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ABSTRACT

An equilibrium point of a differential system in R3 such that the eigenvalues of the Jacobian matrix of the system at the equilibrium are 0 and
± ωi with ω > 0 is called a zero-Hopf equilibrium point. First, we prove that the Chua’s circuit can have three zero-Hopf equilibria varying its
three parameters. Later, we show that from the zero-Hopf equilibrium point localized at the origin of coordinates can bifurcate one periodic
orbit. Moreover, we provide an analytic estimation of the expression of this periodic orbit and we have determined the kind of the stability of
the periodic orbit in function of the parameters of the perturbation. The tool used for proving these results is the averaging theory of second
order.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0137020

I. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS
In 1993, Chua et al.1 proposed to replace the piecewise linear function of his famous circuit by a cubic one. The system they designed

then became a relaxation oscillator with a cubic nonlinear characteristic elaborated from a circuit comprising a harmonic oscillator for which
the operation was based on a field-effect transistor, coupled to a relaxation–oscillator composed of a tunnel diode. The modeling of the circuit
used a capacity preventing from abrupt voltage drops and allowing to describe the fast motion of this oscillator. This gave rise to Eq. (1), which
constitutes a singularly perturbed system and is since considered the paradigm of complex dynamics.2

The Chua’s circuit is analyzed using the Kirchhoff’s laws. Then, the dynamics of the Chua’s circuit is modeled by means of the following
system of three nonlinear ordinary differential equations in the variables x(t), y(t), and z(t):

ẋ = a(y − cx − x3),
ẏ = x − y + z,

ż = −by,

(1)

where a, b, and c are real parameters and the dot indicates derivative with respect to the time t. For more details on the Chua’s circuit, see
Refs. 3 and 4.

Note that this differential system is invariant under the symmetry (x, y, z)→ (−x,−y,−z). Then, if (x(t), y(t), z(t)) is a solution of the
differential system (1), then (−x(t),−y(t),−z(t)) is another solution of this differential system, eventually both solutions coincide.

The study of the periodic orbits of a differential system is one of the main objectives of the qualitative theory of the differential systems.
In general, this is not an easy task, mainly if we want to study the periodic orbits analytically.

A way of finding periodic orbits is through a Hopf bifurcation, which in R3 takes place when a periodic orbit bifurcates from an equilib-
rium point whose linear part has eigenvalues λ ≠ 0 and ±ωi with ω > 0, and moving the parameters of the differential system this equilibrium
changes its kind of stability (for more details, see Ref. 5 and an application in Ref. 6). While there is a well-developed theory for studying the
Hopf bifurcation when λ ≠ 0, this is not the case when λ = 0.
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Here, we shall use the averaging theory of second order for studying the periodic orbits that bifurcate from the zero-Hopf equilibria of
the differential system (1). We note that this technique applied for studying the zero-Hopf bifurcations of the Chua’s system can be used for
studying arbitrary zero-Hopf bifurcations of other differential systems. Sometimes the averaging theory of first order for studying zero-Hopf
bifurcations is sufficient (see, for instance, Ref. 7), but here this is not the case.

A zero-Hopf equilibrium p of a differential system in R3 is an equilibrium point with eigenvalues 0 and ±ωi with ω > 0. A zero-Hopf
bifurcation takes place when one or several periodic orbits bifurcate from the equilibrium p when the parameters of the system move.

Easy computations show that the equilibria of the differential system (1) are

E1 = (0, 0, 0), E2 = (
√
−c, 0,−

√
−c), E3 = (−

√
−c, 0,

√
−c).

Of course, the last two equilibria exist only if the parameter c < 0.

Proposition 1. The following statements hold.

(a) The point E1 is a zero-Hopf equilibrium if and only if b = 0, c = −1/a, and a < −1.
(b) The points E2 and E3 are zero-Hopf equilibria if and only if b = 0, c = 1/(2a), and a < −1.

Proposition 1 is proved in Sec. III.

