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Abstract: We study the long-time dynamics of the mean squared displacement of a random walker
moving on a comb structure under the effect of stochastic resetting. We consider that the walker’s
motion along the backbone is diffusive and it performs short jumps separated by random resting
periods along fingers. We take into account two different types of resetting acting separately:
global resetting from any point in the comb to the initial position and resetting from a finger to
the corresponding backbone. We analyze the interplay between the waiting process and Markovian
and non-Markovian resetting processes on the overall mean squared displacement. The Markovian
resetting from the fingers is found to induce normal diffusion, thereby minimizing the trapping effect
of fingers. In contrast, for non-Markovian local resetting, an interesting crossover with three different
regimes emerges, with two of them subdiffusive and one of them diffusive. Thus, an interesting
interplay between the exponents characterizing the waiting time distributions of the subdiffusive
random walk and resetting takes place. As for global resetting, its effect is even more drastic as it
precludes normal diffusion. Specifically, such a resetting can induce a constant asymptotic mean
squared displacement in the Markovian case or two distinct regimes of subdiffusive motion in the
non-Markovian case.

Keywords: anomalous diffusion; random walks; stochastic resetting

1. Introduction

Stochastic resetting has been a recent field of study in the physical literature. Since
the first work devoted to study diffusion under Markovian resetting [1], it has been deeply
analyzed when applied to different stochastic processes [2–5]. Recently, interest in diffusion
in heterogeneous media under resetting has increased [6–17]. A common feature of these
works is that the motion of the walker through the media is subdiffusive, which means that
the mean squared displacement (MSD) scales as 〈x2(t)〉 ∼ tα, 0 < α < 1 [18]. A simple
prototypical model of heterogeneous media is the comb-like geometry [19]. Combs are
two-dimensional branched structures, with a backbone crossed by perpendicular fingers,
which have been used in different contexts [20–24]. A random walker moving diffusively
along the backbone may enter into a finger and move there for a time and return to the
backbone to start moving there again. As a result, the MSD along the backbone shows
a subdiffusive behavior depending on time scaling as 〈x2(t)〉 ∼ t1/2. When resetting is
included, one may consider two different mechanisms. On one hand, the walker may reset
its position to the backbone during the motion along the fingers [21]. On the other hand,
the resetting mechanism may be global and hence the walker may reset its position to
the origin regardless of its current position. These situations have been recently studied
and both the MSD and the propagator of the overall process have been computed [6,9,25].
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In these works, the motion along fingers and backbone is assumed to be diffusive. Here,
we consider global and local resetting, in fingers, of a walker moving diffusively along the
backbone but subdiffusively when it moves along the fingers. Subdiffusion along fingers is
introduced by taking the probability density function (PDF) of the waiting time between
short-distance jumps to be heavy-tailed [18]. This subdiffusion along the fingers may be a
result of additional fingers on the fingers of the comb [6,26,27]. A new result here is also
the introduction not only of a Poissonian resetting, but also a non-Markovian (power-law)
resetting in the comb structure, which has not been considered elsewhere. To this end,
we consider two coupled Langevin equations to describe the motion of the walker under
global resetting or resetting in fingers. The resetting dynamics we consider here are taken
to be heavy-tailed as well. We explore the interplay between the exponents of the waiting
times and resetting event PDFs analytically.

2. A Langevin Equation Approach to Random Walks on Combs

The dynamics of a random walker moving on a comb can be described by the Langevin
equations [28,29]

dX
dt

= C(Y)ξx(t),

dY
dt

= ξy(t), (1)

