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Abstract: The presence of insoluble protein deposits in tissues and organs is a hallmark of many
human pathologies. In addition, the formation of protein aggregates is considered one of the main
bottlenecks to producing protein-based therapeutics. Thus, there is a high interest in rationalizing and
predicting protein aggregation. For almost two decades, our laboratory has been working to provide
solutions for these needs. We have traditionally combined the core tenets of both bioinformatics
and wet lab biophysics to develop algorithms and databases to study protein aggregation and its
functional implications. Here, we review the computational toolbox developed by our lab, including
programs for identifying sequential or structural aggregation-prone regions at the individual protein
and proteome levels, engineering protein solubility, finding and evaluating prion-like domains,
studying disorder-to-order protein transitions, or categorizing non-conventional amyloid regions of
polar nature, among others. In perspective, the succession of the tools we describe illustrates how
our understanding of the protein aggregation phenomenon has evolved over the last fifteen years.

Keywords: protein aggregation; bioinformatics; biophysics; computational tools; amyloid; protein
structure; protein folding

1. Introduction

Proteins are prevalent macromolecules in living organisms and are essential to most bi-
ological functions. The establishment of functional native intra- and interchain interactions
is a key feature of protein biology that controls protein folding, binding, and activity [1,2].
Proteins navigate several conformational states in the crowded environment of living cells
in pursuit of a free-energy minimum, which can correspond to a monomeric state or a
wide range of assemblies [3,4]. Intracellular assemblies come in a variety of forms, from
multi-component, dynamic, and reversible biomolecular condensates to irreversible protein
clumps. In this latter case, the original protomers undergo partial or global unfolding, and
native contacts are replaced by non-native intermolecular interactions [5–7] resulting in
the formation of non-structured amorphous aggregates or highly ordered amyloid fibrils
characterized by a cross-β conformation [8,9].

A wide range of pathologies, including neurodegenerative diseases such as Alzheimer’s
and Parkinson’s and nonneuronal localized or systemic amyloidoses, are all closely linked
to the formation of protein aggregates [10–13]. However, despite this association with
disease, aggregation propensity is a general property of polypeptide chains [14]. This
results from the physicochemical requirements to form native interactions overlapping
with the molecular determinants driving aggregation [15,16]. Therefore, aggregation-prone
regions are ubiquitous in proteins and preserved throughout proteomes over millions of
years of evolution [17]. Under this constant and inevitable pressure of aggregation, proteins
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have evolved to adjust their solubilities to the maximum necessary to function in their
natural context [18].

The protein quality control system continuously monitors the balance between protein
aggregation and solubility in vivo [19,20]. However, events such as genetic mutations [21,22],
post-translational modifications [23], or the breakdown of proteostasis [24] place proteins
out of their usual environment and favor the initiation of non-native contacts leading to ag-
gregation. A similar situation is faced during the biotechnological production, purification,
and storage of proteins [25–27], where they are exposed to solvent conditions divergent
from those in the cell at concentrations that are many orders of magnitude higher than their
biological levels [28]. Proteins have not evolved to be soluble in these conditions [29,30];
as a result, they precipitate in tissues in human disorders or during the development of
therapeutic proteins.

Rationalization of the causes underlying protein aggregation prompted the devel-
opment of tools that can predict protein solubility, diagnose the impact of mutations or
chemical modifications in disease, and assist the engineering of optimized protein-based
drugs. In 2007, we developed Aggrescan, one of the first protein aggregation prediction
algorithms [31]. As our lab has a combined theoretical/experimental character, one of the
features of this pioneering program was that it exploited validated biophysical data to
generate its aggregation propensity scale [32]. This has been a constant of the different
tools we have developed along the years, in a journey that has taken us from identifying
the regions responsible for aggregation in individual protein sequences [33] to describing
the aggregation properties of the totality of human protein structures [34] (Figure 1).
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The present review attempts to illustrate the contribution of this Spanish group to the
prediction of protein aggregation, describing the characteristics of the different developed
algorithms and databases and providing our view on the state of the art of this field.

2. Computational Tools to Study Protein Aggregation

The present section provides a brief overview of three different computational tools
specifically developed to predict aggregation propensity from polypeptide sequences,
identify aggregation-prone regions in globular proteins, and evaluate mutations’ impact on
aggregation.

