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Supplementary Text S1. Indeterminated tetrapod tracks, invertebrate traces and

plant remains
Systematic ichnology

Tetrapod ichnology
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Indeterminate morphotype
Fig. S7

Material. Lower Upper Red Unit (lower URU): one unrecovered isolated partial right
footprint in concave epirelief from CR section (CR-15-4) (Fig. S7).

Description. Semiplantigrade, medium-sized track (28.80 mm long) composed of three
robust digit imprints. The imprint shows a moderately ectaxonic shape, with the digits
markedly separated without overlapping, and the digit length increases from digit I to Il1.
Digits 1 and I11 imprints are the deepest, being completely preserved, showing a slightly
inward rotation and ending with pointed claw traces, whereas digits | is only represented
by isolated, shallow and rounded tip imprint. Digit Il imprint shows two phalangeal pads,
being the proximal the deepest. Digit 11l imprint presents three phalangeal pads being
also, the proximal the deepest. The lack of the digit IV and V precludes an accurate
measurement of the ichnite, making also impossible to distinguish if the footprint belong
to a pes or a manus. The sole/palm impression is short, and it is deeper impressed below
digits Il and 111.

Remarks. The low preservation degree (1) and the lack of additional samples precludes
the identification of the ichnotaxon. The overall shape and the relative length of the digits
are features observed in the ichnogenus Dromopus and Varanopus. However, in both,
several diagnostic features are absent. The robust digits with clawed digit tips could be
characteristic features of the ichnogenus Varanopus, a widespread ichnotaxon of the
Cisuralian—Guadalupian related to captorhinomorphs and bolosaurian parareptiles
(Haubold and Lucas, 2003; Gand and Durand, 2006; Voigt, 2012; Voigt et al., 2013,
Voigt and Haubold, 2015; Marchetti et al., 2021a). This ichnogenus has been recovered
in the Catalan Pyrenees (Voigt and Haubold, 2015; Mujal et al., 2016a), France (Gand,
1988; Marchetti et al., 2022b), Italy (Nicosia et al., 2000, Marchetti et al., 2022a),
Germany (Muller, 1954; Haubold and Stapf, 1998), USA (Haubold and Lucas, 2001,
2003; Lucas and Spielmann, 2009) and Canada (Van Allen et al., 2005). However, the
shallow impression of the digit I and the slightly inward curvature of the digits Il and 111
are features inconsistent with this ichnogenus. Moreover, the absence of an elongated
digit 1V, subequal in length with the digit 11, and the digit V, subequal in length as digit
I and Il, precludes the assignment to Varanopus. On the other hand, the increasing digit

length, their curvature, and the shallow impression of digit | are typical characteristics of
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the ichnogenus Dromopus. However, this ichnogenus is also defined by a markedly
elongated digit IV and a proximal position of the short digit V, showing slender elongated
digits with tiny digit tips. Therefore, the lack of digits IV and V, and the robust digital
impressions with rounded clawed tips observed in this footprint makes impossible to

assign it to this ichnogenus.

Invertebrate ichnology

Acripes (Matthew, 1910)
Acripes multiformis Gand et al., 2008

Material. Upper Upper Red Unit (upper URU): two samples with invertebrate traces
recovered from the massive mudstone deposits of the RM section (IPS128903,
IPS128906).

Description. Small-size lineal (1.3 to 5 mm as maximum width) traces generally
composed by two symmetric and parallel groves (sometimes only one is preserved)
separated by one medial ridge, which generally are displayed in straight or sinuous lines.
The width of each grove can variate along the trace. The edges of each row display a
rounded shape, and sometimes appear in contact with resting traces (Rusophycus see

below).

