021b. A
1826 captorhinid-dominated assemblage from the palaeoequatorial Permian of Menorca
1827 (Balearic Islands, western Mediterranean). *Earth Environ. Sci. Trans. R. Soc. Edinb.*
1828 112, 125–145. <https://doi.org/10.1017/S1755691021000268>

1829 Matamales-Andreu, R., Mujal, E., Galobart, À., Fortuny, J., 2021c. Insights on the
1830 evolution of synapsid locomotion based on tetrapod tracks from the lower Permian
1831 of Mallorca (Balearic Islands, western Mediterranean). *Palaeogeogr. Palaeoclimatol.*
1832 *Palaeoecol.* 579. <https://doi.org/10.1016/j.palaeo.2021.110589>

1833 Matamales-Andreu, R., Mujal, E., Dinarès-Turell, J., Kustatscher, E., Roghi, G., Oms,
1834 O., Galobart, À., Fortuny, J., 2022. Early–middle Permian ecosystems of equatorial
1835 Pangaea: Integrated multi-stratigraphic and palaeontological review of the Permian
1836 of Mallorca (Balearic Islands, western Mediterranean). *Earth Sci. Rev.* 228, 103948.
1837 <https://doi.org/10.1016/j.earscirev.2022.103948>

1838 Matamales-Andreu, R., Mujal, E., Galobart, À., Fortuny, J., 2023. A new medium-sized
1839 moradisaurine captorhinid eureptile from the Permian of Mallorca (Balearic Islands,
1840 western Mediterranean) and correlation with the co-occurring ichnogenus
1841 *Hyloïdichnus*. *Papers in Palaeontology*, e1498. <https://doi.org/10.1002/spp2.1498>

1842 Maxbauer, D.P., Feinberg, J.M., Fox, D.L., 2016. MAX UnMix: A web application for
1843 unmixing magnetic coercivity distributions. *Comput. and Geosci.* 95, 140–145.
1844 <https://doi.org/10.1016/j.cageo.2016.07.009>

1845 Melchor, R.N., Sarjeant, W.A.S., 2004. Small amphibian and reptile footprints from the
1846 Permian Carapacha basin, Argentina. *Ichnos* 11, 57–78.
1847 <https://doi.org/10.1080/10420940490428814>

1848 Mey, P.H.W., Nagtegaal, P.J.C., Roberti, K.J., Harteveld, J.J.A., 1968. Lithostratigraphic
1849 subdivision of post-Hercynian deposits in the south-central Pyrenees, Spain. *Leidse*
1850 *Geologische Mededelingen* 44, 221–228.

1851 Miall, A.D., 2006. The geology of fluvial deposits: Sedimentary facies, basin analysis,

1852 and petroleum geology. 4th ed. Springer, Berlin, Heidelberg, New York. 582 pp.

1853 Michel, L.A., Tabor, N.J., Montañez, I.P., Schmitz, M.D., Davydov, V.I., 2015.
1854 Chronostratigraphy and paleoclimatology of the Lodève Basin, France: Evidence for
1855 a pan-tropical aridification event across the Carboniferous-Permian boundary.
1856 *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 430, 118–131.
1857 <https://doi.org/10.1016/j.palaeo.2015.03.020>

1858 Modesto, S.P., Flear, V.J., Dilney, M.M., Reisz, R.R., 2016. A large moradisaurine tooth
1859 plate from the Lower Permian of Texas and its biostratigraphic implications.
1860 *J. Vertebr. Paleontol.* 36 (6), e1221832
1861 <https://doi.org/10.1080/02724634.2016.1221832>

1862 Montañez, I.P., Poulsen, J., 2013. The Late Paleozoic Ice Age: an evolving paradigm.
1863 *Annu. Rev. Earth Planet. Sci.* 41, 629–656.
1864 <https://doi.org/10.1146/annurev.earth.031208.100118>

1865 Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D., Fielding, C.R.,
1866 Isbell, J.L., Birgenheier, L.P., Rygel, M.C., 2007. CO₂-forced climate and
1867 vegetation instability during late Paleozoic deglaciation. *Science* 315, 87–91.
1868 <https://doi.org/10.1126/science.1134207>

1869 Montañez, I.P., McElwain, J.C., Poulsen, C.J., White, J.D., DiMichele, W.A., Wilson,
1870 J.P., Griggs, G., Hren M.T., 2016. Climate, pCO₂ and terrestrial carbon cycle
1871 linkages during late Palaeozoic glacial–interglacial cycles. *Nat. Geosci.* 9, 824–828.
1872 <https://doi.org/10.1038/ngeo2822>

1873 Mujal, E., Schoch, R.R., 2020. Middle Triassic (Ladinian) amphibian tracks from the
1874 Lower Keuper succession of southern Germany: Implications for temnospondyl
1875 locomotion and track preservation. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 543,
1876 109625. <https://doi.org/10.1016/j.palaeo.2020.109625>

1877 Mujal, E., Fortuny, J., Oms, O., Bolet, A., Galobart, À., Anadón, P., 2016a.
1878 Palaeoenvironmental reconstruction and early Permian ichnoassemblage from the
1879 NE Iberian Peninsula (Pyrenean Basin). *Geol. Mag.* 153, 578–600.
1880 <https://doi.org/10.1017/S0016756815000576>

1881 Mujal, E., Gretter, N., Ronchi, A., López-Gómez, J., Falconnet, J., Diez, J.B., De la Horra,
1882 R., Bolet, A., Oms, O., Arche, A., Barrenechea, J.F., Steyer, J.B., Fortuny, J., 2016b.
1883 Constraining the Permian/Triassic transition in continental environments:
1884 Stratigraphic and paleontological record from the Catalan Pyrenees (NE Iberian
1885 Peninsula). *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 445, 18–37.
1886 <https://doi.org/10.1016/j.palaeo.2015.12.008>.

1887 Mujal, E., Fortuny, J., Pérez-Cano, J., Dinarès-Turell, J., Ibáñez-Insa, J., Oms, O., Vila,
1888 I., Bolet, A., Anadón, P., 2017. Integrated multi-stratigraphic study of the Coll de
1889 Terrers late Permian–Early Triassic continental succession from the Catalan
1890 Pyrenees (NE Iberian Peninsula): A geologic reference record for equatorial
1891 Pangaea. *Glob. Planet. Change* 159, 46–60.
1892 <https://doi.org/10.1016/j.gloplacha.2017.10.004>

1893 Mujal, E., Fortuny, J., Marmi, J., Dinarès-Turell, J., Bolet, A., Oms, O., 2018.
1894 Aridification across the Carboniferous–Permian transition in central equatorial
1895 Pangea: The Catalan Pyrenean succession (NE Iberian Peninsula). *Sediment. Geol.*

1896 363, 48–68. <https://doi.org/10.1016/j.sedgeo.2017.11.005>

1897 1898 1899 1900 Mujal, E., Marchetti, L., Schoch, R.R., Fortuny, J., 2020. Upper Paleozoic to Lower Mesozoic tetrapod ichnology revisited: photogrammetry and relative depth pattern inferences on functional prevalence of autopodia. *Front. Earth Sci.* 8, 248. <https://doi.org/10.3389/feart.2020.00248>

1901 1902 Müller, A.H., 1954. Zur ichnologie und stratonomie des Oberrotliegenden von Tambach (Thüringen): *PalZ* 28, 189–203.

1903 1904 1905 Nagtegaal, P.J.C., 1969. Sedimentology, paleoclimatology, and diagenesis of post-Hercynian continental deposits in the south-central Pyrenees, Spain. *Leidse Geologische Mededelingen* 42, 143–238

1906 1907 1908 Nicosia, U., Ronchi, A., Santi, G., 2000. Permian tetrapod footprints from W Orobic basin (Northern Italy). Biochronological and evolutionary remarks. *Geobios* 33(6), 753–768.

1909 1910 1911 1912 Oliva-Urcia, B., Pueyo, E.L., Larrasoña, J.C., Casas, A.M., Román-Berdiel, T., Van der Voo, R., Scholger, R., 2012. New and revisited paleomagnetic data from Permian-Triassic red beds: Two kinematic domains in the west-central Pyrenees. *Tectonophysics* 522, 158–175.

1913 1914 1915 1916 Pellenard, P., Gand, G., Schmitz, M., Galtier, J., Broutin, J., Steyer, J.S., 2017. High precision U-Pb zircon ages for explosive volcanism calibrating the NW European continental Autunian stratotype. *Gondwana Res.* 51, 118–136. [10.1016/j.gr.2017.07.014](https://doi.org/10.1016/j.gr.2017.07.014)

1917 1918 1919 1920 1921 Pereira, M.F., Castro, A., Chichorro, M., Fernández, C., Díaz-alvarado, J., Martí, J., Rodríguez, C., 2014. Chronological link between deep-seated processes in magma chambers and eruptions : Permo-Carboniferous magmatism in the core of Pangaea (Southern Pyrenees). *Gondwana Res.* 25, 290–308. <https://doi.org/10.1016/j.gr.2013.03.009>

1922 1923 1924 1925 1926 Petti, F.M., Bernardi, M., Ashley-Ross, M.A., Berra, F., Tessarollo, A., Avanzini, M., 2014. Transition between terrestrial-submerged walking and swimming revealed by Early Permian amphibian trackways and a new proposal for the nomenclature of compound trace fossils. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 410, 278–289. <https://doi.org/10.1016/j.palaeo.2014.05.032>

1927 1928 Pretus, J.LL., Obrador, A., 1987. Presencia de restos óseos en el Pérmico de Menorca (nota previa). *Bolletí de la Societat d'Història Natural de les Balears* 31, 149–152.