2.1. Aggrescan: Prediction of “Hot Spots” of Aggregation in Polypeptides

In 2007, we developed Aggrescan [31], a web-based software that provides a tool for
predicting aggregation-prone regions in polypeptide sequences. Aggrescan implements
an aggregation propensity scale for natural amino acids derived from in vivo experiments
performed with the β-amyloid peptide [32]. Precisely, we used a model consisting in the
Aβ42 peptide fused to the green fluorescence protein (GFP), in which GFP fluorescence acts
as a reporter of aggregation of the fusion protein. We mutated the middle position (Phe19)
of the central hydrophobic cluster of Aβ42 for the other 19 possible natural amino acidic
residues and analyzed the fluorescence levels of the different Aβ42-GFP fusions upon
expression in Escherichia coli. As a result, variants with increased aggregation propensity
decreased the fluorescence levels as they interfered with the proper folding of the fluores-
cent protein. The derived experimental data were employed to parametrize the algorithm
behind Aggrescan [31–33,35].

Thus, Aggrescan assumes that protein aggregation is nucleated and driven by specific
short sequence stretches that are exposed to the solvent, known as aggregation-prone
regions (APRs) or “hot spots”. The latest Aggrescan implementation is available online
(http://bioinf.uab.es/aggrescan/ (accessed on 12 January 2023)) and allows users to evalu-
ate single or multiple protein sequences. In both cases, the polypeptide sequence/s must
be provided in FASTA format as input. Then, the program determines the aggregation
propensity values for each individual amino acid, based on the experimentally derived
scale, generating an aggregation profile where APRs can be identified. It also calculates the
average score of the sequence using a sliding window; this value provides an estimation of
the overall aggregation propensity of the protein of interest.

Aggrescan is a simple and fast algorithm incorporated into different protein aggre-
gation and stability prediction pipelines. In particular, in 2013, it was implemented in
AMYLPRED2, a consensus predictor that integrates analysis performed by 11 top-tier tools
to identify aggregation-prone regions in proteins [36]. Ultimately, Aggrescan has been used
for many different experimental applications, including the characterization of individ-
ual biomedically relevant human proteins and their mutants [37–39] or the comparative
analysis of the aggregation propensity of entire proteomes [40,41].

2.2. Aggrescan 3D: A Server for Prediction of Aggregation Propensity in Protein Structures and
Rational Design of Protein Solubility

The establishment of intermolecular contacts driven by solvent-exposed APRs has
shown to be a successful concept in predicting protein aggregation in the context of newly
formed proteins or IDPs. However, for folded proteins, the detected APRs are usually lo-
cated within hydrophobic cores, inaccessible regions, or highly stable secondary structures,
whose exposure or β-sheet conversion is thermodynamically prevented [42,43]. Typically,
globular proteins aggregate by the spatial clustering of often non-contiguous in sequence
hydrophobic amino acids in the protein surface, forming structural APRs (STAPs) [44],
by local or global structural destabilization [45] or by stochastic fluctuations that lead to
the exposure of previously buried APRs [46]. Therefore, weighting a protein’s spatial
context becomes necessary to understand the forces that lead to its aggregation, a task that
sequence-based prediction methods cannot undertake.

http://bioinf.uab.es/aggrescan/
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To overcome these limitations, in 2015, we developed the Aggrescan 3D (A3D) algo-
rithm (http://biocomp.chem.uw.edu.pl/A3D2/ (accessed on 12 January 2023)) [47]. A3D
makes use of Aggrescan’s aggregation propensity scale and projects it into a protein struc-
ture three-dimensional context. This novel algorithm modulates each residue’s aggregation
propensity by accounting for its surface exposure and summing the contributions from
proximal residues’ (i.e., at 5 Å or 10 Å radius) intrinsic aggregation propensity, distance,
and exposed area, while disregarding non-exposed amino acids’ contribution [47]. This
makes accessible the study of protein aggregation using structural models for non-experts
and significantly reduces the number of false positive hits compared to lineal prediction
methods.

The first A3D implementation was equipped with FoldX energy force field to calculate
the structural impact upon mutations [48] and CABS-Flex [49], a coarse-grained molecular
dynamics simulator to estimate the proteins’ most dominant structural fluctuations in the
near-native ensemble. The integration of both approaches under the same pipeline allowed
A3D to model and estimate mutation impact on stability and aggregation propensity.
Using this strategy, it was possible to explain the mechanism of human β2-microglobulin
aggregation, which entails a severe complication for long-term hemodialysis patients.
Aggregation-prone mutants in this protein tend to expose STAPs, which are protected in
non-aggregating variants.