Discussion. The rectilinear or sinuous shallow impression of two symmetric furrows
associated with invertebrate traces of Rusophycus are diagnostic features of the
ichnospecies Acripes multiformis. They are interpreted as walking traces (Repichnia),
being in the same levels as resting traces (Cubichnia) of clam shrimp arthropods
(triopsids) (Gand et al., 2008). It has been recovered in different fluvial and shallow
lacustrine Permian deposits of the LRU and URU of the Catalan Pyrenees (Mujal et al.,
2016, 2017). In the studied succession, it is mostly related to small water bodies in
floodplain deposits and lacustrine ponds.

Rusophycus Hall, 1852

Rusophycus isp.
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Fig. SSA-B

Material. Lower Red Unit (LRU): Several surfaces with bioturbation activity (not
recovered) recorded in floodplain and overbank deposits of the LRU (at 180 m, 192 m
and 232 m from the base of CnH section), one sample related with vegetal impressions at
CnH section (IPS128889). Upper Upper Red Unit (upper URU): several samples (Fig.
S8A-B) recovered from the outcrops of the massive mudstone deposits at 145 m, 180 m
and 208 m from the base of RM section (IPS88736, IPS88737, IPS128897, 1PS128900,
IPS128903, IPS128906, IPS128907, IPS12908) and at 164 m from the base of CR section
(IPS88728, 1PS88729, IPS88730, IPS128879).

Description. Small-sized (2-5 mm), oval-shaped smooth traces with bilateral symmetry.
They are divided in two elongated loves by an intermedial space, giving them a “coffee
grain” shape. The internal edges are parallel to the midline; however, the lateral edges
tend be curved, producing a thicker area in the middle of each love and, showing a gradual
reduction of the thickness in extremes distal and anterior limit of each love, producing

pointed shapes.

Discussion. The small size, oval and bilobated shape with bilateral symmetry are
diagnostic features of the ichnogenus Rusophycus, a common Permian-Triassic resting
trace (Cubichnia) related with notostracan arthropods (triopsids) (Gand et al., 2008). They
appear related with walking traces (Repichnia) of the same trackmakers (Acripes see
above). This ichnogenus is conspicuously abundant in shallow water deposits with
mudstone or very fined sandstones as the ephemeral ponds of the playa lake system or
the overbank deposits of the floodplains in the studied succession. In fact, it has been
recovered in river and playa-lake systems of the LRU and URU of the Catalan Pyrenees
(Mujal et al., 2016, 2017). Sometimes several globular structures possibly corresponding

to pellets associated with these notostracan traces (Fig. S7B).

Plant remains

Despite the long wide succession studied in this work, only a few vegetal remains have

been recorded. Also, the partial and bad preservation of this palaeontological material,
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make most of the samples cannot be identified at family, genus nor specific level. Just a
few fossils preserve recognizable morphologies to reveal the floristic diversity of the
studied Permian red beds.

The oldest biotic remains recovered in the studied area is the specimen IPS88725. This
sample contain three small trunk fragments of horsetail plant have been recovered from
a medium grain-sized yellowish sandstone (IPS88725, Fig. S8C). They measure between
7.73 mm and 1.02 mm width, and they present a vertical ribbing, however no
segmentation nodule and no other structure is observed, considering the three remains as
internodular fragments. This sample was recovered in a covered area, relatively close to
the lowermost layers of the CnH section. However, this ex-situ sample show a clear
different feature in comparison with these Permian deposits, showing similar colour and
granulometry to those facies identified as the Transition Unit in the studied area (Gisbert
et al., 1985). All these observations precludes that these horsetail remains probably
belong to sandstone levels of the Transition Unit, identified in the Pyrenean Basin as late
Carboniferous-early Permian sediments (Nagtegaal, 1969; Gisbert, 1981; Mujal et al.,
2018), being the oldest sample of the studied sub-basin.

In the Lower Red Unit deposits of CnH section, some vegetal remains appear in the
overbank deposits of the LRU (IPS128895, at 232.5 m of the base of CnH section),

however, the bad preservation of the remains precludes a detailed identification of them.