1929 1930 1931 1932 1933 Rmich, A., Lagnaoui, A., Hminna, A., Saber, H., Zouheir, T., Lallensack, J.N., 2023. Captorhinid trackways from mid- to late Permian red beds in Morocco: Implications for locomotion and the palaeobiogeography of northwest Gondwana. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 625, 111700. <https://doi.org/10.1016/j.palaeo.2023.111700>

1934 1935 1936 1937 Richey, J.D., Montañez, I.P., Goddérés, Y., Looy, C. V., Griffis, N.P., Dimichele, W.A., 2020. Influence of temporally varying weatherability on CO₂-climate coupling and ecosystem change in the late Paleozoic. *Clim. Past.* 16, 1759–1775. <https://doi.org/10.5194/cp-16-1759-2020>

1938 Robles, S., Llompart, C., 1987. Análisis paleogeográfico y consideraciones

1939 paleoicnológicas del Pérmico superior y Triásico inferior en la transversal del río
 1940 Segre (Alt Urgell, Pirineo de Lérido). Cuadernos de Geología Ibérica 11, 115–130.

1941 Romano, M., Citton, P., Avanzini, M., 2020. A review of the concepts of ‘axony’ and
 1942 their bearing on tetrapod ichnology. Hist. Biol. 32, 611–619.
 1943 <https://doi.org/10.1080/08912963.2018.1516766>

1944 Roscher, M., Schneider, J. W., 2006. Permo-Carboniferous climate: Early Pennsylvanian
 1945 to Late Permian climate development of central Europe in a regional and global
 1946 context. Geol. Soc. Spec. Publ. 265(1), 95–
 1947 136. <https://doi.org/10.1144/gsl.sp.2006.265.01.05>

1948 Roscher, M., Stordal, F., Svensen, H., 2011. The effect of global warming and global
 1949 cooling on the distribution of the latest Permian climate zones. Palaeogeogr.
 1950 Palaeoclimatol. Palaeoecol. 309(3-4), 186–200.
 1951 <https://doi.org/10.1016/j.palaeo.2011.05.042>

1952 Sacchi, E., Cifelli, R., Citton, P., Nicosia, U., Romano, M., 2014. *Dimetropus osageorum*
 1953 n. sp. from the early Permian of Oklahoma (USA): A trace and its trackmaker.
 1954 Ichnos 21, 175–192. <https://doi.org/10.1080/10420940.2014.933070>

1955 Rühle von Lilienstern, H., 1939. Fährten und Spuren im *Chirotherium*-Sandstein von
 1956 Südhüringen. Fortschritte der Geologie und Palaontologie 12, 293–387.

1957 Saltzman, M.R., 2003. Late Paleozoic ice age: oceanic gateway or pCO₂. Geology 31,
 1958 151–154.

1959 Saura, E., Teixell, A., 2006. Inversion of small basins: effects on structural variations at
 1960 the leading edge of the Axial Zone antiformal stack (Southern Pyrenees, Spain). J.
 1961 Strct. Geol. 28(11), 1909–1920.

1962 Schaltegger, U., Brack, P., 2007. Crustal-scale magmatic systems during intracontinental
 1963 strike-slip tectonics: U, Pb and Hf isotopic constraints from Permian magmatic rocks
 1964 of the Southern Alps. Int. J. Earth. Sci. 96(6), 1131–
 1965 1151. <https://doi.org/10.1007/s00531-006-0165-8>

1966 Schneider, J.W., Körner, F., Roscher, M., Kroner, U., 2006. Permian climate
 1967 development in the northern peri-Tethys area – The Lodève basin, French Massif
 1968 Central, compared in a European and global context. Palaeogeogr. Palaeoclimatol.
 1969 Palaeoecol. 240, 161–183. <https://doi.org/10.1016/j.palaeo.2006.03.057>

1970 Schneider, J.W., Lucas, S.G., Scholze, F., Voigt, S., Marchetti, L., Klein, H., Opluštil, S.,
 1971 Werneburg, R., Golubev, V.K., Barrick, J.E., Nemyrovska, T., Ronchi, A., Day,
 1972 M.O., Silantiev, V.V., Rößler, R., Saber, H., Linnemann, U., Zharinova, V., Shen,
 1973 S., 2020. Late Paleozoic-early Mesozoic continental biostratigraphy-Links to the
 1974 Standard Global Chronostratigraphic Scale. Paleoworld 29 (2), 186–238.
 1975 <https://doi.org/10.1016/j.palwor.2019.09.001>

1976 Schoch, R.R. 2014. Life cycles, plasticity, and palaeoecology in temnospondyl
 1977 amphibians. Palaeontology, 57, 517–529.

1978 Scotese, C.R., 2014. Atlas of Middle & Late Permian and Triassic Paleogeographic Maps,
 1979 maps 43 - 48 from Volume 3 of the PALEOMAP Atlas for ArcGIS (Jurassic and
 1980 Triassic) and maps 49 – 52 from Volume 4 of the PALEOMAP PaleoAtlas for
 1981 ArcGIS (Late Paleozoic), Mollweide Projection, PALEOMAP Project, Evanston,

1982 IL.

1983 Sidor, C.A., O'Keefe, F.R., Damiani, R., Steyer, J.-S., Smith, R.M.H., Larsson, H.C.E.,
 1984 Sereno, P.C., Ide, O., Maga, A., 2005. Permian tetrapods from the Sahara show
 1985 climate controlled endemism in Pangaea. *Nature* 434, 886–889.

1986 Sinisi, R., Mongelli, G., Mameli, P., Oggiano, G., 2014. Did the Variscan relief influence
 1987 the Permian climate of Mesoeuropea? Insights from geochemical and mineralogical
 1988 proxies from Sardinia (Italy). *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 396, 132–
 1989 154. <https://doi.org/10.1016/j.palaeo.2013.12.030>

1990 Smith, R.M.H., Sidor, C.A., Tabor, N.J., Steyer, J.S., 2015. Sedimentology and vertebrate
 1991 taphonomy of the Moradi Formation of northern Niger: A Permian wet desert in the
 1992 tropics of Pangaea. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 440, 128–141.
 1993 <https://doi.org/10.1016/j.palaeo.2015.08.032>

1994 Speksnijder, A., 1985. Anatomy of a strike-slip fault controlled sedimentary basin,
 1995 Permian of the Southern Pyrenees, Spain. *Sediment. Geol.* 44, 179–223.

1996 Spindler, F., Werneburg, R., Schneider, J.W., 2019. A new mesenosaurine from the lower
 1997 Permian of Germany and the postcrania of *Mesenosaurus*: implications for early
 1998 amniote comparative osteology. *PalZ* 93, 303–344. <https://doi.org/10.1007/s12542-018-0439-z>

2000 Stampfli, G.M., Kozur, H.W., 2007. Europe from the Variscan to the Alpine cycles. *Geol.*
 2001 Soc. Lond. Mem. 32 (1), 57–82. <https://doi.org/10.1144/GSL.MEM.2006.032.01.04>

2002 Steyer, J.-S., Damiani, R., Sidor, C.A., O'Keefe, F.R., Larsson, H.C.E., Magal, A., Ide,
 2003 O., 2006. The vertebrate fauna of the Upper Permian of Niger. IV. *Nigerpeton*
 2004 *ricqlesi* (Temnospondyli: Cochleosauridae), and the edopoid colonization of
 2005 Gondwana. *J. Vertebr. Paleontol.* 26(1), 18–28.

2006 Stimson, M., Lucas, S.G., Melanson, G., 2012. The smallest known tetrapod footprints:
 2007 *Batrachichnus salamandroides* from the Carboniferous of Joggins, Nova Scotia,
 2008 Canada. *Ichnos* 19, 127–140. <https://doi.org/10.1080/10420940.2012.685206>

2009 Sues, H.D., Reisz, R.R., 1998. Origins and early evolution of herbivory in tetrapods.
 2010 *Trends Ecol. Evol.* 13, 141–145. [https://doi.org/10.1016/S0169-5347\(97\)01257-3](https://doi.org/10.1016/S0169-5347(97)01257-3)

2011 Surkov, M.V., Benton, M.J., Twitchett, R.J., Tverdokhlebov, V.P., Newell, A.J., 2007.
 2012 First occurrence of footprints of large therapsids from the Upper Permian of
 2013 European Russia. *Palaeontology*, 50, 641–652.

2014 Tabor, N.J., Montañez, I.P., 2002. Shifts in late Paleozoic atmospheric circulation over
 2015 western equatorial Pangean: Insights from pedogenic $d^{18}\text{O}$ compositions. *Geology*
 2016 30(12), 1127–1130.

2017 Tabor, N.J., Poulsen, C.J., 2008. Palaeoclimate across the Late Pennsylvanian–Early
 2018 Permian tropical palaeolatitudes: a review of climate indicators, their distribution,
 2019 and relation to palaeophysiological climate factors. *Palaeogeogr. Palaeoclimatol.*
 2020 *Palaeoecol.* 268, 293–310. <https://doi.org/10.1016/j.palaeo.2008.03.052>

2021 Tabor, N.J., Smith, R.M.H., Steyer, S., Sidor, C.A., Poulsen, J., 2011. The Permian
 2022 Moradi Formation of northern Niger: Paleosol morphology, petrography and
 2023 mineralogy. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 299, 200–213.
 2024 <https://doi.org/10.1016/j.palaeo.2010.11.002>

2025 Tabor, N.J., Sidor, C.A., Smith, R.M.H., Nesbitt S.J., Angielczyk, K.D., 2018. Paleosols
 2026 of the Permian-Triassic: proxies for rainfall, climate change and major changes in
 2027 terrestrial tetrapod diversity, *J. Vertebr. Paleontol* 37, 240–253.
 2028 <https://doi.org/10.1080/02724634.2017.1415211>

2029 Taner, L., 2013. A Pennsylvanian tetrapod trackway from Joggins, Nova Scotia: the size
 2030 continuum of *Batrachichnus salamandroides*. *Bull. N. M. Mus. Nat. Hist Sci.* 60,
 2031 427–431.