Due to its high computational costs, CABS-flex simulations were first restricted to
small proteins. In 2019, the initial A3D release was subsequently updated to the 2.0
version [50,51], which allowed studies on large biomolecules such as antibodies, protein
fibers, or multi-chain protein complexes [50]. In addition, the A3D 2.0 included other signif-
icant improvements, such as the automatic engineering of more soluble yet stable protein
variants and a REST-ful service to incorporate the server into bioinformatic pipelines. This
last algorithm version has been incorporated into a cost-effective routine tool specifically
developed for designing and optimizing multimeric protein materials [52]. A standalone
version of A3D 2.0 was recently released [53], which avoids erratic internet connections or
deal with privacy concerns.

Notably, in July 2019, the Spanish Biophysical Society (SBE) designated the paper
describing the method of A3D 2.0 as highlighted paper. Since its launch, A3D has aided the
community in multiple experimental efforts, such as redesigning proteins for biotechnologi-
cal approaches and engineering protein-based nanostructures [52,54–56]. For instance, A3D
has allowed the in silico redesigning of one of the more soluble GFP variants [54]. The A3D-
assisted redesign of this protein is shown in Figure 2. Other A3D applications included the
study of the impact on the aggregation of pathogenic [37,57,58] and non-pathogenic protein
variants [54,59–61], the analysis of the binding of antibacterial proteins to membranes [62],
the understanding of chaperone client recognition [63], and the assistance with neglected
tropical disease vaccine development [64] or model viral protein evolution throughout the
SARS- CoV-2 pandemic [65].

http://biocomp.chem.uw.edu.pl/A3D2/
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Figure 2. A3D−assisted redesign of the green fluorescent protein (GFP). (A) Example of an A3D plot
generated for the redesign of GFP. The red arrows point to aggregation-prone residues identified
in a globular context. (B) Automatic mutations mode tab depicting three energetically favorable
solubilizing mutations (indicated with brown squares). Note that A3D predicts three structural
aggregation-prone regions (colored in red) that are solubilized (colored in blue) when applying
a triple mutation to Lys amino residues. This example was generated using a previously solved
structure of GFP (PDB code, 2B3Q, chain a).
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2.3. A3D Database: Structure-Based Predictions of Protein Aggregation for the Human Proteome

In 2021, a comprehensive database containing highly accurate structure predictions
for the human proteome was published [66]. These predictions were computed using
AlphaFold (AF), a deep-learning neural network model developed by Jumper and cowork-
ers [67]. As discussed above, A3D exploits the structural information from atomic models
to identify surface-exposed aggregation-prone patches. We have exploited A3D to compute
the aggregation propensity of the entire human proteome in the AF database. These data
have been compiled in the A3D Database, which includes the precalculated A3D predic-
tions for 23,391 human proteins [34]. This database is the first compiling aggregation in
protein structures at this large scale and is freely available at (http://biocomp.chem.uw.
edu.pl/A3D2/hproteome (accessed on 12 January 2023)).

The first release of this database included interesting features from the more recent
implementation of A3D, such as the capacity to predict the effect of selected mutations
on protein stability and aggregation propensity, as well as propose optimal solubility-
enhancing mutations for every compiled human protein. Each entry of the A3D database
includes a detailed description of the structure-based aggregation propensity for the protein
of interest. The A3D database also incorporates user-friendly graphical tools for protein
structure visualization and interpretation. Examples of potential applications include
studying the impact of genetic mutations and engineering the solubility of pharmaceutically
relevant human proteins, including antibodies, replacement enzymes, and growth factors.

3. Computational Tools to Study Prion-like Proteins

Prions are a particular class of amyloids that can propagate their misfolded confor-
mation. These proteins have unique compositional features that have been exploited
to develop dedicated bioinformatics tools capable of identifying novel pathological and
functional polypeptides with prion-like properties. Herein, we discuss the features of
four different algorithms developed by our group to study prions and prion-like proteins.

