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Abstract: This study investigates the Slepyan–Palmov (SP) model, which describes plane longitudinal
waves propagating within a medium comprising a carrier medium and nonlinear oscillators. The
primary objective is to analyze the integrability properties of this model. The research entails two key
aspects. Firstly, the study explores the group invariant solution by utilizing reductions in symmetry
subalgebras based on the optimal system. Secondly, the conservation laws are studied using the
homotopy operator, which offers advantages over the conventional multiplier approach, especially
when arbitrary functions are absent from both the equation and characteristics. This method proves
advantageous in handling complex multipliers and yields significant outcomes.
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1. Introduction

The Cauchy stress principle is a fundamental assumption in classical continuum
mechanics which establishes a key equivalence between the action of all internal forces
applied to an elementary area and the action of their resultant force applied at the center of
the area. This principle forms the backbone of classical continuum mechanics and plays
a crucial role in understanding the behavior of continuous materials under various loads
and deformations. However, as engineering and scientific investigations have advanced,
it has become evident that the simple stress principle embodied by Cauchy’s hypothesis
might not fully capture the complexity of certain materials and deformation scenarios. In
more general cases, the action of an arbitrary system of forces on a deformable solid cannot
be solely represented by stresses alone. In addition to stresses, moment stresses emerge,
leading to the formation of asymmetric tensors. These moment stresses significantly
influence the mechanical response of materials, especially in situations where classical
continuum mechanics fall short of describing real-world phenomena accurately.

To adequately account for these complex behaviors and to broaden the understanding
of material responses, the introduction of additional degrees of freedom in the medium
becomes necessary. This involves considering a physically infinitesimal volume (over
which the properties of the medium are averaged) not as a simple material point, but
as a more intricate object with new degrees of freedom. This recognition of additional
degrees of freedom allows for the inclusion of a microstructure within the material, such as
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graininess, fibrousness, or cellular structures present in real-world materials. By embracing
this expanded perspective, the range of properties that can be modeled within a continuous
medium expands considerably. The presence of internal microstructure and the considera-
tion of additional degrees of freedom enable a more comprehensive representation of the
mechanical response of materials, particularly in cases where classical continuum mechan-
ics might be limited in its accuracy. Both the classical continuum model and the generalized
continuum model are extensively utilized in modern deformable solid mechanics [1–3].

In addition to the classical continuum model and the generalized continuum model,
there are other models used in deformable solid mechanics. One example is the Cosserat
continuum [4], which considers internal rotational degrees of freedom. This theory was
originally published in Russian and it has been subject to comments and discussions [5].
Gradient models, like the Leroux continuum [6], Jeremillo model, and Tupin model [7],
also exist. These models incorporate gradients of certain fields to handle materials with
spatial variations in properties, proving useful in describing complex materials.

Furthermore, there are models that account for media with oscillatory degrees of
freedom. These models address the presence of oscillations or vibrations within the material.
The works of Slepyan [8] in one-dimensional systems and Palmov [9] in three-dimensional
systems have significantly contributed to this area of research. These diverse models enrich
our understanding of material behaviors and offer valuable insights into various physical
phenomena in deformable solids.

The SP model combines a linearly elastic carrier medium with non-interacting os-
cillators (elastic or viscoelastic) suspended at each point. It postulates that the dynamic
behavior of the carrier model is described by the Lame equations and the oscillators fixed
within it have continuously distributed eigenfrequencies.

The following equations govern the dynamics of the SP model

($ + µ) grad div v + µ∆v− ρv̈−
∫ ∞

0
m(q)ẅq dq + K + Q = 0,

m(q)ẅq + c(q)
[

1 + R̃
(

∂

∂κ

)](
wq − v

)
= Qq.