2032 Tauxe, L., Kent, D.V., 2004. A simplified statistical model for the geomagnetic field and
 2033 the detection of shallow bias in paleomagnetic inclinations: was the ancient magnetic
 2034 field dipolar? In: J.E.T. Channell, D.V. Kent, W. Lowrie and J.G. Meert (Eds.),
 2035 *Timescales of the paleomagnetic field*. <https://doi.org/10.1029/145GM08>

2036 Torsvik, T.H., Cocks, L.R.M., 2013. Gondwana from top to base in space and time.
 2037 *Gondwana Res.* 24, 999–1030. <http://dx.doi.org/10.1016/j.gr.2013.06.012>

2038 Tucker, L., Smith, M.P., 2004. A multivariate taxonomic analysis of the Late
 2039 Carboniferous vertebrate ichnofauna of Alveley, Southern Shropshire, England.
 2040 *Palaeontology* 47, 679–710.

2041 Valentini, M., Conti, M.A., Mariotti, N., 2007. Lacertoid footprints of the Upper Permian
 2042 Arenaria di Val Gardena Formation (Northern Italy). *Ichnos.* 14, 193–218.

2043 Valentini, M., Conti, M.A., Nicosia, U., 2008. Linking tetrapod tracks to the biodynamics,
 2044 paleobiogeography, and paleobiology of their trackmakers: *Pachypes dolomiticus*
 2045 Leonardi et al., 1975, a case study. *Acta Geologica* 83, 237–246.

2046 Valentini, M., Nicosia, U., Conti, M.A., 2009. A re-evaluation of *Pachypes*, a
 2047 pareiasaurian track from the Late Permian. *Neues Jahrb. fur Geol. Palaontol. - Abh.*
 2048 251, 71–94.

2049 Van Allen, H.E.K., Calder, J.H., Hunt, A.P., 2005. The trackway record of a tetrapod
 2050 commu-nity in a walchian conifer forest from the Permo-Carboniferous of Nova
 2051 Scotia. *Bull. N. M. Mus. Nat. Hist. Sci.* 30, 322–332.

2052 Van Dongen, P.G., 1967. The rotation of Spain: palaeomagnetic evidence from the
 2053 eastern Pyrenees. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 3, 417–432.

2054 Vergés, J., 1993. Estudi geològic del vessant sud del Pirineu oriental i central. Evolució
 2055 cinemàtica en 3D. PhD Thesis Universitat de Barcelona, Barcelona.

2056 Voigt, S., 2005. Die Tetrapodenichnofauna des kontinentalen Oberkarbon und Perm im
 2057 Thüringer Wald – Ichnotaxonomie, Paläoökologie und Biostratigraphie. Cuvillier
 2058 Verlag, Göttingen, 305.

2059 Voigt, S., 2012. Tetrapodenfährten im Rotliegend. *Schriftenreihe der Deutschen*
 2060 *Gesellschaft für Geowissenschaften* 61, 161–175.

2061 Voigt, S., Haubold, H., 2015. Permian tetrapod footprints from the Spanish Pyrenees.
 2062 *Palaeogeogr. Palaeoclimatol. Palaeoecol.* 417, 112–120.
 2063 <https://doi.org/10.1016/j.palaeo.2014.10.038>

2064 Voigt, S., Lucas, S.G., 2013. Carboniferous–Permian tetrapod footprint
 2065 biochronozonation. In: Lucas, S.G., DiMichele, W.A., Barrick, J.E., Schnei-der,
 2066 J.W., Spielmann, J.A. (Eds.), *The Carboniferous–Permian Transition*. *Bull. N. M.*

2067 Mus. Nat. Hist Sci. 60, 444.

2068 Voigt, S., Lucas, S.G., 2015. On a diverse tetrapod ichnofauna from Early Permian red
2069 beds in San Miguel County, north-central New Mexico. New Mexico Geological
2070 Society Guidebook 66th Field Conference, 241–252.

2071 Voigt, S., Lucas, S.G., 2018. Outline of a Permian tetrapod footprint ichnos-stratigraphy.
2072 In: Lucas, S.G., Shen, S.Z. (Eds.), The Permian Timescale. Geol. Soc. London,
2073 Special Publications 450, 387–404. <https://doi.org/10.1144/SP450.10>

2074 Voigt, S., Small, B.J., Sanders, F., 2005. A diverse terrestrial ichnofauna from the Maroon
2075 Formation (Pennsylvanian-Permian), Colorado: Biostratigraphic and
2076 paleoecological significance. Bull. N. M. Mus. Nat. Hist Sci. 30, 342–51.

2077 Voigt, S., Hminna, A., Saber, H., Schneider, J.W., Klein, H., 2010. Tetrapod footprints
2078 from the uppermost level of the Permian Ikakern Formation (Argana Basin, Western
2079 High Atlas, Morocco). J. African Earth Sci. 57, 470–478.
2080 <https://doi.org/10.1016/j.jafrearsci.2009.12.003>

2081 Voigt, S., Saber, H., Schneider, J.W., Hmich, D., Hminna, A., 2011a. Late Carboniferous-
2082 Early Permian Tetrapod ichnofauna from the Khenifra Basin, Central Morocco.
2083 Geobios 44, 399–407. <https://doi.org/10.1016/j.geobios.2010.11.008>

2084 Voigt, S., Lagnaoui, A., Hminna, A., Saber, H., Schneider, J.W., 2011b. Revisional notes
2085 on the Permian tetrapod ichnofauna from the Tiddas Basin, central Morocco.
2086 Palaeogeogr. Palaeoclimatol. Palaeoecol. 302, 474–483.
2087 <https://doi.org/10.1016/j.palaeo.2011.02.010>

2088 Voigt, S., Niedzwiedzki, G., Raczyński, P., Mastalerz, K., Ptaszynski, T., 2012. Early
2089 Permian tetrapod ichnofauna from the Intra-Sudetic Basin, SW Poland. Palaeogeogr.
2090 Palaeoclimatol. Palaeoecol. 314, 173–180.
2091 <https://doi.org/10.1016/j.palaeo.2011.10.018>

2092 Voigt, S., Lucas, S.G., Buchwitz, M., Celeskey, M., 2013. *Robledopus macdonaldi*, a new
2093 kind of basal eureptile footprint from the Early Permian of New Mexico. Bull. N.
2094 M. Mus. Nat. Hist Sci. 60, 445–459.

2095 Weldon, E.A., Shi, G.R., 2003. Global distribution of *Terrakea* Booker, 1930
2096 (Productidina, Brachiopoda): implications for Permian marine biogeography and
2097 Eurasia-Gondwana correlations. XVth International Congress on Carboniferous and
2098 Permian Stratigraphy. Utrecht, 2003, Abstracts 583.

2099 Woodworth, J.B., 1900. Vertebrate footprints on Carboniferous shales of Plainville,
2100 Massachusetts. Geol. Soc. Am. Bull. 11, 449–454.

2101 Whyte, M.A., Romano, M., 2001. A dinosaur ichnocoenosis from the Middle Jurassic of
2102 Yorkshire, UK. Ichnos 8, 223–234. <https://doi.org/10.1080/10420940109380189>

2103 Winguth, A.M.E., Heinze, C., Kutzbach, J.E., Maier-Reimer, E., Mikolajewicz, U.,
2104 Rowley, D., Rees, A., Ziegler, A.M., 2002. Simulated warm polar currents during
2105 the middle Permian. Paleoceanography 17(4), 1057.
2106 <https://doi.org/10.1029/2001pa000646>

2107 Zheng, J.S., Mermet, J.-F., Toutin-Momn, N., Hanes, J., Gondolo, A., Morin, R., Féraud,
2108 G., 1992. Datation 40Ar-39Ar du magmatisme et de filons minéralisés permiens en
2109 Provence orientale (France). Geodin. 5 (1991/1992), 203–215.

2110 Zijderveld, J.D.A., 1967. A.C. Demagnetization of Rocks: Analysis of Results. Dev. in
2111 Solid Earth Geophys. 3, 254–286.

2112 Zouicha, A., Voigt, S., Saber, H., Marchetti, L., Hminna, A., El Attari, A., Ronchi, A.,
2113 Schneider, J. W., 2021. First record of permian continental trace fossils in the jebilet
2114 massif, Morocco. J. African Earth Sci. 173,
2115 104015. <https://doi.org/10.1016/j.jafrearsci.2020.104015>

2116

2117 **FIGURE CAPTIONS**

2118 **Figure 1.** Geographical and geological setting. A. Location in Europe and regional
2119 geology of the Pyrenees; modified from Vergés (1993). B. Detailed map of Castellar de
2120 n’Hug area with the location of the three studied sections and outcrops; modified from
2121 IGME, MAGNA 255, 36-11, la Pobla de Lillet.

2122 **Figure 2.** Stratigraphic framework of Castellar de n’Hug sub-basin with the three studied
2123 sections (CnH, RM and CR) correlated. The main features (characteristic sedimentary
2124 structures and occurrence of tetrapod footprints) are indicated. The chronological data is
2125 discussed throughout the text. The correlation datum corresponds to the last volcaniclastic
2126 level of the LRU. The detailed stratigraphic sections are provided in the Supplementary
2127 Logs.

