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A B S T R A C T

In recent decades, the use of optical detection systems for meteor studies has increased dramatically, resulting
in huge amounts of data being analyzed. Automated meteor detection tools are essential for studying the
continuous meteoroid incoming flux, recovering fresh meteorites, and achieving a better understanding of
our Solar System. Concerning meteor detection, distinguishing false positives between meteor and non-meteor
images has traditionally been performed by hand, which is significantly time-consuming. To address this issue,
we developed a fully automated pipeline that uses Convolutional Neural Networks (CNNs) to classify candidate
meteor detections. Our new method is able to detect meteors even in images that contain static elements
such as clouds, the Moon, and buildings. To accurately locate the meteor within each frame, we employ the
Gradient-weighted Class Activation Mapping (Grad-CAM) technique. This method facilitates the identification
of the region of interest by multiplying the activations from the last convolutional layer with the average of the
gradients across the feature map of that layer. By combining these findings with the activation map derived
from the first convolutional layer, we effectively pinpoint the most probable pixel location of the meteor. We
trained and evaluated our model on a large dataset collected by the Spanish Meteor Network (SPMN) and
achieved a precision of 98%. Our new methodology presented here has the potential to reduce the workload
of meteor scientists and station operators and improve the accuracy of meteor tracking and classification.
1. Introduction

Meteors, popularly known as shooting stars, particularly the most
luminous ones called fireballs or bolides, are spectacular physical pro-
cesses that have fascinated mankind for centuries (Trigo-Rodríguez,
2022). These dazzling streaks of light occur when a meteoroid enters
the Earth’s atmosphere at hypersonic velocity, causing intense heating
through repeated collisions with air molecules (Ceplecha et al., 1998;
Silber et al., 2018; Trigo-Rodríguez, 2019). Meteors are formed due
to the extreme heat produced by the interaction with the gaseous
environment and the rising atmospheric pressure which causes the
meteoroid to undergo rapid vaporization, a process known as ablation.
This ablation leads to the formation of a luminous trail composed
of ionized gas and fragmented debris, which can be observed and
recorded from the ground using optical devices. Current digital video
imagery provides a sequential recording useful to obtain complete
light curves, high temporal and spatial resolution measurements, and
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spectra (Hughes, 1978; Koschny et al., 2017; Subasinghe et al., 2017;
Drolshagen et al., 2021).

Traditionally, two classes of meteors are considered: those that are
expected to occur in a specific period of the year because they are
associated with meteoroid streams, and those that are sporadic and
have no discernible periodic pattern (Wiegert and Brown, 2004; Jopek
and Williams, 2013; Dumitru et al., 2017; Jenniskens, 2017; Vaubaillon
et al., 2019; Peña-Asensio et al., 2022, 2023). Although showers exhibit
regular activity, the sporadic meteors require constant sky monitoring
to quantify the meteoroid flux and properties of the different sources
(Trigo-Rodríguez and Blum, 2022).

Meteors can provide valuable information about the composition,
dynamics, and origin of our Solar System (Koschny et al., 2019). By
analyzing the physical and chemical properties of meteorites, which
are pieces of meteoroids that survive their journey through the Earth’s
atmosphere and land on the surface, scientists can gain insight into
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the formation and evolution of comets and asteroids, as they provide
information about the age of the Solar System, the composition of the
early solar nebula, and the processes that led to the formation of the
planets (Bottke et al., 2002; Lauretta and McSween, 2006).

The growing interest in meteoritics has driven an increase in the
number of video meteor detection networks around the world (Ce-
plecha, 1987; Ceplecha et al., 1998; Koten et al., 2019; Colas et al.,
2020). Comprised of strategically placed stations equipped with cam-
eras and other sensors, these networks are designed to monitor atmo-
spheric volumes with clear views of the sky, aiming to maximize the
number of recorded meteors within common observing fields. A note-
worthy trend in recent years has been the rise of pro-am collaborations
in this field, involving professional scientists, amateur astronomers,
and citizen scientists working together to collect valuable data. These
collaborations have significantly expanded the reach of meteor net-
works, enabling the recording of events from diverse locations and
perspectives.