Most of the plant remains were recovered in the Upper Red Unit (URU). In the first
deposits of the lower URU, some few vegetal impressions appear in a fine-grained
sandstone level (IPS128889, IPS128890; Fig. S7D). Despite presenting an elongated and
straight shape, like a needle leaf, the poor preservation makes impossible to recognise any
structure. On the other hand, the shallow lacustrine deposits of the upper URU of RM
section (IPS128898, IPS128900, IPS128905, IPS128892, IPS128893) and CR section
(IPS88730) preserve several samples of straight branches of ferns (Fig. STE). The general
morphology consists of a principal branch that splits in two homologous branches, which
in turn, split in two branches. The branches usually show stretch marks parallel to the
main axis of the branch. Despite they do not preserve any leaf structure, their morphology
shares several features with fern fronds (i.e. Schizopteris) and fern leaves (i.e.
Sphenopteris). These plants only appear in shallow lacustrine facies, related with
ephemeral water ponds. Sometimes invertebrate traces (Rusophicus and Acripes) appear

in the same slabs as these plant remains. Similar samples have been recovered in
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lacustrine environments of Cisuralian deposits of the Collio Formation related with

hygromorphic vegetation (Southern Alps, Northern Italy) (Marchetti et al., 2022).

Finally, several trunk marks have been identified in a mud-cracked level at 190 m of the
base of CR section. They show radial cracks surrounding the diameter of an arborescent
plant (Fig. S8F). These trunk marks appear grouped, spaced between them just for 20-50

cm.
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Supplementary Text S2. XRD analysis

Powder x-ray diffraction (XRD) measurements were performed in order to characterize
the mineralogy of the investigated samples (see Table S4). The XRD results were also
employed to shed light on the possible origin of samples that were not identified
unambiguously in the flied thin section. In particular, we found that in several cases, both

in hand specimens and in thin section, the distinction between volcanic and fluvial
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materials was not straightforward. This is probably related, in part, to the fact that

volcaniclastics were highly represented in the source areas of the sedimentary materials.

Figures S9 to S11 show XRD scans from selected samples. In general, it is found that the
qualitative mineralogy of the analysed samples, regardless of their origin (volcanic or
sedimentary), is similar. Most of the scans are dominated by strong reflections of quartz.
Other major phases that show up in the scans include plagioclase (albite), mica
(muscovite 2M1), chlorite (clinochlore), calcite and small amounts of hematite. As is well

known, the latter is responsible for the red colour of the Permian-Triassic materials.

The relative amount of the different major minerals in the investigated samples shows
significant variations, as revealed by the relative intensities of the XRD peaks of the
different phases. Fig. S9A shows the XRD scans of the samples CH-8 and CH-9
recovered from the Lower Red Unit (LRU) of CnH section. According to field
sedimentological observations can be attributed, respectively, to volcanic material (CH-
8;) and to fluvial sediments (CH-9). Although the mineralogy and the thin section (see
Table S4) of these two samples share several features, it is found that the volcaniclastic
material contains larger amounts of plagioclase and of quartz. Small amounts of calcite
are only detected in the fluvial material. In turn, stronger reflections from chlorite show
up in the scan of the fluvial sediments. Nevertheless, chlorite is typically found in
volcaniclastic samples and, therefore, it is not expected to be particularly indicative of the
provenance of volcano-sedimentary materials because it may be related to multiple
processes like, for instance: 1) recrystallization after weathering of volcanic materials,
which can be later incorporated in the fluvial sediments; Il) hydrothermal alteration of
the volcano-sedimentary rocks; Ill) incorporation of metamorphic materials from the
source area in the fluvial sediments, IV) Incorporation of chlorite-rich clasts in the

volcanic materials through pyroclastic density currents.