where {X(t), Y(t)} is a random process describing the position of a walker moving along
the backbone (x-direction) according to X(t) and along the fingers (y-direction) according
to Y(t). A comb model is a toy model of a non-Markovian motion which occurs due to
the specific two-dimensional structure. It consists of a backbone along the x direction
and continuously distributed fingers (or branches) along the y direction, as shown in
Figure 1. The particle moving along the backbone is trapped in the fingers. The time
spent in the fingers can be considered as a waiting time of the particle’s movement along
the backbone. Therefore, the resulting motion along the backbone is anomalous. The
motion along each direction is driven by the uncorrelated external noises ξx(t) and ξy(t).
The noise ξx(t) is assumed to be white and Gaussian with an autocorrelation function
〈ξx(t)ξx(t′)〉 = 2Dxδ(t− t′). The coupling between the motions along the x and y directions
is described by the coefficient C(Y). As can be seen from Equation (1), the dynamics of
the walker along the y direction are independent of the x coordinate which indicates
that the PDF of the random process Y(t), namely, PY(y, t), does not depend explicitly
on x. The noise ξy(t) is arbitrary and such that PY(y, t) = 〈δ(Y(t) − y)〉ξy . Integrating
Equation (1) and making use of the Stratonovich interpretation of the stochastic calculus,
the MSD along the overall structure reads [29]

〈X(t)2〉 = 2Dx

∫ t

0
dt′
∫ ∞

−∞
C(y)2PY(y, t′)dy. (2)

The double average in the above equation means that the mean of X(t)2 is computed over
the realizations of both ξx and ξy noises. For a ramified comb structure, the coupling
between the motions along x and y axis reduces to the point where the teeth cross the
backbone (i.e., y = 0) so that the coupling coefficient is such that C(y)2 = δ(y). Hence,
from (2) the overall MSD is

〈X2(t)〉 = 2Dx

∫ t

0
PY(y = 0, t′)dt′. (3)

This expression establishes an interesting dependence of the overall MSD on the propagator
of the motion along fingers evaluated at y = 0.
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Figure 1. Graphical representation of resetting mechanisms on comb: (i) return to the backbone
(resetting in fingers)—green line; (ii) return to the origin (global resetting)—red line.

Here, we note that the comb models can be used to describe the anomalous diffusion
in spiny dendrites [21,30,31], including the anomalous diffusion in Purkinje cells [32,33].
There are different generalizations of the comb model in which one can consider, for ex-
ample, finite-length fingers, multiple backbones, fractal structure of the fingers and/or
the backbones, see, for example [19,34], combs with finger lengths drawn from a power-
law distribution [27,35], and random comb models [36], as well as different circular and
branched spiral and circular structures [37–39]. The corresponding diffusive behavior
along the backbone would depend on the distribution of fingers and/or backbones in the
comb-like structure. Those fractal generalizations of the standard comb are not just abstract
mathematical models, but can be useful for the description of anomalous transport through
porous solid pellets with various porous geometries [40]. Another possible application of
such fractal combs can be in the modelling of river basins with their often very ramified
geometry [41,42]. The long-time retention data of tracers in water catchments reveal scaling
exponents consistent with comb dynamics [43,44].

3. Random Walks on Combs under Resetting
3.1. Resetting Process

We consider two resetting protocols: (i) a return to the backbone if the walker is
moving along a finger, namely, resetting in fingers and (ii) a return to the origin regardless of
its position, namely, global resetting; see Figure 1. In both mechanisms, resetting events take
place at a random time t drawn from the PDF ϕR(t). Even though the resetting to the initial
position is sudden and somehow physically unrealistic, there are currently experimental
realizations of diffusion processes under stochastic resetting, showing a good agreement
with the analytical results. In particular, experimental realizations of the first passage
under resetting have been demonstrated by using holographic optical tweezers [45] or
laser traps [46]. Moreover, the stochastic resetting can be a good idealization of a model of
a diffusing particle in confining potentials, which can be stochastically switched on and
off [47]. Moreover, the resetting in the fingers can mimic the confining potential applied
along the fingers, which brings back the particle in the backbone of the comb [25], or the
finite size effects of fingers [19].

The probability that the n-th resetting event happens at time t, ϕ
(n)
R (t) satisfies the

renewal equation [48,49]

ϕ
(n)
R (t) =

∫ t

0
ϕ
(n−1)
R (t′)ϕR(t− t′)dt′.