However, with the increasing number of detection stations, the
accumulation of video and image data has also surged. Consequently,
this data influx has created a bottleneck in processing and analysis,
as traditional manual methods prove to be excessively time-consuming
and resource-intensive. To deal with these issues, many networks are
embracing automation as a means to efficiently handle the significant
volumes of generated data (Molau, 2001; Spurný et al., 2007; Gural
and Šegon, 2009; Brown et al., 2010; Gural, 2011; Weryk et al., 2013;
Howie et al., 2017; Suk and Šimberová, 2017; Nikolic, 2019; Peña-
Asensio et al., 2021a,b; Vida et al., 2021). These automated approaches
allow meteor scientists to analyze and interpret meteor data faster and
more efficiently than ever before, helping to uncover new insights into
meteor behavior and properties.

The detection of luminous sources moving in the sky is relatively
easy to solve as the camera control software only needs to store and
overwrite the last few minutes of recording, and in the event of a
sudden increase in illumination, permanently save this data. However,
the trigger threshold must be carefully calibrated to avoid missing
any meteors while minimizing the number of false positives. Defining
this cut-off is complex as it can vary depending on a number of
factors, including general lighting conditions, which need to be updated
periodically to consider specific dusk and dawn illumination conditions
or the presence of the Moon.

The pipelines that attempt to automate the detection and tracking
of meteors face a difficult task because meteors are virtually ran-
dom phenomena and can occur in a variety of ways due to impact
geometry, variable velocity, size, shape, composition, viewing angle,
sky conditions (clouds or illumination), etc. In addition, meteors must
be distinguished from false positives caused by satellites, airplanes,
helicopters, drones, birds, lightning, or artificial light sources. The
combination of possible characteristics that meteors can exhibit makes
it difficult to define fixed parameters that work in all cases. As a
result, many networks still rely on human experts to manually review
the footage and identify/classify meteors. However, human operators
can occasionally make errors, particularly when artificial events cause
confusion or ambiguity. However, there are also networks that use
fully automated approaches based on traditional computer vision tech-
niques, such as image processing algorithms with fixed instructions,
e.g. CAMS (Jenniskens et al., 2011), SonotaCo (SonotaCo, 2016), or
EDMOND (Kornoš et al., 2014). Some of the detection pipelines cur-
rently in use are MetRec, MeteorScan, and UFOCapture; an overview of
heir capabilities is given in Molau and Gural (2005). These automated
pproaches show a high percentage of events with suspicious calculated
esults due to their reliance on fixed parameters that may not be
ppropriate for all scenarios (Hajdukova et al., 2020).

Consequently, addressing the challenges of meteor monitoring re-
uires the adoption of artificial intelligence techniques. In this paper,
e delve into the utilization of new methodologies for meteor classifi-
2

ation and processing tasks. Specifically, we investigate how Machine
Learning (ML) approaches can effectively enhance the accuracy and
efficiency of automated pipelines, given the massive volume of data
generated by meteor networks. We present a fully automated pipeline
leveraging Convolutional Neural Networks (CNNs) for meteor detection
and tracking using transfer learning and the Gradient-weighted Class
Activation Mapping (Grad-CAM) technique.

2. Artificial intelligence for meteor detection

Advances in computer technology and hardware performance have
fueled the remarkable progress of ML, particularly artificial neural
networks with multiple layers, which are classified as deep learning.
Neural networks have become increasingly popular in various do-
mains due to their exceptional performance in image classification and
recognition. Among them, CNNs have gained popularity for their fault
tolerance and self-learning capabilities through multi-layer feedforward
networks with a convoluted structure (Gu et al., 2018). They can
handle complex environments and unclear background problems with
significantly better generalization ability compared to other methods.
A typical CNN architecture includes an input layer, multiple convo-
lutional layers, pooling layers, a fully connected layer, and an output
layer. CNNs can be used for both supervised and unsupervised learning,
and are applied in diverse fields such as computer vision, natural
language processing, and others (Hastie et al., 2001).