3.1. PrionScan: An Online Database of Predicted Prion Domains in Complete Proteomes

In 2014, we developed PrionScan (http://webapps.bifi.es/prionscan (accessed on 12
January 2023)) as an open-source database of organized and up-to-date predictions for
putative prion-forming proteins for all the publicly available proteomes from all taxonomic
subdivisions [68–71]. The PrionScan algorithm has been developed based on the assump-
tion that prion propensity is determined by the composition of protein sequences [71,72].
Previously developed algorithms primarily focused on identifying amyloidogenic regions
in pathogenic proteins based on local structural and primary sequence characteristics.
However, most of these programs were not suited to analyze prion behavior since, globally,
prion domains do not share the sequential characteristics common to disease-associated
ß-sheet amyloids [73].

PrionScan was designed to identify and score prion regions based on the composi-
tional bias of prionogenic regions as deduced from an extensive set of experimentally
validated prion and non-prion sequences from yeast. These data were exploited to build
and train a probabilistic model that uses the statistical significance of individual amino
acid propensities to detect Q/N-rich prion-like regions in all UniProtKB annotated pro-
teomes [68,71,72,74]. In addition to storing information on putative prion proteins, Pri-
onScan provides a function to predict prion regions in sequences not reported in public
databases [68,71,75]. The data generated for a prediction comprises the sequence and local-
ization of the highest-scoring putative prion domain and additional information about the
protein, such as the Gene Ontology (GO) Terms and cross-references to other databases [68].

http://biocomp.chem.uw.edu.pl/A3D2/hproteome
http://biocomp.chem.uw.edu.pl/A3D2/hproteome
http://webapps.bifi.es/prionscan
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PrionScan has been used to understand prion/prionogenic proteins’ functions and
how their interaction networks have a substantial impact on gene regulation [76] or to
identify regions driving liquid–liquid phase separation (LLPS) [77]. Recently, we have
applied PrionScan to identify and characterize novel prion-like proteins in more than
800 bacteria proteomes, suggesting that prion-like presence is a common feature of different
prokaryotic genomes [70].

3.2. pWaltz and PrionW: Identification of Prion-like Protein Domains

In 2015, we launched the pWaltz algorithm (http://bioinf.uab.es/pWALTZ/ (accessed
on 12 January 2023)) [78]. This predictor was inspired by the Waltz amyloid prediction
strategy [79], but employed a lower detection threshold to identify milder amyloids and
used a larger sliding window that fitted the size of the minimum transmissible β-fold
described at that time [80,81]. As described, prion-like conversion was initially thought to
be driven by compositional features alone [82,83]. However, in 2010 a seminal study by
Toombs and co-workers using the yeast prion Sup35 suggested that certain stretches of
the prion domain may play a driving role in its transition [84]. Surprisingly, their results
indicated that these regions do not exhibit bias for residues overrepresented in yeast prions,
such as asparagines (N) and glutamines (Q). On the contrary, hydrophobic residues were
favored, while charged residues and prolines (P) harmed prion formation [84]. These biases
were reminiscent of those used by pure amyloid predictors [79], which sparked the idea
that prion conversion or propagation could rely on particular amyloid-like contributions.
We further realized that previously reported prion or prion-like domains (PrLDs) had
short stretches of mild amyloid propensity, and their mutation could explain observed
differences in prion-like conversion. Based on these observations, we developed the pWaltz
algorithm that could discriminate Q/N-rich domains with and without prion activity with
higher accuracy than the compositional-only prediction methods available at the time [78].

Since its release, pWaltz has been applied, coupled to different PrLD boundary predic-
tion algorithms, to detect soft amyloid cores in yeast and human prion-like proteins [85,86],
to identify the first bacterial prion [87] and prion candidates in the malaria parasite [88],
to evaluate mutation impact on prion-like protein aggregation [89], to understand the
aggregation of human prion-like proteins [90], or to describe the mechanism of Med15 and
TBP aggregation from initial coiled-coil conformations [60,91].

In 2015, we implemented PrionW (http://bioinf.uab.cat/prionw/ (accessed on 12
January 2023)), a prion prediction algorithm that works with complete protein sequences,
as it identifies the compositional context and the structural features needed for prion
conversion [92]. PrionW first runs a disorder prediction over the input sequence, and those
stretches deemed disordered are evaluated for a minimum Q/N enrichment. Then, the
best candidate sequence is evaluated with the pWaltz algorithm, and the selected PrLD
and soft amyloid core is presented. We employed PrionW to analyze the complete yeast
proteome demonstrating that it recalls bona fide prion proteins with high accuracy. Over the
past years, PrionW has helped scientists study telomeric-associated proteins’ evolution in
Candida albicans strains [93], to select yeast prion-like transcription factors that co-aggregate
with Swi1 in prion state, explaining another layer of how the prion phenotype changes gene
expression patterns [94]. PrionW has also been used to investigate the role of pathogenic
SFPQ human protein in Alzheimer’s and Creutzfeldt Jakob diseases [95], to understand
the evolution of prions in fungal species [96], study the evolution of mammalian meiotic
proteins [97], or proposed as a predictor of prion-like proteins capable of LLPS [77,98].