The sum of all ϕ
(n)
R (t) gives the rate function of resetting events

κ(t) =
∞

∑
n=1

ϕ
(n)
R (t).
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Taking the Laplace transform, defined as

f̂ (s) = Ls[ f (t)] =
∫ ∞

0
f (t)e−stdt

to the above equations, one obtains an expression for the resetting rate function in terms of
the resetting PDF in Laplace space

κ̂(s) =
∞

∑
n=1

ϕ̂
(n)
R (s) =

ϕ̂R(s)
1− ϕ̂R(s)

. (4)

If the resetting is a Poissonian process (i.e., Markovian), then the times between consecutive
resetting events are exponentially distributed [1,2,50]

ϕR(t) = re−rt (5)

and from Equation (4), the rate at which resetting events follow is constant, κ(t) = r.
However, if the times between resets are drawn from a power-law PDF [50–52], as

ϕR(t) =
γr

(1 + rt)1+γ
, γ > 0, (6)

then the resetting process is non-Markovian and the rate of the resetting events depends on
time. To compute this rate function, we first transform (6) to the Laplace space:

ϕ̂R(s) = γr
∫ ∞

0

e−st

(1 + rt)1+γ
dt = γU(1, 1− γ, s/r), (7)

and from Equation (4), the rate between resetting events in the Laplace is

κ̂(s) =
γU(1, 1− γ, s/r)

1− γU(1, 1− γ, s/r)
, (8)

where U(a, b; z) is the Tricomi confluent hypergeometric function of the second kind [53].
This special function admits the following generalized power series expansion [53]

U(a, b, z) =
Γ(1− b)

Γ(1− b + a)

(
1 +

az
b
+ . . .

)
+

Γ(b− 1)
Γ(a)

z1−b
[

1 +
(1 + a− b)z

2− b
+ . . .

]
for small z. Depending on the sign of b and the regions of its values, the leading terms are

U(a, b, z) =


Γ(1−b)

Γ(1−b+a)

(
1 + az

b + . . .
)
, b < 0,

Γ(1−b)
Γ(1−b+a) −

Γ(b)
(1−b)Γ(a) z1−b + . . . , 0 < b < 1,

Γ(b−1)
Γ(a)

1
zb−1 + . . . , b > 1.

(9)

In particular, for s → 0, which according to the Tauberian theorem corresponds to the
long-time limit t→ ∞, one finds

1− γU
(

1, 1− γ,
s
r

)
=

{
Γ(1− γ)

( s
r
)γ, 0 < γ < 1,

s/r
γ−1 . γ > 1.

(10)
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Plugging this result into Equation (8) and inverting by Laplace, the rate function has the
long time asymptotic form

κ(t) ∼
{

r
Γ(γ)Γ(1−γ)(rt)1−γ , 0 < γ < 1, slow resetting,
(γ− 1)r, γ > 1, fast resetting.

(11)

It can be shown that for 0 < γ < 1, the power-law PDF has diverging moments while for
γ > 1, the first moment exists, and for γ > 2, the second moment exists as well. As can be
seen from Equation (11) for 0 < γ < 1, the rate is decaying with time while for γ > 1 it is
constant. The resetting process is then faster for γ > 1 than for 0 < γ < 1. We refer to the
former as the fast resetting regime and the latter as the slow resetting regime. The existence of
the first moment, i.e., a mean resetting time, is then equivalent to the existence of a constant
resetting rate. Next, we illustrate how to find the MSD from the Langevin equations.