In the context of meteor monitoring, current research efforts using
ML focus on two main objectives. First, some studies concentrate on
determining the presence of a meteor in a given event, with the
goal of distinguishing meteoric events from non-meteoric phenomena.
Alternatively, other works rely on ML for meteor tracking, facilitating
the accurate localization and monitoring of meteoroids throughout
their bright atmospheric trajectory. The primary challenge is to effec-
tively distinguish false positives caused by non-meteor objects such as
airplanes, birds, and insects, or atmospheric conditions (e.g. clouds).
These innovative approaches are being increasingly employed within
meteor networks worldwide, including the Global Meteor Network
(GMN) (Gural, 2019), AllSky7 Fireball Network Germany (FNG1), Me-
eorite Orbits Reconstruction by Optical Imaging (MOROI) (Nedelcu
t al., 2018), Canadian Automated Meteor Observatory (CAMO) (Weryk
t al., 2013), Cameras for All-sky Meteor Surveillance (CAMS) (Jen-
iskens et al., 2011), EXOSS meteor network2, and Meteor Automatic
mager and Analyzer (MAIA) (Vítek et al., 2011).

In image classification, it is customary to use transfer learning
echniques with pre-trained models of CNNs (Sennlaub et al., 2022;
arsola and Lorena, 2019; Galindo and Lorena, 2018). These methods

llow inheriting the ability to detect objects from those pre-trained
odels, which need to be re-trained on meteors. With this methodol-

gy, optimal results are achieved with a smaller number of training
ata compared to starting from an uninitialized model. As underlined
n Galindo and Lorena (2018), uttermost results are achieved when the
roper pre-trained dataset is selected. They compared the performance
f ImageNET and Fashion-MNIST (Xiao et al., 2017) with fine-tuning,
oncluding that the latter is the most optimal as it is already trained to
ork with black and white images. They also checked whether the CNN

ould distinguish meteors if the image was previously tweaked (slightly
oomed, rotated, or flipped). The results showed that these transforma-
ions could produce unrealistic apparent trajectories and worsen the
lassification. In order to solve these types of problems, Ganju et al.
2023) use a windowing technique to create new frames from existing
nes. With this, all meteor detection would have the same number
f frames, easing the posterior analysis. In Cecil and Campbell-Brown
2020) is shown a comparison of different sets of combinations of

1 https://allsky7.net/.
2 https://exoss.org/.

https://allsky7.net/
https://exoss.org/
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Table 1
Summary of the main previous works on ML applied to meteor detection. For each contribution, we denote the meteor network source, the number of samples used to train the
models, their goal, the transfer learning method used (if any), the different models compared, and the best F1 score and/or accuracy achieved (when provided). F1 score and
accuracy have been normalized between 0 and 1.

Article Meteor network # samples Goal Transfer learning Model F1 score Accuracy

Ganju et al. (2023) CAMS 19,152 Detection BiLSTM – 0.91 0.89
Anghel et al. (2023) MOROI 9,858 Detection – CNN, GB and RF 0.989 0.998
Sennlaub et al. (2022) AllSky7 FNG 20,000 Detection ImageNET CNN: GRU and SVM – 0.991
Cecil and Campbell-Brown (2020) CAMO 50,745 Tracking No CNN: multi-layer and max pool 0.997 0.998
Gural (2019) CAMS 200,361 Tracking MeteorNet RNN and LSTM 0.974 0.981
Marsola and Lorena (2019) EXOSS 400 Detection ImageNET VGG16 – 0.8435
Vítek and Nasyrova (2019) MAIA – Tracking No DPT – –
Galindo and Lorena (2018) EXOSS 1,660 Detection Fashion-MNIST – 0.94 0.960
different techniques used in image processing, such as convolutions and
max-pools.

Even though most CNN meteor detection algorithms have been
trained to reach a satisfying prediction percentage (> 99%), particularly
when considering large sample sizes of more than ∼10,000 events,
some anomalies are still misclassified as meteors for small datasets. The
next step in meteor detection algorithms is to consider the intrinsic
properties of meteors on camera images to discard these misleading
anomalies. Additionally, the main drawback of the current meteor
tracking algorithms is the runtime required to analyze high-definition
1080p video images. However, they perform well when dealing with
small, low-resolution video images.