http://bioinf.uab.es/pWALTZ/
http://bioinf.uab.cat/prionw/
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3.3. AMYCO: A Server for Prediction of the Impact of Mutations on the Aggregation Propensity of
Prion-like Proteins

In 2017, the first extensive mutational study addressing the aggregation of a human
prion-like protein in vivo was reported [99]. It studied the ribonucleoprotein hnRNPA2,
whose aggregation is associated with the development of Amyotrophic Lateral Sclerosis
(ALS) and multisystem proteinopathy [100]. This pioneering work provided a robust exper-
imental framework to evaluate the determinants driving pathogenic PrLDs’ aggregation.
We used it to demonstrate that an equation that simultaneously considers the effects of
mutations on PrLDs’ composition and localized amyloid propensity best predicted the
impact of amino acid substitutions on the intracellular aggregation of functional yeast
prions and human disease-linked proteins [100–102]. The derived amino acid scoring
system was implemented in 2019 into the publicly available AMYCO (combined AMYloid
and COmposition-based prediction of prion-like propensity) algorithm [89].

AMYCO (http://bioinf.uab.es/amycov04/ (accessed on 12 January 2023)) is a web
server that allows the fast, automated, and graphical evaluation of the effect of mutations
on the aggregation properties of prion-like proteins [89]. At that time, its performance was
better than previous state-of-the-art predictors. Since its publication, AMYCO implemen-
tation has been used to gain insights into prion evolution, especially the appearance and
conservation of prion-protective or -enhancing mutations in different mammals [103–106]
and birds [107]. It has also been used to identify prion disease-related somatic mutation in
the prion gene from cancer patients [108] or to rationalize the effect of point mutations in
the hnRNPDL gene on the onset of a rare type of muscular atrophy [109].

3.4. SGnn: A Server for the Prediction of Prion-like Domains Recruitment to Stress Granules upon
Heat Stress

Stress granules (SGs) are dynamic and reversible biological condensates that form in
response to different cellular stresses [110]. These intracellular structures are constituted
mainly by mRNAs and proteins containing PrLDs similar to those found in yeast [110].

Stress Granules neural network (SGnn) (http://sgnn.ppmclab.com/ (accessed on 12
January 2023)) is a web application developed by our group that predicts PrLDs’ propensity
to populate heat-induced SGs upon heat stress in complete proteomes [111]. To perform the
predictions, the SGnn algorithm evaluates three relevant parameters that have been identi-
fied as important for SG localization: (i) PrLD aggregation propensity using the Aggrescan
algorithm [31] and CamSol Intrinsic [112], (ii) the ability to establish electrostatic interac-
tions (i.e., net charge per residue), and (iii) the free cysteine content. All these sequence- and
composition-dependent features contribute to PrLDs’ heat-induced assembly and can be
read in their sequences. The predictive method implemented in SGnn to assess PrLDs’ be-
havior is based on these assumptions and on Ross and coworkers’ in vivo characterization
of yeast PrLDs’ recruitment to heat-induced SGs [110]. Exploiting this experimental data, a
feed-forward neural network (FFNN) was trained, and its discriminatory potential was
benchmarked against positive and negative PrLD sequences [111], this made it possible
to define the three features providing the best prediction of the propensity of a PrLD to
be recruited into SG upon heat stress, with accuracy and precision higher than contempo-
rary algorithms using only compositional parameters, suggesting that specific interactions
between defined residues play a role in the recruitment of proteins to these condensates.
SGnn provides tabular results for all calculated parameters and a final decision (true/false)
on the recruitment of PrLDs to SGs.

http://bioinf.uab.es/amycov04/
http://sgnn.ppmclab.com/
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As a representative example, SGnn has been recently used by Harrison and coworkers
to predict whether ortholog sequences from metazoans and plants can be recruited into
SGs [113].