2128 **Figure 3.** Lower Red Unit (LRU) in the Castellar de n’Hug sub-basin. A. General aspect
2129 of the unit in the CnH section, showing fluvial red-beds alternated with coarse
2130 volcaniclastic deposits. The white arrow points the section direction. B. Point bars with
2131 lateral accretion from meandering channel deposits in the CnH section. The white arrow
2132 points the section direction C. Ignimbrite composed of parallel stratified pyroclastic beds
2133 with a vitrified matrix from the CnH section. D. Matrix supported massive breccias with
2134 tabular shape, corresponding to massive pyroclastic deposits (facies *mlBr*). E.
2135 Volcaniclastic breccia with large pyroclasts from the last volcaniclastic levels of the CnH
2136 section. F. Laminated pyroclastic facies with antidunes structures (facies *sT*) in the CnH
2137 section. G. Well-developed palaeosols with carbonate nodules and root marks. H.
2138 Laminated mudstone with ripples (facies *Fl*) in the CnH section. I. Fine-grained sandstone
2139 with climbing ripples (facies *Sr*) in the CnH section. J. Parallelly laminated medium- to
2140 coarse-grained sandstones (facies *Sh*) in the CnH section.

2141 **Figure 4.** Upper Red Unit (URU) in the Castellar de n’Hug sub-basin. A. Landscape
2142 overview of the Coll Roig section (CR). The white arrow points the section direction B.

2143 Upper URU deposits of massive mudstones with cyclic occurrence of mud-cracked
2144 surfaces, from the Riera de Monell (RM) section. The white arrow points the section
2145 direction C. Massive mudstones with a mud-cracked surface on top (to the right of the
2146 photograph) from the CR section. D. Overbank mudstone deposit with a carbonate mud-
2147 cracked layer on top from the RM section. E. Mud-cracked surface including moulds of
2148 plant trunks with radial fractures from the CR section. F. Thin cross-laminated fine-
2149 grained sandstone layer interbedded in a massive mudstone. G. Level of septarian nodules
2150 distributed within a massive mudstone representing the transition between the lower URU
2151 and the upper URU from the CR section. H. Large septarian nodule, characteristic of the
2152 transition between the lower URU and the upper URU from the CR section.

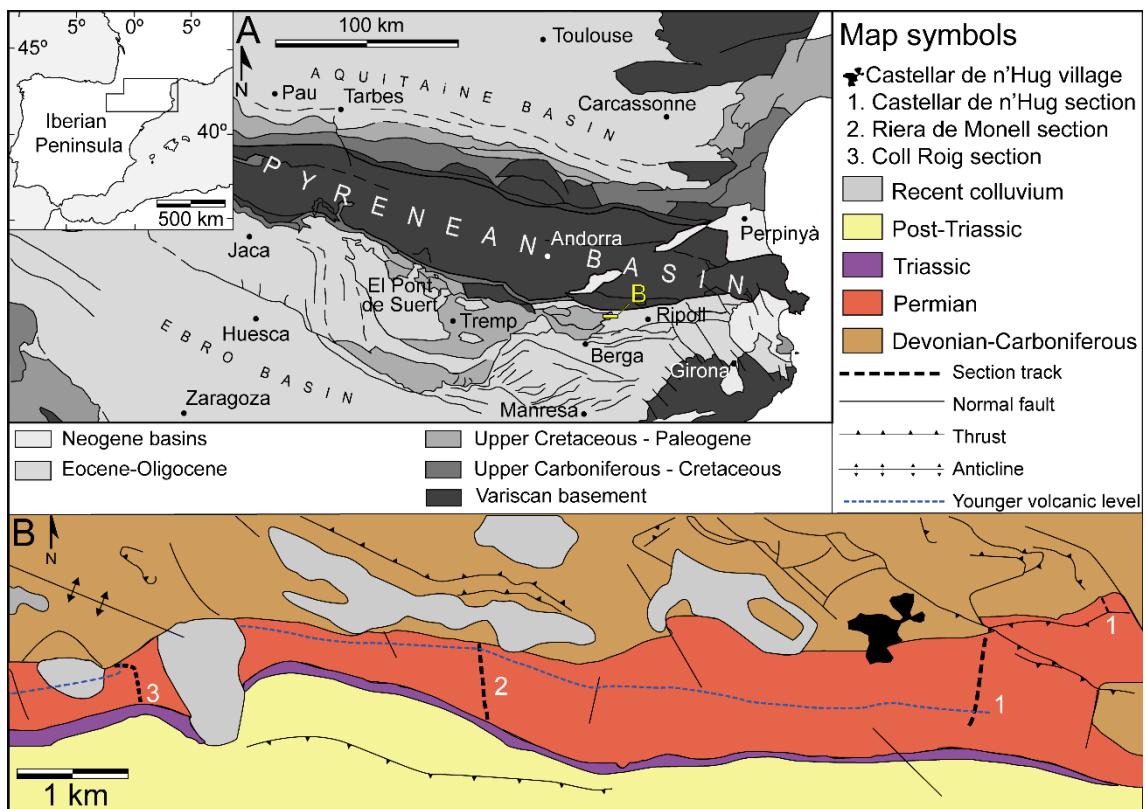
2153 **Figure 5.** Representative orthogonal demagnetisation diagrams with bedding corrected
2154 coordinates (tectonic). The natural remanent magnetisation (NRM) intensity, the
2155 lithology type and some demagnetisation steps are indicated. Closed (open) symbols
2156 represent the projection of the vector end-points on the horizontal (vertical) plane and
2157 denote declination (inclination). A thick grey line shows the linear fitted reverse ChRM
2158 direction.

2159 **Figure 6.** A. ChRM directional and VGP results in geographic (in situ). B. Bedding-
2160 corrected (tectonic) coordinates. Both A and B are for all studied samples, and both depict
2161 the confidence envelope (A95) and parachute are depicted; red dots are those that fall
2162 outside of the 45° cut-off. For full directional data see Table S1. C. Elongation (E) vs.
2163 inclination (I) as a function of increasing unflattening factor (f). Dashed thick line is E vs.
2164 I trend from the TK03.GDA model. Also shown results from bootstrapped datasets (E/I
2165 correction method from Tauxe and Kent, 2004 as implemented in open-source software
2166 <https://www.paleomagnetism.org>, Koymans et al., 2016, 2020). D. Cumulative
2167 distribution of 1000 bootstrapped TK03.GAD intersections. Blue shaded area delimits the
2168 confidence bounds containing the central 95% of the “corrected inclinations”.

2169 **Figure 7.** Tetrapod footprints I: *Batrachichnus* isp. A. IPS88731 with three related
2170 ichnites in convex hyporelief composed of two right manus, one partial right pes and
2171 small-size pes and manus. B. False-colour depth map with contours and interpretation of
2172 a right manus and corresponding interpretation (B'). C. Detailed picture of the small-sized
2173 pes and manus and corresponding interpretation (C'). D. Detailed picture of IPS88734
2174 with partial large-sized imprint in convex hyporelief and (D') interpretation of the
2175 impression. E. Detailed picture of IPS88724 with partial large-sized imprint with drag

2176 traces in convex hyporelief and (E') interpretation of the impression. F. IPS88734 with
2177 partial trackway and numerous small-sized scratches identified as *Characichnos* isp. in
2178 convex hyporelief and (F') interpretation.

2179 **Figure 8.** Tetrapod footprints II. A. Right footprint of *Dromopus* isp. in concave epirelief
2180 from Coll Roig section (CR-15-1). B. Left manus-pes set of *Hyloidichnus* isp. in concave
2181 epirelief from Riera de Monell section (RM-177-14, RM-177-15). C. Left manus-pes set
2182 of *Hyloidichnus* isp. in convex hyporelief from Castellar de n'Hug section (IPS135414).
2183 All footprints include false-colour depth maps with contours (A'-C') and interpretive
2184 outlines (A''-C'').


2185 **Figure 9.** Tetrapod footprints III. *Brontopus antecursor* (A-D) and *Pachypes* isp. (E). A.
2186 Trackway from Riera de Monell section (RM-177-1 to 12). B. Left manus-pes set within
2187 the trackway (RM-177-7; RM-177-8). C. Right manus-pes set within the trackway (RM-
2188 177-5; RM-177-6). D. Tracks from Coll Roig section (from CR-69-2 to CR-69-4). E.
2189 Right footprint of *Pachypes* isp. from Riera de Monell section (RM-209-1). All footprints
2190 are in concave epirelief and include false-colour depth maps with contours (A'-E') and
2191 interpretive outlines (A''-E'').