Beyond CNNs, other ML techniques are often used. It is the case
of Recurrent Neural Networks (RNN), Gradient Boost (GB), or Ran-
dom Forest (RF), which can also be used as complementary analysis
tools (Gural, 2019; Anghel et al., 2022). Temporal resolution can
be introduced in the analysis by using other networks such as Long
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Temporal
Convolutional Network (TCN), Time Delay Neural Network (TDNN),
Support Vector Machine (SVM), or VGG16 (Siladi et al., 2015; Si-
monyan and Zisserman, 2015; Sennlaub et al., 2022), supporting 16
layers. A particular additional technique is the discrete pulse trans-
form (DPT) (Rohwer and Laurie, 2006), in which image signals are
decomposed in pulses. Vítek and Nasyrova (2019) introduced DPT to
characterize the number of pulses related to the meteor compared to
those of stars. Even though it is not specified if the results are better
than other works, they do underline that using DPT is faster than other
methods used in the MAIA data.

Sennlaub et al. (2022) also classified those false positives based
on their origin. They did not achieve solid statements but pointed
out similarities among false positive subgroups. As sketched in Le
Lan and Dinh (2021) a future algorithm to classify the false positives
would include prior knowledge of each subgroup. These could also be
expanded to classify the re-entry of artificial space debris. They could
also include a cross-matching identification between different stations
as a method of improving the overall accuracy (Anghel et al., 2023).

Table 1 provides a comprehensive summary of the outcomes achie-
ved in these works accompanied by the data source, the number of
samples, the technique used, and the results such as F1 score and
accuracy. The F1 score is a performance metric that combines precision
and recall to measure the accuracy of a classification model. Precision
represents the proportion of true positive predictions out of all positive
predictions, while recall represents the proportion of true positive pre-
dictions out of all actual positive instances. The F1 score considers both
precision and recall, making it useful when the dataset is imbalanced
or when false positives and false negatives have different consequences.
Accuracy is a common evaluation metric used to measure the overall
correctness of a classification model. It calculates the proportion of
correctly predicted instances (both true positives and true negatives)
3

out of the total number of instances in the dataset.
Fig. 1. A basic-block building block of ResNet-34.

3. CNN, transfer learning, and Grad-CAM

Our work aims to use ML techniques to achieve two main goals:
detecting the presence of meteors in images and tracking the motion of
meteors in the field of view. To achieve this, and based on the review of
the scientific literature, we have decided to develop a CNN model that
classifies images into two groups, ‘‘Meteors’’ and ‘‘No-meteors’’, using
transfer learning. In addition, we implemented a novel application of
Grad-CAM to track the coordinates of the meteor’s motion.

3.1. Detection

To build our model, we chose to use ResNet-34, which is a 34-layer
pre-trained CNN from the Residual Network family (He et al., 2015).
This allowed us to quickly specialize the model for our specific use
case using transfer learning techniques with a small dataset and rapidly
inheriting all detection skills already learned by the network. ResNet-
34 mainly consists of an input layer, convolutional layers, residual
blocks, shortcut connections, downsampling, global average pooling,
and fully connected layers. One of the key elements of this network
is the residual building block, which is its infrastructure. As shown
in Fig. 1, the residual building block consists of several convolutional
layers (Conv), batch normalizations (BN), a rectified linear unit (ReLU)
activation function, and a link. This block is used for all 34 layers of
ResNet-34, as depicted in Table 2. The output of the residual block is
given by the formula 𝑦 = 𝐹 (𝑥)+𝑥, where 𝐹 is the residual function and
𝑥 and 𝑦 are the input and output of the residual function, respectively.
The entire residual network is composed of the first convolutional layer
and multiple basic blocks, making it a highly effective and efficient
deep learning architecture for image recognition tasks.

For training and testing the model, we used a dataset of 982 images
of meteors detected by optical devices of the Spanish Meteor Network
(SPMN) network stations (Trigo-Rodríguez et al., 2006), along with
56,285 images without meteor detection collected over the year 2021,
particularly from the Pujalt observatory. To balance the two groups,
we generated a dataset of 982 images with meteors and 1050 without
detections for training. To ensure reliable model performance, a portion
of these images, specifically 20%, is allocated for validation, which is
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Table 2
The structure of ResNet-34.