(1)

where

• ρ represents the mass density of the carrier medium.
• $ and µ are the Lame elastic moduli characterizing the carrier medium’s elasticity.
• v denotes the displacement vector of points within the carrier medium.
• K stands for the intensity of the external body force acting on the medium.
• wq represents the absolute displacement vector of the oscillator mass with respect to

its equilibrium position.
• Qq denotes the external force applied to the mass of the oscillator.
• The quantity m(q)dq corresponds to the mass of all oscillators with eigenfrequencies

lying within the interval (q, q + dq) multiplied by a unit volume.
• m =

∫ ∞
0 m(q)dq is the total mass density of all oscillators fixed to the carrier medium.

• c(q) = q2m(q) represents the static stiffness of the oscillator suspension.

The quantity R̃(∂/∂κ) characterizes the energy dissipation in the oscillator suspension.
An interesting characteristic of this model is that even with the low damping of oscillators,
the spatial attention of vibrations in the medium is finite [10]. As a result, the model finds
effective application in calculating the vibrations of aircraft, rockets, and space technology
objects, as well as submarines. It proves to be a valuable tool in analyzing and predicting
the behavior of these structures under various vibrational conditions.

In the context of an isolated environment with K = 0 and Qq = 0, we focus on a one-
dimensional version of the system (1). To account for nonlinearity attributed to the carrier
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medium, we introduce nonlinear terms into the system. The resulting one-dimensional
system is expressed as

($ + 2µ)
∂2vy(y, κ)

∂y2 +
∂

∂y

[
F
(

∂vy

∂y

)2
]
− ρ

∂2vy

∂κ2 −
∫ ∞

0
m(q)

∂2wqy(y, κ)

∂κ2 dq = 0,

m(q)
∂2wqy

∂κ2 + c(q)
[

1 + R̃
(

∂

∂κ

)](
wqy − vy

)
= 0,

(2)

where F is the coefficient characterizing the nonlinearity of the carrier medium.
Under the assumption that the absolute displacement of the oscillator does not depend

on its eigenfrequency, we can express it as
(
wqy = wy

)
∫ ∞

0
m(q)

∂2wqy

∂κ2 dq =
∂2wy(y, κ)

∂κ2

∫ ∞

0
m(q)dq.

The system (2) is simplified to a single equation representing the longitudinal displace-
ment of the carrier medium, denoted as vy given by

∂2vy

∂κ2 − c2
1

∂2vy

∂y2 −
c2

1
q2

∂4vy

∂y2∂κ2 +
1

α2q2
∂4vy

∂κ4 + R̃
∂3vy

∂κ3 − R̃c2
1

∂3vy

∂y2∂κ

−
c2

2
q2

∂3

∂y∂κ2

[(
∂vy

∂y

)2
]
− c2

2
∂

∂y

[(
∂vy

∂y

)2
]
− R̃c2

2
∂2

∂y∂κ

[(
∂vy

∂y

)2
]
= 0,

(3)

with
ρ̃ = ρ +

∫ ∞

0
m(q)dq, c2

1 =
$ + 2ν

ρ̃
, c2

2 =
F
ρ̃

, α2 =
ρ̃

ρ
·

We define the dimensionless parameters as

θ =
vx

v0
, x =

αq
c1

y, t = αqκ.

By introducing v0 as the maximum displacement, within which the deformation of
the carrier medium remains elastic, Equation (3) is modified to take the following form