4. Computational Tools to Study Intrinsically Disordered Proteins (IDPs)

Intrinsically Disordered Proteins (IDPs) have primary structures that combine low
mean hydrophobicity and high net charge. The absence of a driving force for compaction
and electrostatic repulsions causes the proteins populating this sequence space to present
extended conformations in which amino acids are highly exposed to the solvent. Thus,
solution conditions, including the pH, significantly impact the structure adopted by disor-
dered protein regions. Here, we introduce a set of bioinformatics tools we developed to
provide a framework to study IDPs’ properties in a context-dependent manner.

4.1. DispHred and DispHScan: Predicting Protein Disorder as a Function of pH

In 2020, we released DispHred (https://ppmclab.pythonanywhere.com/DispHred
(accessed on 12 January 2023)) [114]. This tool was specifically developed to study the effect
of pH on the order–disorder transitions of proteins possessing low secondary structure
content. This server uses Henderson Hasselbalch’s equation to calculate the protein’s
net charge and the pH-dependent hydrophobicity scale developed by Zamora et al. [115].
First, we validated the utility of this novel pH-dependent hydropathy scale, building up
a dataset of experimentally validated disordered and single-chain folded proteins. Their
associated net charge and hydropathy scores were computed and represented in charge-
hydropathy plots, which were then used to assess the disorder-predicting potential of this
representation. Receiver Operating Characteristic (ROC) analysis was performed on these
plots, indicating high performance compared to the traditional Guy’s and Kyle-Dolittle’s
hydrophobicity scales [116]. Afterward, the model was tested to predict pH-dependent
order-to-disorder transitions. To do so, we used seven disordered proteins and peptides for
which their pH-dependent conformations were validated experimentally. Using Support
Vector Machines (SVMs), a linear boundary condition was defined. This classification
system correctly discriminated folded and disordered proteins, avoiding overfitting and
providing a margin of uncertainty near the boundary condition line.

DispHred is ready to use under its freely available web server implementation and
allows the users access to the individual sequence order-to-disorder transition analysis.
Among the variables of the analysis, the user can choose the sliding window size, the
starting and ending pH interval, and the pH step used. The results page presents tabular
and graphical data of the DispH score for the protein at every given pH. A score over
0 indicates that the protein is folded, while negative scores indicate that the protein is
unfolded at the given pH.

DispHred has been used to predict pH-dependent order transitions in amphiphilic
peptides to study their self-assembly [117] and disorder-to-order transitions in redox or
alkali environments in viral IDPs [118]. It has also been used in biomedicine to study the
ordered state of possible bioactive peptides regarding pH [119] and the effect of pH on the
binding of drugs to the Human Serum Albumin’s disordered regions [120].

https://ppmclab.pythonanywhere.com/DispHred
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DispHred represented the first bioinformatics tool specifically designed to predict
protein disorder as a function of pH [114]. However, despite the novelty of the method,
the DispHred algorithm was limited by the prediction of a single sequence at a time, thus
precluding the analysis of pH-dependent disorder in large datasets such as proteomes.
Moreover, specific information was not provided, such as identifying the pH of transition
or the nature of identified conformational switches. For these reasons, in 2020, we also
released DispHScan (http://disphscan.ppmclab.com (accessed on 12 January 2023)) [121].
The DispHScan pipeline looks for possible disorder transitions in a defined pH interval and
determines the nature of such conformational changes (e.g., conditional folding, conditional
unfolding, or multitransition). At the same time, if a transition occurs, the corresponding
pH value(s) are specified. As discussed above, the most relevant novelty of DispHScan
relies on its ability to run pH-dependent disorder predictions for multiple sequences. In
this sense, the server performance was tested by running the proteomes of four model
organisms, including human, Saccharomyces cerevisiae, Escherichia coli, and Caenorhabditis
elegans, each at >25 different pHs. Beyond proteome analyses, the server has been used
to predict pH-dependent disorder in low complexity sequences involved in liquid–liquid
phase separation (LLPS), where a significant correlation between protein disorder and
solubility was observed at neutral pH [122].

4.2. SolupHred: A Server to Predict the pH-Dependent Aggregation of Intrinsically Disordered Proteins

Biophysicists have been long interested in predicting aggregation from protein se-
quences in defined conditions [79,122,123]. However, the protein microenvironment is
highly dynamic, and the aggregation of polypeptides is influenced by external factors
such as pH [124,125]. This influence is especially relevant for IDPs, whose lack of de-
fined three-dimensional conformation makes them more susceptible to environmental
fluctuations [126].