3.2. Resetting in Fingers

Let P0
Y(y, t) be the probability density that the walker is at point y of the finger at time

t in the absence of resetting. When the movement of the walker along the fingers is affected
by the resetting mechanism, then the resulting propagator for the motion in fingers follows
the renewal master equation [54]

PY(y, t) = ϕ∗R(t)P0
Y(y, t) +

∫ t

0
ϕR(t′)PY(y, t− t′)dt′, (12)

where ϕ∗R(t) =
∫ ∞

t ϕR(t′)dt′ is the probability that the reset has not happened yet at time
t (i.e., the resetting survival probability). The first term in the right-hand side accounts
for the probability that no reset has happened until time t, in which case the propagator
P0

Y(y, t) describes the motion. The second term accounts for the cases where at least one
resetting event has occurred, after which the motion renews and it can be described by the
overall propagator with a shift in time (see [54] for further details). Applying the Laplace
transform to both sides of the equation and isolating the overall propagator, one obtains

P̂Y(y, s) =
Ls[ϕ∗R(t)P0

Y(y, t)]
1− ϕ̂R(s)

. (13)

Introducing this result into the Laplace transform of Equation (3), the overall MSD in the
Laplace space is

〈X̂2(s)〉r = 2Dx
Ls[ϕ∗R(t)P0

Y(y = 0, t)]
s[1− ϕ̂R(s)]

, (14)

which is general for any type of motion and reset time PDF in the fingers. To proceed
further, we need to calculate the propagator P0

Y(y, t). To do this, we assume that the motion
of the walker in fingers in the absence of resetting is described by a continuous time random
walk whose propagator is given by the generalized diffusion equation [55]

∂P0
Y

∂t
=

σ2

2

∫ t

0
K(t− t′)

∂2P0
Y(y, t′)
∂y2 dt′, (15)

where σ is the mean jump distance and the memory kernel K(t) is related to the waiting
time PDF between jumps ϕ(t) through the relationship

K̂(s) =
sϕ̂(s)

1− ϕ̂(s)
(16)
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in the Laplace space. If the walker is initially at y = 0, then, from the Fourier–Laplace
transform of (15), we find

P̃0
Y(k, s) =

1

s + σ2

2 k2K̂(s)
, (17)

where F̃(k, s) =
∫ ∞

0 dt
∫ ∞
−∞ e−ikye−stF(y, t)dy stands for the Fourier–Laplace transform of

the function F(y, t). Finally, P̂0
Y(y = 0, s) follows from the inverse Fourier transform

P̂0
Y(y = 0, s) =

1
2π

∫ ∞

−∞
P̂0

Y(k, s)dk =
1

sσ
√

2

√
1

ϕ̂(s)
− 1. (18)

Since we are interested in a walker moving subdiffusively along fingers, we consider that
the waiting time takes the form [56]

ϕ̂(s) =
1

1 + (sτ)α
, 0 < α ≤ 1, (19)

in the Laplace space. The movement along the fingers described by Equation (15) is
diffusive for α = 1 and subdiffusive for 0 < α < 1. Substituting Equation (19) into
Equation (18) and inverting by Laplace, we find

P0
Y(y = 0, t) =

1
2
√

DyΓ(1− α/2)tα/2 , (20)

where we have defined the generalized diffusion coefficient Dy = σ2/[2τα]. In the absence
of resetting, the MSD can be found by inserting Equation (20) into Equation (3). This
yields [29]

〈X2(t)〉0 =
Dx√

Dy

t1− α
2

Γ
(
2− α

2
) . (21)

In the presence of a resetting process, with reset times PDF ϕR(t), the overall MSD follows
from Equation (14)

〈X̂2(s)〉r =
Dx√

DyΓ(1− α/2)
Ls[ϕ∗R(t)t

−α/2]

s[1− ϕ̂R(s)]
. (22)

To find the MSD of the walker’s motion through the comb given by Equation (22), we need
to specify ϕR(t). We consider below the cases of exponential and Pareto PDFs for ϕR(t).