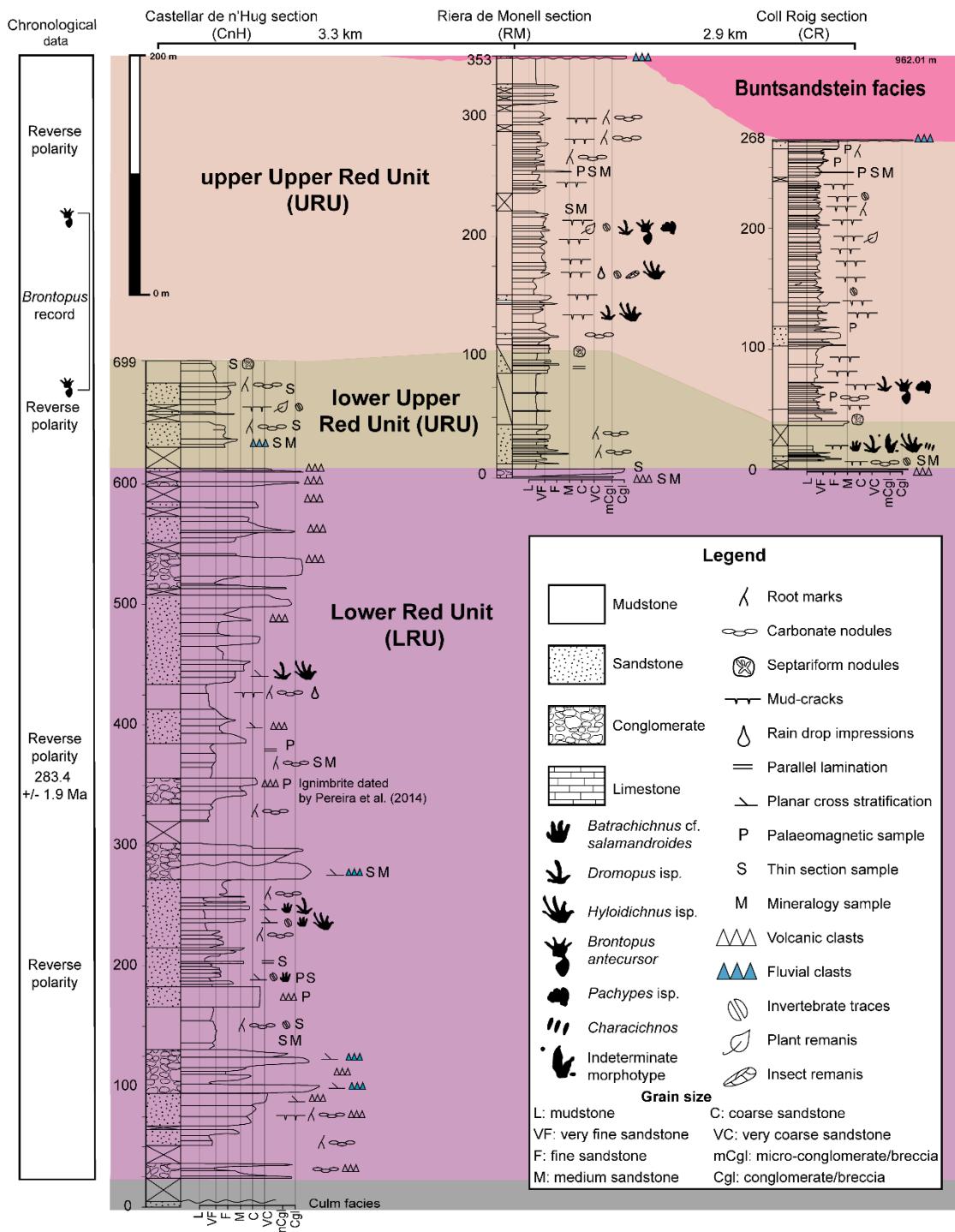
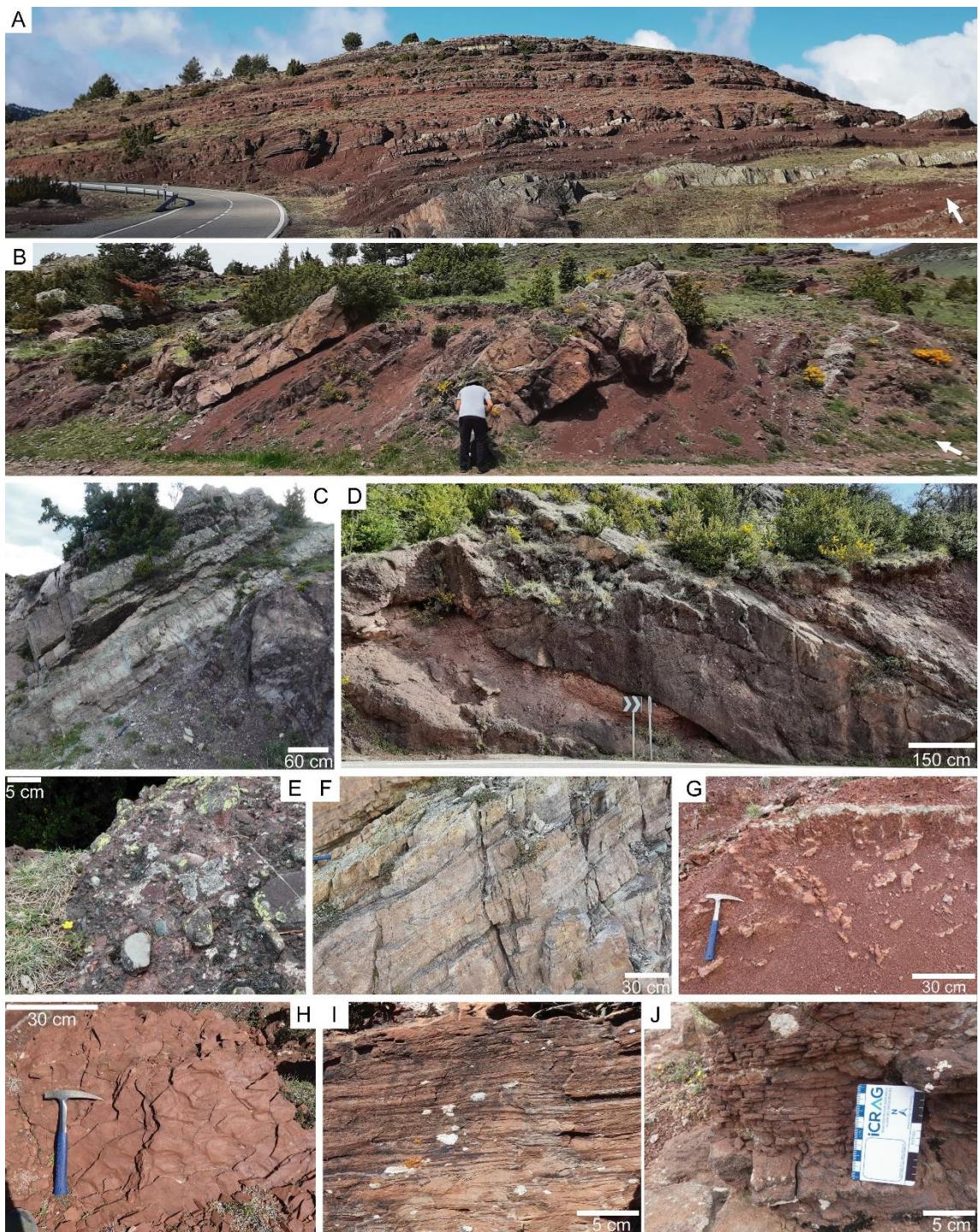
2192 **Figure 10.** Palaeoenvironmental reconstruction of the LRU based on the stratigraphic
2193 section in CnH. On the right, the fossil assemblage (tetrapod ichnoassociation 1) and the
2194 palaeoenvironment is represented, showing a floodplain with meandering fluvial systems
2195 interbedded with volcanic material. Symbols of the stratigraphic log described in Figure
2196 2.

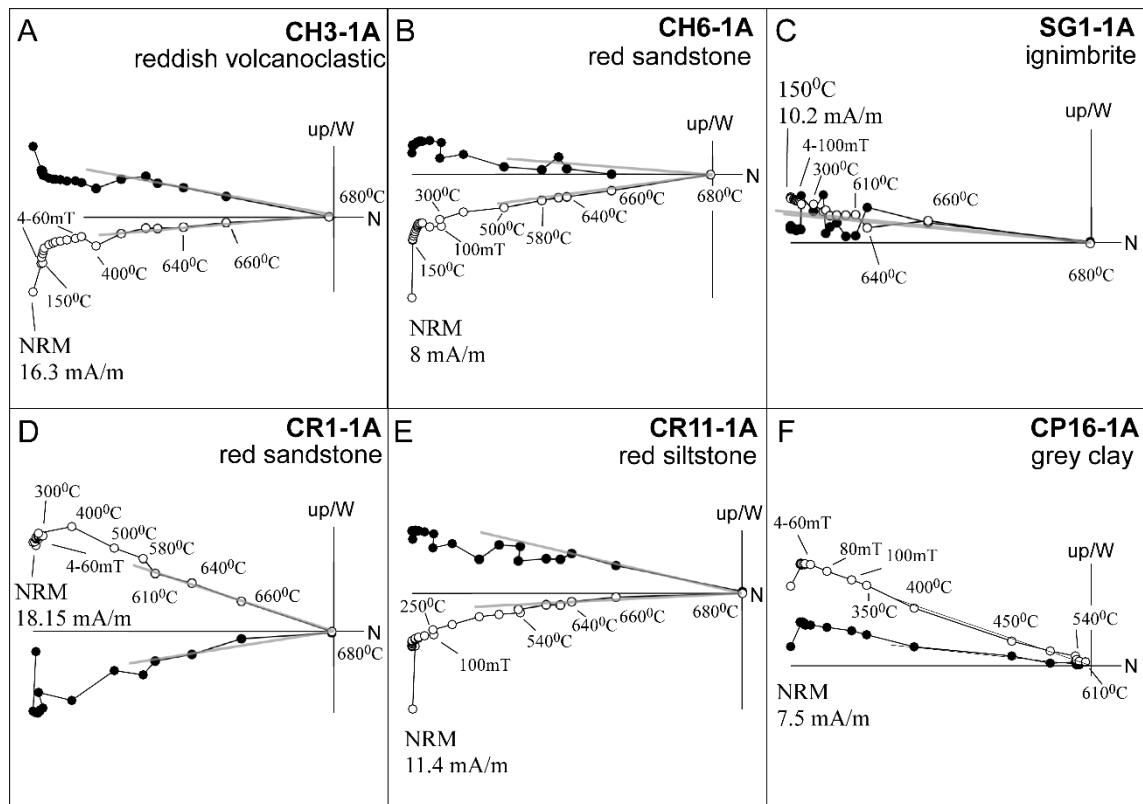
2197 **Figure 11.** Palaeoenvironmental evolution of the URU based on the stratigraphic sections
2198 in RM (left) and CR. (right) The fossil ichnoassemblage shows an evolution from
2199 floodplain environments (tetrapod ichnoassociation 1) to seasonal playa-lake systems
2200 (tetrapod ichnoassociation 2). Symbols of the stratigraphic log described in Figure 2.