With these ideas in mind, we show in Fig. S9B the XRD scan of sample CH-13, which
corresponds to the lower Upper Red Unit (IURU) of Castellar de n’Hug, i.e., above the
last registered volcanic materials. In this case, the intensity of the plagioclase peaks is
relatively low, in agreement with the above considerations. In contrast, a somewhat larger
amount of calcite is detected, which can be attributed to pedogenetic processes or to fluid

circulation in the more porous, non-volcanic sediments. Interestingly, weak signal from
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microcline is also detected, which may be attributed to a change of source area for the
IURU sediments. Similar observations are found in Fig. S10A for samples CH-14 (IURU
in Coll Roig) and RM-m254-pre upper Upper Red Unit (UURU) of Riera de Monell. As
discussed for the case of sample CH-9 (Fig. S9), chlorite peaks are also evident for these

two samples.

Interestingly, the XRD measurements allowed us to identify the possible origin of
samples that, in the field, showed particular colorations or morphologies. This is the case,
for instance, of sample RM-m254 from the uURU of Riera del Monell, which did not
display the typical red colour of the Permian-Triassic sediments. As can be seen in the
XRD results (Fig. S10B), this sample contains small amounts of barite and larger amounts
of calcite and chlorite. According to these findings, this sample can be attributed to a
highly reduced organic-matter-rich fluvial sediment that contains a metal-rich

mineralization deposited through hydrothermal circulation.

Finally, we discuss the case of samples from the LURU of Sant Vicen¢ de Rus, the
identification of which was unclear in thin section. As can be seen in Fig. S11 for the case
of sample RUS-1, and bearing in mind the above discussion, this sample might be
tentatively attributed to a fluvial sediment due to the relatively low amount of plagioclase
that shows up in the scan. The presence of calcite may be attributed to the larger porosity
of the sedimentary material relative to the volcanic materials. However, the XRD data
alone do not allow us to reach definitive conclusions about the origin of these unclear
LURU samples since, for instance, pedogenetic processes or subsequent weathering of
volcaniclastic materials might have yielded the observed mineralogy. This example is
basically aimed at illustrating the complexity of correctly assigning the origin of these
volcano-sedimentary materials. More work is required in order to unambiguously identify

the nature of all the materials registered in Castellar de n’Hug and related outcrops.
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Figures Captions S1-S11

Figure S1. Paleomagnetic sampling sites along the Castellar de n’Hug (CnH), Riera de
Monell (RM) and Coll Roig (CR) sections simplified lithologic logs. Note the SG-SG2
and CP-CP16 sites from the LRU and URU units, they are located in nearby outcrops
close to the CR section. The negative virtual geomagnetic pole (VGP) latitude that implies

reverse polarity for all studied levels is depicted.

Figure S2. Rockmagnetic experiments, (A-C) Hysteresis loops (left diagrams), IRM
acquisition curves and back-field IRM (central diagrams) and unmixed coercivity
distributions (Maxbauer et al., 2016) (right diagrams) of representative lithologies. The
model fit unmixed coercivity distributions were derived from back-field IRM acquisition
data. Shaded area represents error envelopes of 95% confidence intervals.

Figure S3. Magnetic susceptibility (K) vs. temperature curves from representative
samples. The heating (red) and cooling curves (blue) are also indicated by respective

arrows.

Figure S4. Dromopus isp. tracks. A. 1IPS126632 with left ichnite in concave epirelief
from the CnH section (A), detailed picture of the sample in concave epirelief, (A’) false
colour depth map and contours, and (A”’) interpretation. B. IPS88734 with right ichnite
in convex hyporelief from the CR section (B) detailed picture and (B’) interpretation. C.
IPS88733 with a right manus-pes set in concave epirelief from the CR section (C) detailed
picture and (C’) interpretation. D. IPS88735 with right ichnite in concave epirelief
surrounded by raindrop impressions from the RM section (D) detailed picture and (D)
interpretation. E. Right manus-pes set (CnH-121-1 and CnH-121-2) in concave epirelief
from the CnH section (E) detailed picture and (E’) interpretation.