3.2.1. Markovian Resetting

Considering the exponential PDF for resetting periods in (14), we find

〈X̂2(s)〉r = 2Dx
s + r

s2 P̂0
Y(y = 0, s + r). (23)

In the long-time limit (s → 0), this expression, after applying the inverse Laplace trans-
form, reads

〈X2(t)〉r ∼ 2Dx P̂0
Y(y = 0, r)rt, (24)

which predicts a diffusive behavior as 〈X2(t)〉 ∼ t. In consequence, the overall movement
through the comb is diffusive if the resetting in fingers occurs at a constant rate. To check this
general result with a specific example, let us assume that P0

Y(y, t) follows the generalized
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master Equation (15) where the waiting time PDF is given by Equation (19). Then, the MSD
is given by Equation (22) and can be found to be

〈X̂2(s)〉r =
Dx√

Dy

(s + r)α/2

s2 . (25)

Taking the inverse Laplace transform, we find the overall MSD through the comb of a
walker moving diffusively or subdiffusively along the fingers under exponential resetting;
this is

〈X2(t)〉r =
Dx√

Dy
L−1

t

[
s−2

(s + r)−α/2

]
=
Dx√

Dy
t1−α/2E−α/2

1,2−α/2(−rt), (26)

where Eγ
µ,β(z) = ∑∞

n=0
(γ)n

Γ(µn+β)
zn

n! is the three-parameter Mittag–Leffler function [57] with the
Pochhammer symbol (γ)n = Γ(γ + n)/Γ(n). The MSD has the following asymptotic
form (The asymptotic behavior of the three-parameter Mittag–Leffler function is given by

Eγ
µ,β(−λtµ) ∼ (λtµ)−γ

Γ(β−µγ)
for λtµ � 1 and 0 < µ < 2, see Ref. [58])

〈X2(t)〉r ∼
Dxrα/2√

Dy
t as t→ ∞. (27)

We note that even if the walker moves subdiffusively (with 0 < α < 1) along the fingers,
the resetting process is so fast that the walker is driven to the backbone at a constant rate.
This breaks down the trapping effect of the motion along the fingers in the absence of
resetting and the overall MSD is diffusive. As shown in Equation (24), when the resetting
process to the backbone is Markovian, the overall MSD is diffusive regardless of the specific
movement along the fingers.

3.2.2. Non-Markovian Resetting

When the resetting times PDF follows the power-law function in Equation (6), the reset-
ting process is non-Markovian. In addition, if the motion along the fingers is subdiffusive,
then the overall MSD can be computed from (22) and is expressed as

〈X̂2(s)〉r =
Dx

r1−α/2
√

Dy

U(1− α/2, 2− γ− α/2, s/r)
s[1− γU(1, 1− γ, s/r)]

. (28)

Now, considering the results given by Equation (9), the Tricomi function in the numerator
of Equation (28) reads

U
(

1− α

2
, 2− γ− α

2
,

s
r

)

=



Γ(1−γ− α
2 )

Γ(1− α
2 )

1
(s/r)1−γ− α

2
+ . . . , 0 < γ < 1− α

2 ,

Γ(−1+γ+ α
2 )

Γ(γ) − Γ(2−γ− α
2 )

Γ(1− α
2 )(−1+γ+ α

2 )
(s/r)−1+γ+ α

2 + . . . , 1− α
2 < γ < 2− α

2 ,

Γ(−1+γ+ α
2 )

Γ(γ)

(
1 + 1− α

2
2−γ− α

2

s
r + . . .

)
, γ > 2− α

2 ,

(29)
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for s→ 0. Inserting the above expressions and Equation (10) in Equation (28) and inverting
by Laplace, we get the behavior of the overall MSD in the long-time limit (t→ ∞)

〈X2(t)〉r ∼
Dx√

Dy r1−α/2

Γ
(
1− α

2 − γ
)

Γ(1− γ)Γ
(
1− α

2
) (rt)1−α/2

Γ
(
2− α

2
) , 0 < γ < 1− α

2
,

〈X2(t)〉r ∼
Dx√

Dy r1−α/2

Γ
(
−1 + α

2 + γ
)

Γ(1− γ)Γ(γ)
(rt)γ

Γ(1 + γ)
, 1− α

2
< γ < 1.