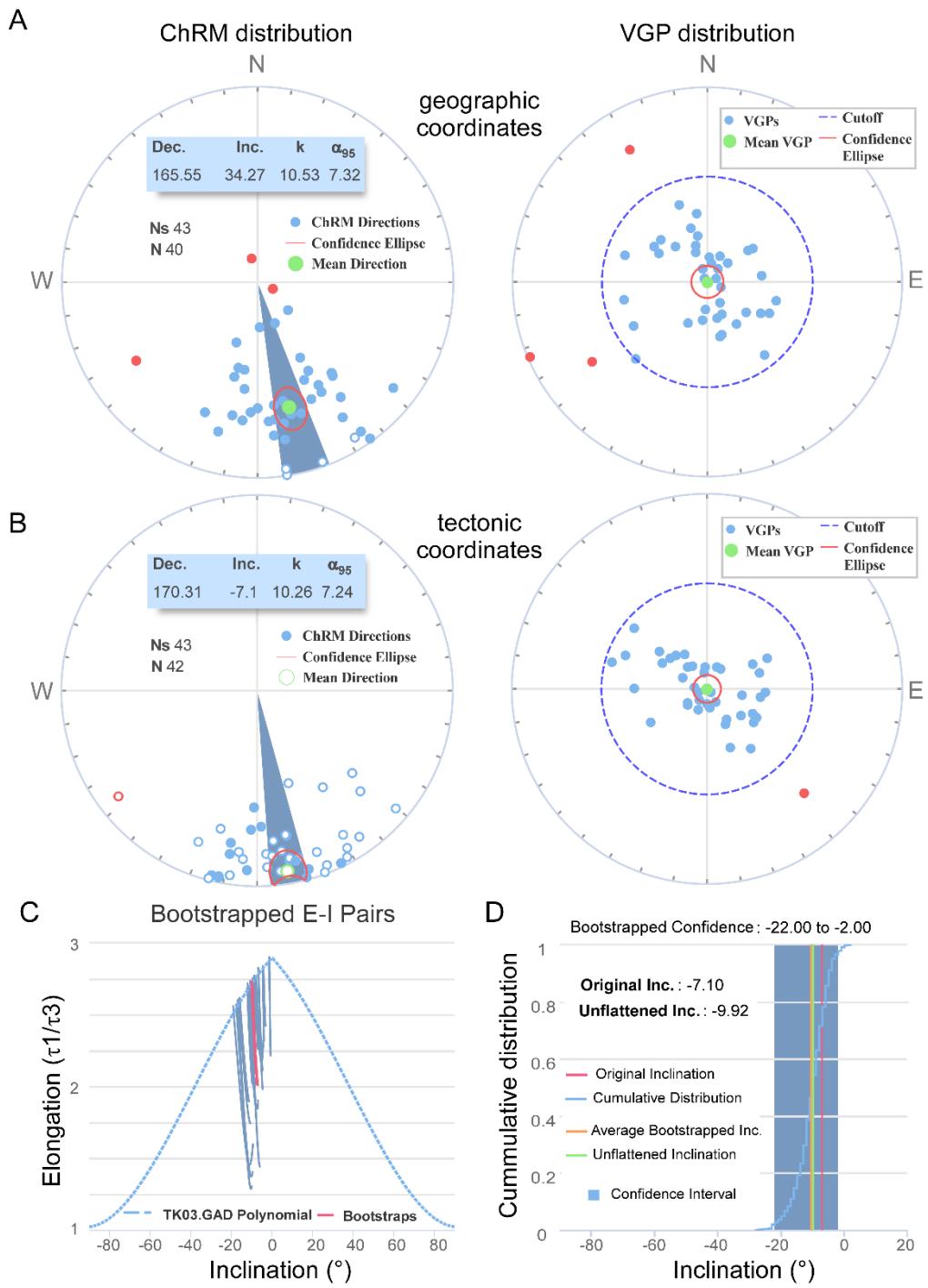
2201 **Figure 12.** Reconstruction of the ichnoassociation 2 of the upper URU in the study area
2202 representing the playa-lake palaeoenvironment with mud-cracked surfaces and its related
2203 fauna: on the left, *Brontopus antecursor* trackmaker, on the centre *Hyloidichnus* tracks,
2204 on the right, partially hidden, *Dromopus* trackmaker. Far right, *Hyloidichnus*
2205 trackmakers. Note the presence of notostracan arthropods in the shallow water body and
2206 insect in the trunk. Credit of the artwork: Roc Olivé / Institut Català de Paleontologia
2207 Miquel Crusafont.

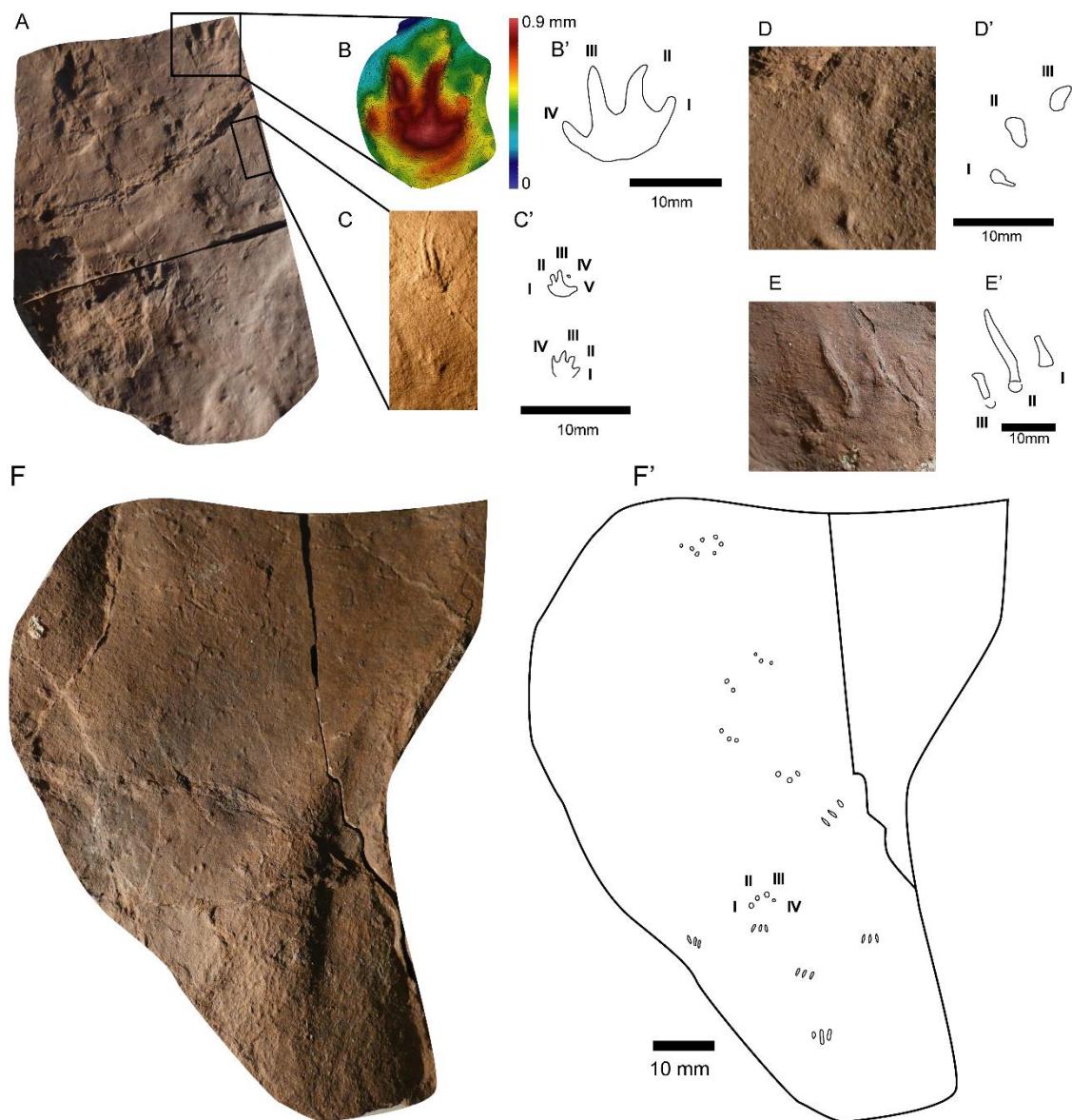
2208 **Figure 13.** Tetrapod footprint chronostratigraphy in the study area. The dark bars
2209 represent the chronological record of ichnotaxa worldwide and the grey bars represent
2210 uncertain occurrences (data from Schneider et al., 2020; Marchetti et al., 2021a, 2022b).
2211 Black dashed lines mark the ichnoassociation distribution, and the red dashed lines
2212 represent the temporal range of the sub-biochrons of the *Erpetopus* biochron.
2213