Figure S5. Hyloidichnus isp. tracks. A. Surface RM-177 with different ichnites in
concave epirelief at 177 m of the base of the RM section (A), detailed picture of the
surface, the square indicates the RM-177-1 and RM-177-2 manus-pes (Fig. 5D from the
main text), (A’) false colour depth map and contours and (A’’) interpretation. B.
IPS88735 with a manus-pes set in concave epirelief recovered at 129 m of the base of
RM section (B) detailed picture and (B’) interpretation of the impression. C. IPS126632
with a partial right ichnite with drag scratches in concave epirelief at 315 m in the CnH

section CnH section (C) detailed picture and (C”) interpretation.
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Figure S6. Pachypes cf. dolomiticus tracks. A. Mud-cracked surface with two ichnites
(RM-209-1, 2) in concave epirelief from the RM section (A), picture, (A’) interpretation.
B. Left partial manus track not recovered from in concave epirelief (CR-69-15) from the
CR section (B), picture of the imprint, (B”) false colour depth map and contours, and (B”?)

interpretation of the track.

Figure S7. Indeterminate morphotype. Left pes imprint of an indeterminate tetrapod
ichnogenus from Coll Roig section (CR-15-3). The footprint is in concave epirelief and

includes false-colour depth maps with contours (A’) and interpretive outlines (A’”).

Figure S8.A. Slab (IPS128896) with invertebrate traces interpreted as Rusophycus from
the upper URU deposits of the Castellar de n’Hug sub-basin. B. Globular structures
possibly corresponding to pellets associated with notostracan traces (IPS128896) from
the upper URU deposits of RM section. C. Partial remain of a horsetail (IPS88725)
preserved in a sandstone of the TU recovered near to the CnH section. D. Plant impression
(IPS128890) recovered from the lower URU deposits at the CnH section. E. Plant remain
identified as a fern with Rusophycus traces (IPS128905), recovered from the upper URU
of RM section. F. Mud-cracked surface of the upper URU at 190 metres from the base of

the CR section with trunk marks,

Figure S9. A. Graphic of the XRD scan results of the samples CH-8 (black line) and CH-
9 (blue line) attributed, respectively, to volcanic material and to fluvial sediments of the
LRU at 369 and 230 m of the CnH section. B. Graphic of the XRD scan of the sample
CH-13, which corresponds to the first deposits of the lower URU deposited after the last

volcanic materials at 633 m of the CnH section.

Figure S10. A. Graphic of the XRD scan of the CH-14 (lower URU of Coll Roig, black
line) and RM-m254-pre (upper URU of Riera de Monell section, pink line), which
corresponds to fluvial sediments of the Upper Red Unit at 11 m of the CR section and
254 m of the RM section. B. Graphic of the XRD scan results of the sample RM-m254
attributed to a reduced organic-matter-rich fluvial deposit of the upper URU at 254 m of
the CR section.

Figure S11. Graphic of the XRD scan results of the sample RUS-1 attributed to the first

deposits of the lower URU deposited after the last volcanic materials at the RM section.



Table S1. Geomagnetic data of the samples recovered in the Permian deposits of the
Castellar de n'Hug sub-basin.

Sample

Level

(m)

Castellar de n'"Hug

(CnH) section
CH2
CH3.2-1A
CH3A
CH5-1A
CH6-1A
CH7-1A
Pardinella de
Gavarros
CP10-1A
CP11-1A
CP1-1A
CP12-1A