〈X2(t)〉r ∼
Dx√

Dy r1−α/2

Γ
(
−1 + α

2 + γ
)

Γ(γ− 1)
rt, γ > 1. (30)

Notably, for power-law resetting time PDFs, the asymptotic limit of the overall MSD
depends explicitly on the characteristic exponents γ and α of the resetting PDF and the
waiting time PDF in fingers, respectively. Now, we relate the temporal scaling in (30) with
the rate of the resetting events. The effect of the heavy-tailed waiting time PDF is to keep
the walker moving along the fingers. On the other hand, the resetting process pushes the
walker towards the backbone. This interesting interplay is shown in the exponent of the
expressions of the MSD in Equation (30). When γ is small, the resetting process is slow and
the dynamics of the walker are dominated by the waiting time PDF and the walker behaves
as in the absence of resetting. Note that in this case, the scaling dependence of the MSD in
Equation (21) is the same as in the first equation of (30). When γ > 1, the resetting process
is fast and it dominates the dynamics, and the walker visits the backbone very frequently.
Since the motion along the backbone is assumed to be diffusive, in this case the walker
also moves diffusively. This is in agreement with temporal scaling of the third equation
of (30). Finally, an interesting intermediate case appears when 1− α/2 < γ < 1. In this
case, the temporal scaling of the MSD is subdiffusive but, since the exponent γ is higher
than the exponent 1− α/2 corresponding to the slow resetting case, the overall movement
is subdiffusive.

In Figure 2, we plot the results for the MSD obtained from the numerical inverse
Laplace transform of (25) and (28), which is implemented in Mathematica [59]. The results
in the long-time limit correspond to the asymptotic behavior of the MSDs given by (27)
and (30), respectively. From the graphics, it is evident that in the short-time limit the MSD
behaves as the MSD in the case of no resetting, i.e., there is no dependence on the resetting
parameters r and γ, but only on α, as given by (21).

10
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2
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Figure 2. MSD in the case of Markovian resetting computed from the numerical inversion of the
Laplace transform of Equation (25) (left panel) for r = 0.01 and α = 1 (blue solid line), α = 3/4
(red dashed line), α = 1/2 (black dot-dot-dashed line) and non-Markovian resetting (right panel)
computed from the numerical inversion of the Laplace transform of Equation (28) for r = 0.01,
α = 3/4 and γ = 1/4 (blue solid line), γ = 3/4 (red dashed line), γ = 3/2 (black dot-dot-dashed
line). We also use Dx = 1 and Dy = 1/2. In the left panel, we see that in the long-time limit all
lines are parallel in agreement with the linear predicted by scaling Equation (27). However, in the
right panel according to Equation (30), the slopes are different because in this case the exponents of t
depend on α.
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3.3. Global Resetting

Here, we analyze what happens when resetting is global, meaning that in every
moment the particle may return to the origin and start anew, regardless of whether it is
located at the fingers or at the backbone. In the case of resetting in fingers, the walker
is forced to move to the point of the backbone located at the finger’s position and then
the walker may choose to move along the backbone driven by the noise ξx performing a
Brownian motion or enter in the fingers and move there. However, when the resetting is
global, the walker is forced to move to the origin wherever it is. Then, it is expected that
in this case the resetting process has a stronger effect on the MSD scaling than if resetting
occurs in the fingers only. Now, we can derive an equation for the overall MSD that can be
found in terms of the MSD without resets (see [54] for further details). It reads

〈X̂2(s)〉r =
Ls[ϕ∗R(t)〈X2(t)〉0]

1− ϕ̂R(s)
, (31)

where 〈X2(t)〉0 is the MSD of the motion in the comb without resetting. Inserting Equa-
tion (3) into (31), we obtain

〈X̂2(s)〉r = 2Dx
Ls[ϕ∗R(t)

∫ t
0 P0

Y(y = 0, t′)dt′]
1− ϕ̂R(s)

. (32)

If the motion in the fingers is the same as in the previous section, then using (20), Equation
(32) turns into

〈X̂2(s)〉r =
Dx√

DyΓ
(
2− α

2
) Ls[ϕ∗R(t)t

1−α/2]

1− ϕ̂R(s)
. (33)

As we did in the previous section, below we study the two cases (Markovian and non-
Markovian) where the resetting times are drawn from an exponential or power-law PDF.