∂2θ

∂t2 −
∂2θ

∂x2 +
∂2

∂t2

(
∂2θ

∂t2 − α2 ∂2θ

∂x2

)
+ R̃αq

∂

∂t

(
∂2θ

∂t2 −
∂2θ

∂x2

)
−Ñ

∂

∂x

[(
∂θ

∂x

)2
]
− Ñα2 ∂3

∂t2∂x

[(
∂θ

∂x

)2
]
− R̃Ñαq

∂2

∂t∂x

[(
∂θ

∂x

)2
]
= 0,

where Ñ = c2
2αqv0/c3

1

or
∂2θ

∂t2 −
∂2θ

∂x2 +
∂2

∂t2

(
∂2θ

∂t2 − α2 ∂2θ

∂x2

)
+ R

∂

∂t

(
∂2θ

∂t2 −
∂2θ

∂x2

)
−N1

∂

∂x

[(
∂θ

∂x

)2
]
− RN1

∂2

∂t∂x

[(
∂θ

∂x

)2
]
− β

∂3

∂t2∂x

[(
∂θ

∂x

)2
]
= 0,

where β/N1 = α2 > 1.
Considering the nonlinearity of the medium in the absence of dissipation (R = 0, N1 = 0),

Equation (3) can be expressed as follows

∂2θ

∂t2 −
∂2θ

∂x2 +
∂2

∂t2

(
∂2θ

∂t2 − α2 ∂2θ

∂x2

)
− β

∂3

∂t2∂x

[(
∂θ

∂x

)2
]
= 0.
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In this study, we conduct a Lie symmetry analysis of the SP model [11] in the given
mathematical form

θtt − θxx + (θtt − α2θxx)xx − β((θx)
2)ttx = 0. (4)

Lie theorists like Ovsyannikov [12], Ibragimov [13], Bluman [14], Olver [15],
Hydon [16], Stephani [17], and others [18,19] have played a vital role in connecting group
structures to differential equations. This link has been crucial in discovering invariant
solutions for nonlinear partial differential equations and gaining deeper insight into their
behavior. A significant area of study has been the group analysis of the SP model, where
Lie theory techniques have led to the identification of invariant solutions and conservation
laws, highlighting essential underlying symmetries and dynamic properties. This study
provides group invariant solutions that remain unchanged under a specific Lie symmetry
generator, adding novelty to our research as such solutions are not present in the existing
literature. Additionally, the conservation laws outlined in this study are reported for the
first time, contributing to the enrichment of the SP model’s applications from a divergence
perspective. Our study is specifically centered on invariant solutions and nonlocal con-
servation laws, which represents a limitation in terms of the methods we have employed.
References [20–22] represent valuable contributions to this field, shaping our understanding
of the SP model and its applications in various scientific and engineering domains.

The article is organized as follows: Section 1 presents a detailed explanation of the
SP model. In Section 2, the Lie group method and one-dimensional subalgebras for the
SP model are discussed. Section 3 is devoted to exploring the invariant solutions of the
SP model. Moving on to Section 4, the article examines the derivation of conservation
laws using the homotopy operator. Section 5 focuses on the physical interpretation of
the solutions. Lastly, in Section 6, the article concludes by highlighting potential future
research directions.

2. Lie Group Method

In this section, we investigate the Lie symmetries and optimal system of Equation (4).
We consider a one-parameter Lie group of transformations to identify the inherent symme-
tries in the equation

x̃ → x + ςϕ1(x, t, θ) + O(ς2),

t̃→ t + ςϕ2(x, t, θ) + O(ς2),

θ̃ → θ + ς$(x, t, θ) + O(ς2),

(5)

where ς is the group parameter. The vector field associated with the above transforma-
tions is

E = ϕ1(x, t, θ)
∂

∂x
+ ϕ2(x, t, θ)

∂

∂t
+ $(x, t, θ)

∂

∂θ
· (6)

The coefficient functions ϕ1, ϕ2, and $ are to be found, and the operator E fulfills the
Lie symmetry condition [23]

E [4](θtt − θxx + (θtt − α2θxx)xx − β((θx)
2)ttx)|(4) = 0, (7)

where E [4] is the fourth extension of E .
This leads to the four-dimensional symmetry algebra for Equation (4) given by (Table 1):

E1 =
∂

∂t
, E2 =

∂

∂θ
, E3 =

∂

∂x
, E4 = t

∂

∂θ
· (8)

The adjoint representation is given by (Table 2):

Ad(exp (εEi).Ej) = Ej − ε[Ei, Ej] +
ε2

2!
[Ei, [Ei, Ej]]− · · · (9)
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Table 1. Commutator table.