SolupHred (https://ppmclab.pythonanywhere.com/SolupHred (accessed on 12 Jan-
uary 2023)) represented the first aggregation predictor for IDPs to incorporate the effect of
pH in its core [127]. In order to develop the predictive model, we engineered three different
variants of the measles virus phosphoprotein (PNT) displaying different net charges and
isoelectric points (pI). Interestingly, we discovered that not only the net charge but also the
lipophilicity depended on the solution pH [128]. The SolupHred algorithm implements
this evidence into an empirical equation based on the assumption that pH-dependent
aggregation in IDPs is determined by both charge and lipophilicity. SolupHred success-
fully recapitulated the aggregation propensities of disease-linked proteins such as alpha-
synuclein [129], islet amyloid polypeptide [130], abeta 40 [131], or tau [132] at different pH
levels.

The SolupHred web server works on top of an individual or multiple sequences and
predicts solubility either in a pH interval or at a specific pH. After submission, it provides a
solubility profile in the selected pH range, indicating the 10% maximum and 10% minimum
solubilities (Figure 3). SolupHred can be used as a fast, cost-effective method to optimize
experimental conditions, purification, and storage of IDPs, as well as for conducting large-
scale analyses of pH-dependent IDP aggregation. The server has been used to study the
correlation between solubility and LLPS in low-complexity regions of proteins implied in
neuronal diseases [122].

http://disphscan.ppmclab.com
https://ppmclab.pythonanywhere.com/SolupHred
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4.3. CARs-DB: A Database of Cryptic Amyloidogenic Regions in Intrinsically Disordered Proteins

IDPs, lacking a defined secondary structure, were considered devoid of pro-aggregational
regions. Classical amyloidogenic sequences are rich in nonpolar and aromatic amino acids,
a compositional bias toward hydrophobicity not found in unstructured proteins. In 2021,
we surveyed IDPs in search of non-canonical aggregation-prone segments [133]. This
investigation led to the concept of Cryptically Amyloidogenic regions (CARs) of polar
nature in Intrinsically Disordered Regions (IDRs). CARs play an essential role in mediating
Protein–Protein Interactions (PPIs), but they are also connected to pathogenic processes,
such as when non-native interactions occur. To provide a resource for researchers to assess
the presence of amyloidogenic stretches in IDPs, CARs-DB was developed [134]. This
database contains candidate CARs of all IDPs in the manually curated database, DisProt.
To detect these segments, the Waltz algorithm, developed by Maurer-Stroh et al. [79], was
employed, using a detection threshold lower than the one used to find conventional amyloid
sequences. The lowest threshold of 73.5 was consistent with the one used to search for the
amyloid cores of prion and prion-like proteins, for which experimental evidence of amyloid
formation existed [85,86,135]. However, on this occasion, the identified sequence could be
as short as seven residues since we have shown that highly polar peptides of this size form
bona fide amyloids in vitro [136–138]. This evidence is consistent with the hypothesis that
there exists an uncharted amyloid space away from hydrophobic sequences [139].

CARs-DB is a freely available database that users can access using the following link:
http://carsdb.ppmclab.com (accessed on 12 January 2023). This precomputed database
enables the detection of CARs in IDPs without the need to calculate their amyloidogenic
propensity [134]. In the “Database” section, three thresholds are available: 85, 80, and
73.5. The lower the selected threshold, the more unconventional these amyloidogenic
regions will be, presenting an increasingly polar nature. Among the information provided
in the database, users can find the protein’s Disprot ID, UniProt Accession ID, its name,
and the source organism. Both IDs provide links to each database (DisProt and UniProt,
respectively). In addition, the start and end of the IDR (annotated in DisProt) are also
specified. Finally, information regarding the CAR (start and end positions, length, sequence,
and Waltz score) is included.

This recently published resource has been used to detect CARs in the Hendra and
Nipah P proteins’ intrinsically disordered N-terminal domain (NTD) [140]. The P protein
is a phosphoprotein that belongs to the viral RNA-dependent-RNA-polymerase complex
(RpRd), which is necessary for the transcription and replication of these viruses. Several of
the detected regions had already been experimentally validated [133], proving the potential
of this database to analyze IDRs for the presence of polar amyloidogenic stretches.