3.3.1. Markovian Resetting

As in the previous section, we do not need to specify the motion along the fingers.
Considering (5) in (32), the overall MSD can be written as

〈X̂2(s)〉r = 2Dx
P̂0

Y(y = 0, s + r)
s

. (34)

Taking the long-time limit s→ 0 and inverting by Laplace, we find that the overall MSD

〈X2(t)〉r ∼ 2Dx P̂0
Y(y = 0, s = r), as t→ ∞. (35)

Therefore, in the case of exponentially distributed resets, the overall MSD reaches a station-
ary value which depends explicitly on the probability of being in the backbone. In particular,
if the propagator for the motion along the fingers follows the generalized diffusion Equa-
tion (15) , then

〈X2(t)〉r ∼
Dx√

Dy r1−α/2 as t→ ∞. (36)

Notably, in the case of global resetting, its effect is stronger than in the case of resetting in
fingers. This is due to the fact that in the latter case the walker is reset to a static point while
in the former case the walker is reset to a backbone where it can keep on moving diffusively.
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3.3.2. Non-Markovian Resetting

In the case when the resetting is described by the power-law PDF in Equation (6),
the expression for the overall MSD in the Laplace space can be directly derived from
Equation (33):

〈X̂2(s)〉r =
Dx√

Dy r2−α/2
U(2− α/2, 3− γ− α/2, s/r)

1− γU(1, 1− γ, s/r)
(37)

in terms of the Tricomi confluent hypergeometric functions. Again, for these functions we
analyze the small s limit using the relations (9). In particular,

U
(

2− α

2
, 3− γ− α

2
,

s
r

)

=



Γ(2−γ− α
2 )

Γ(2− α
2 )

1
(s/r)2−γ− α

2
+ . . . , 0 < γ < 2− α

2 ,

Γ(−2+γ+ α
2 )

Γ(γ) − Γ(3−γ− α
2 )

Γ(2− α
2 )(−2+γ+ α

2 )
(s/r)−2+γ+ α

2 + . . . , 2− α
2 < γ < 3− α

2 ,

Γ(−2+γ+ α
2 )

Γ(γ)

(
1 + 2− α

2
3−γ− α

2

s
r + . . .

)
, γ > 3− α

2 .

(38)

Introducing (10) and (38) in (37) and inverting by Laplace, one finally finds the overall
MSD in the long-time limit

〈X2(t)〉r ∼
Dx√

Dy r1−α/2

Γ
(
2− α

2 − γ
)

Γ(1− γ)Γ
(
2− α

2
)2 (rt)1−α/2, 0 < γ < 1,

〈X2(t)〉r ∼
Dx√

Dy r1−α/2
γ− 1

Γ
(
2− α

2
)
(2− γ− α/2)

(rt)2−γ−α/2, 1 < γ < 2− α

2
,

〈X2(t)〉r ∼
Dx√

Dy r1−α/2

Γ
(
−2 + α

2 + γ
)

Γ(γ− 1)
, γ > 2− α

2
. (39)

Again, for power-law reset time PDFs, the asymptotic limit of the overall MSD depends
explicitly on γ and α. The interplay between the tails of the power-law reset time and
the waiting time PDFs is shown again in the exponent of the expressions for the MSD in
Equation (39). When 0 < γ < 1, the resetting is slow and the dynamics of the walker
are dominated by the waiting time PDF and, analogously as in the case of resetting in
fingers, the walker behaves as in the absence of resetting; the MSD is subdiffusive. When
γ > 2− α/2, the resetting process is very fast and it dominates the dynamics of the walker.
Since the reset displaces the walker to the origin, the stochastic localization emerges and
the overall MSD reaches a constant value. Finally, when 1 < γ < 2− α/2, the exponent of
the MSD is lower than 1− α/2, i.e, it is subdiffusive. We note that the obtained results are
in agreement with those obtained in [52], where α used in the paper corresponds to 1− α/2
used in the present work. We also note that in the limiting cases γ = 1 and γ = 2− α/2,
one observes logarithmic behavior of the MSD, see Ref. [52].