[Ei,Ej] E1 E2 E3 E4

E1 0 0 0 E2

E2 0 0 0 0

E3 0 0 0 0

E4 −E2 0 0 0

Table 2. Adjoint table.

Ad(eε) E1 E2 E3 E4

E1 E1 E2 E3 E4 − εE2

E2 E1 E2 E3 E4

E3 E1 E2 E3 E4

E4 E1 + εE2 E2 E3 E4

Proposition 1. LetL4 be the Lie algebra of the SP model (4). The optimal system of one-dimensional
subalgebras is then generated by the generators listed below

J1 = 〈E4〉,
J2 = 〈E1 + cE4〉, c 6= 0,

J3 = 〈E3 + cE4〉, c 6= 0,

J4 = 〈E1 + cE3 + dE4〉, c, d 6= 0,

J5 = 〈E2〉,
J6 = 〈E1〉,
J7 = 〈E3〉,
J8 = 〈E2 + cE3〉, c 6= 0,

J9 = 〈E1 + cE3〉, c 6= 0.

(10)

Proof. Take any element E ∈ L4. We have,

E = µ1E1 + µ2E2 + µ3E3 + µ4E4 (11)

µ4

µ4 = 0

µ3 6= 0

µ1 6= 0

Case 9

µ1 = 0

µ2 6= 0

Case 8

µ2 = 0

Case 7

µ3 = 0

µ1 6= 0

Case 6

µ1 = 0

Case 5

µ4 6= 0

µ3 6= 0

µ1 6= 0

Case 4

µ1 = 0

Case 3

µ3 = 0

µ1 6= 0

Case 2

µ1 = 0

Case 1

Case 1: µ4 6= 0, µ3 = 0, µ1 = 0. Then we have,

E = µ2E2 + µ4E4 (12)
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Under the adjoint action on E , we have

E ′ = Ad(eεE1)E = µ4E4 (13)

Hence, we obtain
J1 = E4, (14)

Case 2: µ4 6= 0, µ3 = 0, µ1 6= 0. Then we have,

E = µ1E1 + µ2E2 + µ4E4 (15)

E ′ = Ad(eεE4)E = µ1E1 + µ4E4 (16)

Hence, we obtain
J2 = E1 + cE4, c 6= 0, (17)

Case 3: µ4 6= 0, µ3 6= 0, µ1 = 0. Then we have,

E = µ2E2 + µ3E3 + µ4E4 (18)

E ′ = Ad(eεE1)E = µ3E3 + µ4E4 (19)

Hence, we obtain
J3 = E3 + cE4, c 6= 0, (20)

Case 4: µ4 6= 0, µ3 6= 0, µ1 6= 0. Then we have,

E = µ1E1 + µ2E2 + µ3E3 + µ4E4 (21)

E ′ = Ad(eεE1)E = µ1E1 + µ3E3 + µ4E4 (22)

So, we obtain
J4 = E1 + cE3 + dE4, c, d 6= 0, (23)

Case 5: µ4 = 0, µ3 = 0, µ1 = 0. Then we have,

E = µ2E2 (24)

So, we obtain
J5 = E2, (25)

Case 6: µ4 = 0, µ3 = 0, µ1 6= 0. Then we have,

E = µ1E1 + µ2E2 (26)

E ′ = Ad(eεE4)E = µ1E1 (27)

So, we obtain
J6 = E1, (28)

Case 7: µ4 = 0, µ3 6= 0, µ1 = 0, µ2 = 0. Then we have,

E = µ3E3 (29)

So, we obtain
J7 = E3, (30)

Case 8: µ4 = 0, µ3 6= 0, µ1 = 0, µ2 6= 0. Then we have,

E = µ2E2 + µ3E3 (31)
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So, we obtain
J8 = E2 + cE3, c 6= 0, (32)