5. Discussion

Due to its importance in biomedical research and the biotechnological sector, protein
aggregation has changed over the past decades from a virtually unexplored study subject
to a scorching research issue. We have seen ground-breaking scientific advancements, and
now, we have a profound mechanistic view of how aggregation occurs. Computational
tools, such as the ones developed by our lab and described here, have contributed signifi-
cantly to this knowledge, helping to direct experimental efforts to elucidate the molecular
pathways behind disorders related to protein aggregation. Additionally, they have acceler-
ated the development of engineered protein variants with enhanced solubility and stability,
reducing the time and money needed to produce therapeutic proteins.

All our programs, and the large majority of those developed by our colleagues, are
freely available to the public in the format of a web server and/or as an executable file.
In addition, all of them contain help files with detailed information for users, including a
general description of the tool and relevant usage information. In silico approximations,
such as the ones we detail here, are gradually included in many wet laboratories’ routines
as a cost-effective way to design experimental pipelines. In this way, the primary articles

http://carsdb.ppmclab.com


Biophysica 2023, 3 13

describing the algorithms discussed in this review have collectively received >1350 citations
as of 22nd December and according to Google Scholar.

The different algorithms capture distinct aspects of protein aggregation and are in-
tended for diverse applications. In a way, the timeline shown in Figure 1 reflects how
the interests of the field have evolved over time and how the integration of experimental
biophysical data and predictions has allowed us, as a community, to address challenges of
increasing complexity. Initially thought to be a purely stochastic and thus unpredictable
phenomenon, the realization that, as folding, aggregation was somehow imprinted in
the sequence [141] opened an avenue for rationalization of aggregation reactions at the
proteome scale. With sequence-based predictors available, very soon, new types of protein
sequences attracted the community’s interest, those belonging to prion and prion-like
proteins. It was immediately evident that the sequence space of archetypical amyloids
and prion-like proteins only partially overlapped, and a new generation of algorithms
was generated. That effort was worthwhile because these algorithms, or those directly
derived from them, are currently being used to study the propensity of proteins to form
part of the fashionable membraneless organelles [142]. The need for different scales when
dealing with different sequence sets already indicated that the amyloid sequence space
was far broader than previously believed. It is now clear that highly soluble sequences
with minimal aliphatic content and/or high net charge can form amyloids [139]. The idea
that low solubility and aggregation propensity are interchangeable qualities was at the
heart of most initial algorithms; new programs and databases are revisiting this idea to fish
sequences in this new amyloid terrain.

Once intrinsic sequential factors were clarified for the different aggregation flavors,
extrinsic factors had to be considered. They include viscosity, temperature, pH, ionic
concentration, protein concentration, solvent identity, and interactions with other molecules.
The absence of rigorous experimental data spanning all potential variable combinations for
a group of sequentially unrelated proteins has been the fundamental obstacle to developing
systems that can incorporate the protein microenvironment in their predictions. However,
as we illustrate here, the first attempts to incorporate parameters such as the solution pH
in the prediction pipeline are rendering their fruits, especially for IDPs, whose properties
are especially sensitive to the solution conditions.

In addition to the intrinsic sequence, one should consider other factors when study-
ing the aggregation of globular proteins, including stability, conformation, cooperativity,
surface solubility, and dynamics. Structure-based algorithms were born to deal with all
these parameters automatically. However, for a long time, the application of these tools
was limited to a relatively reduced space of the protein universe: those for which a high-
resolution structure exists or a model could be confidently constructed. However, with
the avenue of programs such as AlphaFold [67], this limitation has been broken down,
and databases containing accurate protein aggregation predictions for the complete set of
globular proteins in a given proteome are already available online [34].

The time has come for artificial intelligence (AI) to enter the aggregation prediction
arena [143]. The application of this technology requires the availability of a large number of
biophysical studies that can feed it. Unfortunately, the acquisition of biochemical (stability,
pH-dependence of conformational changes) and biophysical data (type of condensation
or aggregation) is seen as a low-value objective. We should remember that AI successes
such as AlphaFold would not have been possible without an extraordinarily well-curated
database of protein structures [144]. Building a consortium that can generate a coherent set
of information related to protein aggregation is now more than ever a necessity and a must,
given the growing impact of protein aggregation-related diseases in our society.
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6. Conclusions

We have seen impressive innovations in protein aggregation prediction in the last
fifteen years. We are pleased to have played our part in this progress, together with an
outstanding group of international researchers.
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