Layer name Output size 34-layer

Conv1 112 × 112 7 × 7, 64, 𝑠𝑡𝑟𝑖𝑑𝑒2
3 × 3 𝑚𝑎𝑥 𝑝𝑜𝑜𝑙, 𝑠𝑡𝑟𝑖𝑑𝑒2

Conv2_x 56 × 56
[

3 × 3, 64
3 × 3, 64

]

× 3

Conv3_x 28 × 28
[

3 × 3, 128
3 × 3, 128

]

× 4

Conv4_x 14 × 14
[

3 × 3, 256
3 × 3, 256

]

× 6

Conv5_x 7 × 7
[

3 × 3, 512
3 × 3, 512

]

× 3

1 × 1 average pool, 1000-d fc, softmax

utilized to evaluate the training progress. From this dataset, 300 images
were specifically set aside for testing purposes, 150 from the meteor
class and 150 from the no-meteor. The test set serves as an independent
dataset to evaluate the final performance of the trained model after the
completion of the training process.

The dataset consisted of grayscale long exposure (30 s) images
that were pre-processed to enhance the meteor trail and remove static
visual elements from the background by subtracting consecutive im-
ages. This included converting the images to black and white, resizing
them to 400 × 400, and subtracting successive images to remove the
background. To facilitate the generalization of the model and reduce
overfitting, data augmentation techniques were used during the transfer
learning process. Specifically, each batch of images received by the
CNN during the 35 epochs of training was modified with geometric
transformations such as randomly flipping, cropping, rotating, and
translating the images, or applying lighting modifications.

3.2. Tracking

The final layer of our CNN exhibits activations corresponding to
neurons that are specifically triggered when a meteor is detected in
an image. While such activations provide initial utility, leveraging
the subsequent classification layer’s weights in conjunction with these
activations further enhances their significance. It is important to note
that the classification layer possesses a comprehensive understanding of
the meteor classification task, enabling it to assign appropriate weights
to the activated neurons. Hence, certain previously activated neurons
may be deemed less influential in the final classification decision. This
is the foundation of the so-called Class Activation Mapping (CAM)
technique (Zhou et al., 2015).

The CAM technique is usually employed to generate a heatmap
for a given class (class ‘‘meteor’’ in our case). This technique involves
capturing the activations from the last convolutional layer of the CNN
and multiplying them by the corresponding weights from the last fully
connected layer responsible for the classification task. By performing
this operation, the CAM technique effectively highlights the areas
within the image that contribute the most to the meteor classification,
that is, the Region of Interest (ROI). Fig. 2 illustrates the overall
procedures of this method.

However, in order to further enhance the performance of our model,
we opted to incorporate an advanced variant of CAM known as Grad-
CAM (Selvaraju et al., 2016). Grad-CAM builds upon the CAM method-
ology by integrating gradient information instead of the weights of the
classification layer. This provides a more fine-grained localization of
important regions within an image. Grad-CAM computes the gradients
of the target class of a specific layer with respect to the activations of
the same layer. By multiplying the activations from the last convolu-
tional layer with the average of the gradients across the feature map of
that layer, Grad-CAM obtains the importance weights for the activation
maps. The weighted combination of the activation maps produces the
final heatmap, which visually highlights the critical regions within the
input image for the classification of the target class.
4

Fig. 2. The general process of class activation mapping method.
Source: Adapted from Jiang et al. (2021).