Case 9: µ4 = 0, µ3 6= 0, µ1 6= 0. Then we have,

E = µ1E1 + µ2E2 + µ3E3 (33)

E ′ = Ad(eεE4)E = µ1E1 + µ3E3 (34)

So, we obtain
J9 = E1 + cE3, c 6= 0. (35)

3. Similarity Reductions and Invariant Solutions

Vector field J6 = 〈E1〉.
The characteristic equation associated with the vector field E1 = ∂

∂t is written as

dx
0

=
dt
1

=
dθ

0
,

and provides a transformation θ(x, t) = k(r), r = x. With the application of this transfor-
mation, we acquire the simplified version of Equation (4) presented as follows,

−α2k(iv) − k′′ = 0, (36)

which gives,

k(r) = c1 + c2r + c3 sin
( r

α

)
+ c4 cos

( r
α

)
·

Hence, the solution of (4) in original variables becomes,

θ(x, t) = c1 + c2x + c3 sin
( x

α

)
+ c4 cos

( x
α

)
· (37)

Vector field J7 = 〈E3〉.
The characteristic equation associated with the vector field E3 = ∂

∂x is written as

dx
1

=
dt
0

=
dθ

0
,

and provides a transformation θ(x, t) = k(r), r = x. With the application of this transfor-
mation, we acquire the simplified version of Equation (4) presented as follows,

k′′ = 0, (38)

which gives,
k(r) = c1r + c2.

Hence, the solution of (4) in original variables becomes,

θ(x, t) = c1t + c2. (39)

Vector field J2 = 〈E1 + cE4〉.
The characteristic equation associated with the vector field E1 + cE4 = ∂

∂t + ct ∂
∂θ is

written as
dx
0

=
dt
1

=
dθ

ct
,
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and provides a transformation θ(x, t) = t2c
2 + k(r), r = x. With the application of this

transformation, we acquire the simplified version of Equation (4) presented as follows,

−α2k(iv) − k′′ + c = 0, (40)

which gives,

k(r) = −α2c1 cos
( r

α

)
− α2c2 sin

( r
α

)
+

r2c
2

+ c3r + c4.

Hence, the solution of (4) in original variables becomes,

θ(x, t) = −α2c1 cos
( x

α

)
− α2c2 sin

( x
α

)
+

(x2 + t2)c
2

+ c3x + c4. (41)

Vector field J8 = 〈E2 + cE3〉.
The characteristic equation associated with the vector field E2 + cE3 = ∂

∂θ + c ∂
∂x is

written as
dx
c

=
dt
0

=
dθ

1
,

and provides a transformation θ(x, t) = x
c + k(r), r = t. With the application of this

transformation, we acquire the simplified version of Equation (4) presented as follows,

k′′ = 0, (42)

which gives,
k(r) = c1r + c2.

Hence, the solution of (4) in original variables becomes,

θ(x, t) = c1t + c2 +
x
c
· (43)

Vector field J3 = 〈E3 + cE4〉.
The characteristic equation associated with the vector field E3 + cE4 = ∂

∂x + ct ∂
∂θ is written as

dx
1

=
dt
0

=
dθ

ct
,

and provides a transformation θ(x, t) = cxt + k(r), r = t. With the application of this
transformation, we acquire the simplified version of Equation (4) presented as follows,

k′′ = 0, (44)

which gives,
k(r) = c1r + c2.

Hence, the solution of (4) in original variables becomes,

θ(x, t) = c1t + c2 + cxt. (45)

Vector field J9 = 〈E1 + cE3〉.
The characteristic equation associated with the vector field E1 + cE3 = ∂

∂t + c ∂
∂x is

written as
dx
c

=
dt
1

=
dθ

0
,

and provides a transformation θ(x, t) = k(r), r = t − x
c . With the application of this

transformation, we acquire the simplified version of Equation (4) presented as follows,

(2cβk′ + c2 − α2)k(iv) + c(c3 + 6βk′′′ − c)k′′ = 0. (46)
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We suggest solving the above equation numerically.
Vector field J4 = 〈E1 + cE3 + lE4〉.