CP13-1A

CP14-1A

179
345,2
345
351
353

375

Declin
ation

189,39
168,27
191,49
145,04
182,97

169,16

161,02
168,76
168,69
153,98
158,18

165,1

Inclin
ation

16,71
-25,17
3,39
-9,63
8,73

12,42

-48,64
-13,83
-25,99
2,02
4,42

1,45

Coordi

nates

tectoni
c
tectoni
c
tectoni
c
tectoni
c
tectoni
c
tectoni
c

tectoni
c
tectoni
c
tectoni
c
tectoni
c
tectoni
c
tectoni
c

core
azimut
h

197

197

55

197

197

175

190

190

196

190

190

190

core
dip

28
28
45
28
28

60

48
48
50
48
48

48

bedding
strike

107
107
107
107
107

85

100
100
106
100
100

100

beddin
g dip

28
28
28
28
28

60

48
48
50
48
48

48

3,6
15
0,7
59
2,3

6,6

91
91
4.4
3,8
5,4

3,9

ancho
red

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

FALS

FALS

TRUE

TRUE

TRUE

TRUE

number
steps

13

steps

580 610 640 660 680

250 300 350 400 450 500 600
800 1000 300 400 500 580
580 610 640 660 680

610 660 680

580 610 640 660 680

500 580 610 640 660 680

500 540 580 610 640 660 680
540 580 610 640 660

340 380 420 460 500 580 640
540 580 610 640 660 680
540 580 610 640 660 680

640 660 680



CP15-1A
CP16-1A
CP17-1A
CP18-1A
CP19-1A
CP21-1A
CP2-1B
CP5-1A
CP6-1A
CP7-1A
CP8-1A
CP9-1A
Coll Roig
(CR) section
CR1A

CR2.5A

CR3A

167,24
186,28
181,09
163,81
159,31
150,22
178,04

173,5
172,48
200,99
176,61

174,59

59 171,21
100 232,62

115 165,83

-17,98
-12,4

-12,94

tectoni
c
tectoni
c
tectoni
c
tectoni
c
tectoni
c
tectoni
c
tectoni
c
tectoni
c
tectoni
c
tectoni
c
tectoni
c
tectoni
c

tectoni
c
tectoni
c
tectoni
c

190

190

190

190

190

190

196

190

190

190

190

190

196

196

196

48

48

48

48

48

48

50

48

48

48

48

50

50

50

100

100

100

100

100

100

106

100

100

100

100

100

106

106

106

48

48

48

48
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50

48

48

48

48

48

50

50

50

1,3
2,2
13,5
3,6
2,6
8,5
5,2
3,7
1,8
2,7
2,9

2,7

1,6
2,1

1,5

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

FALS

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

640 660 680

350 450 500 540 580 610 640
660 680

660 680

660 680

450 500 540 580 610 640 660
680

580 610 640 660 680

460 500 580 640 680

610 640 660 680

540 580 610 640 660 680
540 580 610 640 660 680
540 580 610 640 660 680

540 580 610 640 660 680

610 640 660 680

610 640 660 680

610 640 660 680



CR4A 244
CR5A 246
CR7-1A 246
CR6A 246,2
CR9-1A 248
CR10-1A 253
CR11-1A 254
CR12-1A 255
CR13-1A 258
CR14-1A 261
CR15-1A 264
CR16-1A 267
Riera de Monell
(RM) section

RM1A 254
RM2A 2542
Solell de la

Gallarda

184,77
194,59
148,98
189,45
193,85
176,65
191,34
133,98
194,26
145,63
130,48

130,1

159,53

151,5

-14,91
-27,66
-15,38
22,01
3,14

-10,36

-27,16

-1,32
-40,21
-35,65

-7,61

-13,18

-3,44

tectoni
c
tectoni
c
tectoni
c
tectoni
c
tectoni
c
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c
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c
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c
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c
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c
tectoni
c

tectoni
c
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106
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50
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52

2,1
2,6
3,7
31
34
4,4

15
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3,2
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1,7

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

FALS

TRUE

640 660 680

300 400 500 580

250 350 350 450 500 540
500 580 610 640 660 680
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660 680
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660 680
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tectoni

SG1-1A 188,31 -512 ¢ 180 70 90 70 2,1 TRUE 3 640660 680
tectoni

SG2-1A 182,44 2971 ¢ 180 70 90 70 54 TRUE 3 640660 680



Table S2. Measurements of the tetrapod footprints described in the Permian deposits of the Castellar de n'Hug sub-basin. Preservation levels are assigned following the
procedures of Marchetti et al. (2019a). Abbreviation: FL, foot length; FW, foot width; psL, palm/sole length; psW, palm/sole width; 1-V, digit number; L, length of the

digit; di, divergence. Length measurements in mm, angular measures in degrees.
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Table S3. Parameters of the tetrapod trackways observed in the Permian of the Castellar de n'Hug sub-basin.