To capture finer details for properly tracking the meteor motion, we
focus on the activations of the initial convolutional layer, restricting
our attention to activations falling within the defined ROI delineated
by the Grad-CAM. Within the CNN, the activation of the deepest layers
offers a more detailed resolution map (56 × 56). However, these layers
are more prone to noise and less reliable in accurately identifying the
ROI related to meteor detection. To tackle these difficulties, we apply
a noise reduction strategy by selectively retaining only the cells that
align with the cells from the higher precision but lower resolution
Grad-CAM (7 × 7) with a non-zero value. By doing so, we filter out
noisy activations and focus on the cells that have a meaningful impact
on the meteor classification. Subsequently, we extract the cells with
the maximum activation values from the refined high-resolution acti-
vation map. By calculating the average position among these selected
cells, we are able to project a single point onto the original image.
This refinement process significantly enhances the accuracy of meteor
detection by precisely pinpointing the location of meteors within the
frames generated by our model. Fig. 3 illustrates the described meteor
detection and tracking process.

Note that we do not multiply the activations of the initial layer with
the weights of the classification layer because the spatial and semantic
gap between the initial convolutional layer and the classification layer
limits the effectiveness of such an approach. Although Grad-CAM al-
lows the analysis of any layer in the network, we observed that focusing
just on the activations from the initial convolutional layer within the
ROI calculated using Grad-CAM on the last layer yields good results.

4. Training and results

Fig. 4 shows the evolution during the training process of the loss
function as a function of the batches processed, which is a metric
that measures the deviation between predicted and actual values. The
primary goal during training is to minimize this function. The training
set consists of the images used to train the CNN model, while the
validation set consists of a subset of 150 images randomly selected
and reserved for evaluating the model’s performance and generalization
ability. By evaluating the loss function on both sets, we monitor the
progress of the model and detect any signs of overfitting or underfitting.

A batch refers to a group of images that are processed together
during each iteration of the training algorithm. The total number of
batches processed can be calculated using the formula 𝐵𝑎𝑡𝑐ℎ𝑒𝑠 = 𝑁 ∗
(𝐼∕𝐵𝑆), where 𝑁 is the number of epochs, which is the number of
times the entire training data set is passed through the network during
training. 𝐼 denotes the total number of images in the training dataset,
including both meteor and non-meteor images. Finally, 𝐵𝑆 refers to the
batch size, which represents the number of images fed to the network
in each training iteration. For this study, we used a batch size of 32.

By substituting these values, we determined that a total of 1,515
batches were processed during the training process. This corresponds to
the maximum value observed in Fig. 4, indicating the completion of all
batches. Understanding the relationship between the loss function, the
batches processed, and the progress of the training and validation sets
provides valuable insight into the training dynamics and performance
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Fig. 3. Illustrative diagram of the proposed process of meteor detection and tracking using CNN and Grad-CAM. The image exemplifies a video detection made by the SPMN
station in Estepa, Seville operated by Antonio J. Robles.
Fig. 4. Training and validation loss during model training.

evaluation of the neural network model. As every batch comprises 32
images and is subjected to various random transformations, the overall
training process, including data augmentation, incorporates a varied
array of 48,480 distinct images. Table 3 compiles the evolution of
different metrics during the training process.

The next step involves defining the crucial hyperparameter for the
training process: the learning rate. By evaluating the loss function
values across various learning rates, we can identify the region of
sustained and substantial loss reduction, disregarding transient peaks
and irregular drops as they do not represent reliable trends. Once
this region is identified, we pinpoint the midpoint of the steepest
descent line, which corresponds to the most significant loss reduction.
This specific learning rate is then selected for the subsequent training
procedure. For our specific study, we determined a learning rate of
0.003 to be the optimal choice.

The training phase of our pipeline ends with an F1 score of 0.94,
indicating the high precision and recall achieved during the training
process. We then evaluated the performance of the trained model on
the test dataset to assess its generalization capabilities. The evaluation
5

Fig. 5. Confusion matrix of the trained model with normalized values in parentheses.

results show that our model achieved an accuracy of 0.96 on the test
dataset. This accuracy metric indicates the model’s ability to correctly
classify meteor and non-meteor images with a high degree of accuracy.
Furthermore, when specifically considering the meteor class, our model
achieved a precision of 0.98.

To further analyze the performance of the model, a confusion
matrix was constructed as it provides insight into the classification
performance by showing the distribution of the predicted labels against
the true labels. The confusion matrix for our two labels ‘‘Meteor’’ and
‘‘No-Meteor’’ is shown in Fig. 5.