The characteristic equation associated with the vector field E1 + cE3 + lE4 = ∂
∂t + c ∂

∂x +

lt ∂
∂θ is written as

dx
c

=
dt
1

=
dθ

lt
,

and provides a transformation θ(x, t) = 2clxt−lx2

2c2 + k(r), r = t− x
c . With the application of

this transformation, we acquire the simplified version of Equation (4) presented as follows,

(−2clβr + 2cβk′ + c2 − α2)k(iv) + (−6β(l − k′′)k′′′ + ((c2 − 1)k′′ + k)c)c = 0. (47)

We suggest solving the above equation numerically.

4. Local Conservation Laws via Homotopy Operator

When dealing with complex multipliers and/or equations in the context of inverting
divergence operators, an effective approach involves the utilization of homotopy operators
derived from differential geometry. These operators help simplify the task of determining
fluxes, reducing it to a more manageable problem of integration in single-variable calculus.
In this section, we introduce the initial series of such formulas, as outlined in reference [19].
It is crucial to emphasize that when dealing with PDE systems and/or multipliers that are
not excessively intricate but involve arbitrary constitutive functions, the direct method of
flux computation is typically employed.

Let us consider a system of partial differential equations of order k, denoted as
4(x, θ(k)) = 0, where x = (x1, x2, · · · , xn) represents the independent variables and
θ = (θ1, θ2, · · · , θm) represents the dependent variables. The system can be expressed as a
collection of individual equations as follows

4(σ) = 4(σ)(x, θ, ∂θ, · · · , ∂θk) = 0, σ = 1, 2, · · · , N. (48)

Now, let us define a local conservation law for the system (48). This law is characterized
by a divergence expression

DiΩ
i = D1Ω1 + D2Ω2 + · · ·+ DnΩn, (49)

which holds true for all solutions of the system (48). Here, the operators Di represent
the total derivatives with respect to the variable xi, while the quantities Di, i = 1, 2, · · · n,
correspond to the fluxes associated with the conservation laws. The Euler operator is
defined as follows

Eθ =
∂

∂θ
−Di

∂

∂θi
+ · · ·+ (−1)sDi1 · · ·Dis

∂

∂θi1 ...is
+ · · · . (50)

Now, let us define the n-dimensional higher-order Euler operator concerning a function
θ(x1, x2, · · · , xn)

E(s1,s2··· ,sn)
θ =

∞

∑
k1=s1

· · ·
∞

∑
kn=sn

(
k1

s1

)
· · ·
(

kn

sn

)
Dk1−s1

1 · · ·Dkn−sn
n

∂

∂θ(k1+k2+···kn)
, (51)

where θ(k1+k2+···kn) = ∂(k1+k2+···kn)θ
∂k1 x1···∂kn xn · It is worth noting that when s1 = 0 and sn = 0, we

obtain the original Euler operator E(0,0)
θ = Eθ as defined in (50).

The n-dimensional homotopy operator [24] is introduced for an expression
g[θ] = g(x, θ, ∂θ, · · · ), where θ = (θ1(x), θ2(x), · · · , θm(x)) and x = (x1, x2, · · · , xn). This
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operator is defined through its n components, each corresponding to a specific independent
variable xi, i = 1, 2, · · · , n, and can be expressed as

H(xi) =
∫ 1

0

m

∑
j=1

I(xi)
j (g[θ̂]) |θ̂=Λθ

dΛ
Λ

, (52)

where I(xi)
j (g[θ̂]) is determined using the expression

I(xi)
j (g[θ̂]) =

∞

∑
s1=0
· · ·

∞

∑
sn=0

(
1 + si

1 + s1 + · · ·+ sn

)
×Ds1

1 · · ·D
sn
n (θ̂ jE(s1,··· ,sn)

θ̂ j (g[θ̂])), (53)

where j = 1, · · · , m. In essence, the n-dimensional homotopy operator enables us to deal with
expressions g[θ] involving multiple variables θ and x and it provides a systematic way of
handling each independent variable xi individually. The main theorem is presented below.