In Figure 3, we plot the results for the MSD obtained from numerical inverse Laplace
transform of (34) (left panel) and (37) (right panel). The results in the long-time limit
correspond to the asymptotic behavior of the MSDs given by (36) and (39), respectively.
In the left panel, we see that the MSD in all cases tends to a constant value in agreement
with the scaling behavior predicted in Equation (35). In the right panel, we distinguish the
three cases predicted in Equation (39). Here, one observes that in the short-time limit the
MSD behaves as the MSD in the case of no resetting, i.e., there is only dependence on α.
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Figure 3. MSD in the case of Markovian resetting (left panel) for r = 0.01 and α = 1 (blue solid line),
α = 3/4 (red dashed line), α = 1/2 (black dot-dot-dashed line). We see that the MSD in all cases
tends to a constant value in agreement with the scaling behavior predicted in Equation (35). For non-
Markovian resetting (right panel), we take r = 0.01, α = 3/4 and γ = 1/2 (blue solid line), γ = 5/4
(red dashed line), γ = 2 (black dot-dot-dashed line). We also use Dx = 1 and Dy = 1/2. The results
have been obtained by numerically inverting Equations (34) (left panel) and (37) (right panel).

4. Conclusions

We have computed the MSD of a walker moving on a comb-like structure under the
effect of a stochastic (Markovian and non-Markovian) resetting. By using a set of Langevin
equations, we obtain the expression for the MSD in terms of the reset times PDF and the
propagator of the motion along the fingers when either the reset takes place at the fingers
(Equation (14)) or when it is global (Equation (32)). We have assumed that the movement
along fingers is described by a continuous time random walk with a power-law waiting
time PDF with exponent α, while the movement along the backbone is diffusive. When
the resetting process is Markovian, i.e., the reset times are drawn from a exponential PDF,
then the long-time limit of the overall MSD is either diffusive or constant when the reset
takes place in fingers or it is global, respectively. When the reset times PDF is a power-law
PDF with exponent γ, then an interesting interplay emerges between its tail and that of the
waiting time PDF. For resetting in fingers, the MSD may be diffusive or subdiffusive in the
long-time limit. When γ > 1, it is diffusive and subdiffusive otherwise. The exponent of
the MSD in the subdiffusive case depends on α but the critical value of γ for the transition
between diffusion and subdiffusion does not. For the case of global resetting, the MSD
may be constant or subdiffusive in the long-time limit. When γ > 2− α/2, it is constant
(stochastic localization) and subdiffusive otherwise. In this case, the critical value of γ for
the transition between stochastic localization and subdiffusion depends explicitly on α.
These results on non-Markovian (power-law) resetting are summarised in Table 1. Calcula-
tion of the time averaged MSD for the considered comb model could be of interest for future
investigation. This can be analyzed by using the approach presented in Refs. [10,13]. Future
research could also be related to the investigation of random walks on comb structures in
the presence of time-dependent [60] and non-instantaneous resettings [61], random walks
on combs in the presence of resetting in an interval [62–64] and bounded in complex poten-
tial [65], discrete space–time resetting models [15] for comb structures, and finite-velocity
diffusion processes on comb [66–70] with non-Markovian resetting.

Table 1. Long-time behavior of the MSD along the backbone in the presence of non-Markovian
resetting.

Resetting in Fingers Global Resetting

0 < γ < 1− α
2 〈X2(t)〉r ∼ t1−α/2 〈X2(t)〉r ∼ t1−α/2

1− α
2 < γ < 1 〈X2(t)〉r ∼ tγ 〈X2(t)〉r ∼ t1−α/2

1 < γ < 2− α
2 〈X2(t)〉r ∼ t 〈X2(t)〉r ∼ t2−γ−α/2

2− α
2 < γ 〈X2(t)〉r ∼ t 〈X2(t)〉r ∼ const
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