In the confusion matrix, the rows correspond to the true labels,
while the columns represent the predicted labels. The matrix values
indicate the proportion of images belonging to each category. The
confusion matrix shows that 47% of the images were correctly classified
as meteors, while 3.3% of the images were incorrectly classified as
non-meteor images. Furthermore, 1% of the images were incorrectly
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Table 3
Metrics evolution during the training process, including for each epoch the error rate,
accuracy, precision, recall, and F1 score.

Epoch Error Accuracy Precision F1

0 0.245665 0.754335 0.763323 0.753592
1 0.210983 0.789017 0.788704 0.788804
2 0.205202 0.794798 0.798389 0.794714
3 0.187861 0.812139 0.823898 0.811444
4 0.127168 0.872832 0.872594 0.872726
5 0.161850 0.838150 0.842479 0.838064
6 0.104046 0.895954 0.895722 0.895867
7 0.138728 0.861272 0.875206 0.860709
8 0.086705 0.913295 0.913068 0.913222
9 0.072254 0.927746 0.928404 0.927527
10 0.063584 0.936416 0.936314 0.936382
11 0.049133 0.950867 0.950896 0.950775
12 0.060694 0.939306 0.939599 0.939294
13 0.063584 0.936416 0.936896 0.936244
14 0.049133 0.950867 0.950896 0.950775
15 0.095376 0.904624 0.912476 0.904489
16 0.066474 0.933526 0.936153 0.933521
17 0.049133 0.950867 0.950693 0.950834
18 0.052023 0.947977 0.948137 0.947865
19 0.037572 0.962428 0.962805 0.962337
20 0.052023 0.947977 0.948137 0.947865
21 0.043353 0.956647 0.956495 0.956586
22 0.052023 0.947977 0.948109 0.947961
23 0.046243 0.953757 0.953543 0.953719
24 0.037572 0.962428 0.962282 0.962375
25 0.037572 0.962428 0.962805 0.962337
26 0.049133 0.950867 0.950896 0.950775
27 0.034682 0.965318 0.965915 0.965224
28 0.043353 0.956647 0.956688 0.956566
29 0.049133 0.950867 0.950693 0.950834
30 0.049133 0.950867 0.950693 0.950834
31 0.052023 0.947977 0.947761 0.947933
32 0.046243 0.953757 0.953551 0.953702
33 0.046243 0.953757 0.953551 0.953702
34 0.034682 0.965318 0.965525 0.965244

classified as meteor images, while 49% were correctly identified as
non-meteor images. The high accuracy achieved by the pipeline demon-
strates its robustness in accurately detecting and classifying meteor
images. The low misclassification rates for both meteor and non-meteor
classes indicate the effectiveness of the trained CNNs in distinguishing
between these classes, then minimizing the required human time for
these time-consuming tasks.

It is worth noting that the proposed model shows the ability to
generalize and accurately detect meteor trails even in color frames that
have not undergone the previous frame subtraction process. This is
particularly noteworthy because these frames may contain stationary
elements such as clouds, the Moon, buildings, or other obstructions
that can cause interference and affect the accuracy of meteor detection.
Despite these challenges, the model can effectively distinguish and
identify meteor trails, providing robust and reliable results. This further
validates the model’s ability to operate under real-world conditions,
making it a valuable tool for meteor scientists and enthusiasts alike.

However, this very capability in detecting meteor trails renders
it susceptible to satellite misidentifications, as they often exhibit a
similar trace when reflecting the sunlight. An instance of such incorrect
classification is illustrated in the top panel of Fig. 6 with a transit of
a SpaceX Starlink satellite train, necessitating retraining the network
o encompass this new class. Conversely, the bottom panel shows an
ndetected meteor, possibly due to its proximity to the full moon and
imming by a cloud-covered field of view.

We used data augmentation techniques during the training process,
hich is a common strategy that helps prevent overfitting and improves

he model’s ability to generalize well to unseen data. However, it is
orth noting that Xiao et al. (2017) suggested data augmentation could
otentially degrade model performance in certain cases. Therefore, it is
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ossible that our use of data augmentation in the training process may
have resulted in slightly lower performance compared to some of the
models reported in Table 1. Despite this slight performance difference,
our pipeline still demonstrates a high level of accuracy and efficiency in
meteor detection and classification. The inclusion of data augmentation
techniques is crucial to promote better generalization and robustness in
the model, even though it may have had a slight impact on the overall
results compared to other models in the comparison.