Theorem 2. The equilibrium point E1 of the Chua’s circuit (1) has a zero-Hopf bifurcation when b = 0, c = −1/a, and a = −1 − a2
1 < −1

with a1 > 0 and it is perturbed as follows:

b = b2ε2, c = −1
a
+ c2ε2, (2)

where b2c2 ≠ 0 and b2 − a2
1c2(1 + a2

1) > 0. Then, for ε ≠ 0 sufficiently small the periodic solution (x(t, ε), y(t, ε), z(t, ε)) equal to

ε(r0 cos (a1t), r0(a1 +
1
a1
) sin (a1t) + 1

a1
cos (a1t),O(1)) +O(ε2) (3)

bifurcates from E1 (see Fig. 1). Moreover, this periodic solution is asymptotically unstable if b2 > 0. It has a local stable and a local unstable
manifold each one formed by two topological cylinders if b2 < 0.

Theorem 2 is proved in Sec. III.
We note that in the expressions of b and c given in (2), there are no terms in b1ε and c1ε, which is due to the fact that these terms do not

contribute to the existence of periodic orbits when we compute such periodic orbits for this differential system using the averaging theory.
Of course, we see that doing all the computations of the averaging theory of first and second order. But we have omitted them in (2) because
otherwise the expressions of the Proof of Theorem 2 become longer without providing any new information.

FIG. 1. The periodic orbit of Theorem 2 for the values ε = 0.005, a = −2, a1 = 1, b = 0, b2 = 3, c = 0.5, and c2 = 1.
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The averaging theory does not provide information about the possible orbits bifurcating from the zero-Hopf equilibria E2 and E3. This
is due to the fact the first averaged function f1(r, u) = ( f11(r, u), f12(r, u)) at these equilibria is

f11(r, u) = πr(2Aa2
1c1 + 3

√
2u)

A3/2a3
1

,

f12(r, u) = 2πb1u
a3

1
,

where A = 1/
√

a2
1 + 1. The unique solution of the system f1(r, u) = (0, 0) is (r, u) = (0, 0), but this solution only provides an equilibrium

point, instead of a periodic solution. Then, since the averaging theory of first order does not provide information, we must do the averaged
function f1(r, u) of first order identically zero and compute the averaged function of second order. But in this case, we cannot do identically
zero the averaged function of first order because we cannot vanish the coefficient 3

√
2π/(A3/2a3

1) of the term ru in the function f11(r, u). For
more details on the averaging theory, see Sec. II.

II. THE AVERAGING THEORY OF FIRST AND SECOND ORDER
In this section, we present the averaging theory of second order for finding periodic orbits that we need for proving our main theorem.

A proof of the following result can be found in Ref. 8 or 9, and in Theorem 11.6 of Ref. 10, it is studied the kind of stability of the periodic
solutions obtained using the averaging theory. For more details on the general theory of averaging theory, see the book 11, and for another
application to the zero-Hopf bifurcation, see Ref. 12.

Theorem 3. Let
ẋ(t) = εF1(t, x) + ε2F2(t, x) + ε3R(t, x, ε) (4)

be a non-autonomous differential system such that D is an open subset of Rn, where the functions F1, F2 : R ×D→ Rn, and R : R ×D
× (−ε f , ε f )→ Rn are continuous and periodic of period T in the variable t. Assume that the next conditions are satisfied.

(i) The functions F1(t, ⋅) ∈ C1(D) for all t ∈ R, F1, F2, R, and DxF1 are locally Lipschitz with respect to x, and the function R is C1 with respect
to ε. The functions f1, f2 : D→ Rn are defined as

f1(z) = ∫
T

0
F1(s, z)ds,

f2(z) = ∫
T

0
[DzF1(s, z)∫

s

0
F1(t, z)dt + F2(s, z)]ds.

(5)

(ii) For a bounded and open set V ⊂ D and for every ε ∈ (−ε f , ε f )/{0}, there is a ∈ V satisfying f1(a) + εf 2(a) = 0. Moreover the Brouwer
degree of the function f1 + εf 2 at a is not zero.

Then, for ∣ε∣ > 0 sufficiently small, there is a periodic solution x(t, ε) of period T of the differential system (4) verifying that x(0, ε)→ a when
ε→ 0. Furthermore the eigenvalues of the Jacobian matrix D( f1(a) + εf 2(a)) provides the kind of stability of the Poincaré map associated with
the periodic solution x(t, ε).