Proposition 2. Let g[θ] be a divergence expression given by [24]

g[θ] = div Ω = D1Ω1[θ] + · · ·+ · · · , DnΩn[θ], (54)

and assume that g[0] = 0. Then the fluxes Ωi can be expressed as

Ωi = H(xi)(g[θ])), i = 1, · · · , n, (55)

up to the corresponding fluxes of a trivial conservation law, provided that the integrals (53) converge.

By utilizing the direct (multiplier) method to solve Equation (4), we have derived the
first-order multipliers as follows

Ψ(x, t, θ, θx) = −α2(C3t + C7) cos
( x

α

)
− α2(C4t + C8) sin

( x
α

)
+

1
6

C1t3

+
1
2

C2t2 +
1
6
(3C1x2 + 6C5x + 6C6)t +

1
2

C2x2 + C9x + C10.
(56)

In the above equation, Ψ(x, t, θ, θx) represents the first-order multipliers obtained
from the direct (multiplier) method applied to Equation (4). The constants C1 to C10 are
coefficients determined during the solution process. Further details and the complete
derivation process can be found in the reference [25,26].

• Using the characteristic Ψ1 = 1
6 t3 + 1

2 x2t in Equation (55) and following the integral
Formula (52), we obtain

Ωt
1 = − 1

3 βθtxxθxx2t− βx2tθtxx + βt2θxxθx + βx2θxθxx − 1
3 βt2θtxθxx

−βx2tθtxθxx − 1
2 θx2 + 1

6 t3θt +
1
2 x2tθt +

1
2 t2θxx +

1
2 x2θxx − 1

6 t3θtxx

− 1
2 x2tθtxx,

Ωx
1 = θxt − α2tθx − βtθ2

x − 1
2 x2tθx − 1

6 α2t3θxxx − tθx − 1
6 t3θx

+α2xtθxx − 1
2 α2x2tθxxx.

(57)

• Using the characteristic Ψ2 = 1
2 t2 + 1

2 x2 in Equation (55) and following the integral
Formula (52), we obtain

Ωt
2 = −βt2θxθtxx − βx2θxθtxx + 2βtθxθxx − βt2θtxθxx − βx2θtxθxx − tθ

+ 1
2 t2θt +

1
2 x2θt + tθxx − 1

2 t2θtxx − 1
2 x2θtxx,

Ωx
2 = α2xθxx − 1

2 α2t2θxxx − 1
2 α2x2θxxx − 1

2 t2θx − 1
2 x2θx − βθ2

x

−xθ − θx − α2θx.

(58)
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• Using the characteristic Ψ3 = −α2t cos ( x
α ) in Equation (55) and following the integral

Formula (52), we obtain{
Ωt

3 = α2 cos ( x
α )(2βtθtxθxx + 2βtθxθtxx − 2βθxθxx − tθt + tθtxxx + θ − θxx),

Ωx
3 = α3t(αθxx cos ( x

α ) + θxx sin ( x
α )).

(59)

• Using the characteristic Ψ4 = −α2t sin ( x
α ) in Equation (55) and following the integral

Formula (52), we obtain{
Ωt

4 = α2 sin ( x
α )(2βtθtxθxx + 2βtθxθtxx − 2βθxθxx − tθt + tθtxx + θ − θxx),

Ωx
4 = −α3t(−αθxxx sin ( x

α ) + θxx cos ( x
α )).