We compared our results with those obtained by Galindo and Lorena
(2018) and Marsola and Lorena (2019), who used datasets of similar
size to ours. In this comparison, our methodology equals or outper-
forms existing approaches, demonstrating superior performance. Fur-
thermore, our pipeline incorporates the added complexity of meteor
tracking, which presents a significant challenge due to the smaller
luminous trace in each frame. Meteor tracking enables the computation
of the velocity curve, a key factor in both discriminating between
artificial and natural objects and in determining the heliocentric orbit
and the potential meteorite strewn field. Automating this process facil-
itates the extraction of orbital elements for hundreds or thousands of
meteors detected nightly, providing valuable insights into both the spo-
radic meteoroid background flux and the characteristics of meteoroid
streams.

In subsequent phases, we intend to enhance the pipeline by refining
the balance of false positives, encompassing a diverse spectrum of
potential false positive sources including satellites, planes, birds, bugs,
and other light sources in the training process.

5. Conclusions

The implementation of automated detection software has led to a
massive increase in the amount of data collected and reduced every
year by meteor networks. However, the need for human oversight to
filter out false positives and organize the records has created a bottle-
neck, and the traditional computer vision techniques implemented have
limited performance due to the random and specific characteristics of
each meteor event. We employed CNNs to address these challenges.

In our study, we used a dataset of 982 meteor images along with
1,050 images without meteors detected by SPMN stations in 2021 to
train a CNN model. A transfer learning technique was applied, and
Grad-CAM was used for accurate tracking. Our main results are as
follows:

(1) Our approach utilized ResNet-34, a deep learning architec-
ture consisting of 34 pre-trained layers. By using pre-trained layers,
we capitalized on the knowledge and representations gained from a
large dataset during the initial training phase, resulting in improved
model performance. In addition, data augmentation techniques were
employed to facilitate the model’s ability to accurately generalize and
mitigate overfitting. The results achieved demonstrate a precision of
98% for meteor classification.

(2) Grad-CAM was used to track the coordinates of the meteor
within each image. This technique involved analyzing deeper layers of
the neural network, which have higher accuracy but lower resolution.
ROI information was extracted using the gradients of the last convo-
lutional layer and then combined with activation information from
the initial layer, which is characterized by higher resolution but lower
accuracy. This fusion of information allowed the identification of the
most critical pixel corresponding to the position of the meteoroid. This
technique allows for the precise localization of meteor positions within
frames.

(3) The high performance achieved by our pipeline underscores
its robustness in precisely detecting and classifying meteor images.
The success rate, even with a relatively small dataset, highlights the
potential of our method to significantly reduce the workload of meteor
scientists and station operators involved in meteor data analysis. This
potential is further enhanced by one of the most notable advancements
in our methodology: the novel use of Grad-CAM for meteor tracking in
combination with the initial activation map.
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Fig. 6. Top panel: False positive of a SpaceX Starlink satellite track as it exhibits similar characteristics as a meteor trail. Recording obtained from the Alpicat SPMN station
under the operation of Marc Corretgé-Gilart. Bottom panel: False negative of SPMN070523G superbolide recorded near the full moon with a cloudy sky. Recording obtained from
Bartolo-Castelló SPMN station under the operation of Vicente Ibañez.
In summary, our study highlights the significant potential of apply-
ing ML techniques to meteor monitoring. It illustrates the effectiveness
of CNNs and transfer learning in reducing false positives and correctly
identifying meteors in images. By automating the meteor monitoring
process, our pipeline increases the efficiency of meteor detection and
tracking using the Grad-CAM technique. This, in turn, facilitates the
study of meteoroid fluxes, aids in population characterization, and
improves our ability to distinguish between meteorite-dropping events,
thereby increasing fresh extraterrestrial material recovery rates.
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