Trackway parameters Brontopus antecursor trackway (RM-177)
Stride manus (mm) 964.82
Stride pes (mm) 971.05
Pace manus (mm) 558.21
Pace pes (mm) 555.28
Pace angulation manus (degrees) 119.84
Pace angulation pes (degrees) 115.00
Width pace manus (mm) 326.33
Width pace pes (mm) 382.42
Manus-Pes distance (mm) 290.41
Div. Manus midline (degrees) 6.1
Div. Pes midline (degrees) 21.10
Div. Manus-pes digit 111 (degrees) 12.21

Glenoacetabular distance (mm) 796.414



Table S4. Brief description and stratigraphic position of the studied thin section samples.

Thin sectic Sectior Metre

sample
CH-6
CH-1
CH-2
CH-4
CH-5
CH-3

CH-9
CH-8

CH-13
CH-10
CH-18
CH-15
CH-11
CH-16
CH-12
CH-17
CH-14
RM-223
RM-254

RM-246
CH-7

CnH
CnH
CnH
CnH
CnH
CnH

CnH

CnH

CnH
CnH
CnH
CnH
RM
RM
RM
CR
CR
RM
RM

CR

Pardinella (out of successic

136,2
155
155
180
180
199

270,3
369,7

633,5
639
667
694
1
10
11
8
11
223
254

246

Metre cort DRX

136,2
155
155
180
180
199

270,3
369,7

633,5
639
668
694
602
612
613
617
620
825
856

854

Yes
No
No
No
No
No

Yes

Yes

Yes
No
No
No
No
No
No
No
Yes
Yes
Yes

Yes

Unit

LRU
LRU
LRU
LRU
LRU
LRU

LRU

LRU

LRU-IU
IURU
IURU
IURU
LRU
IURU
IURU
IURU
IURU
uURU
uURU

uURU
uURU

Description

Consolidated sandstone.

Sample matrix-rich with plagioclase crystals with angular shape.

Well-sorted sample with fissures refilled of calcite. The thin section view is not resolutive.
Sample without matrix.

Fluvial sedimentary sample.

Consolidated sandstone with abundant quarz, some grains of plagioclase and mica.

There are low presence of matrix.

Well sorted consolidated sandstone with abundant quarz grains moderately rounded.

There are low quantity of plagioclase.

Seem to be volcanic matrix with no classified angulous grains. Albite crystals are abundant
It resembles a lot to samples 8 and 9, however is not the thin section view is not resolutive.
Absent matrix and abundante albite.

Absent matrix and abundante albite.

Consolidated fluvial sandston with edaphic bioturbations.

Consolidated fluvial sandston with edaphic bioturbations.

Very altered volcanic palaeosol with coated grains.

Very altered volcanic palaeosol with coated grains.

Very altered volcanic palaeosol with root bioturbation and coated grains.

Fluvial sedimentary sample with pedogenetic activity and coated grains.
Consolidated fluvial sandstone with edaphic bioturbations.

Very altered fluvial sample with tractive structures and abundant organic matter.

Very altered fluvial sample with pedogenetic activity, abundant organic matter and presenc
clorite.
Very altered fluvial sample with pedogenetic activity and abundant organic matter.

Fluvial sandstone with very fine grain-size.



Stratigraphical section of Castellar de n'Hug (CnH) Facies
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Stratigraphical section of Riera de Monell
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Legend of stratigraphic sections of CnH, RM and CR
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Sedimentary material

L: Lutites (mudstones)

VF: Very fine sandstone

F: Fine sandstone

M: Medium sandstone

C: Coarse sandstone

VC: Very coarse sandstone
mCgl: Microconglomerate Mic
Cgl: Conglomerate
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Insect wing
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