Assume that a is a fixed point of a function f . When the Jacobian of the function f at a (if it is defined) does not vanish, then the Brouwer
degree of function f at a is non-zero; for a proof, see Ref. 13.

When the first averaged function f1 is not identically zero, for ε sufficiently small the zeros of f1 + εf 2 are essentially the zeros of f1. Then,
we say that Theorem 3 provides the averaging theory of first order.

When the first averaged function f1 is identically zero and the second averaged function f2 is not identically zero, the zeros of the function
f1 + εf 2 are essentially the zeros of f2, and then we say that Theorem 3 provides the averaging theory of second order.

III. PROOF OF THE RESULTS

Proof of Proposition 1. The Jacobian matrix of the vector field associated to system (1) is

M =
⎛
⎜⎜⎜⎜
⎝

−a(c + 3x2) a 0

1 −1 1

0 −b 0

⎞
⎟⎟⎟⎟
⎠

.

In order that the eigenvalues of the matrix M at some equilibrium Ek for k = 1, 2, 3 be 0 and ±ωi with ω > 0, the characteristic polynomial
of M must be −λ(λ2 + ω2). Imposing this fact for every equilibrium Ek for k = 1, 2, 3, we obtain the results stated in the statement of the
proposition. ◻
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Proof of Theorem 2. We consider system (1) for the values of the parameters given in (2), so the equilibrium E1 is zero-Hopf. Now we
shall do several changes of variables until to write the differential system into the normal form (4) for applying the averaging theory of second
order, and in this way to study using this theory the possible periodic orbits bifurcate from the equilibrium E1.

We shall write the matrix of the linear part of the differential system (1) at the equilibrium E1 in its real Jordan normal form

⎛
⎜⎜⎜⎜
⎝

0 −a1 0

a1 0 0

0 0 0

⎞
⎟⎟⎟⎟
⎠

.

For doing this, we do the change of variables, which pass the variables (x, y, z) to the variables (X, Y , Z), through

(x, y, z) = (X − ( 1
a2

1
+ 1)Z,

a1Y + X
a2

1 + 1
− Z

a2
1

, Z). (6)

Then, system (1) in the new variables (X, Y , Z) becomes

Ẋ = −a1Y +
(a2

1 + 1)(a2
1(X − Z) − Z)3

a6
1

+ ε2(−b2(a1Y + X)
a2

1
+ (a2

1 + 1)c2X +
(a2

1 + 1)Z(b2 − a2
1(a2

1 + 1)c2)
a4

1
) +O(ε3),

Ẏ = a1X +
3(a2

1 + 1)2a2
1XZ(a2

1X − (a2
1 + 1)Z) + (a2

1 + 1)4Z3 − (a2
1 + 1)a6

1X3

a7
1

+ ε2 (a2
1 + 1)c2(a2

1(Z − X) + Z)
a3

1
+O(ε3),

Ż = ε2(b2Z
a2

1
− b2(a1Y + X)

a2
1 + 1

) +O(ε3).

(7)

Now, we change the coordinates (X, Y , Z) to the variables (r, θ, u) taking X = εr sin θ, Y = εr cos θ and Z = εu. Finally, taking θ as the
new independent variable the differential system (7) writes in the new variables (r, θ) as

r′ = ε2F21 +O(ε3),
u′ = ε2F22 +O(ε3),

(8)

where the prime denotes derivative with respect to the variable θ, and

F21 =
1
a8

1
((a2

1 + 1)a7
1r3 cos4 θ − (a2

1 + 1)a5
1r2 cos3 θ(3(a2

1 + 1)u + a1r sin θ)

− a1 cos θ(a2
1(a2

1 + 1)u(a2
1(a2

1 + 1)c2 − b2) + (a2
1 + 1)4u3

+ a1r sin θ(3(a2
1 + 1)3u2 + a4

1(a2
1c2 + b2 + c2)))

+ (a2
1 + 1)2 u sin θ(a4

1c2 + (a2
1 + 1)2u2)

+ a3
1r cos2 θ(a6

1c2 + a4
1c2 − a2

1b2 + 3(a2
1 + 1)2a1ru sin θ + 3(a2

1 + 1)3u2)),

F22 =
b2

a3
1
(u − a2

1r(a1 sin θ + cos θ)
a2

1 + 1
).