(60)

• Using the characteristic Ψ5 = xt in Equation (55) and following the integral
Formula (52), we obtain{

Ωt
5 = −2βxtθtxθxx − 2βxtθtxxθx + 2βxθxθxx + xtθt − xtθtxx − xθ + xθxx,

Ωx
5 = −α2xtθxxx + α2tθxx − xtθx + tθ.

(61)

• Using the characteristic Ψ6 = t in Equation (55) and following the integral
Formula (52), we obtain{

Ωt
6 = −2βtθtxθxx − 2βtθtxxθx + 2βθxθxx + tθt − tθtxx − θ + θxx,

Ωx
6 = −α2tθxxx − tθx.

(62)

• Using the characteristic Ψ7 = −α2 cos ( x
α ) in Equation (55) and following the integral

Formula (52), we obtain{
Ωt

7 = α2 cos ( x
α )(2βθtxθxx + 2βθxθtxx − θt + θtxx),

Ωx
7 = α3(α cos ( x

α )θxxx + θxx sin ( x
α )).

(63)

• Using the characteristic Ψ8 = −α2 sin ( x
α ) in Equation (55) and following the integral

Formula (52), we obtain{
Ωt

8 = α2 sin ( x
α )(2βθtxθxx + 2βθxθtxx − θt + θtxx),

Ωx
8 = −α3(−α sin ( x

α )θxxx + θxx cos ( x
α )).

(64)

• Using the characteristic Ψ9 = x in Equation (55) and following the integral
Formula (52), we obtain{

Ωt
9 = −2βxθtxθxx − 2βxθxθtxx + xθt − xθtxx),

Ωx
9 = −α2xθxxx + α2θxx − xθx + θ.

(65)

• Using the characteristic Ψ10 = 1 in Equation (55) and following the integral
Formula (52), we obtain{

Ωt
10 = −2βθtxθxx − 2βθxθtxx + θt − θtxx),

Ωx
10 = −α2θxxx − θx.

(66)

5. Wave Nature of the Obtained Solutions

The graphical interpretation of a solution is of paramount importance as it offers a
visual representation of complex mathematical relationships. It provides intuitive insights
into the behavior, trends, and critical points of the solution. Graphs aid in understanding
the sensitivity to varying parameters, validating results, and facilitating communication
with a broader audience. They serve as valuable tools for exploration, model selection, and
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enhancing our understanding of intricate systems and phenomena. Figures 1 and 2 show
the behavior of nonlinear longitudinal waves in an SP medium using the SP model.
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Figure 1. Wave behavior of the SP model (4) with c1 = c2 = c3 = c4 = 0.
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Figure 2. Wave behavior of the SP model (4) with c1 = c2 = c3 = c4 = 0.

6. Concluding Remarks

In this study, we successfully applied the Lie symmetry method to analyze the in-
tegrability properties of the SP model. By exploring the group invariant solutions via
the reduction in symmetry subalgebras based on the optimal system, we gained valuable
insights into the behavior of the system. Additionally, we listed the conservation laws
using the homotopy operator, which proved advantageous over the traditional multiplier
approach due to the absence of arbitrary functions in both the equation and characteristics.
In the existing literature, Erofeev et al. [11] attempted to explore linear and non-linear
plane longitudinal waves in the SP medium. However, their work did not present any
soliton solutions or invariant ones. Our study focuses on invariant solutions, emphasizing
solutions that remain unchanged under specific Lie symmetry transformations. This unique
aspect adds novelty to our results. Furthermore, to illustrate the behavior of the solution at
specific points in the model, we introduced nonlocal conservation laws reported for the first
time. These findings contribute to the enhanced exploration of plane longitudinal waves
in the SP medium via the application of the SP model. These findings shed light on the
behavior of nonlinear longitudinal waves in the Slepyan–Palmov medium and the impact
of various parameters on wave characteristics. These results motivate us to continue using
the Lie symmetry method and the homotopy operator in tackling mathematical physics
problems to further our understanding and contribute to this field of research.
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