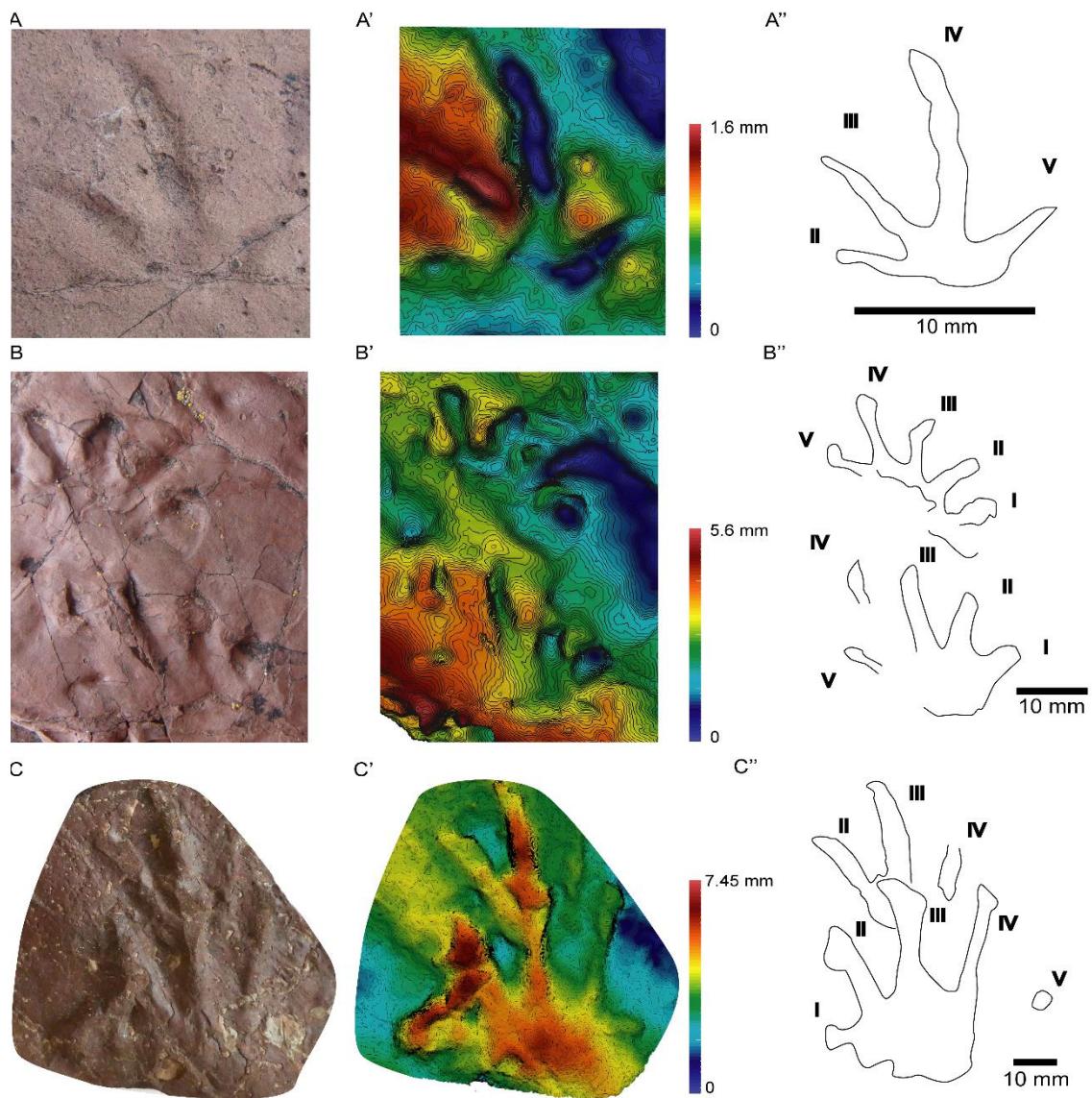
Figure 1.

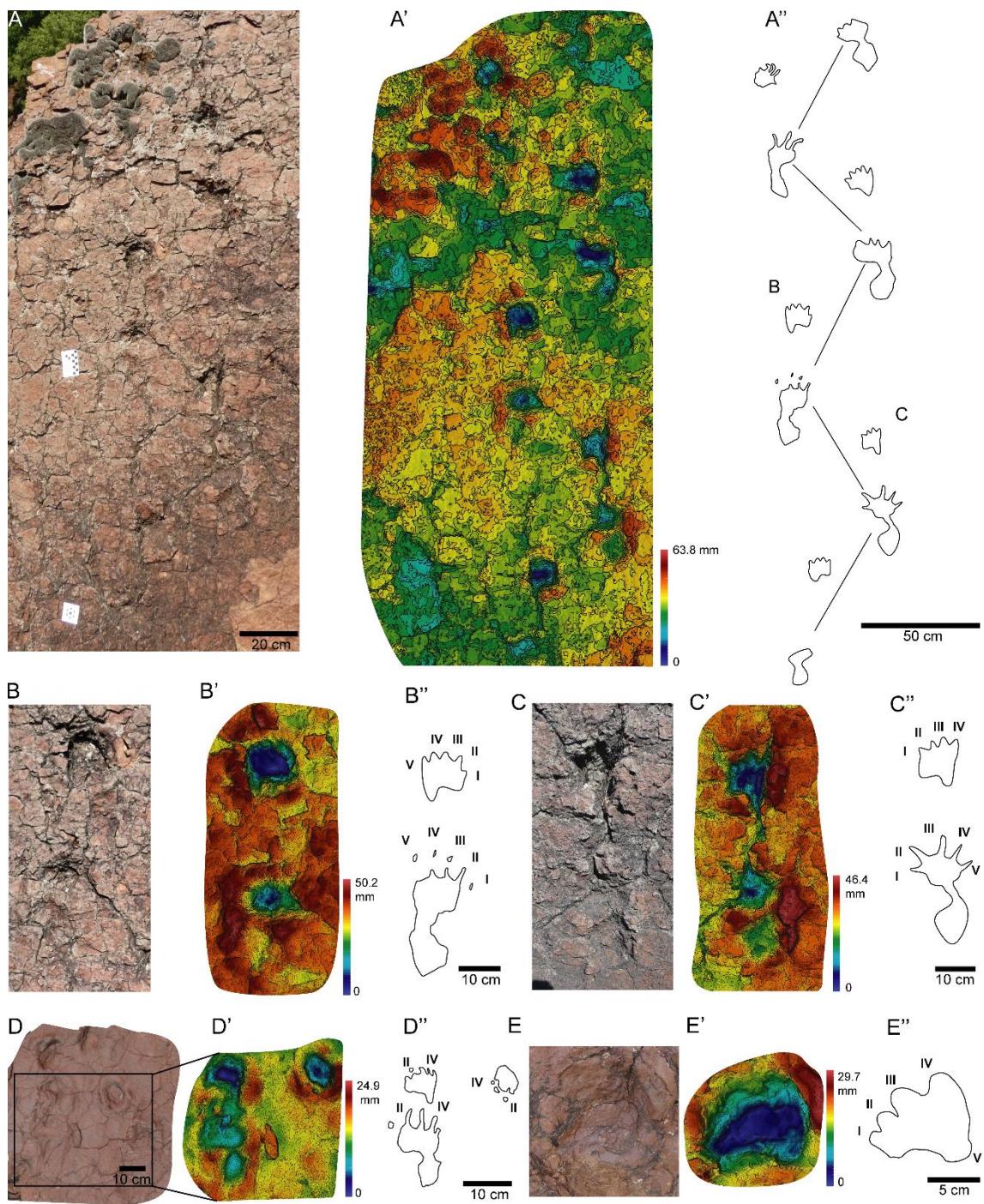



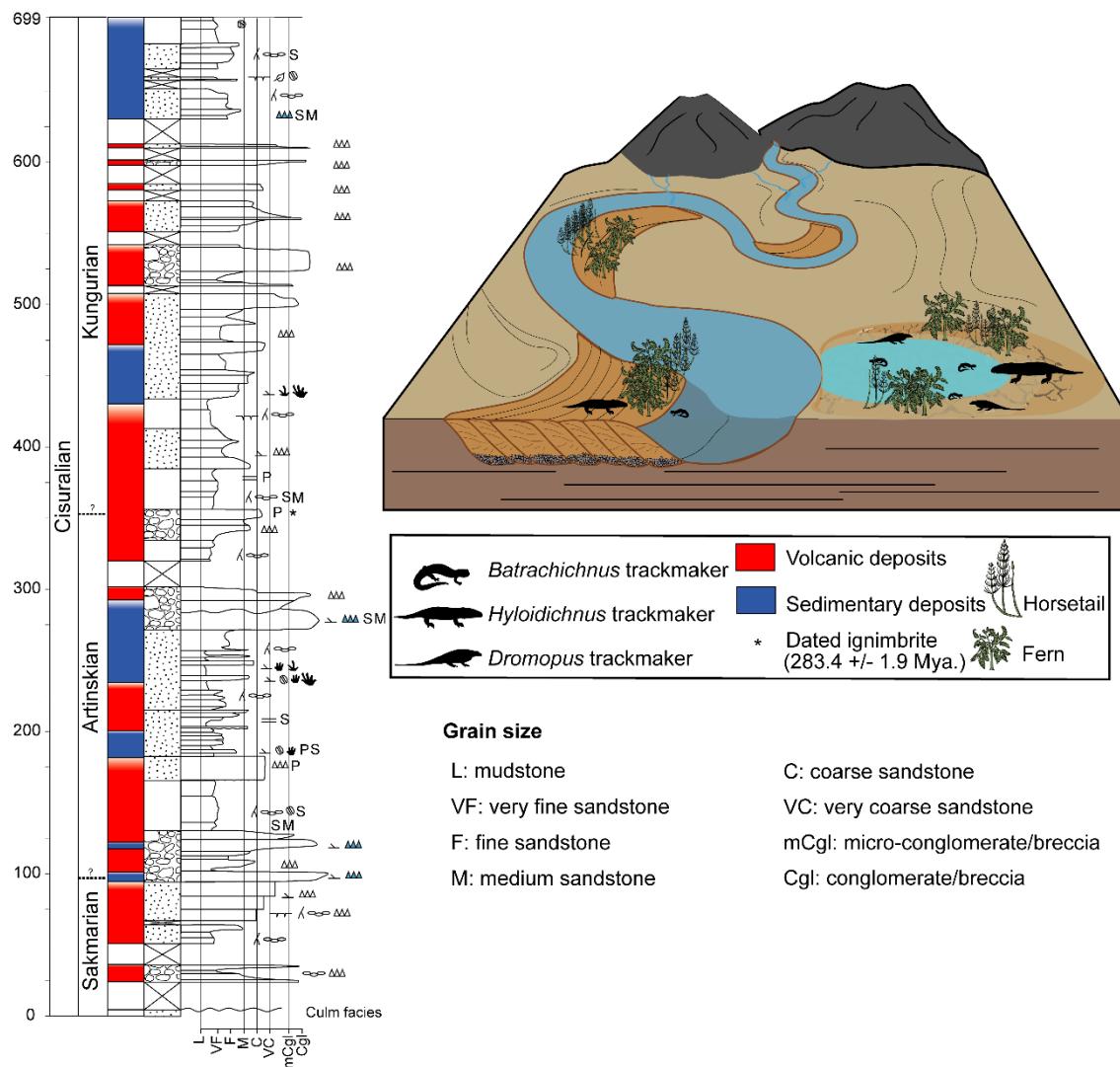

Figure 2.