Differential system (8) is written into the normal form (4) for applying the averaging theory, where using the notation of Sec. II, we have
t = θ, x = (r, u), T = 2π, n = 2, F1 = (F11, F12) = (0, 0), and F2 = (F21, F22). Since all the assumptions of Theorem 3 of Sec. II are satisfied, we
can apply it to the differential system (8). Then, the first averaged function f1(r, u) defined in (5) is identically zero, and the second averaged
function f2(r, u) = ( f21(r, u), f22(r, u)) is

f21(r, u) = 1
a8

1
(3

4
π(a2

1 + 1)a7
1r3 + πr(a9

1c2 + a7
1c2 − a5

1b2 + 3(a3
1 + a1)

3
u2)),

f22(r, u) = 2πb2u
a3

1
.
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The unique zero of the second averaged function f2(r, u), which going back through the changes of variables, is not associated with an
equilibrium point of system (2) and, which has r ≥ 0, is

(r, u) =
⎛
⎜
⎝

2

¿
ÁÁÀb2 − a2

1c2(1 + a2
1)

3a2
1(1 + a2

1)
, 0
⎞
⎟
⎠
= (r0, 0),

which is real because by assumptions b2 − a2
1c2(1 + a2

1) > 0. Since the Jacobian of the function f2(r, u) at that zero is 4π2b2(b2 − a2
1c2

(1 + a2
1))/a6

1 ≠ 0 by assumptions, it follows from Theorem 3 that the differential system (8) has a periodic solution (r(θ, ε), u(θ, ε)) such
that

(r(0, ε), u(0, ε)) = (r0, 0) +O(ε).

Since the eigenvalues of the Jacobian matrix D( f21, f22)(r0, 0) are

2π(b2 − a2
1c2(1 + a2

1))
a3

1
> 0 and

2πb2

a3
1

.

From Theorem 3, the corresponding periodic solution (r(θ, ε), u(θ, ε)) is asymptotically unstable if b2 > 0. If b2 < 0 the fixed point of the
Poincaré map associated with the periodic orbit (r(θ, ε), u(θ, ε)) is a saddle, so this periodic orbit has a local unstable manifold and a local
stable manifold each one formed by two topological cylinders.

Going back through the changes of variables the periodic solution (r(θ, ε), u(θ, ε)) of system (8) becomes the periodic solution
(r(t, ε), θ(t, ε), u(t, ε)) of the differential system (ṙ, θ̇, u̇), where as usual the dot denotes derivative with respect to the time t. We did not write
explicitly the differential (ṙ, θ̇, u̇), which is in the middle of the differential systems (7) and (8). The periodic solution (r(t, ε), θ(t, ε), u(t, ε))
satisfies

(r(0, ε), θ(0, ε), u(0, ε)) = (r0, a1t, 0) +O(ε).

This periodic solution becomes the periodic solution (X(t, ε), Y(t, ε), Z(t, ε)) of system (7) such that

(X(0, ε), Y(0, ε), Z(0, ε)) = ε(r0 cos (a1t), r0 sin (a1t), 0) +O(ε2).

Finally, going back to the coordinates (x, y, z) undoing the change (6), we obtain the periodic solution of system (1) described in the statement
of the theorem. ◻

IV. CONCLUSIONS
We have proved that from the zero-Hopf equilibrium point localized at the origin of coordinates of the Chua’s circuit can bifurcate one

periodic orbit. Moreover, we have provided an analytic estimation of the expression of this periodic orbit, and additionally we have determined
its kind of the stability in function of the perturbation of the parameters b = 0, c = −1/a, and a < −1, for which the zero-Hopf equilibrium at
the origin of coordinates exists. The tool used for proving these results has been the averaging theory of second order.

Unfortunately, the averaging theory does not provide information about the possible periodic orbits bifurcating from the other two
zero-Hopf equilibria that the Chua’s circuit can have.
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