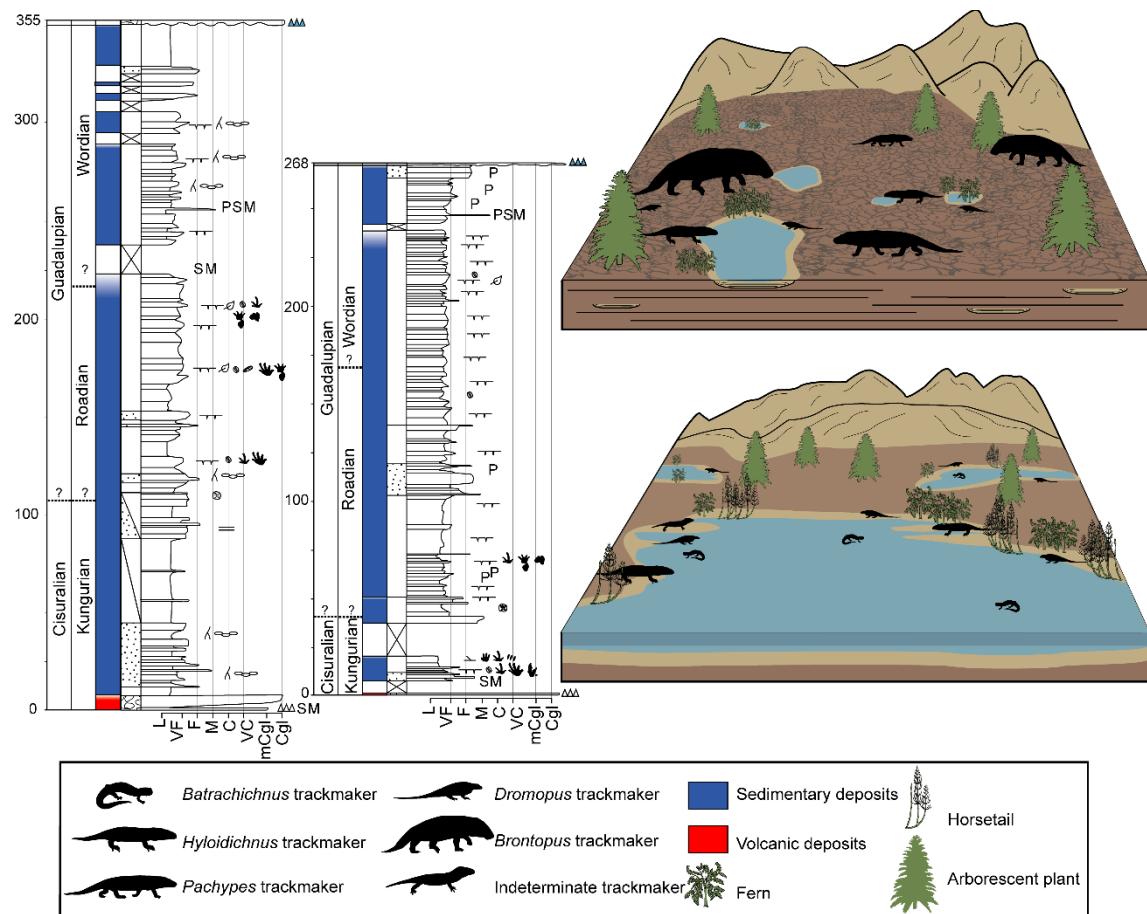

Figure 3.

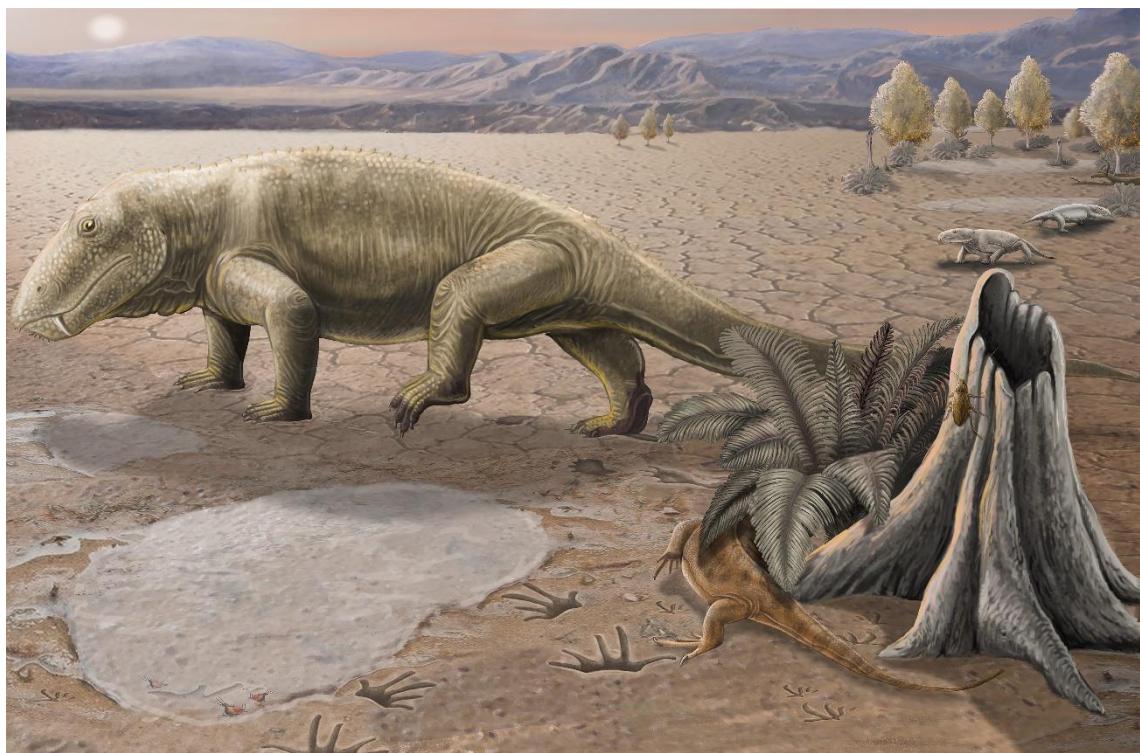

Figure 4.


Figure 5.


Figure 6.


Figure 7.


Figure 8.


Figure 9.

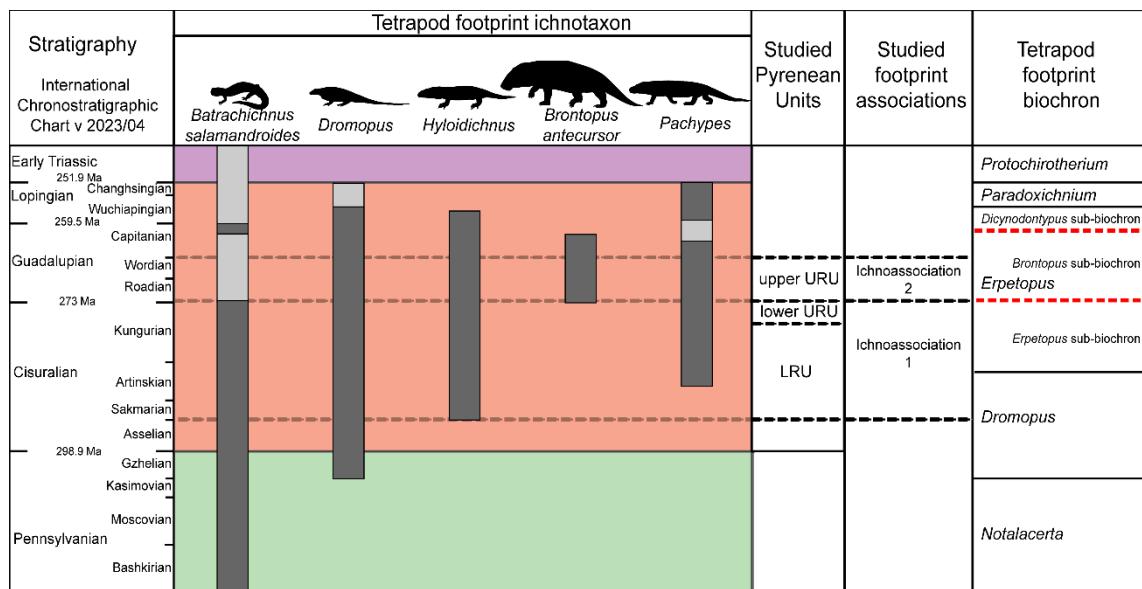

Figure 10.

Figure 11.

Figure 12.

Figure 13.